1
|
da Cunha JI, Barauna AMD, Garcez RC. Prechordal structures act cooperatively in early trabeculae development of gnathostome skull. Cells Dev 2023; 176:203879. [PMID: 37844659 DOI: 10.1016/j.cdev.2023.203879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The vertebrate skull is formed by mesoderm and neural crest (NC) cells. The mesoderm contributes to the skull chordal domain, with the notochord playing an essential role in this process. The NC contributes to the skull prechordal domain, prompting investigation into the embryonic structures involved in prechordal neurocranium cartilage formation. The trabeculae cartilage, a structure of the prechordal neurocranium, arises at the convergence of prechordal plate (PCP), ventral midline (VM) cells of the diencephalon, and dorsal oral ectoderm. This study examines the molecular participation of these embryonic structures in gnathostome trabeculae development. PCP-secreted SHH induces its expression in VM cells of the diencephalon, initiating a positive feedback loop involving SIX3 and GLI1. SHH secreted by the VM cells of the diencephalon acts on the dorsal oral ectoderm, stimulating condensation of NC cells to form trabeculae. SHH from the prechordal region affects the expression of SOX9 in NC cells. BMP7 and SHH secreted by PCP induce NKX2.1 expression in VM cells of the diencephalon, but this does not impact trabeculae formation. Molecular cooperation between PCP, VM cells of the diencephalon, and dorsal oral ectoderm is crucial for craniofacial development by NC cells in the prechordal domain.
Collapse
Affiliation(s)
- Jaqueline Isoppo da Cunha
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Alessandra Maria Duarte Barauna
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ricardo Castilho Garcez
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
2
|
Zhang J, Lin C, Song Y, Chen J. BMP4/ALK3 deficiency leads to Meckel's cartilage truncation mimicking the mandible Tessier 30 cleft. Oral Dis 2022; 28:1215-1227. [PMID: 33759298 DOI: 10.1111/odi.13855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In chondrogenesis, BMP signaling was inferred to exhibit regional specificity during Meckel's cartilage morphogenesis. This study aimed to explore the differences in BMP signaling activity between different parts of Meckel's cartilage and the impacts of BMP4 or ALK3 deficiency on the development of Meckel's cartilage during embryogenesis. MATERIALS AND METHODS The BRE-gal reporter mouse line was utilized to gain an overall picture of canonical BMP signaling activity, as assessed by X-gal staining. Mouse models lacking either Bmp4 or Alk3 in neural crest cells (Wnt1-Cre;Bmp4fl/fl and Wnt1-Cre;Alk3fl/fl ) were generated to explore the morphogenesis of Meckel's cartilage and the mandibular symphysis, as assessed by skeletal staining, histology, and immunostaining. RESULTS Different parts of Meckel's cartilage exhibited activation of different combinations of BMP signaling pathways. In Wnt1-Cre;Bmp4fl/fl mutants, Sox9+ condensation of the chondrogenic rostral process failed to form, and the V-shaped Runx2+ tissue was split in the median mandibular symphysis. The Wnt1-Cre;Bmp4fl/fl and Wnt1-Cre;Alk3fl/fl mouse models both exhibited truncated Meckel's cartilage, aberrant mandibular intramembranous bone, and tongue muscle abnormalities. CONCLUSIONS The central hard-tissue loss of both mutant mouse models led to a mandibular symphysis cleft, mimicking the typical sign of the median mandible Tessier 30 cleft in humans.
Collapse
Affiliation(s)
- Jian Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yingnan Song
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
4
|
Li N, Liu J, Liu H, Wang S, Hu P, Zhou H, Xiao J, Liu C. Altered BMP-Smad4 signaling causes complete cleft palate by disturbing osteogenesis in palatal mesenchyme. J Mol Histol 2020; 52:45-61. [PMID: 33159638 DOI: 10.1007/s10735-020-09922-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023]
Abstract
As the major receptor mediated BMP signaling in craniofacial development, Bmpr1a expression was detected in the anterior palatal shelves from E13.5 and the posterior palatal shelves from E14.5. However, inactivating BMP receptor in the mesenchyme only leads to anterior cleft palate or submucous cleft palate. The role of BMP signaling in posterior palatal mesenchyme and palatal osteogenesis is still unknown. In this study, a secreted BMP antagonist, Noggin was over-expressed by Osr2-creKI to suppress BMP signaling intensively in mouse palatal mesenchyme, which made the newborn mouse displaying complete cleft palate, a phenotype much severer than the anterior or submucous cleft palate. Immunohistochemical analysis indicated that in the anterior and posterior palatal mesenchyme, the canonical BMP-Smad4 signaling was dramatically down-regulated, while the non-canonical BMP signaling pathways were altered little. Although cell proliferation was reduced only in the anterior palatal mesenchyme, the osteogenic condensation and Osterix distribution were remarkably repressed in the posterior palatal mesenchyme by Noggin over-expression. These findings suggested that BMP-Smad4 signaling was essential for the cell proliferation in the anterior palatal mesenchyme, and for the osteogenesis in the posterior palatal mesenchyme. Interestingly, the constitutive activation of Bmpr1a in palatal mesenchyme also caused the complete cleft palate, in which the enhanced BMP-Smad4 signaling resulted in the premature osteogenic differentiation in palatal mesenchyme. Moreover, neither the Noggin over-expression nor Bmpr1a activation disrupted the elevation of palatal shelves. Our study not only suggested that BMP signaling played the differential roles in the anterior and posterior palatal mesenchyme, but also indicated that BMP-Smad4 signaling was required to be finely tuned for the osteogenesis of palatal mesenchyme.
Collapse
Affiliation(s)
- Nan Li
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Jing Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
- Medical Department of Dandong Stomatological Hospital, Dandong, 118002, China
| | - Han Liu
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Shangqi Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ping Hu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Hailing Zhou
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Jing Xiao
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Chao Liu
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
5
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
6
|
Velázquez-Aragón JA, Alcántara-Ortigoza MA, Estandia-Ortega B, Reyna-Fabián ME, Méndez-Adame CD, González-Del Angel A. Gene Interactions Provide Evidence for Signaling Pathways Involved in Cleft Lip/Palate in Humans. J Dent Res 2016; 95:1257-64. [PMID: 27154735 DOI: 10.1177/0022034516647034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a common craniofacial birth defect that has a complex etiology. Genome-wide association studies have recently identified new loci associated with NSCL/P, but these loci have not been analyzed in a Mexican Mestizo population. A complex etiology implies the presence of genetic interactions, but there is little available information regarding this in NSCL/P, and no signaling pathway has been clearly implicated in humans. Here, we analyzed the associations of 24 single nucleotide polymorphisms (SNPs) with NSCL/P in a Mexican Mestizo population (133 cases, 263 controls). The multifactorial dimensionality reduction method was used to examine gene-gene and gene-folic acid consumption interactions for the 24 SNPs analyzed in this study and for 2 additional SNPs that had previously been genotyped in the same study population. Six SNPs located in paired box 7, ventral anterior homeobox 1, sprouty RTK signaling antagonist 2, bone morphogenetic protein 4, and tropomyosin 1 genes were associated with higher risks of NSCL/P (P = 0.0001 to 0.04); 2 SNPs, 1 each in netrin 1 and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B, were associated with a lower risk of NSCL/P (P = 0.013 to 0.03); and 2 SNPs, 1 each in ATP binding cassette subfamily A member 4 (ABCA4) and noggin, showed associations with NSCL/P that approached the threshold of significance (P = 0.056 to 0.07). In addition, 6 gene-gene interactions (P = 0.0001 to 0.001) and an ABCA4-folic acid consumption interaction (P < 0.0001) were identified. On the basis of these results, combined with those of previous association studies in the literature and biological characterizations of murine models, we propose an interaction network in which interferon regulatory factor 6 plays a central role in the etiology of NSCL/P.
Collapse
Affiliation(s)
- J A Velázquez-Aragón
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Secretaría de Salud, Coyoacán, Distrito Federal, México
| | - M A Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Secretaría de Salud, Coyoacán, Distrito Federal, México
| | - B Estandia-Ortega
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Secretaría de Salud, Coyoacán, Distrito Federal, México
| | - M E Reyna-Fabián
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Secretaría de Salud, Coyoacán, Distrito Federal, México
| | - C D Méndez-Adame
- Instituto Nacional de Pediatría, Secretaría de Salud, Coyoacán, Distrito Federal, México
| | - A González-Del Angel
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Secretaría de Salud, Coyoacán, Distrito Federal, México
| |
Collapse
|
7
|
Ludwig KU, Ahmed ST, Böhmer AC, Sangani NB, Varghese S, Klamt J, Schuenke H, Gültepe P, Hofmann A, Rubini M, Aldhorae KA, Steegers-Theunissen RP, Rojas-Martinez A, Reiter R, Borck G, Knapp M, Nakatomi M, Graf D, Mangold E, Peters H. Meta-analysis Reveals Genome-Wide Significance at 15q13 for Nonsyndromic Clefting of Both the Lip and the Palate, and Functional Analyses Implicate GREM1 As a Plausible Causative Gene. PLoS Genet 2016; 12:e1005914. [PMID: 26968009 PMCID: PMC4788144 DOI: 10.1371/journal.pgen.1005914] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
Nonsyndromic orofacial clefts are common birth defects with multifactorial etiology. The most common type is cleft lip, which occurs with or without cleft palate (nsCLP and nsCLO, respectively). Although genetic components play an important role in nsCLP, the genetic factors that predispose to palate involvement are largely unknown. In this study, we carried out a meta-analysis on genetic and clinical data from three large cohorts and identified strong association between a region on chromosome 15q13 and nsCLP (P = 8.13×10−14 for rs1258763; relative risk (RR): 1.46, 95% confidence interval (CI): 1.32–1.61)) but not nsCLO (P = 0.27; RR: 1.09 (0.94–1.27)). The 5 kb region of strongest association maps downstream of Gremlin-1 (GREM1), which encodes a secreted antagonist of the BMP4 pathway. We show during mouse embryogenesis, Grem1 is expressed in the developing lip and soft palate but not in the hard palate. This is consistent with genotype-phenotype correlations between rs1258763 and a specific nsCLP subphenotype, since a more than two-fold increase in risk was observed in patients displaying clefts of both the lip and soft palate but who had an intact hard palate (RR: 3.76, CI: 1.47–9.61, Pdiff<0.05). While we did not find lip or palate defects in Grem1-deficient mice, wild type embryonic palatal shelves developed divergent shapes when cultured in the presence of ectopic Grem1 protein (P = 0.0014). The present study identified a non-coding region at 15q13 as the second, genome-wide significant locus specific for nsCLP, after 13q31. Moreover, our data suggest that the closely located GREM1 gene contributes to a rare clinical nsCLP entity. This entity specifically involves abnormalities of the lip and soft palate, which develop at different time-points and in separate anatomical regions. Clefts of the lip and palate are common birth defects, and require long-term multidisciplinary management. Their etiology involves genetic factors and environmental influences and/or a combination of both, however, these interactions are poorly defined. Moreover, although clefts of the lip may or may not involve the palate, the determinants predisposing to specific subphenotypes are largely unknown. Here we demonstrate that variations in the non-coding region near the GREM1 gene show a highly significant association with a particular phenotype in which cleft lip and cleft palate co-occur (nsCLP; P = 8.13×10−14). Our data suggest that the risk is even higher for patients who have a cleft lip and a cleft of the soft palate, but not of the hard palate. Interestingly, this subphenotype corresponds to the expression of the mouse Grem1 gene, which is found in the developing lip and soft palate but not in the hard palate. While Grem1-deficient mice display no lip or palate defects, we demonstrate that ectopic Grem1 protein alters palatal shelve morphogenesis. Together, our results identify a region near GREM1 as the second, genome-wide significant risk locus for nsCLP, and suggest that deregulated GREM1 expression during craniofacial development may contribute to this common birth defect.
Collapse
Affiliation(s)
- Kerstin U. Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
- * E-mail: (KUL); (HP)
| | - Syeda Tasnim Ahmed
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Anne C. Böhmer
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Nasim Bahram Sangani
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Sheryil Varghese
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Johanna Klamt
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Hannah Schuenke
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Pinar Gültepe
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Michele Rubini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | | | - Regine P. Steegers-Theunissen
- Department of Obstetrics and Gynaecology, ErasmusMC, Rotterdam, Netherlands
- Department of Epidemiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Augusto Rojas-Martinez
- Department of Biochemistry and Molecular Medicine, School of Medicine, and Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Rudolf Reiter
- Department of Otolaryngology—Head and Neck Surgery, Section of Phoniatrics and Pedaudiology, University of Ulm, Ulm, Germany
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | | | - Daniel Graf
- Orofacial Development and Regeneration, Institute of Oral Biology, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
- Departments of Dentistry and Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | | | - Heiko Peters
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
- * E-mail: (KUL); (HP)
| |
Collapse
|
8
|
Suzuki A, Sangani DR, Ansari A, Iwata J. Molecular mechanisms of midfacial developmental defects. Dev Dyn 2015; 245:276-93. [PMID: 26562615 DOI: 10.1002/dvdy.24368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/19/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022] Open
Abstract
The morphogenesis of midfacial processes requires the coordination of a variety of cellular functions of both mesenchymal and epithelial cells to develop complex structures. Any failure or delay in midfacial development as well as any abnormal fusion of the medial and lateral nasal and maxillary prominences will result in developmental defects in the midface with a varying degree of severity, including cleft, hypoplasia, and midline expansion. Despite the advances in human genome sequencing technology, the causes of nearly 70% of all birth defects, which include midfacial development defects, remain unknown. Recent studies in animal models have highlighted the importance of specific signaling cascades and genetic-environmental interactions in the development of the midfacial region. This review will summarize the current understanding of the morphogenetic processes and molecular mechanisms underlying midfacial birth defects based on mouse models with midfacial developmental abnormalities.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Dhruvee R Sangani
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Afreen Ansari
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
9
|
Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 2015; 27:129-39. [PMID: 26747371 DOI: 10.1016/j.cytogfr.2015.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.
Collapse
|
10
|
Messina A, Lan L, Incitti T, Bozza A, Andreazzoli M, Vignali R, Cremisi F, Bozzi Y, Casarosa S. Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling. Stem Cells 2015; 33:2496-508. [PMID: 25913744 DOI: 10.1002/stem.2043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/12/2015] [Accepted: 04/02/2015] [Indexed: 01/27/2023]
Abstract
It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)β signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFβ and SHH signaling.
Collapse
Affiliation(s)
| | - Lei Lan
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | - Yuri Bozzi
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simona Casarosa
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| |
Collapse
|
11
|
Hu D, Young NM, Li X, Xu Y, Hallgrímsson B, Marcucio RS. A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face. Development 2015; 142:567-74. [PMID: 25605783 DOI: 10.1242/dev.114835] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms of morphogenesis are not well understood, yet shaping structures during development is essential for establishing correct organismal form and function. Here, we examine mechanisms that help to shape the developing face during the crucial period of facial primordia fusion. This period of development is a time when the faces of amniote embryos exhibit the greatest degree of similarity, and it probably results from the necessity for fusion to occur to establish the primary palate. Our results show that hierarchical induction mechanisms, consisting of iterative signaling by Sonic hedgehog (SHH) followed by Bone morphogenetic proteins (BMPs), regulate a dynamic expression pattern of Shh in the ectoderm covering the frontonasal (FNP) and maxillary (MxP) processes. Furthermore, this Shh expression domain contributes to the morphogenetic processes that drive the directional growth of the globular process of the FNP toward the lateral nasal process and MxP, in part by regulating cell proliferation in the facial mesenchyme. The nature of the induction mechanism that we discovered suggests that the process of fusion of the facial primordia is intrinsically buffered against producing maladaptive morphologies, such as clefts of the primary palate, because there appears to be little opportunity for variation to occur during expansion of the Shh expression domain in the ectoderm of the facial primordia. Ultimately, these results might explain why this period of development constitutes a phylotypic stage of facial development among amniotes.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Nathan M Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Xin Li
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA National Key Laboratory of Bio-Macromolecule, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Xu
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA Epitomizes, Inc., 1418 Moganshan Road, Hangzhou, Zhejiang 310011, China
| | - Benedikt Hallgrímsson
- Department of Anatomy and Cell Biology, University of Calgary, McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada T2N 4N1
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| |
Collapse
|
12
|
Billington CJ, Schmidt B, Marcucio RS, Hallgrimsson B, Gopalakrishnan R, Petryk A. Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice. Dis Model Mech 2014; 8:139-46. [PMID: 25468951 PMCID: PMC4314779 DOI: 10.1242/dmm.018275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Holoprosencephaly (HPE) is a developmental anomaly characterized by inadequate or absent midline division of the embryonic forebrain and midline facial defects. It is believed that interactions between genes and the environment play a role in the widely variable penetrance and expressivity of HPE, although direct investigation of such effects has been limited. The goal of this study was to examine whether mice carrying a mutation in a gene encoding the bone morphogenetic protein (BMP) antagonist twisted gastrulation (Twsg1), which is associated with a low penetrance of HPE, are sensitized to retinoic acid (RA) teratogenesis. Pregnant Twsg1(+/-) dams were treated by gavage with a low dose of all-trans RA (3.75 mg/kg of body weight). Embryos were analyzed between embryonic day (E)9.5 and E11.5 by microscopy and geometric morphometric analysis by micro-computed tomography. P19 embryonal carcinoma cells were used to examine potential mechanisms mediating the combined effects of increased BMP and retinoid signaling. Although only 7% of wild-type embryos exposed to RA showed overt HPE or neural tube defects (NTDs), 100% of Twsg1(-/-) mutants exposed to RA manifested severe HPE compared to 17% without RA. Remarkably, up to 30% of Twsg1(+/-) mutants also showed HPE (23%) or NTDs (7%). The majority of shape variation among Twsg1(+/-) mutants was associated with narrowing of the midface. In P19 cells, RA induced the expression of Bmp2, acted in concert with BMP2 to increase p53 expression, caspase activation and oxidative stress. This study provides direct evidence for modifying effects of the environment in a genetic mouse model carrying a predisposing mutation for HPE in the Twsg1 gene. Further study of the mechanisms underlying these gene-environment interactions in vivo will contribute to better understanding of the pathogenesis of birth defects and present an opportunity to explore potential preventive interventions.
Collapse
Affiliation(s)
- Charles J Billington
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA. Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55454, USA
| | - Brian Schmidt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| | - Ralph S Marcucio
- Department of Orthopedic Surgery, University of California, San Francisco, CA 94110, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology & Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajaram Gopalakrishnan
- Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Petryk
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA. Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55454, USA.
| |
Collapse
|
13
|
Petryk A, Graf D, Marcucio R. Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 4:17-32. [PMID: 25339593 DOI: 10.1002/wdev.161] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 01/17/2023]
Abstract
Holoprosencephaly (HPE) is the most common developmental defect of the forebrain characterized by inadequate or absent midline division of the forebrain into cerebral hemispheres, with concomitant midline facial defects in the majority of cases. Understanding the pathogenesis of HPE requires knowledge of the relationship between the developing brain and the facial structures during embryogenesis. A number of signaling pathways control and coordinate the development of the brain and face, including Sonic hedgehog, Bone morphogenetic protein, Fibroblast growth factor, and Nodal signaling. Mutations in these pathways have been identified in animal models of HPE and human patients. Because of incomplete penetrance and variable expressivity of HPE, patients carrying defined mutations may not manifest the disease at all, or have a spectrum of defects. It is currently unknown what drives manifestation of HPE in genetically at-risk individuals, but it has been speculated that other gene mutations and environmental factors may combine as cumulative insults. HPE can be diagnosed in utero by a high-resolution prenatal ultrasound or a fetal magnetic resonance imaging, sometimes in combination with molecular testing from chorionic villi or amniotic fluid sampling. Currently, there are no effective preventive methods for HPE. Better understanding of the mechanisms of gene-environment interactions in HPE would provide avenues for such interventions.
Collapse
Affiliation(s)
- Anna Petryk
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
14
|
Matsui M, Klingensmith J. Multiple tissue-specific requirements for the BMP antagonist Noggin in development of the mammalian craniofacial skeleton. Dev Biol 2014; 392:168-81. [PMID: 24949938 DOI: 10.1016/j.ydbio.2014.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 01/01/2023]
Abstract
Proper morphogenesis is essential for both form and function of the mammalian craniofacial skeleton, which consists of more than twenty small cartilages and bones. Skeletal elements that support the oral cavity are derived from cranial neural crest cells (NCCs) that develop in the maxillary and mandibular buds of pharyngeal arch 1 (PA1). Bone Morphogenetic Protein (BMP) signaling has been implicated in most aspects of craniofacial skeletogenesis, including PA1 development. However, the roles of the BMP antagonist Noggin in formation of the craniofacial skeleton remain unclear, in part because of its multiple domains of expression during formative stages. Here we used a tissue-specific gene ablation approach to assess roles of Noggin (Nog) in two different tissue domains potentially relevant to mandibular and maxillary development. We found that the axial midline domain of Nog expression is critical to promote PA1 development in early stages, necessary for adequate outgrowth of the mandibular bud. Subsequently, Nog expression in NCCs regulates craniofacial cartilage and bone formation. Mice lacking Nog in NCCs have an enlarged mandible that results from increased cell proliferation in and around Meckel׳s cartilage. These mutants also show complete secondary cleft palate, most likely due to inhibition of posterior palatal shelf elevation by disrupted morphology of the developing skull base. Our findings demonstrate multiple roles of Noggin in different domains for craniofacial skeletogenesis, and suggest an indirect mechanism for secondary cleft palate in Nog mutants that may be relevant to human cleft palate as well.
Collapse
Affiliation(s)
- Maiko Matsui
- Department of Cell Biology, Duke University Medical Center, Durham NC27710, USA.
| | - John Klingensmith
- Department of Cell Biology, Duke University Medical Center, Durham NC27710, USA.
| |
Collapse
|
15
|
Neural crest cell signaling pathways critical to cranial bone development and pathology. Exp Cell Res 2014; 325:138-47. [PMID: 24509233 DOI: 10.1016/j.yexcr.2014.01.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/17/2014] [Indexed: 01/08/2023]
Abstract
Neural crest cells appear early during embryogenesis and give rise to many structures in the mature adult. In particular, a specific population of neural crest cells migrates to and populates developing cranial tissues. The ensuing differentiation of these cells via individual complex and often intersecting signaling pathways is indispensible to growth and development of the craniofacial complex. Much research has been devoted to this area of development with particular emphasis on cell signaling events required for physiologic development. Understanding such mechanisms will allow researchers to investigate ways in which they can be exploited in order to treat a multitude of diseases affecting the craniofacial complex. Knowing how these multipotent cells are driven towards distinct fates could, in due course, allow patients to receive regenerative therapies for tissues lost to a variety of pathologies. In order to realize this goal, nucleotide sequencing advances allowing snapshots of entire genomes and exomes are being utilized to identify molecular entities associated with disease states. Once identified, these entities can be validated for biological significance with other methods. A crucial next step is the integration of knowledge gleaned from observations in disease states with normal physiology to generate an explanatory model for craniofacial development. This review seeks to provide a current view of the landscape on cell signaling and fate determination of the neural crest and to provide possible avenues of approach for future research.
Collapse
|
16
|
Hovorakova M, Smrckova L, Lesot H, Lochovska K, Peterka M, Peterkova R. Sequential Shh expression in the development of the mouse upper functional incisor. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:455-64. [PMID: 23913503 DOI: 10.1002/jez.b.22522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/21/2013] [Accepted: 06/03/2013] [Indexed: 11/06/2022]
Abstract
The mouse incisor is a frequently used model in studies of the molecular control of organ development. The appropriate interpretation of data on normogenesis is essential for understanding the data obtained in mutant mice. For this reason, we performed a very detailed investigation of the development of the upper incisor in wild-type mice from embryonic day (ED) 11.5 till 14.5. A combination of histology, whole mount in situ hybridization, computer-aided three-dimensional reconstructions, and fluorescent microscopy, has been used. Several sonic hedgehog (Shh) expression domains have been detected in the upper incisor region during early prenatal development. At ED11.5-13.5, there was a single Shh positive domain present in the anterior part of left or right upper jaw arches, corresponding to the epithelial thickening. More posteriorly, a new Shh expression domain appeared in the incisor bud in the developmentally more advanced ED13.5 embryos. At ED14.5, only this posterior Shh expression in the incisor germ remained detectable. This study brings new insights into the early development of the upper incisor in mice and completes the data on normal mouse incisor development. The temporal-spatial pattern of Shh expression reflects the development of two tooth generations, being detectable in two successive, antero-posteriorly located areas in the prospective incisor region in the upper jaw. The first, anterior and superficial Shh expression domain reflects the rudimentary tooth development suppressed during evolution. Only the subsequent, posterior and deeper Shh expression region, appearing at ED13.5, correlates with the prospective upper functional incisor in wild-type mice.
Collapse
Affiliation(s)
- Maria Hovorakova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Zheng Y, Chen D, Chen Y. Enhanced BMP signaling prevents degeneration and leads to endochondral ossification of Meckel's cartilage in mice. Dev Biol 2013; 381:301-11. [PMID: 23891934 DOI: 10.1016/j.ydbio.2013.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/02/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Meckel's cartilage is a transient supporting tissue of the embryonic mandible in mammals, and disappears by taking different ultimate cell fate along the distal-proximal axis, with the majority (middle portion) undergoing degeneration and chondroclastic resorption. While a number of factors have been implicated in the degeneration and resorption processes, signaling pathways that trigger this degradation are currently unknown. BMP signaling has been implicated in almost every step of chondrogenesis. In this study, we used Noggin mutant mice as a model for gain-of-BMP signaling function to investigate the function of BMP signaling in Meckel's cartilage development, with a focus on the middle portion. We showed that Bmp2 and Bmp7 are expressed in early developing Meckels' cartilage, but their expression disappears thereafter. In contrast, Noggin is expressed constantly in Meckel's cartilage throughout the entire gestation period. In the absence of Noggin, Meckel's cartilage is significantly thickened attributing to dramatically elevated cell proliferation rate associated with enhanced phosphorylated Smad1/5/8 expression. Interestingly, instead of taking a degeneration fate, the middle portion of Meckel's cartilage in Noggin mutants undergoes chondrogenic differentiation and endochondral ossification contributing to the forming mandible. Chondrocyte-specific expression of a constitutively active form of BMPRIa but not BMPRIb leads to enlargement of Meckel's cartilage, phenocopying the consequence of Noggin deficiency. Our results demonstrate that elevated BMP signaling prevents degeneration and leads to endochondral ossification of Meckel's cartilage, and support the idea that withdrawal of BMP signaling is required for normal Meckel's cartilage development and ultimate cell fate.
Collapse
Affiliation(s)
- Ying Wang
- Department of Operative Dentistry and Endodontics, College of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | | | | | | |
Collapse
|
18
|
Li L, Wang Y, Lin M, Yuan G, Yang G, Zheng Y, Chen Y. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation. PLoS One 2013; 8:e66107. [PMID: 23776616 PMCID: PMC3680418 DOI: 10.1371/journal.pone.0066107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/01/2013] [Indexed: 01/11/2023] Open
Abstract
The importance of BMP receptor Ia (BMPRIa) mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa) in cranial neural crest (CNC) cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Ying Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Operative Dentistry and Endodontics, College of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Minkui Lin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Guohua Yuan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Pediatric Dentistry, College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Guobin Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Pediatric Dentistry, College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Yuqian Zheng
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
19
|
Khonsari RH, Seppala M, Pradel A, Dutel H, Clément G, Lebedev O, Ghafoor S, Rothova M, Tucker A, Maisey JG, Fan CM, Kawasaki M, Ohazama A, Tafforeau P, Franco B, Helms J, Haycraft CJ, David A, Janvier P, Cobourne MT, Sharpe PT. The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling. BMC Biol 2013; 11:27. [PMID: 23537390 PMCID: PMC3635870 DOI: 10.1186/1741-7007-11-27] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/19/2013] [Indexed: 01/06/2023] Open
Abstract
Background The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke’s pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke’s pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance. Results We show that Rathke’s pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polarisfl/fl; Wnt1-Cre, Ofd1-/- and Kif3a-/- primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1-/- mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling. Conclusion These results provide insight into a poorly understood ancestral vertebrate structure. It appears that the opening of the buccohypophyseal canal depends upon Shh signaling and that modulation in this pathway most probably accounts for its persistence in phylogeny.
Collapse
Affiliation(s)
- Roman H Khonsari
- Department of Craniofacial Development and Stem Cell Research, Comprehensive Biomedical Research Center, Dental Institute, King's College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dental approach to craniofacial syndromes: how can developmental fields show us a new way to understand pathogenesis? Int J Dent 2012; 2012:145749. [PMID: 23091490 PMCID: PMC3467949 DOI: 10.1155/2012/145749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/10/2012] [Accepted: 07/25/2012] [Indexed: 12/19/2022] Open
Abstract
The paper consists of three parts. Part 1: Definition of Syndromes. Focus is given to craniofacial syndromes in which abnormal traits in the dentition are associated symptoms. In the last decade, research has concentrated on phenotype, genotype, growth, development, function, and treatment. Part 2: Syndromes before Birth. How can the initial malformation sites in these syndromes be studied and what can we learn from it? In this section, deviations observed in syndromes prenatally will be highlighted and compared to the normal human embryological craniofacial development. Specific focus will be given to developmental fields studied on animal tissue and transferred to human cranial development. Part 3: Developmental Fields Affected in Two Craniofacial Syndromes. Analysis of primary and permanent dentitions can determine whether a syndrome affects a single craniofacial field or several fields. This distinction is essential for insight into craniofacial syndromes. The dentition, thus, becomes central in diagnostics and evaluation of the pathogenesis. Developmental fields can explore and advance the concept of dental approaches to craniofacial syndromes. Discussion. As deviations in teeth persist and do not reorganize during growth and development, the dentition is considered useful for distinguishing between syndrome pathogenesis manifested in a single developmental field and in several fields.
Collapse
|
21
|
Srivastava K, Hu P, Solomon BD, Ming JE, Roessler E, Muenke M. Molecular analysis of the Noggin (NOG) gene in holoprosencephaly patients. Mol Genet Metab 2012; 106:241-3. [PMID: 22503063 PMCID: PMC3356444 DOI: 10.1016/j.ymgme.2012.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 11/19/2022]
Abstract
Holoprosencephaly (HPE) is the most common structural anomaly of the human forebrain. Various genetic and teratogenic causes have been implicated in its pathogenesis. A recent report in mice described Noggin (NOG) as a candidate gene involved in the etiogenesis of microform HPE. Here, we present for the first time genetic analysis of a large HPE cohort for sequence variations in NOG. On the basis of our study, we conclude that mutations in the coding region of NOG are rare, and play at most an uncommon role in human HPE.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey E. Ming
- The Children’s Hospital of Philadelphia, Division of Human Genetics and Molecular Biology, Philadelphia, Pennsylvania
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Correspondence: Maximilian Muenke, MD, Chief, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, Building 35, Room 1B-203, Bethesda, MD-20892, , Phone: 301-402-8167, FAX: 301-496-7184
| |
Collapse
|
22
|
Hu X, Wang Y, He F, Li L, Zheng Y, Zhang Y, Chen YP. Noggin is required for early development of murine upper incisors. J Dent Res 2012; 91:394-400. [PMID: 22302143 DOI: 10.1177/0022034511435939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BMP signaling plays crucial roles in the development of many organs, including the tooth. Equally important is BMP signaling homeostasis, as demonstrated by multiple organ defects in mice lacking the extracellular BMP antagonist Noggin. Here, we show that Noggin is initially expressed in the maxillary mesenchyme adjunct to the upper incisor at the initiation stage, and then in the developing teeth, including incisors and molars, from the bud stage. Noggin mutants develop normal molars and mandibular incisors, but form a single, medially located upper incisor that is arrested at the late bud stage. Histological and molecular marker analyses demonstrated that two distinct upper incisor placodes initiate independently at E11.5, but begin to fuse at E12.5, coupling with elevated cell proliferation rates in the developing tooth germs. We further found that Chordin and Gremlin, two other BMP antagonists, are co-expressed with Noggin in the developing lower incisor and molar teeth. These observations indicate the importance of BMP signaling homeostasis, and suggest a functional redundancy between BMP antagonists during tooth development.
Collapse
Affiliation(s)
- X Hu
- Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province, P.R. China
| | | | | | | | | | | | | |
Collapse
|