1
|
Bhatia V, Vikram V, Chandel A, Rattan A. Interplay between PI3k/AKT signaling and caspase pathway in Alzheimer disease: mechanism and therapeutic implications. Inflammopharmacology 2025; 33:1785-1802. [PMID: 40088370 DOI: 10.1007/s10787-025-01715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
Alzheimer's disease, a neurodegenerative disorder, is characterized by cognitive impairment, neuronal loss, and synaptic dysfunction. The interplay between the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway and the caspase-mediated apoptotic cascade plays a pivotal role in its progression. The signaling pathway responsible for neuronal survival also regulates synaptic plasticity and resistance to oxidative stress, whereas caspase activation accelerates neurodegeneration by triggering cell death and inflammation. Dysregulation of these pathways leads to amyloid-beta (Aβ) accumulation, tau hyperphosphorylation, and mitochondrial dysfunction, creating a negative feedback loop and accelerating disease progression. Emerging treatment methods that target PI3K/AKT activation and caspase inhibition have showed promise in preclinical models, preventing neuronal apoptosis while retaining cognitive function. This review investigates the molecular processes driving PI3K/AKT and caspase crosstalk, their significance in Alzheimer's disease, and prospective therapeutic strategies aiming at regulating these pathways to improve disease outcomes.
Collapse
Affiliation(s)
- Vandana Bhatia
- Department of Pharmacology, CT University Ludhiana, Ludhiana, Punjab, 142024, India.
| | - Vir Vikram
- Department of Pharmacology, CT University Ludhiana, Ludhiana, Punjab, 142024, India
| | - Anjali Chandel
- Department of Pharmacology, Laureate Institute of Pharmacy Kathog, Kangra, 177101, India
| | - Aditya Rattan
- Department of Pharmacology, Laureate Institute of Pharmacy Kathog, Kangra, 177101, India
| |
Collapse
|
2
|
Lin TH, Chiu YJ, Lin CH, Chen YR, Lin W, Wu YR, Chang KH, Chen CM, Lee-Chen GJ. Coumarin-chalcone derivatives as dual NLRP1 and NLRP3 inflammasome inhibitors targeting oxidative stress and inflammation in neurotoxin-induced HMC3 and BE(2)-M17 cell models of Parkinson's disease. Front Aging Neurosci 2024; 16:1437138. [PMID: 39411284 PMCID: PMC11473416 DOI: 10.3389/fnagi.2024.1437138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background In Parkinson's disease (PD) brains, microglia are activated to release inflammatory factors to induce the production of reactive oxygen species (ROS) in neuron, and vice versa. Moreover, neuroinflammation and its synergistic interaction with oxidative stress contribute to the pathogenesis of PD. Methods In this study, we investigated whether in-house synthetic coumarin-chalcone derivatives protect human microglia HMC3 and neuroblastoma BE(2)-M17 cells against 1-methyl-4-phenyl pyridinium (MPP+)-induced neuroinflammation and associated neuronal damage. Results Treatment with MPP+ decreased cell viability as well as increased the release of inflammatory mediators including cytokines and nitric oxide in culture medium, and enhanced expression of microglial activation markers CD68 and MHCII in HMC3 cells. The protein levels of NLRP3, CASP1, iNOS, IL-1β, IL-6, and TNF-α were also increased in MPP+-stimulated HMC3 cells. Among the four tested compounds, LM-016, LM-021, and LM-036 at 10 μM counteracted the inflammatory action of MPP+ in HMC3 cells. In addition, LM-021 and LM-036 increased cell viability, reduced lactate dehydrogenase release, ameliorated cellular ROS production, decreased caspase-1, caspase-3 and caspase-6 activities, and promoted neurite outgrowth in MPP+-treated BE(2)-M17 cells. These protective effects were mediated by down-regulating inflammatory NLRP1, IL-1β, IL-6, and TNF-α, as well as up-regulating antioxidative NRF2, NQO1, GCLC, and PGC-1α, and neuroprotective CREB, BDNF, and BCL2. Conclusion The study results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanisms, and indicate the potential use of LM-021 and LM-036 as dual inflammasome inhibitors in treating both NLRP1- and NLRP3-associated PD.
Collapse
Affiliation(s)
- Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
3
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
4
|
Kuijper EC, Overzier M, Suidgeest E, Dzyubachyk O, Maguin C, Pérot JB, Flament J, Ariyurek Y, Mei H, Buijsen RAM, van der Weerd L, van Roon-Mom W. Antisense oligonucleotide-mediated disruption of HTT caspase-6 cleavage site ameliorates the phenotype of YAC128 Huntington disease mice. Neurobiol Dis 2024; 190:106368. [PMID: 38040383 DOI: 10.1016/j.nbd.2023.106368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
In Huntington disease, cellular toxicity is particularly caused by toxic protein fragments generated from the mutant huntingtin (HTT) protein. By modifying the HTT protein, we aim to reduce proteolytic cleavage and ameliorate the consequences of mutant HTT without lowering total HTT levels. To that end, we use an antisense oligonucleotide (AON) that targets HTT pre-mRNA and induces partial skipping of exon 12, which contains the critical caspase-6 cleavage site. Here, we show that AON-treatment can partially restore the phenotype of YAC128 mice, a mouse model expressing the full-length human HTT gene including 128 CAG-repeats. Wild-type and YAC128 mice were treated intracerebroventricularly with AON12.1, scrambled AON or vehicle starting at 6 months of age and followed up to 12 months of age, when MRI was performed and mice were sacrificed. AON12.1 treatment induced around 40% exon skip and protein modification. The phenotype on body weight and activity, but not rotarod, was restored by AON treatment. Genes differentially expressed in YAC128 striatum changed toward wild-type levels and striatal volume was preserved upon AON12.1 treatment. However, scrambled AON also showed a restorative effect on gene expression and appeared to generally increase brain volume.
Collapse
Affiliation(s)
- Elsa C Kuijper
- Department of Human Genetics, Leiden University Medical Center, the Netherlands.
| | - Maurice Overzier
- Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Cécile Maguin
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies Neurodégénératives, France
| | - Jean-Baptiste Pérot
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies Neurodégénératives, France; Institut du Cerveau - Paris Brain Institute, Sorbonne Université, France
| | - Julien Flament
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies Neurodégénératives, France
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Louise van der Weerd
- Department of Human Genetics, Leiden University Medical Center, the Netherlands; Department of Radiology, Leiden University Medical Center, the Netherlands
| | | |
Collapse
|
5
|
Alshehabi Y, Martin DD. Protective Proteolysis in Huntington's Disease: Unraveling the Role of Post-Translational Myristoylation of Huntingtin in Autophagy. J Huntingtons Dis 2024; 13:267-277. [PMID: 38995796 PMCID: PMC11492065 DOI: 10.3233/jhd-240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by impaired motor function and cognitive decline, ultimately leading to death. HD is caused by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein, which is linked to decreased HTT turnover, increased HTT proteolysis, increased HTT aggregation, and subsequent neuronal death. In this review, we explore the mechanism of the protective effect of blocking HTT proteolysis at D586, which has been shown to rescue the HD phenotype in HD mouse models. Until recently, the mechanism remained unclear. Herein, we discuss how blocking HTT proteolysis at D586 promotes HTT turnover by correcting autophagy, and making HTT a better autophagy substrate, through post-translational myristoylation of HTT at G553.
Collapse
Affiliation(s)
- Yasmeen Alshehabi
- NeurdyPhagy Lab, Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Dale D.O. Martin
- NeurdyPhagy Lab, Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
6
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
7
|
Llido JP, Fioriti E, Pascut D, Giuffrè M, Bottin C, Zanconati F, Tiribelli C, Gazzin S. Bilirubin-Induced Transcriptomic Imprinting in Neonatal Hyperbilirubinemia. BIOLOGY 2023; 12:834. [PMID: 37372119 DOI: 10.3390/biology12060834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Recent findings indicated aberrant epigenetic control of the central nervous system (CNS) development in hyperbilirubinemic Gunn rats as an additional cause of cerebellar hypoplasia, the landmark of bilirubin neurotoxicity in rodents. Because the symptoms in severely hyperbilirubinemic human neonates suggest other regions as privileged targets of bilirubin neurotoxicity, we expanded the study of the potential impact of bilirubin on the control of postnatal brain development to regions correlating with human symptoms. Histology, transcriptomic, gene correlation, and behavioral studies were performed. The histology revealed widespread perturbation 9 days after birth, restoring in adulthood. At the genetic level, regional differences were noticed. Bilirubin affected synaptogenesis, repair, differentiation, energy, extracellular matrix development, etc., with transient alterations in the hippocampus (memory, learning, and cognition) and inferior colliculi (auditory functions) but permanent changes in the parietal cortex. Behavioral tests confirmed the presence of a permanent motor disability. The data correlate well both with the clinic description of neonatal bilirubin-induced neurotoxicity, as well as with the neurologic syndromes reported in adults that suffered neonatal hyperbilirubinemia. The results pave the way for better deciphering the neurotoxic features of bilirubin and evaluating deeply the efficacy of new therapeutic approaches against the acute and long-lasting sequels of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- John Paul Llido
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - Emanuela Fioriti
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Silvia Gazzin
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| |
Collapse
|
8
|
Van Horn KS, Wang D, Medina-Cleghorn D, Lee PS, Bryant C, Altobelli C, Jaishankar P, Leung KK, Ng RA, Ambrose AJ, Tang Y, Arkin MR, Renslo AR. Engaging a Non-catalytic Cysteine Residue Drives Potent and Selective Inhibition of Caspase-6. J Am Chem Soc 2023; 145:10015-10021. [PMID: 37104712 PMCID: PMC10176470 DOI: 10.1021/jacs.2c12240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 04/29/2023]
Abstract
Caspases are a family of cysteine-dependent proteases with important cellular functions in inflammation and apoptosis, while also implicated in human diseases. Classical chemical tools to study caspase functions lack selectivity for specific caspase family members due to highly conserved active sites and catalytic machinery. To overcome this limitation, we targeted a non-catalytic cysteine residue (C264) unique to caspase-6 (C6), an enigmatic and understudied caspase isoform. Starting from disulfide ligands identified in a cysteine trapping screen, we used a structure-informed covalent ligand design to produce potent, irreversible inhibitors (3a) and chemoproteomic probes (13-t) of C6 that exhibit unprecedented selectivity over other caspase family members and high proteome selectivity. This approach and the new tools described will enable rigorous interrogation of the role of caspase-6 in developmental biology and in inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kurt S. Van Horn
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Dongju Wang
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
- School
of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Daniel Medina-Cleghorn
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Peter S. Lee
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Clifford Bryant
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Chad Altobelli
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Priyadarshini Jaishankar
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Kevin K. Leung
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Raymond A. Ng
- Chempartner
Corporation, 280 Utah
Avenue, South San Francisco, California 94080, United States
| | - Andrew J. Ambrose
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Yinyan Tang
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
9
|
Svandova E, Lesot H, Sharpe P, Matalova E. Making the head: Caspases in life and death. Front Cell Dev Biol 2023; 10:1075751. [PMID: 36712975 PMCID: PMC9880857 DOI: 10.3389/fcell.2022.1075751] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.
Collapse
Affiliation(s)
- Eva Svandova
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
10
|
Dhage PA, Sharbidre AA, Magdum SM. Interlacing the relevance of caspase activation in the onset and progression of Alzheimer's disease. Brain Res Bull 2023; 192:83-92. [PMID: 36372374 DOI: 10.1016/j.brainresbull.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Caspases, a family of cysteine proteases is a renowned regulator of apoptosis. Members of this family are responsible for the proteolytic dismantling of numerous cellular structures. Apart from apoptosis, caspases remarkably contribute to a diverse range of molecular processes. Being the imperative members of several cellular cascades their abnormal activation/deactivation has severe implications and also leads to various diseased conditions. Similar aberrant activation of caspases is one of the several causes of neuropathologies associated with Alzheimer's disease (AD), a form of dementia severely affecting neuropsychiatric and cognitive functions. Emerging studies are providing deeper insights into the mechanisms of caspase action in the progression of AD. Current article is an attempt to review these studies and present the action mechanisms of different mammalian caspases in the advancement of AD associated neuropathologies.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sujata M Magdum
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| |
Collapse
|
11
|
Dehkordi MH, Munn RGK, Fearnhead HO. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front Cell Dev Biol 2022; 10:840023. [PMID: 35281082 PMCID: PMC8904960 DOI: 10.3389/fcell.2022.840023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Caspases are a family of cysteine proteases that predominantly cleave their substrates after aspartic acid residues. Much of what we know of caspases emerged from investigation a highly conserved form of programmed cell death called apoptosis. This form of cell death is regulated by several caspases, including caspase-2, caspase-3, caspase-7, caspase-8 and caspase-9. However, these “killer” apoptotic caspases have emerged as versatile enzymes that play key roles in a wide range of non-apoptotic processes. Much of what we understand about these non-apoptotic roles is built on work investigating how “killer” caspases control a range of neuronal cell behaviors. This review will attempt to provide an up to date synopsis of these roles.
Collapse
Affiliation(s)
- Mahshid H. Dehkordi
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Howard O. Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
- *Correspondence: Howard O. Fearnhead,
| |
Collapse
|
12
|
Noguchi A, Ito K, Uosaki Y, Ideta-Otsuka M, Igarashi K, Nakashima H, Kakizaki T, Kaneda R, Uosaki H, Yanagawa Y, Nakashima K, Arakawa H, Takizawa T. Decreased Lamin B1 Levels Affect Gene Positioning and Expression in Postmitotic Neurons. Neurosci Res 2021; 173:22-33. [PMID: 34058264 DOI: 10.1016/j.neures.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
Gene expression programs and concomitant chromatin regulation change dramatically during the maturation of postmitotic neurons. Subnuclear positioning of gene loci is relevant to transcriptional regulation. However, little is known about subnuclear genome positioning in neuronal maturation. Using cultured murine hippocampal neurons, we found genomic locus 14qD2 to be enriched with genes that are upregulated during neuronal maturation. Reportedly, the locus is homologous to human 8p21.3, which has been extensively studied in neuropsychiatry and neurodegenerative diseases. Mapping of the 14qD2 locus in the nucleus revealed that it was relocated from the nuclear periphery to the interior. Moreover, we found a concomitant decrease in lamin B1 expression. Overexpression of lamin B1 in neurons using a lentiviral vector prevented the relocation of the 14qD2 locus and repressed the transcription of the Egr3 gene on this locus. Taken together, our results suggest that reduced lamin B1 expression during the maturation of neurons is important for appropriate subnuclear positioning of the genome and transcriptional programs.
Collapse
Affiliation(s)
- Azumi Noguchi
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan
| | - Kenji Ito
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan; University of Pennsylvania, Perelman School of Medicine, Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Philadelphia, PA, 19104-5157, USA
| | - Yuichi Uosaki
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan
| | - Maky Ideta-Otsuka
- Hoshi University School of Pharmacy Pharmaceutical Science, Life Science Tokyo Advanced Research Center (L-StaR), Tokyo, 142 8501, Japan
| | - Katsuhide Igarashi
- Hoshi University School of Pharmacy Pharmaceutical Science, Life Science Tokyo Advanced Research Center (L-StaR), Tokyo, 142 8501, Japan
| | - Hideyuki Nakashima
- Kyushu University, Department of Stem Cell Biology and Medicine Graduate School of Medical Sciences, Fukuoka, 812 8582, Japan
| | - Toshikazu Kakizaki
- Gunma University Graduate School of Medicine, Department of Genetic and Behavioral Neuroscience, Maebashi, 371 8511, Japan
| | - Ruri Kaneda
- Jichi Medical University, Support Center for Clinical Investigation, Shimotsuke, 329 0498, Japan
| | - Hideki Uosaki
- Jichi Medical University, Division of Regenerative Medicine, Center for Molecular Medicine, Shimotsuke, 329 0498, Japan; Jichi Medical University, Center for Development of Advanced Medical Technology, Shimotsuke, 329 0498, Japan
| | - Yuchio Yanagawa
- Gunma University Graduate School of Medicine, Department of Genetic and Behavioral Neuroscience, Maebashi, 371 8511, Japan
| | - Kinichi Nakashima
- Kyushu University, Department of Stem Cell Biology and Medicine Graduate School of Medical Sciences, Fukuoka, 812 8582, Japan
| | - Hirokazu Arakawa
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan
| | - Takumi Takizawa
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan.
| |
Collapse
|
13
|
Nguyen TTM, Gillet G, Popgeorgiev N. Caspases in the Developing Central Nervous System: Apoptosis and Beyond. Front Cell Dev Biol 2021; 9:702404. [PMID: 34336853 PMCID: PMC8322698 DOI: 10.3389/fcell.2021.702404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The caspase family of cysteine proteases represents the executioners of programmed cell death (PCD) type I or apoptosis. For years, caspases have been known for their critical roles in shaping embryonic structures, including the development of the central nervous system (CNS). Interestingly, recent findings have suggested that aside from their roles in eliminating unnecessary neural cells, caspases are also implicated in other neurodevelopmental processes such as axon guidance, synapse formation, axon pruning, and synaptic functions. These results raise the question as to how neurons regulate this decision-making, leading either to cell death or to proper development and differentiation. This review highlights current knowledge on apoptotic and non-apoptotic functions of caspases in the developing CNS. We also discuss the molecular factors involved in the regulation of caspase-mediated roles, emphasizing the mitochondrial pathway of cell death.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Germain Gillet
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Nikolay Popgeorgiev
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
14
|
Rare CASP6N73T variant associated with hippocampal volume exhibits decreased proteolytic activity, synaptic transmission defect, and neurodegeneration. Sci Rep 2021; 11:12695. [PMID: 34135352 PMCID: PMC8209045 DOI: 10.1038/s41598-021-91367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
Caspase-6 (Casp6) is implicated in Alzheimer disease (AD) cognitive impairment and pathology. Hippocampal atrophy is associated with cognitive impairment in AD. Here, a rare functional exonic missense CASP6 single nucleotide polymorphism (SNP), causing the substitution of asparagine with threonine at amino acid 73 in Casp6 (Casp6N73T), was associated with hippocampal subfield CA1 volume preservation. Compared to wild type Casp6 (Casp6WT), recombinant Casp6N73T altered Casp6 proteolysis of natural substrates Lamin A/C and α-Tubulin, but did not alter cleavage of the Ac-VEID-AFC Casp6 peptide substrate. Casp6N73T-transfected HEK293T cells showed elevated Casp6 mRNA levels similar to Casp6WT-transfected cells, but, in contrast to Casp6WT, did not accumulate active Casp6 subunits nor show increased Casp6 enzymatic activity. Electrophysiological and morphological assessments showed that Casp6N73T recombinant protein caused less neurofunctional damage and neurodegeneration in hippocampal CA1 pyramidal neurons than Casp6WT. Lastly, CASP6 mRNA levels were increased in several AD brain regions confirming the implication of Casp6 in AD. These studies suggest that the rare Casp6N73T variant may protect against hippocampal atrophy due to its altered catalysis of natural protein substrates and intracellular instability thus leading to less Casp6-mediated damage to neuronal structure and function.
Collapse
|
15
|
Laroche M, Lessard-Beaudoin M, Garcia-Miralles M, Kreidy C, Peachey E, Leavitt BR, Pouladi MA, Graham RK. Early deficits in olfaction are associated with structural and molecular alterations in the olfactory system of a Huntington disease mouse model. Hum Mol Genet 2020; 29:2134-2147. [PMID: 32436947 DOI: 10.1093/hmg/ddaa099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/25/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Olfactory dysfunction and altered neurogenesis are observed in several neurodegenerative disorders including Huntington disease (HD). These deficits occur early and correlate with a decline in global cognitive performance, depression and structural abnormalities of the olfactory system including the olfactory epithelium, bulb and cortices. However, the role of olfactory system dysfunction in the pathogenesis of HD remains poorly understood and the mechanisms underlying this dysfunction are unknown. We show that deficits in odour identification, discrimination and memory occur in HD individuals. Assessment of the olfactory system in an HD murine model demonstrates structural abnormalities in the olfactory bulb (OB) and piriform cortex, the primary cortical recipient of OB projections. Furthermore, a decrease in piriform neuronal counts and altered expression levels of neuronal nuclei and tyrosine hydroxylase in the OB are observed in the YAC128 HD model. Similar to the human HD condition, olfactory dysfunction is an early phenotype in the YAC128 mice and concurrent with caspase activation in the murine HD OB. These data provide a link between the structural olfactory brain region atrophy and olfactory dysfunction in HD and suggest that cell proliferation and cell death pathways are compromised and may contribute to the olfactory deficits in HD.
Collapse
Affiliation(s)
- M Laroche
- Research Center on Aging, CIUSSS-IUGS de l'Estrie-CHUS, FMSS, Department of Pharmacology and Physiology, University of Sherbrooke, Quebec J1K 2R1, Canada
| | - M Lessard-Beaudoin
- Research Center on Aging, CIUSSS-IUGS de l'Estrie-CHUS, FMSS, Department of Pharmacology and Physiology, University of Sherbrooke, Quebec J1K 2R1, Canada
| | - M Garcia-Miralles
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (ASTAR), Singapore 138632
| | - C Kreidy
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (ASTAR), Singapore 138632
| | - E Peachey
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - B R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - M A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (ASTAR), Singapore 138632.,Departments of Medicine and Physiology, National University of Singapore, Singapore 119077
| | - R K Graham
- Research Center on Aging, CIUSSS-IUGS de l'Estrie-CHUS, FMSS, Department of Pharmacology and Physiology, University of Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
16
|
Ginkgo biloba Alleviates Cisplatin-Mediated Neurotoxicity in Rats via Modulating APP/Aβ/P2X7R/P2Y12R and XIAP/BDNF-Dependent Caspase-3 Apoptotic Pathway. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurotoxicity is an obvious adverse effect in Patients encountering a complete course of chemotherapy. The present work is conducted to evaluate the neuroprotective effect of Ginkgo biloba (Ginkgo) against the neurotoxicity induced by Cisplatin (Cis) in rats. Forty male Wistar albino rats were arranged into four groups: (1) Control group, rats were given saline; (2) Cis group, rats were injected by Cis 2 mg/kg body weight i.p., twice a week starting on the fifth day for thirty days; (3) Ginkgo group, rats were administered Ginkgo (50 mg/kg orally) daily for thirty days; and (4) Ginkgo+Cis group, rats received Ginkgo (50 mg/kg orally) daily and on the fifth day, rats were injected with Cis (2 mg/Kg body weight i.p.) twice a week for thirty days. Cis significantly increased Gamma glutamyltransferase (GGT) and Acetyl Cholinesterase (CHE) as compared to the control group and also disturbed cerebral oxidative/antioxidant redox. Co-administration of Ginkgo and Cis reversed the adverse effect of Cis on the brain tissue. Moreover, co-administration of Ginkgo and Cis ameliorated Cis induced brain damage by reducing Amyloid precursor protein (APP), amyloid β (Aβ), P2Y12R and P2X7R mRNA expressions and proteins. Furthermore, Ginkgo regulated XIAP/BDNF expressions with a consequent decrease of caspase-3 and DNA fragmentation%. The current results concluded that concurrent treatment with Ginkgo can mitigate neurotoxicity mediated by Cis in experimental animals through exhibiting antioxidant effect by restoring cerebral oxidative/antioxidant redox and anti-apoptotic effect via regulating cerebral APP/Aβ/P2Y12R/P2X7R and XIAP/BDNF signaling pathways.
Collapse
|
17
|
Semaphorin-Mediated Corticospinal Axon Elimination Depends on the Activity-Induced Bax/Bak-Caspase Pathway. J Neurosci 2020; 40:5402-5412. [PMID: 32471877 DOI: 10.1523/jneurosci.3190-18.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Axon guidance molecules and neuronal activity have been implicated in the establishment and refinement of neural circuits during development. It is unclear, however, whether these guidance molecule- and activity-dependent mechanisms interact with one another to shape neural circuit formation. The formation of corticospinal (CS) circuits, which are essential for voluntary movements, involves both guidance molecule- and activity-dependent components during development. We previously showed that semaphorin6D (Sema6D)-plexinA1 (PlexA1) signaling eliminates ipsilateral projections of CS neurons in the spinal cord, while other studies demonstrate that CS projections to the spinal cord are eliminated in an activity-dependent manner. Here we show that inhibition of cortical neurons during postnatal development causes defects in elimination of ipsilateral CS projections in mice. We further show that mice that lack the activity-dependent Bax/Bak pathway or caspase-9 similarly exhibit defects in elimination of ipsilateral CS projections, suggesting that the activity-dependent Bax/Bak-caspase-9 pathway is essential for the removal of ipsilateral CS projections. Interestingly, either inhibition of neuronal activity in the cortex or deletion of Bax/Bak in mice causes a reduction in PlexA1 protein expression in corticospinal neurons. Finally, intracortical microstimulation induces activation of only contralateral forelimb muscles in control mice, whereas it induces activation of both contralateral and ipsilateral muscles in mice with cortical inhibition, suggesting that the ipsilaterally projecting CS axons that have been maintained in mice with cortical inhibition form functional connections. Together, these results provide evidence of a potential link between the repellent signaling of Sema6D-PlexA1 and neuronal activity to regulate axon elimination.SIGNIFICANCE STATEMENT Both axon guidance molecules and neuronal activity regulate axon elimination to refine neuronal circuits during development. However, the degree to which these mechanisms operate independently or cooperatively to guide network generation is unclear. Here, we show that neuronal activity-driven Bax/Bak-caspase signaling induces expression of the PlexA1 receptor for the repellent Sema6D molecule in corticospinal neurons (CSNs). This cascade eliminates ipsilateral projections of CSNs in the spinal cord during early postnatal development. The absence of PlexA1, neuronal activity, Bax and Bak, or caspase-9 leads to the maintenance of ipsilateral projections of CSNs, which can form functional connections with spinal neurons. Together, these studies reveal how the Sema6D-PlexA1 signaling and neuronal activity may play a cooperative role in refining CS axonal projections.
Collapse
|
18
|
Vigneswara V, Ahmed Z. The Role of Caspase-2 in Regulating Cell Fate. Cells 2020; 9:cells9051259. [PMID: 32438737 PMCID: PMC7290664 DOI: 10.3390/cells9051259] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life.
Collapse
|
19
|
Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci 2020; 21:ijms21031144. [PMID: 32050445 PMCID: PMC7037950 DOI: 10.3390/ijms21031144] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia in the elderly. Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is considered to be an up-stream modulator of AD pathogenesis as active caspase-6 is abundant in neuropil threads, neuritic plaques, and neurofibrillary tangles of AD brains. In order to further elucidate the role of caspase-6 activity in the pathogenesis of AD, we produced a double transgenic mouse model, combining the 5xFAD mouse model of AD with caspase-6 knock out (C6-KO) mice. Behavioral examinations of 5xFAD/C6-KO double transgenic mice showed improved performance in spatial learning, memory, and anxiety/risk assessment behavior, as compared to 5xFAD mice. Hippocampal mRNA expression analyses showed significantly reduced levels of inflammatory mediator TNF-α, while the anti-inflammatory cytokine IL-10 was increased in 5xFAD/C6-KO mice. A significant reduction in amyloid-β plaques could be observed and immunohistochemistry analyses showed reduced levels of activated microglia and astrocytes in 5xFAD/C6-KO, compared to 5xFAD mice. Together, these results indicate a substantial role for caspase-6 in the pathology of the 5xFAD model of AD and suggest further validation of caspase-6 as a potential therapeutic target for AD.
Collapse
|
20
|
Olfactory bulb atrophy and caspase activation observed in the BACHD rat models of Huntington disease. Neurobiol Dis 2019; 125:219-231. [DOI: 10.1016/j.nbd.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/14/2018] [Accepted: 02/04/2019] [Indexed: 01/08/2023] Open
|
21
|
Nishioka C, Liang HF, Barsamian B, Sun SW. Amyloid-beta induced retrograde axonal degeneration in a mouse tauopathy model. Neuroimage 2019; 189:180-191. [PMID: 30630081 DOI: 10.1016/j.neuroimage.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
White matter abnormalities, revealed by Diffusion Tensor Imaging (DTI), are observed in patients with Alzheimer's Disease (AD), representing neural network deficits that underlie gradual cognitive decline in patients. However, how DTI changes related to the development of Amyloid beta (Aβ) and tau pathology, two key hallmarks of AD, remain elusive. We hypothesized that tauopathy induced by Aβ could initiate an axonal degeneration, leading to DTI-detectable white matter abnormalities. We utilized the visual system of the transgenic p301L tau mice as a model system. Aβ was injected in Lateral Geniculate Nucleus (LGN), where the Retinal Ganglion Cell (RGC) axons terminate. Longitudinal DTI was conducted to detect changes in the optic tract (OT) and optic nerve (ON), containing the distal and proximal segments of RGC axons, respectively. Our results showed DTI changes in OT (significant 13.2% reduction in axial diffusion, AxD vs. vehicle controls) followed by significant alterations in ON AxD and fractional anisotropy, FA. Histology data revealed loss of synapses, RGC axons and cell bodies resulting from the Aβ injection. We further tested whether microtubule-stabilizing compound Epothilone D (EpoD) could ameliorate the damage. EpoD co-treatment with Aβ was sufficient to prevent Aβ-induced axon and cell loss. Using an acute injection paradigm, our data suggest that EpoD may mediate its protective effect by blocking localized, acute Aβ-induced tau phosphorylation. This study demonstrates white matter disruption resulting from localized Aβ, the importance of tau pathology induction to changes in white matter connectivity, and the use of EpoD as a potential therapeutic avenue to prevent the axon loss in AD.
Collapse
Affiliation(s)
- Christopher Nishioka
- Basic Sciences, School of Medicine, Loma Linda University, CA, USA; Neuroscience Graduate Program, University of California, Riverside, USA
| | - Hsiao-Fang Liang
- Basic Sciences, School of Medicine, Loma Linda University, CA, USA
| | - Barsam Barsamian
- Basic Sciences, School of Medicine, Loma Linda University, CA, USA; Neuroscience Graduate Program, University of California, Riverside, USA
| | - Shu-Wei Sun
- Basic Sciences, School of Medicine, Loma Linda University, CA, USA; Neuroscience Graduate Program, University of California, Riverside, USA; Pharmaceutical Science, School of Pharmacy, Loma Linda University, CA, USA.
| |
Collapse
|
22
|
Geden MJ, Romero SE, Deshmukh M. Apoptosis versus axon pruning: Molecular intersection of two distinct pathways for axon degeneration. Neurosci Res 2018; 139:3-8. [PMID: 30452947 DOI: 10.1016/j.neures.2018.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022]
Abstract
Neurons are capable of degenerating their axons for the physiological clearance and refinement of unnecessary connections via the programmed degenerative pathways of apoptosis and axon pruning. While both pathways mediate axon degeneration they are however distinct. Whereas in apoptosis the entire neuron, both axons and cell body, degenerates, in the context of axon pruning only the targeted axon segments are selectively degenerated. Interestingly, the molecular pathways mediating axon degeneration in these two contexts have significant mechanistic overlap but also retain distinct differences. In this review, we describe the peripheral neuronal cell culture models used to study the molecular pathways of apoptosis and pruning. We outline what is known about the molecular mechanisms of apoptosis and axon pruning and focus on highlighting the similarities and differences of these two pathways.
Collapse
Affiliation(s)
- Matthew J Geden
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Selena E Romero
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Virga DM, Capps J, Vohra BPS. Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity. Neurochem Res 2018; 43:2288-2303. [PMID: 30259276 DOI: 10.1007/s11064-018-2649-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
Abstract
Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson's disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD.
Collapse
Affiliation(s)
- Daniel M Virga
- Biology Department, William Jewell College, Liberty, MO, 64068, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jessica Capps
- Biology Department, William Jewell College, Liberty, MO, 64068, USA
| | | |
Collapse
|
24
|
Noël A, Zhou L, Foveau B, Sjöström PJ, LeBlanc AC. Differential susceptibility of striatal, hippocampal and cortical neurons to Caspase-6. Cell Death Differ 2018; 25:1319-1335. [PMID: 29352267 PMCID: PMC6030053 DOI: 10.1038/s41418-017-0043-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/20/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022] Open
Abstract
Active cysteinyl protease Caspase-6 is associated with early Alzheimer and Huntington diseases. Higher entorhinal cortex and hippocampal Caspase-6 levels correlate with lower cognitive performance in aged humans. Caspase-6 induces axonal degeneration in human primary neuron cultures and causes inflammation and neurodegeneration in mouse hippocampus, and age-dependent memory impairment. To assess whether Caspase-6 causes damage to another neuronal system, a transgenic knock-in mouse overexpressing a self-activated form of Caspase-6 five-fold in the striatum, the area affected in Huntington disease, and 2.5-fold in the hippocampus and cortex, was generated. Detection of Tubulin cleaved by Caspase-6 confirmed Caspase-6 activity. The Caspase-6 expressing mice and control littermates were subjected to behavioral tests to assess Huntington disease-relevant psychiatric, motor, and cognitive deficits. Depression was excluded with the forced swim and sucrose consumption tests. Motor deficits were absent in the nesting, clasping, rotarod, vertical pole, gait, and open field analyzes. However, Caspase-6 mice developed age-dependent episodic and spatial memory deficits identified by novel object recognition, Barnes maze and Morris water maze assays. Neuron numbers were maintained in the striatum, hippocampus, and cortex. Microglia and astrocytes were increased in the hippocampal stratum lacunosum molecular and in the cortex, but not in the striatum. Synaptic mRNA profiling identified two differentially expressed genes in transgenic hippocampus, but none in striatum. Caspase-6 impaired synaptic transmission and induced neurodegeneration in hippocampal CA1 neurons, but not in striatal medium spiny neurons. These data revealed that active Caspase-6 in the striatal medium spiny neurons failed to induce inflammation, neurodegeneration or behavioral abnormalities, whereas active Caspase-6 in the cortex and hippocampus impaired episodic and spatial memories, and induced inflammation, neuronal dysfunction, and neurodegeneration. The results indicate age and neuronal subtype-dependent Caspase-6 toxicity and highlight the importance of targeting the correct neuronal subtype to identify underlying molecular mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Côte Ste Catherine, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
| | - Libin Zhou
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Côte Ste Catherine, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Côte Ste Catherine, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
| | - P Jesper Sjöström
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
- Centre for Research in Neuroscience, The BRAIN Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, QC, H3G 1A4, Canada
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Côte Ste Catherine, Montreal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada.
- Department of Anatomy and Cell Biology, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
25
|
Abstract
The cysteine protease Caspase-6 (Casp6) is a potential therapeutic target of Alzheimer Disease (AD) and age-dependent cognitive impairment. To assess if Casp6 is essential to human health, we investigated the effect of CASP6 variants sequenced from healthy humans on Casp6 activity. Here, we report the effects of two rare Casp6 amino acid polymorphisms, R65W and G66R, on the catalytic function and structure of Casp6. The G66R substitution eliminated and R65W substitution significantly reduced Casp6 catalytic activity through impaired substrate binding. In contrast to wild-type Casp6, both Casp6 variants were unstable and inactive in transfected mammalian cells. In addition, Casp6-G66R acted as a dominant negative inhibitor of wild-type Casp6. The R65W and G66R substitutions caused perturbations in substrate recognition and active site organization as revealed by molecular dynamics simulations. Our results suggest that full Casp6 activity may not be essential for healthy humans and support the use of Casp6 inhibitors against Casp6-dependent neurodegeneration in age-dependent cognitive impairment and AD. Furthermore, this work illustrates that studying natural single amino acid polymorphisms of enzyme drug targets is a promising approach to uncover previously uncharacterized regulatory sites important for enzyme activity.
Collapse
|
26
|
Ladha S, Qiu X, Casal L, Caron NS, Ehrnhoefer DE, Hayden MR. Constitutive ablation of caspase-6 reduces the inflammatory response and behavioural changes caused by peripheral pro-inflammatory stimuli. Cell Death Discov 2018; 4:40. [PMID: 29560279 PMCID: PMC5849887 DOI: 10.1038/s41420-018-0043-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Traditionally, the family of caspases has been subcategorised according to their respective main roles in mediating apoptosis or inflammation. However, recent studies have revealed that caspases participate in diverse cellular functions beyond their canonical roles. Caspase-6 (C6) is one such protease known for its role as a pro-apoptotic executioner caspase and its aberrant activity in several neurodegenerative diseases. In addition to apoptosis, C6 has been shown to regulate B-cell activation and differentiation in plasma cells as well as macrophage activation. Furthermore, C6 has recently been postulated to play a role in mediating the inflammatory response through the production of TNF-α. In this study we further examine the role of C6 in mediating the inflammatory response and its contribution to the manifestation of behavioural abnormalities in mice. We find that C6 is a positive regulator of TNF-α transcription in macrophages and that ablation of C6 reduces lipopolysaccharide (LPS)-induced TNF-α levels in plasma. Furthermore, loss of C6 attenuates LPS-induced behavioural changes in mice and protects neurons from cytokine-mediated toxicity. These data further support the involvement of C6 in the inflammatory response and point to a previously unknown role for C6 in the pathophysiology of depression.
Collapse
Affiliation(s)
- Safia Ladha
- 1Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4 Canada
| | - Xiaofan Qiu
- 1Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4 Canada
| | - Lorenzo Casal
- 1Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4 Canada
| | - Nicholas S Caron
- 1Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4 Canada
| | - Dagmar E Ehrnhoefer
- 1Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4 Canada.,Present Address: BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Michael R Hayden
- 1Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4 Canada
| |
Collapse
|
27
|
Girling KD, Demers MJ, Laine J, Zhang S, Wang YT, Graham RK. Activation of caspase-6 and cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity. J Neurosci Res 2017; 96:391-406. [DOI: 10.1002/jnr.24153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Kimberly D. Girling
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Marie-Josee Demers
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Jean Laine
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Shu Zhang
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Yu Tian Wang
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Rona K. Graham
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| |
Collapse
|
28
|
Theofilas P, Ehrenberg AJ, Nguy A, Thackrey JM, Dunlop S, Mejia MB, Alho AT, Paraizo Leite RE, Rodriguez RD, Suemoto CK, Nascimento CF, Chin M, Medina-Cleghorn D, Cuervo AM, Arkin M, Seeley WW, Miller BL, Nitrini R, Pasqualucci CA, Filho WJ, Rueb U, Neuhaus J, Heinsen H, Grinberg LT. Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 2017; 61:1-12. [PMID: 29031088 DOI: 10.1016/j.neurobiolaging.2017.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Clarifying the mechanisms connecting neurofibrillary tangle (NFT) neurotoxicity to neuronal dysfunction in humans is likely to be pivotal for developing effective treatments for Alzheimer's disease (AD). To model the temporal progression of AD in humans, we used a collection of brains with controls and individuals from each Braak stage to quantitatively investigate the correlation between intraneuronal caspase activation or macroautophagy markers, NFT burden, and neuronal loss, in the dorsal raphe nucleus and locus coeruleus, the earliest vulnerable areas to NFT accumulation. We fit linear regressions with each count as outcomes, with Braak score and age as the predictors. In progressive Braak stages, intraneuronal active caspase-6 positivity increases both alone and overlapping with NFTs. Likewise, the proportion of NFT-bearing neurons showing autophagosomes increases. Overall, caspases may be involved in upstream cascades in AD and are associated with higher NFTs. Macroautophagy changes correlate with increasing NFT burden from early AD stages.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Nguy
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia M Thackrey
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Mejia
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ana T Alho
- Hospital Albert Einstein, São Paulo, Brazil; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Claudia K Suemoto
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Camila F Nascimento
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcus Chin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Medina-Cleghorn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ana Maria Cuervo
- Departments of Developmental and Molecular Biology, Anatomy and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Wilson Jacob Filho
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Udo Rueb
- Dr. Senckenbergisches Chronomedizinisches Institut, Department of Anatomy, J. W. Goethe University Frankfurt am Main, Frankfurt, Germany
| | - John Neuhaus
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil; Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
29
|
Kamelia E, Asadul Isl A, Hatta M, Kaelan C, Patellongi I, Nasrum Mas M, Tammasse J, . N, Hardjo M, Bintang M, Miko H. Evaluation of Caspase-3 mRNA Gene Expression Activity in Amyloid Beta-induced Alzheimer’s Disease Rats. JOURNAL OF MEDICAL SCIENCES 2017; 17:117-125. [DOI: 10.3923/jms.2017.117.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Pakavathkumar P, Noël A, Lecrux C, Tubeleviciute-Aydin A, Hamel E, Ahlfors JE, LeBlanc AC. Caspase vinyl sulfone small molecule inhibitors prevent axonal degeneration in human neurons and reverse cognitive impairment in Caspase-6-overexpressing mice. Mol Neurodegener 2017; 12:22. [PMID: 28241839 PMCID: PMC5329948 DOI: 10.1186/s13024-017-0166-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The activation of the aspartate-specific cysteinyl protease, Caspase-6, is proposed as an early pathogenic event of Alzheimer disease (AD) and Huntington's disease. Caspase-6 inhibitors could be useful against these neurodegenerative diseases but most Caspase-6 inhibitors have been exclusively studied in vitro or show acute liver toxicity in humans. Here, we assessed vinyl sulfone small molecule peptide caspase inhibitors for potential use in vivo. METHODS The IC50 of NWL vinyl sulfone small molecule caspase inhibitors were determined on Caspase-1 to 10, and Caspase-6-transfected human colon carcinoma HCT116 cells. Inhibition of Caspase-6-mediated axonal degeneration was assessed in serum-deprived or amyloid precursor protein-transfected primary human CNS neurons. Cellular toxicity was measured by phase contrast microscopy, mitochondrial and lactate dehydrogenase colorimetric activity assays, or flow cytometry. Caspase inhibition was measured by fluorogenic activity assays, fluorescence microscopy, and western blot analyses. The effect of inhibitors on age-dependent cognitive deficits in Caspase-6 transgenic mice was assessed by the novel object recognition task. Liquid chromatography coupled to tandem mass spectrometry assessed the blood-brain barrier permeability of inhibitors in Caspase-6 mice. RESULTS Vinyl sulfone NWL-117 caspase inhibitor has a higher selectivity against Caspase-6, -4, -8, -9, and -10 whereas NWL-154 has higher selectivity against Caspase-6, -8, and -10. The half-maximal inhibitory concentrations (IC50) of NWL-117 and NWL-154 is 192 nM and 100 nM against Caspase-6 in vitro, and 4.82 μM and 3.63 μM in Caspase-6-transfected HCT116 cells, respectively. NWL inhibitors are not toxic to HCT116 cells or to human primary neurons. NWL-117 and NWL-154 inhibit serum deprivation-induced Caspase-6 activity and prevent amyloid precursor protein-mediated neurite degeneration in human primary CNS neurons. NWL-117 crosses the blood brain barrier and reverses age-dependent episodic memory deficits in Caspase-6 mice. CONCLUSIONS NWL peptidic vinyl methyl sulfone inhibitors are potent, non-toxic, blood-brain barrier permeable, and irreversible caspase inhibitors with neuroprotective effects in HCT116 cells, in primary human CNS neurons, and in Caspase-6 mice. These results highlight the therapeutic potential of vinyl sulfone inhibitors as caspase inhibitors against neurodegenerative diseases and sanction additional work to improve their selectivity against different caspases.
Collapse
Affiliation(s)
- Prateep Pakavathkumar
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Clotilde Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Agne Tubeleviciute-Aydin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jan-Eric Ahlfors
- New World Laboratories, 500 Boulevard Cartier Ouest, Laval, QC, H7V 5B7, Canada
| | - Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada.
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada.
- Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montréal, QC, H3T 1E2, Canada.
| |
Collapse
|
31
|
Foveau B, Albrecht S, Bennett DA, Correa JA, LeBlanc AC. Increased Caspase-6 activity in the human anterior olfactory nuclei of the olfactory bulb is associated with cognitive impairment. Acta Neuropathol Commun 2016; 4:127. [PMID: 27931265 PMCID: PMC5146837 DOI: 10.1186/s40478-016-0400-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/01/2016] [Indexed: 02/06/2023] Open
Abstract
Abnormally elevated hippocampal Caspase-6 (Casp6) activity is intimately associated with age-related cognitive impairment in humans and in mice. In humans, these high levels of Casp6 activity are initially localized in the entorhinal cortex, the area of the brain first affected by the formation of neurofibrillary tangles, according to Braak staging. The reason for the high vulnerability of entorhinal cortex neurons to neurofibrillary tangle pathology and Casp6 activity is unknown. Casp6 activity is involved in axonal degeneration, therefore, one possibility to explain increased vulnerability of the entorhinal cortex neurons would be that the afferent neurons of the olfactory bulb, some of which project their axons to the entorhinal cortex, are equally degenerating. To examine this possibility, we examined the presence of Casp6 activity, neurofibrillary tangle formation and amyloid deposition by immunohistochemistry with neoepitope antisera against the p20 subunit of active Casp6 and Tau cleaved by Casp6 (Tau∆Casp6), phosphorylated Tau paired helical filament (PHF-1) antibodies and anti-β-amyloid antiserum, respectively, in brains from individuals with no or mild cognitive impairment and Alzheimer disease (AD) dementia. Co-localization of Casp6 activity, PHF-1 and β-amyloid was detected mostly in the anterior olfactory nucleus (AON) of the olfactory bulb. The levels of active Casp6 in the AON, which were the highest in the AD brains, correlated with PHF-1 levels, but not with β-amyloid levels. AON Tau∆Casp6 levels correlated with entorhinal cortex Casp6 activity and PHF-1 levels. Multiple regression analyses demonstrated that AON Casp6 activity was associated with lower global cognitive function, mini mental state exam, episodic memory and semantic memory scores. These results suggest that AON Casp6 activity could lead to Casp6-mediated degeneration in the entorhinal cortex, but cannot exclude the possibilities that entorhinal cortex degeneration signals degeneration in the AON or that the pathologies occur in both regions independently. Nevertheless, AON Casp6 activity reflects that of the entorhinal cortex.
Collapse
Affiliation(s)
- Benedicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montreal, QC Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children’s Hospital and McGill University, Montreal, QC Canada
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - José A. Correa
- Department of Mathematics and Statistics, McGill University, Montreal, QC Canada
| | - Andrea C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montreal, QC Canada ,Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada
| |
Collapse
|
32
|
Mao Y, Chen X, Xu M, Fujita K, Motoki K, Sasabe T, Homma H, Murata M, Tagawa K, Tamura T, Kaye J, Finkbeiner S, Blandino G, Sudol M, Okazawa H. Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington’s disease pathology. Hum Mol Genet 2016; 25:4749-4770. [DOI: 10.1093/hmg/ddw303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/20/2016] [Accepted: 08/26/2016] [Indexed: 11/14/2022] Open
|
33
|
Laquinimod decreases Bax expression and reduces caspase-6 activation in neurons. Exp Neurol 2016; 283:121-8. [DOI: 10.1016/j.expneurol.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/18/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
|
34
|
Yao Y, Shi Q, Chen B, Wang Q, Li X, Li L, Huang Y, Ji J, Shen P. Identification of Caspase-6 as a New Regulator of Alternatively Activated Macrophages. J Biol Chem 2016; 291:17450-66. [PMID: 27325699 PMCID: PMC5016141 DOI: 10.1074/jbc.m116.717868] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/01/2016] [Indexed: 12/22/2022] Open
Abstract
Alternatively activated macrophages (AAMs) play essential roles in the promotion of tissue remodeling, vasculogenesis, and tumor progression; however, the detailed mechanisms underlying the activation of AAMs remain largely unknown. Here, by using quantitative proteomic analysis, we identified 62 proteins that were up-regulated in IL-4-induced macrophages. Among these, Caspase-6 was increased significantly. Caspase-6 is important in the apoptotic signaling pathway; however, its role in non-apoptosis is also reported. Here, we first examined the non-apoptotic role of Caspase-6 in the alternative activation of macrophages after administration of IL-4, 4T1 tumor conditional medium, or co-culture with 4T1 cells. Both treatments promoted alternative activation of RAW264.7 cells and primary macrophages, whereas disruption of caspase-6 expression and activity could markedly suppress the biomarker levels of AAMs. Overexpression of Caspase-6 could significantly promote the activation of AAMs. Importantly, we further present evidence that caspase-6 could regulate breast cancer cell invasion by modulating MMP-2 and MMP-9 expression in 4T1 tumor-associated macrophages, as ablation of protein levels or activity of caspase-6 suppressed tumor cell invasion in vitro In conclusion, the observed results markedly expanded our views of the dynamic changes in protein composition during alternative activation of macrophages, and they revealed a critical new role of caspase-6 in regulating this cellular biological process, which suggested that caspase-6 might be a key nod molecule to regulate immunological steady-state and be a therapeutic candidate for tumor immunotherapy.
Collapse
Affiliation(s)
- Yongfang Yao
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Qian Shi
- the Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Bing Chen
- the Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China, and
| | - Qingsong Wang
- the State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xinda Li
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Long Li
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Yahong Huang
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Jianguo Ji
- the State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Pingping Shen
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China,
| |
Collapse
|
35
|
Heithaus JL, Twyman KA, Batanian JR. A Rare Recurrent 4q25 Proximal Deletion Not Involving the PITX2 Gene: A Genomic Disorder Distinct from Axenfeld-Rieger Syndrome. Mol Syndromol 2016; 7:138-43. [PMID: 27587989 DOI: 10.1159/000447077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
Haploinsufficient microdeletions within chromosome 4q25 are often associated with Axenfeld-Rieger syndrome. A de novo 4q25 deletion, 675 kb proximal to PITX2, has previously been reported once in an adult patient. The patient did not have Axenfeld-Rieger anomaly, but instead had intellectual disability and a complex behavioral phenotype with withdrawn, stereotypic, and ritualistic behavior. Array comparative genome hybridization demonstrated a smaller, overlapping 4q25 deletion in a 2-year-old patient and his mother, both having significant phenotypic overlap with the initially reported patient. All 3 patients have distinct facial features (including mild hypotelorism and subtle mandibular asymmetry), developmental delay, and complex behavioral difficulties. A genotype-phenotype correlation narrows the shared phenotype to a common COL25A1 gene aberration and proposes that the concurrent EGF gene loss has a significant impact on the phenotypic severity. Overall, our patients provide data to support the existence of a novel 4q25 proximal deletion syndrome.
Collapse
Affiliation(s)
- Jennifer L Heithaus
- Department of Pediatrics, Developmental Pediatrics Division, Saint Louis University School of Medicine, St. Louis, Mo., USA
| | - Kimberly A Twyman
- Department of Pediatrics, Developmental Pediatrics Division, Saint Louis University School of Medicine, St. Louis, Mo., USA
| | - Jacqueline R Batanian
- Department of Pediatrics, Genetics Division, Saint Louis University School of Medicine, St. Louis, Mo., USA; Department of Pediatrics, Molecular Cytogenetics Laboratory, SSM Cardinal Glennon Children's Hospital, St. Louis, Mo., USA
| |
Collapse
|
36
|
Hogg MC, Mitchem MR, König HG, Prehn JHM. Caspase 6 has a protective role in SOD1(G93A) transgenic mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1063-73. [PMID: 26976329 DOI: 10.1016/j.bbadis.2016.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
Abstract
In amyotrophic lateral sclerosis (ALS), it has been suggested that the process of neurodegeneration starts at the neuromuscular junction and is propagated back along axons towards motor neurons. Caspase-dependent pathways are well established as a cause of motor neuron death, and recent work in other disease models indicated a role for caspase 6 in axonal degeneration. Therefore we hypothesised that caspase 6 may be involved in motor neuron death in ALS. To investigate the role of caspase 6 in ALS we profiled protein levels of caspase-6 throughout disease progression in the ALS mouse model SOD1(G93A); this did not reveal differences in caspase 6 levels during disease. To investigate the role of caspase 6 further we generated a colony with SOD1(G93A) transgenic mice lacking caspase 6. Analysis of the transgenic SOD1(G93A); Casp6(-/-) revealed an exacerbated phenotype with motor dysfunction occurring earlier and a significantly shortened lifespan when compared to transgenic SOD1(G93A); Casp6(+/+) mice. Immunofluorescence analysis of the neuromuscular junction revealed no obvious difference between caspase 6(+/+) and caspase 6(-/-) in non-transgenic mice, while the SOD1(G93A) transgenic mice showed severe degeneration compared to non-transgenic mice in both genotypes. Our data indicate that caspase-6 does not exacerbate ALS pathogenesis, but may have a protective role.
Collapse
Affiliation(s)
- Marion C Hogg
- Centre for the Study of Neurological Disorders, Royal College of Surgeons In Ireland, St. Stephen's Green, Dublin 2, Ireland; Department of Physiology and Medical Physics, Royal College of Surgeons In Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Mollie R Mitchem
- Centre for the Study of Neurological Disorders, Royal College of Surgeons In Ireland, St. Stephen's Green, Dublin 2, Ireland; Department of Physiology and Medical Physics, Royal College of Surgeons In Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Hans-Georg König
- Centre for the Study of Neurological Disorders, Royal College of Surgeons In Ireland, St. Stephen's Green, Dublin 2, Ireland; Department of Physiology and Medical Physics, Royal College of Surgeons In Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Jochen H M Prehn
- Centre for the Study of Neurological Disorders, Royal College of Surgeons In Ireland, St. Stephen's Green, Dublin 2, Ireland; Department of Physiology and Medical Physics, Royal College of Surgeons In Ireland, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
37
|
Waldron-Roby E, Hoerauf J, Arbez N, Zhu S, Kulcsar K, Ross CA. Sox11 Reduces Caspase-6 Cleavage and Activity. PLoS One 2015; 10:e0141439. [PMID: 26505998 PMCID: PMC4624725 DOI: 10.1371/journal.pone.0141439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/08/2015] [Indexed: 11/18/2022] Open
Abstract
The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP) family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS) all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.
Collapse
Affiliation(s)
- Elaine Waldron-Roby
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Janine Hoerauf
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Shanshan Zhu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Kirsten Kulcsar
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- Department of Pharmacology, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- * E-mail:
| |
Collapse
|
38
|
Pakavathkumar P, Sharma G, Kaushal V, Foveau B, LeBlanc AC. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine. Sci Rep 2015; 5:13730. [PMID: 26400108 PMCID: PMC4585840 DOI: 10.1038/srep13730] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.
Collapse
Affiliation(s)
- Prateep Pakavathkumar
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gyanesh Sharma
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Vikas Kaushal
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Andrea C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Cardona M, López JA, Serafín A, Rongvaux A, Inserte J, García-Dorado D, Flavell R, Llovera M, Cañas X, Vázquez J, Sanchis D. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart. PLoS One 2015; 10:e0131411. [PMID: 26121671 PMCID: PMC4487935 DOI: 10.1371/journal.pone.0131411] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/01/2015] [Indexed: 01/29/2023] Open
Abstract
Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development.
Collapse
Affiliation(s)
- Maria Cardona
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLLEIDA, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, Madrid, 28029, Spain
| | - Anna Serafín
- PCB-PRBB Animal Facility Alliance-Parc Científic de Barcelona, Baldiri Reixac, 4–6, Torre R, 4ª planta, Barcelona, 08028, Spain
| | - Anthony Rongvaux
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06520, United States of America
| | - Javier Inserte
- Institut de Recerca Hospital Universitari Vall d’Hebron—UAB, Passeig de la Vall d’Hebron, 119, Barcelona, 08035, Spain
| | - David García-Dorado
- Institut de Recerca Hospital Universitari Vall d’Hebron—UAB, Passeig de la Vall d’Hebron, 119, Barcelona, 08035, Spain
| | - Richard Flavell
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06520, United States of America
| | - Marta Llovera
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLLEIDA, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Xavier Cañas
- PCB-PRBB Animal Facility Alliance-Parc Científic de Barcelona, Baldiri Reixac, 4–6, Torre R, 4ª planta, Barcelona, 08028, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, Madrid, 28029, Spain
| | - Daniel Sanchis
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLLEIDA, Av. Rovira Roure, 80, Lleida, 25198, Spain
- * E-mail:
| |
Collapse
|
40
|
Death Receptor 6 and Caspase-6 Regulate Prion Peptide-Induced Axonal Degeneration in Rat Spinal Neurons. J Mol Neurosci 2015; 56:966-976. [DOI: 10.1007/s12031-015-0562-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/01/2015] [Indexed: 01/12/2023]
|
41
|
Baburamani AA, Miyakuni Y, Vontell R, Supramaniam VG, Svedin P, Rutherford M, Gressens P, Mallard C, Takeda S, Thornton C, Hagberg H. Does Caspase-6 Have a Role in Perinatal Brain Injury? Dev Neurosci 2015; 37:321-37. [PMID: 25823427 PMCID: PMC4876595 DOI: 10.1159/000375368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/19/2015] [Indexed: 12/31/2022] Open
Abstract
Apoptotic mechanisms are centre stage for the development of injury in the immature brain, and caspases have been shown to play a pivotal role during brain development and in response to injury. The inhibition of caspases using broad-spectrum agents such as Q-VD-OPh is neuroprotective in the immature brain. Caspase-6, an effector caspase, has been widely researched in neurodevelopmental disorders and found to be important following adult stroke, but its function in the neonatal brain has yet to be detailed. Furthermore, caspases may be important in microglial activation; microglia are required for optimal brain development and following injury, and their close involvement during neuronal cell death suggests that apoptotic cues such as caspase activation may be important in microglial activation. Therefore, in this study we aimed to investigate the possible apoptotic and non-apoptotic functions caspase-6 may have in the immature brain in response to hypoxia-ischaemia. We examined whether caspases are involved in microglial activation. We assessed cleaved caspase-6 expression following hypoxia-ischaemia and conducted primary microglial cultures to assess whether the broad-spectrum inhibitor Q-VD-OPh or caspase-6 gene deletion affected lipopolysaccharide (LPS)-mediated microglial activation and phenotype. We observed cleaved caspase-6 expression to be low but present in the cell body and cell processes in both a human case of white matter injury and 72 h following hypoxia-ischaemia in the rat. Gene deletion of caspase-6 did not affect the outcome of brain injury following mild (50 min) or severe (60 min) hypoxia-ischaemia. Interestingly, we did note that cleaved caspase-6 was co-localised with microglia that were not of apoptotic morphology. We observed that mRNA of a number of caspases was modulated by low-dose LPS stimulation of primary microglia. Q-VD-OPh treatment and caspase-6 gene deletion did not affect microglial activation but modified slightly the M2b phenotype response by changing the time course of SOCS3 expression after LPS administration. Our results suggest that the impact of active caspase-6 in the developing brain is subtle, and we believe there are predominantly other caspases (caspase-2, −3, −8, −9) that are essential for the cell death processes in the immature brain.
Collapse
Affiliation(s)
- Ana A Baburamani
- Perinatal Center, Institute of Neuroscience and Physiology, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B, Ghetti B, Koller BH, LeBlanc AC. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ 2015; 22:1676-86. [PMID: 25744023 DOI: 10.1038/cdd.2015.16] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 12/13/2022] Open
Abstract
Neuronal active Caspase-6 (Casp6) is associated with Alzheimer disease (AD), cognitive impairment, and axonal degeneration. Caspase-1 (Casp1) can activate Casp6 but the expression and functionality of Casp1-activating inflammasomes has not been well-defined in human neurons. Here, we show that primary cultures of human CNS neurons expressed functional Nod-like receptor protein 1 (NLRP1), absent in melanoma 2, and ICE protease activating factor, but not the NLRP3, inflammasome receptor components. NLRP1 neutralizing antibodies in a cell-free system, and NLRP1 siRNAs in neurons hampered stress-induced Casp1 activation. NLRP1 and Casp1 siRNAs also abolished stress-induced Casp6 activation in neurons. The functionality of the NLRP1 inflammasome in serum-deprived neurons was also demonstrated by NLRP1 siRNA-mediated inhibition of speck formation of the apoptosis-associated speck-like protein containing a caspase recruitment domain conjugated to green fluorescent protein. These results indicated a novel stress-induced intraneuronal NLRP1/Casp1/Casp6 pathway. Lipopolysaccharide induced Casp1 and Casp6 activation in wild-type mice brain cortex, but not in that of Nlrp1(-/-) and Casp1(-/-) mice. NLRP1 immunopositive neurons were increased 25- to 30-fold in AD brains compared with non-AD brains. NLRP1 immunoreactivity in these neurons co-localized with Casp6 activity. Furthermore, the NLRP1/Casp1/Casp6 pathway increased amyloid beta peptide 42 ratio in serum-deprived neurons. Therefore, CNS human neurons express functional NLRP1 inflammasomes, which activate Casp1 and subsequently Casp6, thus revealing a fundamental mechanism linking intraneuronal inflammasome activation to Casp1-generated interleukin-1-β-mediated neuroinflammation and Casp6-mediated axonal degeneration.
Collapse
Affiliation(s)
- V Kaushal
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, QC H3T1E2, Canada.,Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, QC H3A 2B4, Canada
| | - R Dye
- Department of Genetics, 120 Mason Farm Road 5000 D, Genetic Medicine Building CB#7264 UNC-Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - P Pakavathkumar
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, QC H3T1E2, Canada.,Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, QC H3A 2B4, Canada
| | - B Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, QC H3T1E2, Canada.,Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, QC H3A 2B4, Canada
| | - J Flores
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, QC H3T1E2, Canada.,Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, QC H3A 2B4, Canada
| | - B Hyman
- Massachusetts General Hospital, Mass General Institute for Neurodegeneration, 114 16th Street, Charlestown, MA 2129, USA
| | - B Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202-5120, USA
| | - B H Koller
- Department of Genetics, 120 Mason Farm Road 5000 D, Genetic Medicine Building CB#7264 UNC-Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - A C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, QC H3T1E2, Canada.,Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, QC H3A 2B4, Canada
| |
Collapse
|
43
|
Possible role of GABA-B receptor modulation in MPTP induced Parkinson's disease in rats. ACTA ACUST UNITED AC 2015; 67:211-7. [DOI: 10.1016/j.etp.2014.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 01/27/2023]
|
44
|
Aharony I, Ehrnhoefer DE, Shruster A, Qiu X, Franciosi S, Hayden MR, Offen D. A Huntingtin-based peptide inhibitor of caspase-6 provides protection from mutant Huntingtin-induced motor and behavioral deficits. Hum Mol Genet 2015; 24:2604-14. [PMID: 25616965 DOI: 10.1093/hmg/ddv023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/21/2015] [Indexed: 11/14/2022] Open
Abstract
Over the past decade, increasing evidence has implied a significant connection between caspase-6 activity and the pathogenesis of Huntington's disease (HD). Consequently, inhibiting caspase-6 activity was suggested as a promising therapeutic strategy to reduce mutant Huntingtin toxicity, and to provide protection from mutant Huntingtin-induced motor and behavioral deficits. Here, we describe a novel caspase-6 inhibitor peptide based on the huntingtin caspase-6 cleavage site, fused with a cell-penetrating sequence. The peptide reduces mutant Huntingtin proteolysis by caspase-6, and protects cells from mutant Huntingtin toxicity. Continuous subcutaneous administration of the peptide protected pre-symptomatic BACHD mice from motor deficits and behavioral abnormalities. Moreover, administration of the peptide in an advanced disease state resulted in the partial recovery of motor performance, and an alleviation of depression-related behavior and cognitive deficits. Our findings reveal the potential of substrate-based caspase inhibition as a therapeutic strategy, and present a promising agent for the treatment of HD.
Collapse
Affiliation(s)
- Israel Aharony
- Neuroscience Laboratory, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Israel and
| | - Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Adi Shruster
- Neuroscience Laboratory, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Israel and
| | - Xiaofan Qiu
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Franciosi
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Offen
- Neuroscience Laboratory, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Israel and
| |
Collapse
|
45
|
Wong BKY, Ehrnhoefer DE, Graham RK, Martin DDO, Ladha S, Uribe V, Stanek LM, Franciosi S, Qiu X, Deng Y, Kovalik V, Zhang W, Pouladi MA, Shihabuddin LS, Hayden MR. Partial rescue of some features of Huntington Disease in the genetic absence of caspase-6 in YAC128 mice. Neurobiol Dis 2015; 76:24-36. [PMID: 25583186 DOI: 10.1016/j.nbd.2014.12.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 12/31/2014] [Indexed: 12/13/2022] Open
Abstract
Huntington Disease (HD) is a progressive neurodegenerative disease caused by an elongated CAG repeat in the huntingtin (HTT) gene that encodes a polyglutamine tract in the HTT protein. Proteolysis of the mutant HTT protein (mHTT) has been detected in human and murine HD brains and is implicated in the pathogenesis of HD. Of particular importance is the site at amino acid (aa) 586 that contains a caspase-6 (Casp6) recognition motif. Activation of Casp6 occurs presymptomatically in human HD patients and the inhibition of mHTT proteolysis at aa586 in the YAC128 mouse model results in the full rescue of HD-like phenotypes. Surprisingly, Casp6 ablation in two different HD mouse models did not completely prevent the generation of this fragment, and therapeutic benefits were limited, questioning the role of Casp6 in the disease. We have evaluated the impact of the loss of Casp6 in the YAC128 mouse model of HD. Levels of the mHTT-586 fragment are reduced but not absent in the absence of Casp6 and we identify caspase 8 as an alternate enzyme that can generate this fragment. In vivo, the ablation of Casp6 results in a partial rescue of body weight gain, normalized IGF-1 levels, a reversal of the depression-like phenotype and decreased HTT levels. In the YAC128/Casp6-/- striatum there is a concomitant reduction in p62 levels, a marker of autophagic activity, suggesting increased autophagic clearance. These results implicate the HTT-586 fragment as a key contributor to certain features of HD, irrespective of the enzyme involved in its generation.
Collapse
Affiliation(s)
- Bibiana K Y Wong
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Rona K Graham
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Research Center on Aging, Department of Physiology and Biophysics, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Safia Ladha
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Valeria Uribe
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Lisa M Stanek
- Genzyme, a Sanofi Company, Framingham, MA 01701, USA
| | - Sonia Franciosi
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Xiaofan Qiu
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yu Deng
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Vlad Kovalik
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Weining Zhang
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Mahmoud A Pouladi
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, 138648, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 138648, Singapore
| | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
46
|
Foveau B, Van Der Kraak L, Beauchemin N, Albrecht S, LeBlanc AC. Inflammation-induced tumorigenesis in mouse colon is caspase-6 independent. PLoS One 2014; 9:e114270. [PMID: 25470254 PMCID: PMC4255002 DOI: 10.1371/journal.pone.0114270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/09/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases play an important role in maintaining tissue homeostasis. Active Caspase-6 (Casp6) is considered a novel therapeutic target against Alzheimer disease (AD) since it is present in AD pathological brain lesions, associated with age-dependent cognitive decline, and causes age-dependent cognitive impairment in the mouse brain. However, active Casp6 is highly expressed and activated in normal human colon epithelial cells raising concerns that inhibiting Casp6 in AD may promote colon carcinogenesis. Furthermore, others have reported rare mutations of Casp6 in human colorectal cancers and an effect of Casp6 on apoptosis and metastasis of colon cancer cell lines. Here, we investigated the role of Casp6 in inflammation-associated azoxymethane/dextran sulfate sodium (AOM/DSS) colon cancer in Casp6-overexpressing and -deficient mice. In wild-type mice, AOM/DSS-induced tumors had significantly higher Casp6 mRNA, protein and activity levels compared to normal adjacent colon tissues. Increased human Casp6 or absence of Casp6 expression in mice colon epithelial cells did not change colonic tumor multiplicity, burden or distribution. Nevertheless, the incidence of hyperplasia was slightly reduced in human Casp6-overexpressing colons and increased in Casp6 null colons. Overexpression of Casp6 did not affect the grade of the tumors while all tumors in heterozygous or homozygous Casp6 null colons were high grade compared to only 50% high grade in wild-type mice. Casp6 levels did not alter cellular proliferation and apoptosis. These results suggest that Casp6 is unlikely to be involved in colitis-associated tumors.
Collapse
Affiliation(s)
- Bénédicte Foveau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Lauren Van Der Kraak
- Goodman Cancer Research Centre and Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, QC, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre and Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, QC, Canada
| | - Steffen Albrecht
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Andréa C. LeBlanc
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
47
|
Wang XJ, Cao Q, Zhang Y, Su XD. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2014; 55:553-72. [PMID: 25340928 DOI: 10.1146/annurev-pharmtox-010814-124414] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory of Protein and Plant Gene Research and
| | | | | | | |
Collapse
|
48
|
Picco R, Tomasella A, Fogolari F, Brancolini C. Transcriptomic analysis unveils correlations between regulative apoptotic caspases and genes of cholesterol homeostasis in human brain. PLoS One 2014; 9:e110610. [PMID: 25330190 PMCID: PMC4199739 DOI: 10.1371/journal.pone.0110610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023] Open
Abstract
Regulative circuits controlling expression of genes involved in the same biological processes are frequently interconnected. These circuits operate to coordinate the expression of multiple genes and also to compensate dysfunctions in specific elements of the network. Caspases are cysteine-proteases with key roles in the execution phase of apoptosis. Silencing of caspase-2 expression in cultured glioblastoma cells allows the up-regulation of a limited number of genes, among which some are related to cholesterol homeostasis. Lysosomal Acid Lipase A (LIPA) was up-regulated in two different cell lines in response to caspase-2 down-regulation and cells silenced for caspase-2 exhibit reduced cholesterol staining in the lipid droplets. We expanded this observation by large-scale analysis of mRNA expression. All caspases were analyzed in terms of co-expression in comparison with 166 genes involved in cholesterol homeostasis. In the brain, hierarchical clustering has revealed that the expression of regulative apoptotic caspases (CASP2, CASP8 CASP9, CASP10) and of the inflammatory CASP1 is linked to several genes involved in cholesterol homeostasis. These correlations resulted in altered GBM (Glioblastoma Multiforme), in particular for CASP1. We have also demonstrated that these correlations are tissue specific being reduced (CASP9 and CASP10) or different (CASP2) in the liver. For some caspases (CASP1, CASP6 and CASP7) these correlations could be related to brain aging.
Collapse
Affiliation(s)
- Raffaella Picco
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Andrea Tomasella
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Federico Fogolari
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
- * E-mail:
| |
Collapse
|
49
|
Berta T, Park CK, Xu ZZ, Xie RG, Liu T, Lü N, Liu YC, Ji RR. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. J Clin Invest 2014; 124:1173-86. [PMID: 24531553 DOI: 10.1172/jci72230] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/11/2013] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence indicates that the pathogenesis of neuropathic pain is mediated through spinal cord microglia activation. The intracellular protease caspase-6 (CASP6) is known to regulate neuronal apoptosis and axonal degeneration; however, the contribution of microglia and CASP6 in modulating synaptic transmission and pain is unclear. Here, we found that CASP6 is expressed specifically in C-fiber axonal terminals in the superficial spinal cord dorsal horn. Animals exposed to intraplantar formalin or bradykinin injection exhibited CASP6 activation in the dorsal horn. Casp6-null mice had normal baseline pain, but impaired inflammatory pain responses. Furthermore, formalin-induced second-phase pain was suppressed by spinal injection of CASP6 inhibitor or CASP6-neutralizing antibody, as well as perisciatic nerve injection of CASP6 siRNA. Recombinant CASP6 (rCASP6) induced marked TNF-α release in microglial cultures, and most microglia within the spinal cord expressed Tnfa. Spinal injection of rCASP6 elicited TNF-α production and microglia-dependent pain hypersensitivity. Evaluation of excitatory postsynaptic currents (EPSCs) revealed that rCASP6 rapidly increased synaptic transmission in spinal cord slices via TNF-α release. Interestingly, the microglial inhibitor minocycline suppressed rCASP6 but not TNF-α-induced synaptic potentiation. Finally, rCASP6-activated microglial culture medium increased EPSCs in spinal cord slices via TNF-α. Together, these data suggest that CASP6 released from axonal terminals regulates microglial TNF-α secretion, synaptic plasticity, and inflammatory pain.
Collapse
|
50
|
Caspase-6 activity in the CA1 region of the hippocampus induces age-dependent memory impairment. Cell Death Differ 2014; 21:696-706. [PMID: 24413155 DOI: 10.1038/cdd.2013.194] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
Active Caspase-6 is abundant in the neuropil threads, neuritic plaques and neurofibrillary tangles of Alzheimer disease brains. However, its contribution to the pathophysiology of Alzheimer disease is unclear. Here, we show that higher levels of Caspase-6 activity in the CA1 region of aged human hippocampi correlate with lower cognitive performance. To determine whether Caspase-6 activity, in the absence of plaques and tangles, is sufficient to cause memory deficits, we generated a transgenic knock-in mouse that expresses a self-activated form of human Caspase-6 in the CA1. This Caspase-6 mouse develops age-dependent spatial and episodic memory impairment. Caspase-6 induces neuronal degeneration and inflammation. We conclude that Caspase-6 activation in mouse CA1 neurons is sufficient to induce neuronal degeneration and age-dependent memory impairment. These results indicate that Caspase-6 activity in CA1 could be responsible for the lower cognitive performance of aged humans. Consequently, preventing or inhibiting Caspase-6 activity in the aged may provide an efficient novel therapeutic approach against Alzheimer disease.
Collapse
|