1
|
Tao Y, Pan Q, Cai T, Lu ZH, Haque M, Dottorini T, Colvin LA, Smith BH, Meng W. A genome-wide association study identifies novel genetic variants associated with neck or shoulder pain in the UK biobank (N = 430,193). Pain Rep 2025; 10:e1267. [PMID: 40291381 PMCID: PMC12026381 DOI: 10.1097/pr9.0000000000001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/11/2025] [Accepted: 02/09/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Neck and shoulder pain are prevalent musculoskeletal disorders that significantly affect the quality of life for a substantial portion of the global population. Studies have shown that women are more susceptible than men. Objective This study aims to discover genetic variants associated with neck or shoulder pain through a genome-wide association study (GWAS), using data from 430,193 participants in the UK Biobank. Methods A genome-wide association study was performed adjusting for age, sex, BMI, and 8 population principal components. Significant and independent genetic variants were replicated by FinnGen. Results The primary GWAS revealed 5 significant genetic loci (including 2 novel) associated with neck or shoulder pain, with the most significant single nucleotide polymorphism (SNP) being rs9889282 (P = 2.63 × 10-12) near CA10 on chromosome 17. Two novel significant associations were detected on chromosomes 18 and 14, with the top SNPs being rs4608411 (P = 8.20 × 10-9) near TCF4 and rs370565192 (P = 3.80 × 10-8) in DCAF5, respectively. Our secondary GWAS identified a single novel genetic locus in SLC24A3 among males and 2 genetic loci (including one novel near LINC02770) among females. In the replication stage, the SLC39A8 locus was weakly supported by the FinnGen cohort. The tissue expression analysis revealed a significant association between brain tissues and neck or shoulder pain. Conclusion In summary, this study has identified novel genetic variants for neck or shoulder pain. Sex-stratified GWAS also suggested that sex played a role in the occurrence of the phenotype.
Collapse
Affiliation(s)
- Yiwen Tao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Qi Pan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Tengda Cai
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Zen Huat Lu
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Mainul Haque
- School of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, China
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Lesley A. Colvin
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Weihua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
- Center for Public Health, Faculty of Medicine, Health and Life Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Lazo PA. VRK2 kinase pathogenic pathways in cancer and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119949. [PMID: 40187568 DOI: 10.1016/j.bbamcr.2025.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The VRK2 ser-thr kinase, belonging to the dark kinome, is implicated in the pathogenesis of cancer progression, neurological and psychiatric diseases. The VRK2 gene codes for two isoforms. The main isoform (VRK2A) is mainly located in the cytoplasm, and anchored to different types of membranes, such as the endoplasmic reticulum, mitochondria and nuclear envelope. The VRK2A isoform interacts with signaling modules assembled on scaffold proteins such as JIP1 or KSR1, forming stable complexes and blocking the activation of regulatory signaling pathways by altering their intracellular localization and the balance among them. VRK2 regulates apoptosis, nuclear membrane organization, immune responses, and Cajal bodies. Wild-type VRK2 is overexpressed in tumors and contributes to cancer development. In cells and tumors with low levels of nuclear VRK1, VRK2 generates by alternative splicing a shorter isoform (VRK2B) that lacks the C-terminal hydrophobic tail and permits its relocation to nuclei. Furthermore, rare VRK2 gene variants are associated with different neurological or psychiatric diseases such as schizophrenia, epilepsy, bipolar disorder, depression, autism, circadian clock alterations and insomnia, but their pathogenic mechanism is unknown. These diseases are a likely consequence of an altered balance among different signaling pathways that are regulated by VRK2.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
3
|
Savchenko RR, Skryabin NA. Transcription factor TCF4: structure, function, and associated diseases. Vavilovskii Zhurnal Genet Selektsii 2024; 28:770-779. [PMID: 39722673 PMCID: PMC11667571 DOI: 10.18699/vjgb-24-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 12/28/2024] Open
Abstract
Our understanding of human genes - particularly their structure, functions, and regulatory mechanisms - is still limited. The biological role of approximately 20 % of human proteins has not been established yet, and the molecular functions of the known part of the proteome remain poorly understood. This hinders progress in basic and applied biological and medical sciences, especially in treating hereditary diseases, which are caused by mutations and polymorphic variants in individual genes. Therefore, it is crucial to comprehend the mechanisms of protein functioning to address this problem. This further emphasizes the importance of investigating gene functions and molecular pathogenetic pathways associated with single-gene inherited diseases. This review focuses on the TCF4 gene that encodes a transcription factor crucial for nervous system development and functioning. Pathogenic variants in this gene have been linked to a rare genetic disorder, Pitt-Hopkins syndrome, and TCF4 polymorphic variants are associated with several socially significant diseases, including various psychiatric disorders. The pathogenetic mechanisms of these conditions remain unexplored, and the knowledge about TCF4 upregulation and its target genes is limited. TCF4 can be expressed in various isoforms due to the complex structure and regulation of its gene, which complicates the investigation of the protein's functions. Here, we consider the structure and functions of the TCF4 transcription factor. We discuss its potential target genes and the possible loss-of-function pathogenetic mechanisms identified in animal and cellular models of Pitt-Hopkins syndrome. The review also examines the advantages and limitations of potential therapies for Pitt-Hopkins syndrome that are based on TCF4 dosage compensation or altering the activity of TCF4 target genes.
Collapse
Affiliation(s)
- R R Savchenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N A Skryabin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
4
|
Jameei H, Rakesh D, Zalesky A, Cairns MJ, Reay WR, Wray NR, Di Biase MA. Linking Polygenic Risk of Schizophrenia to Variation in Magnetic Resonance Imaging Brain Measures: A Comprehensive Systematic Review. Schizophr Bull 2024; 50:32-46. [PMID: 37354489 PMCID: PMC10754175 DOI: 10.1093/schbul/sbad087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is highly heritable, with a polygenic effect of many genes conferring risk. Evidence on whether cumulative risk also predicts alterations in brain morphology and function is inconsistent. This systematic review examined evidence for schizophrenia polygenic risk score (sczPRS) associations with commonly used magnetic resonance imaging (MRI) measures. We expected consistent evidence to emerge for significant sczPRS associations with variation in structure and function, specifically in frontal, temporal, and insula cortices that are commonly implicated in schizophrenia pathophysiology. STUDY DESIGN In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched MEDLINE, Embase, and PsycINFO for peer-reviewed studies published between January 2013 and March 2022. Studies were screened against predetermined criteria and National Institutes of Health (NIH) quality assessment tools. STUDY RESULTS In total, 57 studies of T1-weighted structural, diffusion, and functional MRI were included (age range = 9-80 years, Nrange = 64-76 644). We observed moderate, albeit preliminary, evidence for higher sczPRS predicting global reductions in cortical thickness and widespread variation in functional connectivity, and to a lesser extent, region-specific reductions in frontal and temporal volume and thickness. Conversely, sczPRS does not predict whole-brain surface area or gray/white matter volume. Limited evidence emerged for sczPRS associations with diffusion tensor measures of white matter microstructure in a large community sample and smaller cohorts of children and young adults. These findings were broadly consistent across community and clinical populations. CONCLUSIONS Our review supports the hypothesis that schizophrenia is a disorder of disrupted within and between-region brain connectivity, and points to specific whole-brain and regional MRI metrics that may provide useful intermediate phenotypes.
Collapse
Affiliation(s)
- Hadis Jameei
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Tao Y, Qin Y, Chen S, Xu T, Lin J, Su D, Yu W, Chen X. Emerging trends and hot spots of sleep and genetic research: a bibliometric analysis of publications from 2002 to 2022 in the field. Front Neurol 2023; 14:1264177. [PMID: 38020599 PMCID: PMC10663257 DOI: 10.3389/fneur.2023.1264177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Sleep is an important biological process and has been linked to many diseases; however, very little is known about which and how genes control and regulate sleep. Although technology has seen significant development, this issue has still not been adequately resolved. Therefore, we conducted a bibliometric analysis to assess the progress in research on sleep quality and associated genes over the past 2 decades. Through our statistical data and discussions, we aimed to provide researchers with better research directions and ideas, thus promoting the advancement of this field. Methods On December 29, 2022, we utilized bibliometric techniques, such as co-cited and cluster analysis and keyword co-occurrence, using tools such as CiteSpace, VOSviewer, and the Online Analysis Platform of Literature Metrology (http://bibliometric.com/), to conduct a thorough examination of the relevant publications extracted from the Web of Science Core Collection (WoSCC). Our analysis aimed to identify the emerging trends and hot spots in this field while also predicting their potential development in future. Results Cluster analysis of the co-cited literature revealed the most popular terms relating to sleep quality and associated genes in the manner of cluster labels; these included genome-wide association studies (GWAS), circadian rhythms, obstructive sleep apnea (OSA), DNA methylation, and depression. Keyword burst detection suggested that obstructive sleep apnea, circadian clock, circadian genes, and polygenic risk score were newly emergent research hot spots. Conclusion Based on this bibliometric analysis of the publications in the last 20 years, a comprehensive analysis of the literature clarified the contributions, changes in research hot spots, and evolution of research techniques regarding sleep quality and associated genes. This research can provide medical staff and researchers with revelations into future directions of the study on the pathological mechanisms of sleep-related diseases.
Collapse
Affiliation(s)
- Ying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yi Qin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Sifan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Tian Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xuemei Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
7
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Perfilyeva A, Bespalova K, Perfilyeva Y, Skvortsova L, Musralina L, Zhunussova G, Khussainova E, Iskakova U, Bekmanov B, Djansugurova L. Integrative Functional Genomic Analysis in Multiplex Autism Families from Kazakhstan. DISEASE MARKERS 2022; 2022:1509994. [PMID: 36199823 PMCID: PMC9529466 DOI: 10.1155/2022/1509994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
The study of extended pedigrees containing autism spectrum disorder- (ASD-) related broader autism phenotypes (BAP) offers a promising approach to the search for ASD candidate variants. Here, a total of 650,000 genetic markers were tested in four Kazakhstani multiplex families with ASD and BAP to obtain data on de novo mutations (DNMs), common, and rare inherited variants that may contribute to the genetic risk for developing autistic traits. The variants were analyzed in the context of gene networks and pathways. Several previously well-described enriched pathways were identified, including ion channel activity, regulation of synaptic function, and membrane depolarization. Perhaps these pathways are crucial not only for the development of ASD but also for ВАР. The results also point to several additional biological pathways (circadian entrainment, NCAM and BTN family interactions, and interaction between L1 and Ankyrins) and hub genes (CFTR, NOD2, PPP2R2B, and TTR). The obtained results suggest that further exploration of PPI networks combining ASD and BAP risk genes can be used to identify novel or overlooked ASD molecular mechanisms.
Collapse
Affiliation(s)
| | - Kira Bespalova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Yuliya Perfilyeva
- M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
- Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Liliya Skvortsova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Lyazzat Musralina
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Gulnur Zhunussova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Elmira Khussainova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Ulzhan Iskakova
- Kazakh National Medical University, 94 Tole Bi St., Almaty 050000, Kazakhstan
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Leyla Djansugurova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| |
Collapse
|
9
|
Zhao Z, Zhu L, Wu X, Chen Q, Xu B, Yang J, Guo X, Su L. Genome-wide association studies-supported rs12966547 variant of the long noncoding RNA LOC105372125 is significantly associated with susceptibility to schizophrenia and bipolar disorder in Han Chinese women. Psychiatr Genet 2022; 32:74-79. [PMID: 35191423 DOI: 10.1097/ypg.0000000000000312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Genome-wide association studies have found that rs12966547 polymorphism was associated with susceptibility to schizophrenia in European populations. Recent studies showed that a genetic overlap may exist in schizophrenia and bipolar disorder. Here, we analyzed the associations between LOC105372125 rs12966547 polymorphism and schizophrenia and bipolar disorder in the Han Chinese population. METHODS Our study recruited 548 schizophrenia patients, 512 bipolar disorder patients, and 598 healthy controls. Genotyping of rs12966547 were performed using the Sequenom MassARRAY platform. RESULTS A significant association between rs12966547 polymorphism and susceptibility to bipolar disorder was observed after adjusting for sex and age (additive model: Padj = 0.040, recessive model: Padj = 0.044). However, no significant association was found between rs12966547 polymorphism and schizophrenia risk (all P > 0.05). In the analysis of gender, rs12966547 polymorphism was significantly associated with bipolar disorder (additive model: Padj = 0.027) and schizophrenia (dominant model: Padj = 0.039) in women. However, no significant association was found between rs12966547 polymorphism and the risk of bipolar disorder or schizophrenia in men (all Padj > 0.05). CONCLUSIONS Polymorphism of rs12966547 on the long noncoding RNA LOC10537215 are a shared genetic variant of schizophrenia and bipolar disorder in Han Chinese women.
Collapse
Affiliation(s)
- Zhi Zhao
- School of Public Health of Guangxi Medical University, Nanning
| | - Lulu Zhu
- School of Public Health of Guangxi Medical University, Nanning
| | - Xulong Wu
- School of Public Health of Guangxi Medical University, Nanning
| | - Qiang Chen
- Guangxi Brain Hospital, Liuzhou, Guangxi, China
| | - Bingyi Xu
- School of Public Health of Guangxi Medical University, Nanning
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, Nanning
| | | | - Li Su
- School of Public Health of Guangxi Medical University, Nanning
| |
Collapse
|
10
|
Umeda R, Teranishi H, Hada K, Shimizu N, Shiraishi H, Urushibata H, Shaohong L, Shide M, Apolinario MEC, Higa R, Shikano K, Shin T, Mimata H, Hikida T, Hanada T, Hanada R. Vrk2 deficiency elicits aggressive behavior in female zebrafish. Genes Cells 2022; 27:254-265. [DOI: 10.1111/gtc.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ryohei Umeda
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Kazumasa Hada
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Nobuyuki Shimizu
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | | | - Lai Shaohong
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Masahito Shide
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | | | - Ryoko Higa
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Kenshiro Shikano
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Toshitaka Shin
- Department of Urology Faculty of Medicine Oita University Oita Japan
| | - Hiromitsu Mimata
- Department of Urology Faculty of Medicine Oita University Oita Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions Institute for Protein Research Osaka University Osaka Japan
| | - Toshikatsu Hanada
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Reiko Hanada
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| |
Collapse
|
11
|
Sirp A, Roots K, Nurm K, Tuvikene J, Sepp M, Timmusk T. Functional consequences of TCF4 missense substitutions associated with Pitt-Hopkins syndrome, mild intellectual disability, and schizophrenia. J Biol Chem 2021; 297:101381. [PMID: 34748727 PMCID: PMC8648840 DOI: 10.1016/j.jbc.2021.101381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor essential for neurocognitive development. The aberrations in TCF4 are associated with neurodevelopmental disorders including schizophrenia, intellectual disability, and Pitt-Hopkins syndrome, an autism-spectrum disorder characterized by developmental delay. Several disease-associated missense mutations in TCF4 have been shown to interfere with TCF4 function, but for many mutations, the impact remains undefined. Here, we tested the effects of 12 functionally uncharacterized disease-associated missense mutations and variations in TCF4 using transient expression in mammalian cells, confocal imaging, in vitro DNA-binding assays, and reporter assays. We show that Pitt-Hopkins syndrome-associated missense mutations within the basic helix-loop-helix domain of TCF4 and a Rett-like syndrome-associated mutation in a transcription activation domain result in altered DNA-binding and transcriptional activity of the protein. Some of the missense variations found in schizophrenia patients slightly increase TCF4 transcriptional activity, whereas no effects were detected for missense mutations linked to mild intellectual disability. We in addition find that the outcomes of several disease-related mutations are affected by cell type, TCF4 isoform, and dimerization partner, suggesting that the effects of TCF4 mutations are context-dependent. Together with previous work, this study provides a basis for the interpretation of the functional consequences of TCF4 missense variants.
Collapse
Affiliation(s)
- Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaisa Roots
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaja Nurm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios LLC, Tallinn, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios LLC, Tallinn, Estonia.
| |
Collapse
|
12
|
Wittmann MT, Katada S, Sock E, Kirchner P, Ekici AB, Wegner M, Nakashima K, Lie DC, Reis A. scRNA sequencing uncovers a TCF4-dependent transcription factor network regulating commissure development in mouse. Development 2021; 148:269257. [PMID: 34184026 PMCID: PMC8327186 DOI: 10.1242/dev.196022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 06/15/2021] [Indexed: 01/21/2023]
Abstract
Transcription factor 4 (TCF4) is a crucial regulator of neurodevelopment and has been linked to the pathogenesis of autism, intellectual disability and schizophrenia. As a class I bHLH transcription factor (TF), it is assumed that TCF4 exerts its neurodevelopmental functions through dimerization with proneural class II bHLH TFs. Here, we aim to identify TF partners of TCF4 in the control of interhemispheric connectivity formation. Using a new bioinformatic strategy integrating TF expression levels and regulon activities from single cell RNA-sequencing data, we find evidence that TCF4 interacts with non-bHLH TFs and modulates their transcriptional activity in Satb2+ intercortical projection neurons. Notably, this network comprises regulators linked to the pathogenesis of neurodevelopmental disorders, e.g. FOXG1, SOX11 and BRG1. In support of the functional interaction of TCF4 with non-bHLH TFs, we find that TCF4 and SOX11 biochemically interact and cooperatively control commissure formation in vivo, and regulate the transcription of genes implicated in this process. In addition to identifying new candidate interactors of TCF4 in neurodevelopment, this study illustrates how scRNA-Seq data can be leveraged to predict TF networks in neurodevelopmental processes. Summary: Single-cell RNA sequencing identifies interactions of TCF4 with non-bHLH transcription factors linked to neurodevelopmental and neuropsychiatric disease in the regulation of interhemispheric projection neuron development.
Collapse
Affiliation(s)
- Marie-Theres Wittmann
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.,Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Elisabeth Sock
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Michael Wegner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
13
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
14
|
Bartlett T. Fusion of single-cell transcriptome and DNA-binding data, for genomic network inference in cortical development. BMC Bioinformatics 2021; 22:301. [PMID: 34088262 PMCID: PMC8176738 DOI: 10.1186/s12859-021-04201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Network models are well-established as very useful computational-statistical tools in cell biology. However, a genomic network model based only on gene expression data can, by definition, only infer gene co-expression networks. Hence, in order to infer gene regulatory patterns, it is necessary to also include data related to binding of regulatory factors to DNA. RESULTS We propose a new dynamic genomic network model, for inferring patterns of genomic regulatory influence in dynamic processes such as development. Our model fuses experiment-specific gene expression data with publicly available DNA-binding data. The method we propose is computationally efficient, and can be applied to genome-wide data with tens of thousands of transcripts. Thus, our method is well suited for use as an exploratory tool for genome-wide data. We apply our method to data from human fetal cortical development, and our findings confirm genomic regulatory patterns which are recognised as being fundamental to neuronal development. CONCLUSIONS Our method provides a mathematical/computational toolbox which, when coupled with targeted experiments, will reveal and confirm important new functional genomic regulatory processes in mammalian development.
Collapse
Affiliation(s)
- Thomas Bartlett
- University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Li HJ, Zhang C, Hui L, Zhou DS, Li Y, Zhang CY, Wang C, Wang L, Li W, Yang Y, Qu N, Tang J, He Y, Zhou J, Yang Z, Li X, Cai J, Yang L, Chen J, Fan W, Tang W, Tang W, Jia QF, Liu W, Zhuo C, Song X, Liu F, Bai Y, Zhong BL, Zhang SF, Chen J, Xia B, Lv L, Liu Z, Hu S, Li XY, Liu JW, Cai X, Yao YG, Zhang Y, Yan H, Chang S, Zhao JP, Yue WH, Luo XJ, Chen X, Xiao X, Fang Y, Li M. Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among Han Chinese Individuals: A Genome-Wide Association Study and Meta-analysis. JAMA Psychiatry 2021; 78:320-330. [PMID: 33263727 PMCID: PMC7711567 DOI: 10.1001/jamapsychiatry.2020.3738] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
IMPORTANCE The genetic basis of bipolar disorder (BD) in Han Chinese individuals is not fully understood. OBJECTIVE To explore the genetic basis of BD in the Han Chinese population. DESIGN, SETTING, AND PARTICIPANTS A genome-wide association study (GWAS), followed by independent replication, was conducted to identify BD risk loci in Han Chinese individuals. Individuals with BD were diagnosed based on DSM-IV criteria and had no history of schizophrenia, mental retardation, or substance dependence; individuals without any personal or family history of mental illnesses, including BD, were included as control participants. In total, discovery samples from 1822 patients and 4650 control participants passed quality control for the GWAS analysis. Replication analyses of samples from 958 patients and 2050 control participants were conducted. Summary statistics from the European Psychiatric Genomics Consortium 2 (PGC2) BD GWAS (20 352 cases and 31 358 controls) were used for the trans-ancestry genetic correlation analysis, polygenetic risk score analysis, and meta-analysis to compare BD genetic risk between Han Chinese and European individuals. The study was performed in February 2020. MAIN OUTCOMES AND MEASURES Single-nucleotide variations with P < 5.00 × 10-8 were considered to show genome-wide significance of statistical association. RESULTS The Han Chinese discovery GWAS sample included 1822 cases (mean [SD] age, 35.43 [14.12] years; 838 [46%] male) and 4650 controls (mean [SD] age, 27.48 [5.97] years; 2465 [53%] male), and the replication sample included 958 cases (mean [SD] age, 37.82 [15.54] years; 412 [43%] male) and 2050 controls (mean [SD] age, 27.50 [6.00] years; 1189 [58%] male). A novel BD risk locus in Han Chinese individuals was found near the gene encoding transmembrane protein 108 (TMEM108, rs9863544; P = 2.49 × 10-8; odds ratio [OR], 0.650; 95% CI, 0.559-0.756), which is required for dendritic spine development and glutamatergic transmission in the dentate gyrus. Trans-ancestry genetic correlation estimation (ρge = 0.652, SE = 0.106; P = 7.30 × 10-10) and polygenetic risk score analyses (maximum liability-scaled Nagelkerke pseudo R2 = 1.27%; P = 1.30 × 10-19) showed evidence of shared BD genetic risk between Han Chinese and European populations, and meta-analysis identified 2 new GWAS risk loci near VRK2 (rs41335055; P = 4.98 × 10-9; OR, 0.849; 95% CI, 0.804-0.897) and RHEBL1 (rs7969091; P = 3.12 × 10-8; OR, 0.932; 95% CI, 0.909-0.956). CONCLUSIONS AND RELEVANCE This GWAS study identified several loci and genes involved in the heritable risk of BD, providing insights into its genetic architecture and biological basis.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chen Zhang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuang Wang
- Department of Pharmacology and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Jun Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Zihao Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Xingxing Li
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jun Cai
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Lu Yang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Chen
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxin Tang
- Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weiqing Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xueqin Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Bai
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Province People’s Hospital, Zhengzhou, Henan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiao-Yan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jie-Wei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing-Ping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Wei-Hua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences and Peking University (PKU) International Data Group (IDG)/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yiru Fang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Liu X, Han T, Xie H, Fu Z, Yao Q, Lin Z, Zhu H, Zhan D. Evaluation of the relationship between VRK2, rs4380187 polymorphisms, and genetic susceptibility to schizophrenia in the Chinese Han population. J Gene Med 2021; 23:e3313. [PMID: 33522046 DOI: 10.1002/jgm.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia (SZ) is a serious hereditary mental disease with a low recovery rate, especially due to the lack of understanding about the cause of the disease. VRK2 is considered to be related to the pathogenesis of schizophrenia. In this study, we analyzed the correlation between VRK2, rs4380187 single-nucleotide polymorphism (SNP), and schizophrenia. METHODS Peripheral blood DNA was extracted using a genomic DNA extraction kit. The DNA samples were genotyped using the Agena MassARRAY platform, and four genetic models were applied to compute the odds ratios (ORs) and 95% confidence intervals (CIs) using unconditional logistic regression. The p value was obtained by the chi-square and t test for independent samples. RESULTS The C allele of rs4380187 SNP was significantly (p = 0.008) associated with decreased risk of SZ. The AA genotype of rs4380187 showed significantly (p = 0.009) lower frequency in cases with SZ than in controls and was associated with decreased risk of the disease. The frequency of the CA genotype of rs4380187 correlated with a 0.73-fold decreased risk of SZ (p = 0.033). In the co-dominant genetic model, the genotype of rs4380187 was associated with a decreased risk of SZ (p = 0.010). We also found that the log-additive model of rs4380187 significantly reduced the risk of SZ disease (p = 0.007). CONCLUSION This study provides further evidence that rs4380187 SNP is associated with SZ. This genotype variation could be associated with the psychopathology and cognitive function in SZ.
Collapse
Affiliation(s)
- Xianglai Liu
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Tianming Han
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Hailing Xie
- Institute of Mental Health, Anning Hospital, Hainan Province, China.,The Third Department of Psychiatry, Anning Hospital, Hainan Province, China
| | - Zejuan Fu
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Qiankun Yao
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Zhan Lin
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Hong Zhu
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Dafei Zhan
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| |
Collapse
|
17
|
Sleep duration: A review of genome-wide association studies (GWAS) in adults from 2007 to 2020. Sleep Med Rev 2020; 56:101413. [PMID: 33338765 DOI: 10.1016/j.smrv.2020.101413] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
A modest body of research exists in the area of human sleep genetics, which suggests that specific sleep phenotypes are, like many other complex traits, somewhat heritable. Until 2007 research into sleep genetics relied solely on twin studies, but in the last 13 years with the advent of huge biobanks and very large-scale genome-wide association studies, the field of molecular sleep genetics has seen important advances. To date, the majority have focused on self-reported sleep duration, but in recent years genome-wide association studies of objectively-measured sleep have emerged. These genetic studies have discovered multiple common genetic variants and as such, have provided insight into potential biological pathways, causal relationships between sleep duration and important disease outcomes using Mendelian randomisation. They have also shown that the heritability of these traits may not be as high as previously estimated. This article is the first to provide a detailed review of these recent advances in the genetic epidemiology of sleep duration. Studies were identified using both the GWAS Catalog and PubMed for completeness. Focus is on the genome-wide association studies published to date, including whether and how they have elucidated important biology and advanced knowledge in the area of sleep and health.
Collapse
|
18
|
Braun K, Häberle BM, Wittmann MT, Lie DC. Enriched environment ameliorates adult hippocampal neurogenesis deficits in Tcf4 haploinsufficient mice. BMC Neurosci 2020; 21:50. [PMID: 33228529 PMCID: PMC7684915 DOI: 10.1186/s12868-020-00602-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background Transcription factor 4 (TCF4) has been linked to human neurodevelopmental disorders such as intellectual disability, Pitt-Hopkins Syndrome (PTHS), autism, and schizophrenia. Recent work demonstrated that TCF4 participates in the control of a wide range of neurodevelopmental processes in mammalian nervous system development including neural precursor proliferation, timing of differentiation, migration, dendritogenesis and synapse formation. TCF4 is highly expressed in the adult hippocampal dentate gyrus – one of the few brain regions where neural stem / progenitor cells generate new functional neurons throughout life. Results We here investigated whether TCF4 haploinsufficiency, which in humans causes non-syndromic forms of intellectual disability and PTHS, affects adult hippocampal neurogenesis, a process that is essential for hippocampal plasticity in rodents and potentially in humans. Young adult Tcf4 heterozygote knockout mice showed a major reduction in the level of adult hippocampal neurogenesis, which was at least in part caused by lower stem/progenitor cell numbers and impaired maturation and survival of adult-generated neurons. Interestingly, housing in an enriched environment was sufficient to enhance maturation and survival of new neurons and to substantially augment neurogenesis levels in Tcf4 heterozygote knockout mice. Conclusion The present findings indicate that haploinsufficiency for the intellectual disability- and PTHS-linked transcription factor TCF4 not only affects embryonic neurodevelopment but impedes neurogenesis in the hippocampus of adult mice. These findings suggest that TCF4 haploinsufficiency may have a negative impact on hippocampal function throughout adulthood by impeding hippocampal neurogenesis.
Collapse
Affiliation(s)
- Katharina Braun
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Benjamin M Häberle
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - D Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
19
|
Qin Y, Kang J, Jiao Z, Wang Y, Wang J, Wang H, Feng J, Jin L, Wang F, Gong X. Polygenic risk for autism spectrum disorder affects left amygdala activity and negative emotion in schizophrenia. Transl Psychiatry 2020; 10:322. [PMID: 32958750 PMCID: PMC7506524 DOI: 10.1038/s41398-020-01001-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Although the diagnoses based on phenomenology have many practical advantages, accumulating evidence shows that schizophrenia and autism spectrum disorder (ASD) share some overlap in genetics and clinical presentation. It remains largely unknown how ASD-associated polygenetic risk contributes to the pathogenesis of schizophrenia. In the present study, we calculated high-resolution ASD polygenic risk scores (ASD PRSs) and selected optimal ten ASD PRS with minimal P values in the association analysis of PRSs, with schizophrenia to assess the effect of ASD PRS on brain neural activity in schizophrenia cases and controls. We found that amplitude of low-frequency fluctuation in left amygdala was positively associated with ASD PRSs in our cohort. Correlation analysis of ASD PRSs with facial emotion recognition test identified the negative correlation of ASD PRSs with negative emotions in schizophrenia cases and controls. Finally, functional enrichment analysis of PRS genes revealed that neural system function and development, as well as signal transduction, were mainly enriched in PRS genes. Our results provide empirical evidence that polygenic risk for ASD contributes to schizophrenia by the intermediate phenotypes of left amygdala function and emotion recognition. It provides a promising strategy to understand the relationship between phenotypes and genotypes shared in mental disorders.
Collapse
Affiliation(s)
- Yue Qin
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jujiao Kang
- grid.8547.e0000 0001 0125 2443Shanghai Center for Mathematical Science, Fudan University, Shanghai, China
| | - Zeyu Jiao
- grid.8547.e0000 0001 0125 2443Shanghai Center for Mathematical Science, Fudan University, Shanghai, China
| | - Yi Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Human Phoneme Institute, Fudan University, Shanghai, China
| | - Hongyan Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jianfeng Feng
- grid.8547.e0000 0001 0125 2443Shanghai Center for Mathematical Science, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China ,grid.7372.10000 0000 8809 1613Department of Computer Science, University of Warwick, Coventry, CV4 7AL UK
| | - Li Jin
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Wang
- grid.412636.4Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Fedorenko OY, Ivanova SA. [A new look at the genetics of neurocognitive deficits in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:183-192. [PMID: 32929943 DOI: 10.17116/jnevro2020120081183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The article presents current literature data on genetic studies of neurocognitive deficit in schizophrenia, including the genes of neurotransmitter systems (dopaminergic, glutamatergic, and serotonergic); genes analyzed in genome-wide association studies (GWAS), as well as other genetic factors related to the pathophysiological mechanisms underlying schizophrenia and neurocognitive disorders.
Collapse
Affiliation(s)
- O Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,National Research Tomsk Polytechnic University, Tomsk, Russia
| | - S A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
21
|
Boks MP, He Y, Schubart CD, Gastel WV, Elkrief L, Huguet G, Eijk KV, Vinkers CH, Kahn RS, Paus T, Conrod P, Hol EM, de Witte LD. Cannabinoids and psychotic symptoms: A potential role for a genetic variant in the P2X purinoceptor 7 (P2RX7) gene. Brain Behav Immun 2020; 88:573-581. [PMID: 32330591 DOI: 10.1016/j.bbi.2020.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
To investigate the biological mechanisms underlying the higher risk for psychosis in those that use cannabis, we conducted a genome-wide environment-interaction study (GWEIS). In a sample of individuals without a psychiatric disorder (N = 1262), we analyzed the interactions between regular cannabis use and genotype with psychotic-like experiences (PLE) as outcome. PLE were measured using the Community Assessment of Psychic Experiences (CAPE). The sample was enriched for those at the extremes of both cannabis use and PLE to increase power. A single nucleotide polymorphism in the P2RX7 gene (rs7958311) was associated with risk for a high level of psychotic experiences in regular cannabis users (p = 1.10 x10-7) and in those with high levels of lifetime cannabis use (p = 4.5 × 10-6). This interaction was replicated in individuals with high levels of lifetime cannabis use in the IMAGEN cohort (N = 1217, p = 0.020). Functional relevance of P2RX7 in cannabis users was suggested by in vitro experiments on activated monocytes. Exposure of these cells to tetrahydrocannabinol (THC) or cannabidiol (CBD) reduced the immunological response of the P2X7 receptor, which was dependent on the identified genetic variant. P2RX7 variants have been implicated in psychiatric disorders before and the P2X7 receptor is involved in pathways relevant to psychosis, such as neurotransmission, synaptic plasticity and immune regulation. We conclude that P2RX7 plays a role in vulnerability to develop psychotic symptoms when using cannabis and point to a new pathway that can potentially be targeted by newly developed P2X7 antagonists.
Collapse
Affiliation(s)
- Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands
| | - Yujie He
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands
| | - Chris D Schubart
- Department of Psychiatry, Tergooi Hospital, Blaricum, The Netherlands
| | | | - Laurent Elkrief
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Huguet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Kristel van Eijk
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands; Department of psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Tomás Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Conrod
- Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Psychiatry, University of Montreal, Montréal, QC, Canada
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, The Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Lot D de Witte
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands; Department of psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA.
| |
Collapse
|
22
|
Seshasubramanian V, Raghavan V, SathishKannan AD, Naganathan C, Ramachandran A, Arasu P, Rajendren P, John S, Mowry B, Rangaswamy T, Narayan S, Periathiruvadi S. Association of HLA-A, -B, -C, -DRB1 and -DQB1 alleles at amino acid level in individuals with schizophrenia: A study from South India. Int J Immunogenet 2020; 47:501-511. [PMID: 32697037 DOI: 10.1111/iji.12507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Schizophrenia, a chronic severe psychiatric illness of unknown aetiology, has been shown to be associated with HLA alleles but at varied degree in different population. The present study has focussed on analysing the frequency of HLA class I and class II alleles in persons with schizophrenia from South India. METHODS Ninety seven individuals with schizophrenia and 103 age- and gender-matched controls were typed for HLA- A, B, C, DRB1 and DQB1 loci by next-generation sequencing in Illumina MiniSeq using MIA FORA NGS FLEX HLA typing kit. RESULTS The results showed that HLA-A*01:01:01, B*37:01:01 and C*01:02:01 were positively associated with schizophrenia while HLA-B*35:03:01 and DRB1*04:03:01 were negatively associated. Gender-specific associations revealed that DRB1*10:01:01 and DQB1*05:01:01 were positively associated while DQB1*03:02:01 was negatively associated with female subjects with schizophrenia. A*24:02:01~B*37:01:01~C*06:02:01~DRB1*10:01:01~DQB1*05:01:01 is the predominant haplotype in schizophrenia population when compared to healthy controls. Amino acid association in susceptible and protective alleles has shown that the presence of peptide in the peptide-binding groves of mature HLA-A protein (K, M, V, R and V at 44th, 67th, 150th, 156th and 158th position), HLA-B protein (D and S at 77th and 99th position) and HLA-C protein (M at 99th position) confer susceptibility to the disease, only in the absence of E (Glutamic acid) at 74th position in mature HLA-DRB1 protein. Interaction of amino acids in protective alleles namely B*35:01:01 and DRB1*04:03:01 has revealed that aspartic acid at 114th (D) position in mature HLA-B protein and glutamic acid (E) at 74th position of mature HLA-DRB1 protein have a combined effect in protecting against the disease. CONCLUSION The study has revealed the HLA association with schizophrenia in south Indian population. The amino acid interaction with the disease needs to be confirmed in a larger population.
Collapse
Affiliation(s)
| | - Vijaya Raghavan
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | | | | | - Aparna Ramachandran
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Priya Arasu
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Preeti Rajendren
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Sujit John
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Brian Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia.,Queensland Centre for Mental Health Research, Brisbane, Qld, Australia
| | - Thara Rangaswamy
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Saranya Narayan
- Jeenomics, Jeevan Stem Cell Foundation, Chennai, Tamil Nadu, India
| | | |
Collapse
|
23
|
Almarzooq S, Kwon J, Willis A, Craig J, Morris BJ. Novel alternatively-spliced exons of the VRK2 gene in mouse brain and microglial cells. Mol Biol Rep 2020; 47:5127-5136. [PMID: 32583282 PMCID: PMC7417415 DOI: 10.1007/s11033-020-05584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
Common sequence variations in the VRK2 gene contribute to genetic risk for various psychiatric diseases including schizophrenia and major depressive disorder. Despite the clear importance of studying the regulation and function of VRK2 for understanding the causes of these diseases, the organisation and expression of the gene remain poorly characterised. Using reverse-transcriptase-PCR, we have amplifed exons of Vrk2 mRNA from regions of mouse brain, and from different cell classes comprising neurones, astrocytes and microglial cells. We find that Vrk2 mRNA is expressed in all cell types, and that the splicing of the mouse Vrk2 gene is much more complex than previously appreciated. In addition to the predicted alternative splicing (absence/presence) of the penultimate 3 prime exon, we also detected a variety of 5 prime structures, including two novel exons spanning the first characterised exon (exon 1), which we term exons 1a and 1b. While expressed in neurones and astrocytes, exon 1b was not expressed in microglial cells. Expression of transcripts containing exon 1a in microglia was increased by immune stimulation. An additional truncated transcript lacking 7 central exons was also identified. As with the human gene, the results confirm complex patterns of alternative splicing which are likely to be relevant for understanding the physiological and pathological function of the gene in the CNS.
Collapse
Affiliation(s)
- Salsabil Almarzooq
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK
| | - Jaedeok Kwon
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK
| | - Ashleigh Willis
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK
| | - John Craig
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK.
| |
Collapse
|
24
|
Guan F, Ni T, Han W, Lin H, Zhang B, Chen G, Zhu L, Liu D, Zhang T. Evaluation of the relationships of the WBP1L gene with schizophrenia and the general psychopathology scale based on a case-control study. Am J Med Genet B Neuropsychiatr Genet 2020; 183:164-171. [PMID: 31840934 DOI: 10.1002/ajmg.b.32773] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 10/08/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023]
Abstract
WBP1L is a target of microRNA 137 (miR-137) and has been considered a candidate gene for schizophrenia (SCZ). To investigate the relationships between WBP1L and SCZ and its related symptom scales, a total of 5,993 Chinese Han subjects, including 2,128 SCZ patients and 3,865 controls, were enrolled. In addition, an independent sample set for replication study including 1,052 SCZ patients and 2,124 controls were also recruited. Thirty-two tag single nucleotide polymorphisms (SNPs) located within gene region of WBP1L were selected for genotyping and analyzing. The expression quantitative trait loci (eQTL) effects for the targeted SNPs were investigated with gene expression data from multiple human tissues. Rs4147157 (OR = 0.84, p = 1.51 × 10-5 ) and rs284854 (OR = 1.14, p = 7.00 × 10-4 ) were significantly associated with SCZ disease status and these association signals were replicated in our replication sample. A significant association was identified between rs4147157 and the general (β = -.66, p = .001) and total (β = -.8, p = .0042) scores of positive and negative syndrome scale scores in SCZ patients. Both SNPs were significant eQTL for genes around WBP1L in human brain tissues including ARL3 and AS3MT. To conclude, SNPs rs4147157 and rs284854 were associated with SCZ in the Chinese Han population. Additionally, rs4147157 was significantly associated with specific symptom features of SCZ.
Collapse
Affiliation(s)
- Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tong Ni
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wei Han
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Huali Lin
- Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Bo Zhang
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Chen
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Department of Forensic Pathology, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Li Zhu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Dan Liu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Xiao X, Yu H, Li J, Wang L, Li L, Chang H, Zhang D, Yue W, Li M. Further evidence for the association between LRP8 and schizophrenia. Schizophr Res 2020; 215:499-505. [PMID: 28495490 DOI: 10.1016/j.schres.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Abstract
Previous studies (including genome-wide association study (GWAS) and candidate gene studies) have revealed the important roles of genetic risk factors in schizophrenia, and RELN has been identified as a risk gene for this illness. We recently found that the low-density lipoprotein receptor-related protein 8 (LRP8), a receptor of Reelin (the protein encoded by RELN), was significantly associated with schizophrenia and bipolar disorder in European populations. To further enhance our understanding of its role in the risk of psychiatric illnesses, we conducted meta-analyses of a higher density of single nucleotide polymorphisms (SNPs, N=173) in LRP8 to understand their associations with schizophrenia in much larger samples (39,400 cases and 50,357 controls) from populations of European, Chinese and African American ancestries. The significant risk SNPs then underwent further analyses to understand their correlations with bipolar disorder and anxiety disorders, as well as LRP8 expression. We observed that rs5177 in the 3' untranslated region (3'UTR) of LRP8 was associated with schizophrenia and other psychiatric disorders, and rs5177 was also associated with LRP8 mRNA expression. These data further support LRP8 as a schizophrenia susceptibility gene, and suggest that this variant is likely a risk locus in general populations.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Hao Yu
- Peking University Sixth Hospital & Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Jun Li
- Peking University Sixth Hospital & Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Lingyi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Dai Zhang
- Peking University Sixth Hospital & Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital & Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
| |
Collapse
|
26
|
Agahi M, Noormohammadi Z, Salahshourifar I, Mahdavi Hezaveh N. Genotype Variations of rs13381800 in TCF4 Gene and rs17039988 in NRXN1 Gene among a Sample of Iranian Patients with Schizophrenia. IRANIAN JOURNAL OF PSYCHIATRY 2019; 14:265-273. [PMID: 32071599 PMCID: PMC7007506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Schizophrenia is a complicated mental disorder that affects about 1% of the world's population. It is a complex disease and is approximately 80% inherited. One of the candidate genes in schizophrenia is transcription factor 4 (TCF4), which is positioned on chromosome 18 and is a transcription factor that plays a role in the transcription of Neurexin 1(NRXN1) gene, which is one of the candidate genes for developing schizophrenia. This case-control study aimed to investigate the correlation of TCF4 rs13381800 and NRXN1 rs17039988 polymorphisms with the risk of schizophrenia in a sample of Iranian patients with schizophrenia. Method : A total of 200 individuals were included in this study: 100 patients with schizophrenia (65 males and 35 females), with the mean age of 40.80 ± 11.298 years, and 100 as a control group (63 males and 37 females), with the mean age 32.92 ± 7.391 years. Allele specific polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) were done, respectively, for genotyping of rs13381800 (T/C) and rs17039988 (A/C) polymorphisms. Results: The results showed that the frequency of C / C genotype in rs13381800 in patients' group was 9%, while it was 13% in the control group. Also, the frequency of C / C genotype in rs17039988 was 9% in patients and 7% in control groups. Statistical analysis of polymorphisms showed no correlation between patients and controls in rs13381800 (OR = 1.51; CI = 95%; P = 0.366) and rs17039988 (OR = 0.76; CI = 95%; P = 0.602). Conclusion: No significant difference was found between rs13381800 and rs17039988 genotypes between patients and control groups in terms of gender, age and education in the patients group. Our study suggests that there was no correlation between desired polymorphisms with schizophrenia in the studied population.
Collapse
Affiliation(s)
- Mohadeseh Agahi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Corresponding Author: Address: Department of Biology, Science and Research Branch, Islamic Azad University, Poonak, Tehran, Iran, Postal Code: 1477893855. Tel: 98-2144865939 Fax: 98-2144865939,
| | - Iman Salahshourifar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niloufar Mahdavi Hezaveh
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Doostparast Torshizi A, Armoskus C, Zhang H, Forrest MP, Zhang S, Souaiaia T, Evgrafov OV, Knowles JA, Duan J, Wang K. Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia. SCIENCE ADVANCES 2019; 5:eaau4139. [PMID: 31535015 PMCID: PMC6739105 DOI: 10.1126/sciadv.aau4139] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Applying tissue-specific deconvolution of transcriptional networks to identify their master regulators (MRs) in neuropsychiatric disorders has been largely unexplored. Here, using two schizophrenia (SCZ) case-control RNA-seq datasets, one on postmortem dorsolateral prefrontal cortex (DLPFC) and another on cultured olfactory neuroepithelium, we deconvolved the transcriptional networks and identified TCF4 as a top candidate MR that may be dysregulated in SCZ. We validated TCF4 as a MR through enrichment analysis of TCF4-binding sites in induced pluripotent stem cell (hiPSC)-derived neurons and in neuroblastoma cells. We further validated the predicted TCF4 targets by knocking down TCF4 in hiPSC-derived neural progenitor cells (NPCs) and glutamatergic neurons (Glut_Ns). The perturbed TCF4 gene network in NPCs was more enriched for pathways involved in neuronal activity and SCZ-associated risk genes, compared to Glut_Ns. Our results suggest that TCF4 may serve as a MR of a gene network dysregulated in SCZ at early stages of neurodevelopment.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chris Armoskus
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Zilkhe Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201, USA
| | - Marc P. Forrest
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Autism and Neurodevelopment, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60015, USA
| | - Tade Souaiaia
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Zilkhe Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Oleg V. Evgrafov
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Zilkhe Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - James A. Knowles
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Zilkhe Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60015, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Zilkhe Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
28
|
Li H, Zhu Y, Morozov YM, Chen X, Page SC, Rannals MD, Maher BJ, Rakic P. Disruption of TCF4 regulatory networks leads to abnormal cortical development and mental disabilities. Mol Psychiatry 2019; 24:1235-1246. [PMID: 30705426 PMCID: PMC11019556 DOI: 10.1038/s41380-019-0353-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023]
Abstract
The TCF4 gene is the subject of numerous and varied investigations of it's role in the genesis of neuropsychiatric disease. The gene has been identified as the cause of Pitt-Hopkins syndrome (PTHS) and it has been implicated in various other neuropsychiatric diseases, including schizophrenia, depression, and autism. However, the precise molecular mechanisms of the gene's involvement in neurogenesis, particularly, corticogenesis, are not well understood. Here, we present data showing that TCF4 is expressed in a region-specific manner in the radial glia and stem cells of transient embryonic zones at early gestational ages in both humans and mice. TCF4 haploinsufficiency mice exhibit a delay in neuronal migration, and a significant increase in the number of upper-layer cortical neurons, as well as abnormal dendrite and synapse formation. Our research also reveals that TCF3 up-regulates Tcf4 by binding to the specific "E-box" and its flank sequence in intron 2 of the Tcf4 gene. Additionally, our transcriptome study substantiates that Tcf4 transcriptional function is essential for locomotion, cognition, and learning. By activating expression of TCF4 in the regulation of neuronal proliferation and migration to the overlaying neocortex and subsequent differentiation leading to laminar formation TCF4 fulfills its normal function, but if not, abnormalities such as those reported here result. These findings provide new insight into the specific roles of Tcf4 molecular pathway in neocortical development and their relevance in the pathogenesis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Hong Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China
- Biopharmaceutical Institute, Anhui Medical University, Anhui, China
| | - Ying Zhu
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Stephanie Cerceo Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew D Rannals
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
29
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
30
|
Yin J, Zhu D, Li Y, Lv D, Yu H, Liang C, Luo X, Xu X, Fu J, Yan H, Dai Z, Zhou X, Wen X, Xiong S, Lin Z, Lin J, Zhao B, Wang Y, Li K, Ma G. Genetic Variability of TCF4 in Schizophrenia of Southern Chinese Han Population: A Case-Control Study. Front Genet 2019; 10:513. [PMID: 31191620 PMCID: PMC6546831 DOI: 10.3389/fgene.2019.00513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Objective: Schizophrenia is thought to be a neurodevelopmental disorder. As a key regulator in the development of the central nervous system, transcription factor 4 (TCF4) has been shown to be involved in the pathogenesis of schizophrenia. The aim of our study was to assay the association of TCF4 single nucleotide polymorphisms (SNPs) with schizophrenia and the effect of these SNPs on phenotypic variability in schizophrenia in Southern Chinese Han Population. Methods: Four SNPs (rs9960767, rs2958182, rs4309482, and rs12966547) of TCF4 were genotyped in 1137 schizophrenic patients and 1035 controls in a Southern Chinese Han population using the improved multiplex ligation detection reaction (iMLDR) technique. For patients with schizophrenia, the severity of symptom phenotypes was analyzed by the five-factor model of the Positive and Negative Symptom Scale (PANSS). Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS) scale. Results: The results showed that the genotypes and alleles of the three SNPs (rs2958182, rs4309482, and rs12966547) were not significantly different between the control group and the case group (all P > 0.05). rs9960767 could not be included in the statistics for the extremely low minor allele frequency. However, the genotypes of rs4309482 shown a potential risk in the positive symptoms (P = 0.04) and excitement symptoms (P = 0.04) of the five-factor model of PANSS, but not survived in multiple test correction. The same potential risk was shown in the rs12966547 in positive symptoms of the PANSS (P = 0.03). Conclusion: Our results failed to find the associations of SNPs (rs2958182, rs4309482, and rs12966547) in TCF4 with schizophrenia in Southern Chinese Han Population.
Collapse
Affiliation(s)
- Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huajun Yu
- Experiment Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xusan Xu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haifeng Yan
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China.,Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Guoda Ma
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
31
|
Lee J, Lee S, Ryu YJ, Lee D, Kim S, Seo JY, Oh E, Paek SH, Kim SU, Ha CM, Choi SY, Kim KT. Vaccinia-related kinase 2 plays a critical role in microglia-mediated synapse elimination during neurodevelopment. Glia 2019; 67:1667-1679. [PMID: 31050055 DOI: 10.1002/glia.23638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
During postnatal neurodevelopment, excessive synapses must be eliminated by microglia to complete the establishment of neural circuits in the brain. The lack of synaptic regulation by microglia has been implicated in neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we suggest that vaccinia-related kinase 2 (VRK2), which is expressed in microglia, may stimulate synaptic elimination by microglia. In VRK2-deficient mice (VRK2KO ), reduced numbers of presynaptic puncta within microglia were observed. Moreover, the numbers of presynaptic puncta and synapses were abnormally increased in VRK2KO mice by the second postnatal week. These differences did not persist into adulthood. Even though an increase in the number of synapses was normalized, adult VRK2KO mice showed behavioral defects in social behaviors, contextual fear memory, and spatial memory.
Collapse
Affiliation(s)
- Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seunghyun Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Young-Jae Ryu
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ji-Young Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eunji Oh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung U Kim
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Chang-Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea.,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
32
|
Xia H, Jahr FM, Kim NK, Xie L, Shabalin AA, Bryois J, Sweet DH, Kronfol MM, Palasuberniam P, McRae M, Riley BP, Sullivan PF, van den Oord EJ, McClay JL. Building a schizophrenia genetic network: transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk. Hum Mol Genet 2019; 27:3246-3256. [PMID: 29905862 DOI: 10.1093/hmg/ddy222] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
The transcription factor 4 (TCF4) locus is a robust association finding with schizophrenia (SCZ), but little is known about the genes regulated by the encoded transcription factor. Therefore, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) of TCF4 in neural-derived (SH-SY5Y) cells to identify genome-wide TCF4 binding sites, followed by data integration with SCZ association findings. We identified 11 322 TCF4 binding sites overlapping in two ChIP-seq experiments. These sites are significantly enriched for the TCF4 Ebox binding motif (>85% having ≥1 Ebox) and implicate a gene set enriched for genes downregulated in TCF4 small-interfering RNA (siRNA) knockdown experiments, indicating the validity of our findings. The TCF4 gene set was also enriched among (1) gene ontology categories such as axon/neuronal development, (2) genes preferentially expressed in brain, in particular pyramidal neurons of the somatosensory cortex and (3) genes downregulated in postmortem brain tissue from SCZ patients (odds ratio, OR = 2.8, permutation P < 4x10-5). Considering genomic alignments, TCF4 binding sites significantly overlapped those for neural DNA-binding proteins such as FOXP2 and the SCZ-associated EP300. TCF4 binding sites were modestly enriched among SCZ risk loci from the Psychiatric Genomic Consortium (OR = 1.56, P = 0.03). In total, 130 TCF4 binding sites occurred in 39 of the 108 regions published in 2014. Thirteen genes within the 108 loci had both a TCF4 binding site ±10kb and were differentially expressed in siRNA knockdown experiments of TCF4, suggesting direct TCF4 regulation. These findings confirm TCF4 as an important regulator of neural genes and point toward functional interactions with potential relevance for SCZ.
Collapse
Affiliation(s)
- Hanzhang Xia
- Center for Biomarker Research and Precision Medicine
| | - Fay M Jahr
- Department of Pharmacotherapy and Outcomes Science
| | - Nak-Kyeong Kim
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Linying Xie
- Center for Biomarker Research and Precision Medicine
| | - Andrey A Shabalin
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Douglas H Sweet
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | - Brien P Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Departments of Genetics and Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | |
Collapse
|
33
|
Mohamed ZI, Tee SF, Chow TJ, Loh SY, Yong HS, Bakar AKA, Tang PY. Functional characterization of two variants in the 3'-untranslated region (UTR) of transcription factor 4 gene and their association with schizophrenia in sib-pairs from multiplex families. Asian J Psychiatr 2019; 40:76-81. [PMID: 30771755 DOI: 10.1016/j.ajp.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Transcription factor 4 (TCF4) gene plays an important role in nervous system development and it always associated with the risk of schizophrenia. Since miRNAs regulate targetgenes by binding to 3'UTRs of target mRNAs, the functional variants located in 3'UTR of TCF4 are highly suggested to affect the gene expressions in schizophrenia. To test the hypothesis regarding the effects of the variants located in 3'UTR of TCF4, we conducted an in silico analysis to identify the functional variants and their predicted functions. In this study, we sequenced the 3'UTR of TCF4 in 13 multiplex schizophrenia families and 14 control families. We found two functional variants carried by three unrelated patients. We determined that the C allele of rs1272363 and the TC insert of rs373174214 might suppress post- transcriptional expression. Secondly, we cloned the region that flanked these two variants into a dual luciferase reporter system and compared the luciferase activities between the pmirGLO-TCF4 (control), pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263. Both pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263 caused lower reporter gene activities, as compared to the control. However, only the C allele of rs1272363 reduced the luciferase activity significantly (p = 0.0231). Our results suggested that rs1273263 is a potential regulator of TCF4 expression, and might be associated with schizophrenia.
Collapse
Affiliation(s)
- Zahra Isnaini Mohamed
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Tze Jen Chow
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Siew Yim Loh
- Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hoi Sen Yong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia.
| |
Collapse
|
34
|
Ryu HG, Kim S, Lee S, Lee E, Kim HJ, Kim DY, Kim KT. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J Neurochem 2019; 149:413-426. [PMID: 30488434 DOI: 10.1111/jnc.14638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/22/2022]
Abstract
Misfolded proteins with abnormal polyglutamine (polyQ) expansion cause neurodegenerative disorders, including Huntington's disease. Recently, it was found that polyQ aggregates accumulate as a result of vaccinia-related kinase 2 (VRK2)-mediated degradation of TCP-1 ring complex (TRiC)/chaperonin-containing TCP-1 (CCT), which has an essential role in the prevention of polyQ protein aggregation and cytotoxicity. The levels of VRK2 are known to be much higher in actively proliferating cells but are maintained at a low level in the brain via an unknown mechanism. Here, we found that basal levels of neuronal cell-specific VRK2 mRNA are maintained by post-transcriptional, rather than transcriptional, regulation. Moreover, heterogeneous nuclear ribonucleoprotein Q (HNRNP Q) specifically binds to the 3'untranslated region of VRK2 mRNA in neuronal cells to reduce the mRNA stability. As a result, we found a dramatic decrease in CCT4 protein levels in response to a reduction in HNRNP Q levels, which was followed by an increase in polyQ aggregation in human neuroblastoma cells and mouse cortical neurons. Taken together, these results provide new insights into how neuronal HNRNP Q decreases VRK2 mRNA stability and contributes to the prevention of Huntington's disease, while also identifying new prognostic markers of HD.
Collapse
Affiliation(s)
- Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saebom Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eunju Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Advanced Bio Convergence Center, Pohang Technopark, Pohang, Korea
| | - Hyo-Jin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,SL BIGEN, Seongnam, Korea
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
35
|
Mehta D, Czamara D. GWAS of Behavioral Traits. Curr Top Behav Neurosci 2019; 42:1-34. [PMID: 31407241 DOI: 10.1007/7854_2019_105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past decade, genome-wide association studies (GWAS) have evolved into a powerful tool to investigate genetic risk factors for human diseases via a hypothesis-free scan of the genome. The success of GWAS for psychiatric disorders and behavioral traits have been somewhat mixed, partly owing to the complexity and heterogeneity of these traits. Significant progress has been made in the last few years in the development and implementation of complex statistical methods and algorithms incorporating GWAS. Such advanced statistical methods applied to GWAS hits in combination with incorporation of different layers of genomics data have catapulted the search for novel genes for behavioral traits and improved our understanding of the complex polygenic architecture of these traits.This chapter will give a brief overview on GWAS and statistical methods currently used in GWAS. The chapter will focus on reviewing the current literature and highlight some of the most important GWAS on psychiatric and other behavioral traits and will conclude with a discussion on future directions.
Collapse
Affiliation(s)
- Divya Mehta
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Darina Czamara
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
36
|
Chen CP, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Chen WL, Yang CW, Wang W. Prenatal diagnosis of a 3.2-Mb 2p16.1-p15 duplication associated with familial intellectual disability. Taiwan J Obstet Gynecol 2018; 57:578-582. [PMID: 30122582 DOI: 10.1016/j.tjog.2018.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE We present prenatal diagnosis of a 2p16.1-p15 duplication associated with familial intellectual disability, and we discuss the genotype-phenotype correlation. CASE REPORT A 22-year-old, primigravid woman underwent amniocentesis at 22 weeks of gestation because of a family history of intellectual disability. The woman and her two sisters had intellectual disability but no behavioral disorders. The intellectual disability was noted in at least one paternal aunt and six paternal cousins of the woman. Cytogenetic analysis revealed the karyotype of 46,XX in the fetus and the two women. Array comparative genomic hybridization (aCGH) analysis on the DNAs extracted from cultured amniocytes and the bloods of the woman and the her sister revealed a 3.244-Mb duplication of 2p16.1-p15 or arr 2p16.1p15 (58,288,588-61,532,538) × 3.0 [GRCh37 (hg19)] encompassing eight Online Mendelian Inheritance in Man (OMIM) genes of VRK2, FANCL, BCL11A, PAPOLG, REL, PUS10, PEX13 and USP34 in the fetus and the two women. Prenatal ultrasound findings were unremarkable. The woman elected to continue the pregnancy. A 3244-g female baby was delivered at term with neither craniofacial dysmorphism nor structural abnormalities. CONCLUSION aCGH is useful in prenatal diagnosis of inherited subtle chromosome imbalance in pregnancy with familial intellectual disability. Chromosome 2p16.1-p15 duplication can be associated with intellectual disability.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
37
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
38
|
Cheng Z, Zhou H, Sherva R, Farrer LA, Kranzler HR, Gelernter J. Genome-wide Association Study Identifies a Regulatory Variant of RGMA Associated With Opioid Dependence in European Americans. Biol Psychiatry 2018; 84:762-770. [PMID: 29478698 PMCID: PMC6041180 DOI: 10.1016/j.biopsych.2017.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/22/2017] [Accepted: 12/30/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Opioid dependence (OD) is at epidemic levels in the United States. Genetic studies can provide insight into its biology. METHODS We completed an OD genome-wide association study in 3058 opioid-exposed European Americans, 1290 of whom met criteria for a DSM-IV diagnosis of OD. Analysis used DSM-IV criterion count. RESULTS By meta-analysis of four cohorts, Yale-Penn 1 (n = 1388), Yale-Penn 2 (n = 996), Yale-Penn 3 (n = 98), and SAGE (Study of Addiction: Genetics and Environment) (n = 576), we identified a variant on chromosome 15, rs12442183, near RGMA, associated with OD (p = 1.3 × 10-8). The association was also genome-wide significant in Yale-Penn 1 taken individually and nominally significant in two of the other three samples. The finding was further supported in a meta-analysis of all available opioid-exposed African Americans (n = 2014 [1106 meeting DSM-IV OD criteria]; p = 3.0 × 10-3) from three cohorts; there was nominal significance in two of these samples. Thus, of seven subsamples examined in two populations, one was genome-wide significant, and four of six were nominally (or nearly) significant. RGMA encodes repulsive guidance molecule A, which is a central nervous system axon guidance protein. Risk allele rs12442183*T was correlated with higher expression of a specific RGMA transcript variant in frontal cortex (p = 2 × 10-3). After chronic morphine injection, the homologous mouse gene (Rgma) was upregulated in C57BL/6J striatum. Coexpression analysis of 1301 brain samples revealed that RGMA messenger RNA expression was associated with that of four genes implicated in other psychiatric disorders, including GRIN1. CONCLUSIONS This is the first study to demonstrate an association of RGMA with OD. It provides a new lead into our understanding of OD pathophysiology.
Collapse
Affiliation(s)
- Zhongshan Cheng
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Massachusetts; VA Connecticut Healthcare Center, West Haven, Massachusetts
| | - Hang Zhou
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Massachusetts; VA Connecticut Healthcare Center, West Haven, Massachusetts
| | - Richard Sherva
- Departments of Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics, Boston University School of Medicine and School Public Health, Boston, Massachusetts
| | - Lindsay A Farrer
- Departments of Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics, Boston University School of Medicine and School Public Health, Boston, Massachusetts
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Massachusetts; Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, Massachusetts; VA Connecticut Healthcare Center, West Haven, Massachusetts.
| |
Collapse
|
39
|
Liu J, Li M, Luo XJ, Su B. Systems-level analysis of risk genes reveals the modular nature of schizophrenia. Schizophr Res 2018; 201:261-269. [PMID: 29789256 DOI: 10.1016/j.schres.2018.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10-31). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10-11), closeness centrality (P = 7.56 × 10-11), betweeness centrality (P = 1.29 × 10-11), clustering coefficient (P = 2.22 × 10-2), and shorter average shortest path length (P = 7.56 × 10-11). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia.
Collapse
Affiliation(s)
- Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
40
|
Neergaard JS, Dragsbæk K, Kehlet SN, Hansen HB, Hansen G, Byrjalsen I, Alexandersen P, Lindgren LM, Bihlet AR, Riis BJ, Andersen JR, Qvist P, Karsdal MA, Christiansen C. Cohort Profile: The Prospective Epidemiological Risk Factor (PERF) study. Int J Epidemiol 2018; 46:1104-1104i. [PMID: 27789666 DOI: 10.1093/ije/dyw251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 01/09/2023] Open
Affiliation(s)
| | | | | | | | - G Hansen
- Nordic Bioscience A/S, Herlev, Denmark
| | | | | | - L M Lindgren
- Center for Clinical and Basic Research, Ballerup, Denmark
| | | | - B J Riis
- Nordic Bioscience A/S, Herlev, Denmark
| | | | - P Qvist
- Nordic Bioscience A/S, Herlev, Denmark
| | | | | |
Collapse
|
41
|
Thornton LM, Munn-Chernoff MA, Baker JH, Juréus A, Parker R, Henders AK, Larsen JT, Petersen L, Watson HJ, Yilmaz Z, Kirk KM, Gordon S, Leppä VM, Martin FC, Whiteman DC, Olsen CM, Werge TM, Pedersen NL, Kaye W, Bergen AW, Halmi KA, Strober M, Kaplan AS, Woodside DB, Mitchell J, Johnson CL, Brandt H, Crawford S, Horwood LJ, Boden JM, Pearson JF, Duncan LE, Grove J, Mattheisen M, Jordan J, Kennedy MA, Birgegård A, Lichtenstein P, Norring C, Wade TD, Montgomery GW, Martin NG, Landén M, Mortensen PB, Sullivan PF, Bulik CM. The Anorexia Nervosa Genetics Initiative (ANGI): Overview and methods. Contemp Clin Trials 2018; 74:61-69. [PMID: 30287268 DOI: 10.1016/j.cct.2018.09.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Genetic factors contribute to anorexia nervosa (AN); and the first genome-wide significant locus has been identified. We describe methods and procedures for the Anorexia Nervosa Genetics Initiative (ANGI), an international collaboration designed to rapidly recruit 13,000 individuals with AN and ancestrally matched controls. We present sample characteristics and the utility of an online eating disorder diagnostic questionnaire suitable for large-scale genetic and population research. METHODS ANGI recruited from the United States (US), Australia/New Zealand (ANZ), Sweden (SE), and Denmark (DK). Recruitment was via national registers (SE, DK); treatment centers (US, ANZ, SE, DK); and social and traditional media (US, ANZ, SE). All cases had a lifetime AN diagnosis based on DSM-IV or ICD-10 criteria (excluding amenorrhea). Recruited controls had no lifetime history of disordered eating behaviors. To assess the positive and negative predictive validity of the online eating disorder questionnaire (ED100K-v1), 109 women also completed the Structured Clinical Interview for DSM-IV (SCID), Module H. RESULTS Blood samples and clinical information were collected from 13,363 individuals with lifetime AN and from controls. Online diagnostic phenotyping was effective and efficient; the validity of the questionnaire was acceptable. CONCLUSIONS Our multi-pronged recruitment approach was highly effective for rapid recruitment and can be used as a model for efforts by other groups. High online presence of individuals with AN rendered the Internet/social media a remarkably effective recruitment tool in some countries. ANGI has substantially augmented Psychiatric Genomics Consortium AN sample collection. ANGI is a registered clinical trial: clinicaltrials.govNCT01916538; https://clinicaltrials.gov/ct2/show/NCT01916538?cond=Anorexia+Nervosa&draw=1&rank=3.
Collapse
Affiliation(s)
- Laura M Thornton
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Jessica H Baker
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anders Juréus
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | | | - Janne T Larsen
- Aarhus University, Norde Ringgade 1, 8000 Aarhus, Denmark
| | | | - Hunna J Watson
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Zeynep Yilmaz
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine M Kirk
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Virpi M Leppä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Felicity C Martin
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Catherine M Olsen
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Thomas M Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Bartholin Alle 6, 8000 Aarhus, Denmark; Mental Health Services, Institute for Biological Psychiatry, MHC Sct. Hans, Kristineberg 3, 2100 Copenhagen, Denmark; University of Copenhagen, Nørregade 10, DK-1165 Copenhagen, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Walter Kaye
- University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Andrew W Bergen
- Biorealm Research, 6101 W Centinela Ave # 270, Culver City, CA 90230, USA; Oregon Research Institute, Eugene, OR 97403, USA
| | - Katherine A Halmi
- Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Michael Strober
- University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Allan S Kaplan
- University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - D Blake Woodside
- University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada; Toronto General Hospital, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - James Mitchell
- Neuropsychiatric Research Institute, 120 8th Street South, Fargo, ND 58103, USA
| | - Craig L Johnson
- Eating Recovery Center, 7351 E. Lowry Blvd., Suite 200, Denver, CO 80230, USA
| | - Harry Brandt
- The Center for Eating Disorders at Sheppard Pratt, 6501 N. Charles Street, Baltimore, MD 21204, USA
| | - Steven Crawford
- The Center for Eating Disorders at Sheppard Pratt, 6501 N. Charles Street, Baltimore, MD 21204, USA
| | - L John Horwood
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - Joseph M Boden
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - John F Pearson
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - Laramie E Duncan
- Stanford University, 450 Serra Mall, Stanford, CA 94305-2004, USA
| | - Jakob Grove
- Aarhus University, Norde Ringgade 1, 8000 Aarhus, Denmark
| | - Manuel Mattheisen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden; Aarhus University, Norde Ringgade 1, 8000 Aarhus, Denmark; Stockholm Health Care Services, Stockholm County Council, Box 45436, 104 31 Stockholm, Sweden; University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Jennifer Jordan
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - Martin A Kennedy
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - Andreas Birgegård
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Box 45436, 104 31 Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Claes Norring
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Box 45436, 104 31 Stockholm, Sweden
| | - Tracey D Wade
- Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | | | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden; Gothenburg University, Box 100, SE-405 30 Gothenburg, Sweden
| | - Preben Bo Mortensen
- Aarhus University, Norde Ringgade 1, 8000 Aarhus, Denmark; Mental Health Services, Institute for Biological Psychiatry, MHC Sct. Hans, Kristineberg 3, 2100 Copenhagen, Denmark; University of Copenhagen, Nørregade 10, DK-1165 Copenhagen, Denmark
| | - Patrick F Sullivan
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Cynthia M Bulik
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
42
|
Xiao X, Zhang C, Grigoroiu-Serbanescu M, Wang L, Li L, Zhou D, Yuan TF, Wang C, Chang H, Wu Y, Li Y, Wu DD, Yao YG, Li M. The cAMP responsive element-binding (CREB)-1 gene increases risk of major psychiatric disorders. Mol Psychiatry 2018; 23:1957-1967. [PMID: 29158582 DOI: 10.1038/mp.2017.243] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BPD), schizophrenia (SCZ) and unipolar major depressive disorder (MDD) are primary psychiatric disorders sharing substantial genetic risk factors. We previously reported that two single-nucleotide polymorphisms (SNPs) rs2709370 and rs6785 in the cAMP responsive element-binding (CREB)-1 gene (CREB1) were associated with the risk of BPD and abnormal hippocampal function in populations of European ancestry. In the present study, we further expanded our analyses of rs2709370 and rs6785 in multiple BPD, SCZ and MDD data sets, including the published Psychiatric Genomics Consortium (PGC) genome-wide association study, the samples used in our previous CREB1 study, and six additional cohorts (three new BPD samples, two new SCZ samples and one new MDD sample). Although the associations of both CREB1 SNPs with each illness were not replicated in the new cohorts (BPD analysis in 871 cases and 1089 controls (rs2709370, P=0.0611; rs6785, P=0.0544); SCZ analysis in 1273 cases and 1072 controls (rs2709370, P=0.230; rs6785, P=0.661); and MDD analysis in 129 cases and 100 controls (rs2709370, P=0.114; rs6785, P=0.188)), an overall meta-analysis of all included samples suggested that both SNPs were significantly associated with increased risk of BPD (11 105 cases and 51 331 controls; rs2709370, P=2.33 × 10-4; rs6785, P=6.33 × 10-5), SCZ (34 913 cases and 44 528 controls; rs2709370, P=3.96 × 10-5; rs6785, P=2.44 × 10-5) and MDD (9369 cases and 9619 controls; rs2709370, P=0.0144; rs6785, P=0.0314), with the same direction of allelic effects across diagnostic categories. We then examined the impact of diagnostic status on CREB1 mRNA expression using data obtained from independent brain tissue samples, and observed that the mRNA expression of CREB1 was significantly downregulated in psychiatric patients compared with healthy controls. The protein-protein interaction analyses showed that the protein encoded by CREB1 directly interacted with several risk genes of psychiatric disorders identified by GWAS. In conclusion, the current study suggests that CREB1 might be a common risk gene for major psychiatric disorders, and further investigations are necessary.
Collapse
Affiliation(s)
- X Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - C Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - M Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania.
| | - L Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - L Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - D Zhou
- Ningbo Kangning Hospital, Ningbo, China
| | - T-F Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, China
| | - H Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Y Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Y Li
- Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China
| | - D-D Wu
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming, China
| | - Y-G Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - M Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
43
|
Ronald A, Pain O. A systematic review of genome-wide research on psychotic experiences and negative symptom traits: new revelations and implications for psychiatry. Hum Mol Genet 2018; 27:R136-R152. [PMID: 29741616 PMCID: PMC6061705 DOI: 10.1093/hmg/ddy157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
We present a systematic review of genome-wide research on psychotic experience and negative symptom (PENS) traits in the community. We integrate these new findings, most of which have emerged over the last four years, with more established behaviour genetic and epidemiological research. The review includes the first genome-wide association studies of PENS, including a recent meta-analysis, and the first SNP heritability estimates. Sample sizes of <10 000 participants mean that no genome-wide significant variants have yet been replicated. Importantly, however, in the most recent and well-powered studies, polygenic risk score prediction and linkage disequilibrium (LD) score regression analyses show that all types of PENS share genetic influences with diagnosed schizophrenia and that negative symptom traits also share genetic influences with major depression. These genetic findings corroborate other evidence in supporting a link between PENS in the community and psychiatric conditions. Beyond the systematic review, we highlight recent work on gene-environment correlation, which appears to be a relevant process for psychotic experiences. Genes that influence risk factors such as tobacco use and stressful life events are likely to be harbouring 'hits' that also influence PENS. We argue for the acceptance of PENS within the mainstream, as heritable traits in the same vein as other sub-clinical psychopathology and personality styles such as neuroticism. While acknowledging some mixed findings, new evidence shows genetic overlap between PENS and psychiatric conditions. In sum, normal variations in adolescent and adult thinking styles, such as feeling paranoid, are heritable and show genetic associations with schizophrenia and major depression.
Collapse
Affiliation(s)
- Angelica Ronald
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Oliver Pain
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
44
|
Quednow BB, Ejebe K, Wagner M, Giakoumaki SG, Bitsios P, Kumari V, Roussos P. Meta-analysis on the association between genetic polymorphisms and prepulse inhibition of the acoustic startle response. Schizophr Res 2018; 198:52-59. [PMID: 29287625 DOI: 10.1016/j.schres.2017.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023]
Abstract
Sensorimotor gating measured by prepulse inhibition (PPI) of the acoustic startle response (ASR) has been proposed as one of the most promising electrophysiological endophenotypes of schizophrenia. During the past decade, a number of publications have reported significant associations between genetic polymorphisms and PPI in samples of schizophrenia patients and healthy volunteers. However, an overall evaluation of the robustness of these results has not been published so far. Therefore, we performed the first meta-analysis of published and unpublished associations between gene polymorphisms and PPI of ASR. Unpublished associations between genetic polymorphisms and PPI were derived from three independent samples. In total, 120 single observations from 16 independent samples with 2660 study participants and 43 polymorphisms were included. After correction for multiple testing based on false discovery rate and considering the number of analyzed polymorphisms, significant associations were shown for four variants, even though none of these associations survived a genome-wide correction (P<5∗10-8). These results imply that PPI might be modulated by four genotypes - COMT rs4680 (primarily in males), GRIK3 rs1027599, TCF4 rs9960767, and PRODH rs385440 - indicating a role of these gene variations in the development of early information processing deficits in schizophrenia. However, the overall impact of single genes on PPI is still rather small suggesting that PPI is - like the disease phenotype - highly polygenic. Future genome-wide analyses studies with large sample sizes will enhance our understanding on the genetic architecture of PPI.
Collapse
Affiliation(s)
- Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| | - Kenechi Ejebe
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Wagner
- Department for Neurodegenerative Diseases and GeriatricPsychiatry, University Hospital Bonn, Bonn, Germany
| | - Stella G Giakoumaki
- Department of Psychology, Gallos University campus, University of Crete, Rethymno, Greece
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, Voutes University campus, University of Crete, Heraklion, Greece
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, King's College London, United Kingdom
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, New York, USA.
| |
Collapse
|
45
|
Abstract
The genetic generalized epilepsies (GGEs) are mainly genetically determined disorders. Although inheritance in most cases appears to be complex, involving multiple genes, variants of a number of genes are known to contribute. Pathogenic variants of SLC2A1 leading to autosomal-dominant GLUT1 deficiency account for up to 1% of cases, increasing to 10% of those with absence seizures starting before age 4 years. Copy number variants are found in around 3% of cases, acting as risk alleles. Copy number variation is much more common in those with comorbid learning disability. Common variant associations are starting to emerge from genome-wide association studies but do not yet explain a large proportion of GGEs. Although currently genetic testing is not likely to yield a diagnosis for most patients with GGEs, it can be of great importance in specific clinical situations. Providers should consider the individual patient's history in determining the utility of genetic testing.
Collapse
Affiliation(s)
- Saul A Mullen
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Vic., Australia
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Vic., Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Vic., Australia
| |
Collapse
|
46
|
Liu J, Su B. Integrated analysis supports ATXN1 as a schizophrenia risk gene. Schizophr Res 2018; 195:298-305. [PMID: 29055568 DOI: 10.1016/j.schres.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/27/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Protein-protein interaction (PPI) is informative in identifying hidden disease risk genes that tend to interact with known risk genes usually working together in the same disease module. With the use of an integrated approach combining PPI information with pathway and expression analysis as well as genome-wide association study (GWAS), we intended to find new risk genes for schizophrenia (SCZ). We showed that ATXN1 was the only direct PPI partner of the know SCZ risk gene ZNF804A, and it also had direct PPIs with other 18 known SCZ risk genes. ATXN1 serves as one of the hub genes in the PPI network containing many known SCZ risk genes, and this network is significantly enriched for the MAPK signaling pathway. Further gene expression analysis indicated that ATXN1 is highly expressed in prefrontal cortex, and SCZ patients had significantly decreased expression compared with healthy controls. Finally, the published GWAS data supports an association of ATXN1 with SCZ as well as other psychiatric disorders though not reaching genome-wide significance. These convergent evidences support ATXN1 as a promising risk gene for SCZ, and the integrated approach serves as a useful tool for dissecting the genetic basis of psychiatric disorders.
Collapse
Affiliation(s)
- Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| |
Collapse
|
47
|
Jung M, Häberle BM, Tschaikowsky T, Wittmann MT, Balta EA, Stadler VC, Zweier C, Dörfler A, Gloeckner CJ, Lie DC. Analysis of the expression pattern of the schizophrenia-risk and intellectual disability gene TCF4 in the developing and adult brain suggests a role in development and plasticity of cortical and hippocampal neurons. Mol Autism 2018; 9:20. [PMID: 29588831 PMCID: PMC5863811 DOI: 10.1186/s13229-018-0200-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Background Haploinsufficiency of the class I bHLH transcription factor TCF4 causes Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder, while common variants in the TCF4 gene have been identified as susceptibility factors for schizophrenia. It remains largely unknown, which brain regions are dependent on TCF4 for their development and function. Methods We systematically analyzed the expression pattern of TCF4 in the developing and adult mouse brain. We used immunofluorescent staining to identify candidate regions whose development and function depend on TCF4. In addition, we determined TCF4 expression in the developing rhesus monkey brain and in the developing and adult human brain through analysis of transcriptomic datasets and compared the expression pattern between species. Finally, we morphometrically and histologically analyzed selected brain structures in Tcf4-haploinsufficient mice and compared our morphometric findings to neuroanatomical findings in PTHS patients. Results TCF4 is broadly expressed in cortical and subcortical structures in the developing and adult mouse brain. The TCF4 expression pattern was highly similar between humans, rhesus monkeys, and mice. Moreover, Tcf4 haploinsufficiency in mice replicated structural brain anomalies observed in PTHS patients. Conclusion Our data suggests that TCF4 is involved in the development and function of multiple brain regions and indicates that its regulation is evolutionary conserved. Moreover, our data validate Tcf4-haploinsufficient mice as a model to study the neurodevelopmental basis of PTHS.
Collapse
Affiliation(s)
- Matthias Jung
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Benjamin M Häberle
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tristan Tschaikowsky
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marie-Theres Wittmann
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,2Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elli-Anna Balta
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Vivien-Charlott Stadler
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- 2Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Johannes Gloeckner
- 4German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany.,5Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - D Chichung Lie
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
48
|
Abstract
Genome-wide association studies (GWAS) have identified more than 100 loci that show robust association with schizophrenia risk. However, due to the complexity of linkage disequilibrium and gene regulatory, it is challenging to pinpoint the causal genes at the risk loci and translate the genetic findings from GWAS into disease mechanism and clinical treatment. Here we systematically predicted the plausible candidate causal genes for schizophrenia at genome-wide level. We utilized different approaches and strategies to predict causal genes for schizophrenia, including Sherlock, SMR, DAPPLE, Prix Fixe, NetWAS, and DEPICT. By integrating the results from different prediction approaches, we identified six top candidates that represent promising causal genes for schizophrenia, including CNTN4, GATAD2A, GPM6A, MMP16, PSMA4, and TCF4. Besides, we also identified 35 additional high-confidence causal genes for schizophrenia. The identified causal genes showed distinct spatio-temporal expression patterns in developing and adult human brain. Cell-type-specific expression analysis indicated that the expression level of the predicted causal genes was significantly higher in neurons compared with oligodendrocytes and microglia (P < 0.05). We found that synaptic transmission-related genes were significantly enriched among the identified causal genes (P < 0.05), providing further support for the dysregulation of synaptic transmission in schizophrenia. Finally, we showed that the top six causal genes are dysregulated in schizophrenia cases compared with controls and knockdown of these genes impaired the proliferation of neuronal cells. Our study depicts the landscape of plausible schizophrenia causal genes for the first time. Further genetic and functional validation of these genes will provide mechanistic insights into schizophrenia pathogenesis and may facilitate to provide potential targets for future therapeutics and diagnostics.
Collapse
Affiliation(s)
- Changguo Ma
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Chunjie Gu
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Yongxia Huo
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Xiaoyan Li
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
49
|
Mossakowska-Wójcik J, Orzechowska A, Talarowska M, Szemraj J, Gałecki P. The importance of TCF4 gene in the etiology of recurrent depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:304-308. [PMID: 28341444 DOI: 10.1016/j.pnpbp.2017.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND A recurrent depressive disorder is one of the most commonly diagnosed disease entities among psychiatric disorders. The prevalence and morbidity of depression are constantly increasing. Numerous studies have demonstrated the role of genetic factors in the etiology of depressive disorders. Many studies are being conducted to identify genes that predispose to depression. The purpose of this study was to investigate the role of TCF4 gene in the etiology of recurrent depressive disorders and, in particular, to assess expression of the TCF4 gene at the mRNA and protein level in patients with recurrent depressive disorders versus healthy individuals. MATERIAL AND METHODS The examined population consisted of 170 individuals suffering from depression and 90 healthy individuals. The expressions of the TCF4 gene at the mRNA and protein level were assessed. RESULTS Decreased TCF4 expression at the mRNA and protein level was found in patients with depressive disorder versus healthy individuals. Expression of the studied gene was not affected by the patients' sex and age. The statistical analysis also showed no correlation between the expression of TCF4 at the mRNA and protein level and the number of episodes or the severity of symptoms. Among the clinical manifestations of depression, only the duration of the illness correlated with the expression of TCF4 at the mRNA level. CONCLUSIONS Expression of TCF4 at the mRNA and protein level may be significant in the pathomechanism of recurrent depressive disorder and it is not dependent on sex and age.
Collapse
Affiliation(s)
- Joanna Mossakowska-Wójcik
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, Lodz 91-229, Poland.
| | - Agata Orzechowska
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, Lodz 91-229, Poland
| | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, Lodz 91-229, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Czechoslowacka 8/10, 92-216, Lodz, Poland
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, Lodz 91-229, Poland
| |
Collapse
|
50
|
Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, Yi Q, Li C, Li X, Shen J, Song Z, Ji W, Wang M, Zhou J, Chen B, Liu Y, Wang J, Wang P, Yang P, Wang Q, Feng G, Liu B, Sun W, Li B, He G, Li W, Wan C, Xu Q, Li W, Wen Z, Liu K, Huang F, Ji J, Ripke S, Yue W, Sullivan PF, O'Donovan MC, Shi Y. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet 2017; 49:1576-1583. [PMID: 28991256 DOI: 10.1038/ng.3973] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Zhiqiang Li
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yu
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Institute of Mental Health, Sixth Hospital, Peking University, Beijing, China
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dai Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Institute of Mental Health, Sixth Hospital, Peking University, Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Qizhong Yi
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Disease and Metabolic Disease Institute of Qingdao University, Qingdao, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Ji
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
- Changning Mental Health Center, Shanghai, China
| | - Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Boyu Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yahui Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jiqiang Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Wang
- Wuhu Fourth People's Hospital, Wuhu, China
| | - Ping Yang
- Wuhu Fourth People's Hospital, Wuhu, China
| | - Qingzhong Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benxiu Liu
- Longquan Mountain Hospital of Guangxi Province, Liuzhou, China
| | - Wensheng Sun
- Longquan Mountain Hospital of Guangxi Province, Liuzhou, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Weihua Yue
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Institute of Mental Health, Sixth Hospital, Peking University, Beijing, China
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Yongyong Shi
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China
- Changning Mental Health Center, Shanghai, China
| |
Collapse
|