1
|
Mak G, Tarnopolsky M, Lu JQ. Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders. Mitochondrion 2024; 78:101945. [PMID: 39134108 DOI: 10.1016/j.mito.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.
Collapse
Affiliation(s)
- Gloria Mak
- University of Alberta, Department of Neurology, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- McMaster University, Department of Medicine and Pediatrics, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Villani KR, Zhong R, Henley-Beasley CS, Rastelli G, Harris E, Boncompagni S, Barton ER, Wei-LaPierre L. Loss of Calpain 3 dysregulates store-operated calcium entry and its exercise response in mice. FASEB J 2024; 38:e23825. [PMID: 39031532 PMCID: PMC11299996 DOI: 10.1096/fj.202400697r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.
Collapse
Affiliation(s)
- Katelyn R. Villani
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
| | - Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - C. Spencer Henley-Beasley
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Erin Harris
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
| | - Simona Boncompagni
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Elisabeth R. Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| |
Collapse
|
3
|
Aguti S, Gallus GN, Bianchi S, Salvatore S, Rubegni A, Berti G, Formichi P, De Stefano N, Malandrini A, Lopergolo D. Novel Biomarkers for Limb Girdle Muscular Dystrophy (LGMD). Cells 2024; 13:329. [PMID: 38391941 PMCID: PMC10886967 DOI: 10.3390/cells13040329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE To identify novel biomarkers as an alternative diagnostic tool for limb girdle muscular dystrophy (LGMD). BACKGROUND LGMD encompasses a group of muscular dystrophies characterized by proximal muscles weakness, elevated CK levels and dystrophic findings on muscle biopsy. Heterozygous CAPN3 mutations are associated with autosomal dominant LGMD-4, while biallelic mutations can cause autosomal recessive LGMD-1. Diagnosis is currently often based on invasive methods requiring muscle biopsy or blood tests. In most cases Western blotting (WB) analysis from muscle biopsy is essential for a diagnosis, as muscle samples are currently the only known tissues to express the full-length CAPN3 isoform. METHODS We analyzed CAPN3 in a cohort including 60 LGMD patients. Selected patients underwent a complete neurological examination, electromyography, muscle biopsy, and skin biopsies for primary fibroblasts isolation. The amount of CAPN3 was evaluated by WB analysis in muscle and skin tissues. The total RNA isolated from muscle, fibroblast and urine was processed, and cDNA was used for qualitative analysis. The expression of CAPN3 was investigated by qRT-PCR. The CAPN3 3D structure has been visualized and analyzed using PyMOL. RESULTS Among our patients, seven different CAPN3 mutations were detected, of which two were novel. After sequencing CAPN3 transcripts from fibroblast and urine, we detected different CAPN3 isoforms surprisingly including the full-length transcript. We found comparable protein levels from fibroblasts and muscle tissue; in particular, patients harboring a novel CAPN3 mutation showed a 30% reduction in protein compared to controls from both tissues. CONCLUSIONS Our findings showed for the first time the presence of the CAPN3 full-length transcript in urine and skin samples. Moreover, we demonstrated surprisingly comparable CAPN3 protein levels between muscle and skin samples, thus allowing us to hypothesize the use of skin biopsy and probably of urine samples as an alternative less invasive method to assess the amount of CAPN3 when molecular diagnosis turns out to be inconclusive.
Collapse
Affiliation(s)
- Sara Aguti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Gian Nicola Gallus
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Simona Salvatore
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Anna Rubegni
- Molecular Medicine for Neurodegenerative and Neuromuscular Disease Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Gianna Berti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| |
Collapse
|
4
|
Villani KR, Zhong R, Henley-Beasley CS, Rastelli G, Boncompagni S, Barton ER, Wei-LaPierre L. Loss of calpain 3 dysregulates store-operated calcium entry and its exercise response in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575391. [PMID: 38293127 PMCID: PMC10827051 DOI: 10.1101/2024.01.12.575391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Limb-Girdle Muscular Dystrophy 2A (LGMD2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wildtype (WT) mice, we determined if loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD2A pathology.
Collapse
Affiliation(s)
- Katelyn R. Villani
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
| | - Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - C. Spencer Henley-Beasley
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Elisabeth R. Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| |
Collapse
|
5
|
ŞAHİN İO, KARATAŞ E, DEMİR M, TAN B, PER H, ÖZKUL Y, DÜNDAR M. A retrospective study on the clinical and molecular outcomes of calpainopathy in a Turkish patient cohort. Turk J Med Sci 2023; 54:86-98. [PMID: 38812636 PMCID: PMC11031166 DOI: 10.55730/1300-0144.5769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/15/2024] [Accepted: 12/18/2023] [Indexed: 05/31/2024] Open
Abstract
Background and aim Calpainopathy, also known as limb-girdle muscular dystrophy recessive type 1, is a progressive muscle disorder that impacts the muscles around the hips and shoulders. The disease is caused by defects in the CAPN3 gene and can be inherited in both recessive and dominant forms. In this retrospective study, we aimed to evaluate the clinical and molecular results of our patients with calpainopathy and to examine the CAPN3 variants in Turkish and global populations. Materials and methods Molecular analyses were performed using the next-generation sequencing (NGS) method. CAPN3 variants were identified through the examination of various databases. Results In this retrospective study, the cohort consisted of seven patients exhibiting the CAPN3 (NM_000070.3) mutation and a phenotype compatible with calpainopathy at a single center in Türkiye. All patients displayed high CK levels and muscle weakness. We report a novel missense c.2437G>A variant that causes the autosomal dominant form of calpainopathy. Interestingly, the muscle biopsy report for the patient with the novel mutation indicated sarcoglycan deficiency. Molecular findings for the remaining individuals in the cohort included a compound heterozygous variant (frameshift and missense), one homozygous nonsense, one homozygous intronic deletion, and three homozygous missense variants. The most common variant in the Turkish population was c.550del. In both populations, pathogenic variants were most frequently located in exon 21, according to exon length. Variants were stochastically distributed based on consequences in CAPN3 domains. Conclusion Therefore, the NGS method proves highly effective in diagnosing rare diseases characterized by clinical heterogeneity. Assessing variants based on ethnicity holds significance in the development of precise therapies.
Collapse
Affiliation(s)
- İzem Olcay ŞAHİN
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Emine KARATAŞ
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Mikail DEMİR
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Büşra TAN
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Hüseyin PER
- Department of Pediatric Neurology, Faculty of Medicine, Children’s Hospital, Erciyes University, Kayseri,
Turkiye
| | - Yusuf ÖZKUL
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Munis DÜNDAR
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| |
Collapse
|
6
|
Chung Tran N, Lien NTK, Ta TD, Nguyen VH, Tran HT, Van Tung N, Xuan NT, Huy Hoang N, Tran VK. Novel mutations in the SGCA gene in unrelated Vietnamese patients with limb-girdle muscular dystrophies disease. Front Genet 2023; 14:1248338. [PMID: 37900180 PMCID: PMC10611451 DOI: 10.3389/fgene.2023.1248338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Limb-girdle muscular dystrophy (LGMD) is a group of inherited neuromuscular disorders characterized by atrophy and weakness in the shoulders and hips. Over 30 subtypes have been described in five dominant (LGMD type 1 or LGMDD) and 27 recessive (LGMD type 2 or LGMDR). Each subtype involves a mutation in a single gene and has high heterogeneity in age of onset, expression, progression, and prognosis. In addition, the lack of understanding of the disease and the vague, nonspecific symptoms of LGMD subtypes make diagnosis difficult. Even as next-generation sequencing (NGS) genetic testing has become commonplace, some patients remain undiagnosed for many years. Methods: To identify LGMD-associated mutations, Targeted sequencing was performed in the patients and Sanger sequencing was performed in patients and family members. The in silico analysis tools such as Fathmm, M-CAP, Mutation Taster, PolyPhen 2, PROVEAN, REVEL, SIFT, MaxEntScan, Spliceailookup, Human Splicing Finder, NetGene2, and Fruitfly were used to predict the influence of the novel mutations. The pathogenicity of the mutation was interpreted according to the ACMG guidelines. Results: In this study, six patients from four different Vietnamese families were collected for genetic analysis at The Center for Gene and Protein Research and The Department of Molecular Pathology Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam. Based on clinical symptoms and serum creatine kinase (CK) levels, the patients were diagnosed with limb-girdle muscular dystrophies. Five mutations, including four (c.229C>T, p.Arg77Cys; exon one to three deletion; c.983 + 5G>C; and c.257_258insTGGCT, p.Phe88Leufs*125) in the SGCA gene and one (c.946-4_946-1delACAG) in the CAPN3 gene, were detected in six LGMD patients from four unrelated Vietnamese families. Two homozygous mutations (c.983 + 5G>C and c.257_258insTGGCT) in the SGCA gene were novel. These mutations were identified as the cause of the disease in the patients. Conclusion: Our results contribute to the general understanding of the etiology of the disease and provide the basis for definitive diagnosis and support genetic counseling and prenatal screening.
Collapse
Affiliation(s)
- Nam Chung Tran
- Center for Gene and Protein Research, Department of Molecular Pathology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
- Hanoi Medical University, Hanoi, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Dat Ta
- Center for Gene and Protein Research, Department of Molecular Pathology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
| | | | | | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van Khanh Tran
- Center for Gene and Protein Research, Department of Molecular Pathology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
7
|
Müthel S, Marg A, Ignak B, Kieshauer J, Escobar H, Stadelmann C, Spuler S. Cas9-induced single cut enables highly efficient and template-free repair of a muscular dystrophy causing founder mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:494-511. [PMID: 36865086 PMCID: PMC9972404 DOI: 10.1016/j.omtn.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
With thousands of patients worldwide, CAPN3 c.550delA is the most frequent mutation causing severe, progressive, and untreatable limb girdle muscular dystrophy. We aimed to genetically correct this founder mutation in primary human muscle stem cells. We designed editing strategies providing CRISPR-Cas9 as plasmid and mRNA first in patient-derived induced pluripotent stem cells and applied this strategy then in primary human muscle stem cells from patients. Mutation-specific targeting yielded highly efficient and precise correction of CAPN3 c.550delA to wild type for both cell types. Most likely a single cut generated by SpCas9 resulted in a 5' staggered overhang of one base pair, which triggered an overhang-dependent base replication of an A:T at the mutation site. This recovered the open reading frame and the CAPN3 DNA sequence was repaired template-free to wild type, which led to CAPN3 mRNA and protein expression. Off-target analysis using amplicon sequencing of 43 in silico predicted sites demonstrates the safety of this approach. Our study extends previous usage of single cut DNA modification since our gene product has been repaired into the wild-type CAPN3 sequence with the perspective of a real cure.
Collapse
Affiliation(s)
- Stefanie Müthel
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Muscle Research Unit at the Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and the Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, 10117 Berlin, Germany
| | - Andreas Marg
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Muscle Research Unit at the Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and the Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, 10117 Berlin, Germany
| | - Busem Ignak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Muscle Research Unit at the Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and the Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, 10117 Berlin, Germany
| | - Janine Kieshauer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Muscle Research Unit at the Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and the Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, 10117 Berlin, Germany
| | - Helena Escobar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Muscle Research Unit at the Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and the Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, 10117 Berlin, Germany
| | - Christian Stadelmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Muscle Research Unit at the Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and the Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, 10117 Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Simone Spuler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Muscle Research Unit at the Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and the Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, 10117 Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
8
|
Davidsen N, Ramhøj L, Kugathas I, Evrard B, Darde TA, Chalmel F, Svingen T, Rosenmai AK. PFOS disrupts key developmental pathways during hiPSC-derived cardiomyocyte differentiation in vitro. Toxicol In Vitro 2022; 85:105475. [PMID: 36116746 DOI: 10.1016/j.tiv.2022.105475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
Exposure to perfluorooctanesulfonic acid (PFOS) has been associated with congenital heart disease (CHD) and decreased birth weight. PFOS exposure can disrupt signaling pathways relevant for cardiac development in stem cell-derived cardiomyocyte assays, such as the PluriBeat assay, where spheroids of human induced pluripotent stem cells (hiPSCs) differentiate into contracting cardiomyocytes. Notably, cell line origin can also affect how the assay responds to chemical exposure. Herein, we examined the effect of PFOS on cardiomyocyte differentiation by transcriptomics profiling of two different hiPSC lines to see if they exhibit a common pattern of disruption. Two stages of differentiation were investigated: the cardiac progenitor stage and the cardiomyocyte stage. Many differentially expressed genes (DEGs) were observed between cell lines independent of exposure. However, 135 DEGs were identified as common between the two cell lines. Of these, 10 DEGs were associated with GO-terms related to the heart. PFOS exposure disrupted multiple signaling pathways relevant to cardiac development, including WNT, TGF, HH, and EGF. Of these pathways, genes related to the non-canonical WNTCa2+ signaling was particularly affected. PFOS thus has the capacity to disrupt pathways important for cardiac development and function.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Indusha Kugathas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | | | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | |
Collapse
|
9
|
Lasa-Elgarresta J, Mosqueira-Martín L, González-Imaz K, Marco-Moreno P, Gerenu G, Mamchaoui K, Mouly V, López de Munain A, Vallejo-Illarramendi A. Targeting the Ubiquitin-Proteasome System in Limb-Girdle Muscular Dystrophy With CAPN3 Mutations. Front Cell Dev Biol 2022; 10:822563. [PMID: 35309930 PMCID: PMC8924035 DOI: 10.3389/fcell.2022.822563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
LGMDR1 is caused by mutations in the CAPN3 gene that encodes calpain 3 (CAPN3), a non-lysosomal cysteine protease necessary for proper muscle function. Our previous findings show that CAPN3 deficiency leads to reduced SERCA levels through increased protein degradation. This work investigates the potential contribution of the ubiquitin-proteasome pathway to increased SERCA degradation in LGMDR1. Consistent with our previous results, we observed that CAPN3-deficient human myotubes exhibit reduced SERCA protein levels and high cytosolic calcium concentration. Treatment with the proteasome inhibitor bortezomib (Velcade) increased SERCA2 protein levels and normalized intracellular calcium levels in CAPN3-deficient myotubes. Moreover, bortezomib was able to recover mutated CAPN3 protein in a patient carrying R289W and R546L missense mutations. We found that CAPN3 knockout mice (C3KO) presented SERCA deficits in skeletal muscle in the early stages of the disease, prior to the manifestation of muscle deficits. However, treatment with bortezomib (0.8 mg/kg every 72 h) for 3 weeks did not rescue SERCA levels. No change in muscle proteasome activity was observed in bortezomib-treated animals, suggesting that higher bortezomib doses are needed to rescue SERCA levels in this model. Overall, our results lay the foundation for exploring inhibition of the ubiquitin-proteasome as a new therapeutic target to treat LGMDR1 patients. Moreover, patients carrying missense mutations in CAPN3 and presumably other genes may benefit from proteasome inhibition by rescuing mutant protein levels. Further studies in suitable models will be necessary to demonstrate the therapeutic efficacy of proteasome inhibition for different missense mutations.
Collapse
Affiliation(s)
- Jaione Lasa-Elgarresta
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Laura Mosqueira-Martín
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Klaudia González-Imaz
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Pablo Marco-Moreno
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Gorka Gerenu
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain.,CIBERNED, Instituto de Salud Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Adolfo López de Munain
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain.,CIBERNED, Instituto de Salud Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Ainara Vallejo-Illarramendi
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain.,CIBERNED, Instituto de Salud Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| |
Collapse
|
10
|
Edwards SJ, Shad BJ, Marshall RN, Morgan PT, Wallis GA, Breen L. Short-term step reduction reduces CS activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signalling in young males. J Appl Physiol (1985) 2021; 131:1653-1662. [PMID: 34734783 PMCID: PMC8714983 DOI: 10.1152/japplphysiol.00650.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxidative metabolism and insulin-mediated signaling are unclear. We tested the hypothesis that the total and/or phosphorylated protein content of key skeletal muscle markers of mitochondrial/oxidative metabolism, and insulin-mediated signaling would be altered over 7 days of SR in young healthy males. Eleven, healthy, recreationally active males (means ± SE, age: 22 ± 1 yr, BMI: 23.4 ± 0.7 kg·m2) underwent a 7-day period of SR. Immediately before and following SR, fasted-state muscle biopsy samples were acquired and analyzed for the assessment of total and phosphorylated protein content of key markers of mitochondrial/oxidative metabolism and insulin-mediated signaling. Daily step count was significantly reduced during the SR intervention (13,054 ± 833 to 1,192 ± 99 steps·day−1, P < 0.001). Following SR, there was a significant decline in maximal citrate synthase activity (fold change: 0.94 ± 0.08, P < 0.05) and a significant increase in the protein content of p-glycogen synthase (P-GSS641; fold change: 1.47 ± 0.14, P < 0.05). No significant differences were observed in the total or phosphorylated protein content of other key markers of insulin-mediated signaling, oxidative metabolism, mitochondrial function, or mitochondrial dynamics (all P > 0.05). These results suggest that short-term SR reduces the maximal activity of citrate synthase, a marker of mitochondrial content, without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males. NEW & NOTEWORTHY Short-term (7 day) step reduction reduces the activity of citrate synthase without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males.
Collapse
Affiliation(s)
- Sophie J Edwards
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Brandon J Shad
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ryan N Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, United Kingdom
| | - Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth Anthony Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, United Kingdom
| |
Collapse
|
11
|
Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 2021; 22:713-732. [PMID: 34257452 PMCID: PMC9686310 DOI: 10.1038/s41580-021-00389-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.
Collapse
|
12
|
Chen L, Tang F, Gao H, Zhang X, Li X, Xiao D. CAPN3: A muscle‑specific calpain with an important role in the pathogenesis of diseases (Review). Int J Mol Med 2021; 48:203. [PMID: 34549305 PMCID: PMC8480384 DOI: 10.3892/ijmm.2021.5036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
Calpains are a family of Ca2+‑dependent cysteine proteases that participate in various cellular processes. Calpain 3 (CAPN3) is a classical calpain with unique N‑terminus and insertion sequence 1 and 2 domains that confer characteristics such as rapid autolysis, Ca2+‑independent activation and Na+ activation of the protease. CAPN3 is the only muscle‑specific calpain that has important roles in the promotion of calcium release from skeletal muscle fibers, calcium uptake of sarcoplasmic reticulum, muscle formation and muscle remodeling. Studies have indicated that recessive mutations in CAPN3 cause limb‑girdle muscular dystrophy (MD) type 2A and other types of MD; eosinophilic myositis, melanoma and epilepsy are also closely related to CAPN3. In the present review, the characteristics of CAPN3, its biological functions and roles in the pathogenesis of a number of disorders are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyan Zhang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
13
|
Sahenk Z, Ozes B, Murrey D, Myers M, Moss K, Yalvac ME, Ridgley A, Chen L, Mendell JR. Systemic delivery of AAVrh74.tMCK.hCAPN3 rescues the phenotype in a mouse model for LGMD2A/R1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:401-414. [PMID: 34514031 PMCID: PMC8413669 DOI: 10.1016/j.omtm.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
Limb girdle muscular dystrophy (LGMD) 2A/R1, caused by mutations in the CAPN3 gene and CAPN3 loss of function, is known to play a role in disease pathogenicity. In this study, AAVrh74.tMCK.CAPN3 was delivered systemically to two different age groups of CAPN3 knockout (KO) mice; each group included two treatment cohorts receiving low (1.17 × 1014 vg/kg) and high (2.35 × 1014 vg/kg) doses of the vector and untreated controls. Treatment efficacy was tested 20 weeks after gene delivery using functional (treadmill), physiological (in vivo muscle contractility assay), and histopathological outcomes. AAV.CAPN3 gene therapy resulted in significant, robust improvements in functional outcomes and muscle physiology at low and high doses in both age groups. Histological analyses of skeletal muscle showed remodeling of muscle, a switch to fatigue-resistant oxidative fibers in females, and fiber size increases in both sexes. Safety studies revealed no organ tissue abnormalities; specifically, there was no histopathological evidence of cardiotoxicity. These results show that CAPN3 gene replacement therapy improved the phenotype in the CAPN3 KO mouse model at both doses independent of age at the time of vector administration. The improvements were supported by an absence of cardiotoxicity, showing the efficacy and safety of the AAV.CAPN3 vector as a potential gene therapy for LGMDR1.
Collapse
Affiliation(s)
- Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Darren Murrey
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Alicia Ridgley
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Lei Chen
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
14
|
Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res 2021; 172:105807. [PMID: 34389456 DOI: 10.1016/j.phrs.2021.105807] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a crucial tissue for movement, gestural assistance, metabolic homeostasis, and thermogenesis. It makes up approximately 40% of the total body weight and 50% of total protein. However, several pathological abnormalities (e.g., chronic diseases, cancer, long-term infection, aging) can induce an imbalance in skeletal muscle protein synthesis and degradation, which triggers muscle wasting and even leads to atrophy. Skeletal muscle atrophy is characterized by weakening, shrinking, and decreasing muscle mass and fiber cross-sectional area at the histological level. It manifests as a reduction in force production, easy fatigue and decreased exercise capability, along with a lower quality of life. Mechanistically, there are several pathophysiological processes involved in skeletal muscle atrophy, including oxidative stress and inflammation, which then activate signal transduction, such as the ubiquitin proteasome system, autophagy lysosome system, and mTOR. Considering the great economic and social burden that muscle atrophy can inflict, effective prevention and treatment strategies are essential but still limited. Exercise is widely acknowledged as the most effective therapy for skeletal muscle atrophy; unfortunately, it is not applicable for all patients. Several active substances for skeletal muscle atrophy have been discovered and evaluated in clinical trials, however, they have not been marketed to date. Knowledge is being gained on the underlying mechanisms, highlighting more promising treatment strategies in the future. In this paper, the mechanisms and treatment strategies for skeletal muscle atrophy are briefly reviewed.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Weihua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Nuoqi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
15
|
Current and Future Therapeutic Strategies for Limb Girdle Muscular Dystrophy Type R1: Clinical and Experimental Approaches. PATHOPHYSIOLOGY 2021; 28:238-249. [PMID: 35366260 PMCID: PMC8830477 DOI: 10.3390/pathophysiology28020016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Limb girdle muscular dystrophy type R1 disease is a progressive disease that is caused by mutations in the CAPN3 gene and involves the extremity muscles of the hip and shoulder girdle. The CAPN3 protein has proteolytic and non-proteolytic properties. The functions of the CAPN3 protein that have been determined so far can be listed as remodeling and combining contractile proteins in the sarcomere with the substrates with which it interacts, controlling the Ca2+ flow in and out through the sarcoplasmic reticulum, and regulation of membrane repair and muscle regeneration. Even though there are several gene therapies, cellular therapies, and drug therapies, such as glucocorticoid treatment, AAV- mediated therapy, CRISPR-Cas9, induced pluripotent stem cells, MYO-029, and AMBMP, which are either in preclinical or clinical phases, or have been completed, there is no final cure. Inhibitors and small molecules (tauroursodeoxycholic acid, salubrinal, rapamycin, CDN1163, dwarf open reading frame) targeting ER stress factors that are thought to be effective in muscle loss can be considered potential therapy strategies. At present, little can be done to treat the progressive muscle wasting, loss of function, and premature mortality of patients with LGMDR1, and there is a pressing need for more research to develop potential therapies.
Collapse
|
16
|
Liu J, Campagna J, John V, Damoiseaux R, Mokhonova E, Becerra D, Meng H, McNally EM, Pyle AD, Kramerova I, Spencer MJ. A Small-Molecule Approach to Restore a Slow-Oxidative Phenotype and Defective CaMKIIβ Signaling in Limb Girdle Muscular Dystrophy. Cell Rep Med 2020; 1:100122. [PMID: 33205074 PMCID: PMC7659555 DOI: 10.1016/j.xcrm.2020.100122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/07/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Mutations in CAPN3 cause limb girdle muscular dystrophy R1 (LGMDR1, formerly LGMD2A) and lead to progressive and debilitating muscle wasting. Calpain 3 deficiency is associated with impaired CaMKIIβ signaling and blunted transcriptional programs that encode the slow-oxidative muscle phenotype. We conducted a high-throughput screen on a target of CaMKII (Myl2) to identify compounds to override this signaling defect; 4 were tested in vivo in the Capn3 knockout (C3KO) model of LGMDR1. The leading compound, AMBMP, showed good exposure and was able to reverse the LGMDR1 phenotype in vivo, including improved oxidative properties, increased slow fiber size, and enhanced exercise performance. AMBMP also activated CaMKIIβ signaling, but it did not alter other pathways known to be associated with muscle growth. Thus, AMBMP treatment activates CaMKII and metabolically reprograms skeletal muscle toward a slow muscle phenotype. These proof-of-concept studies lend support for an approach to the development of therapeutics for LGMDR1.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Animals
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Calpain/deficiency
- Calpain/genetics
- Cardiac Myosins/genetics
- Cardiac Myosins/metabolism
- Cell Line
- Creatine Kinase, Mitochondrial Form/genetics
- Creatine Kinase, Mitochondrial Form/metabolism
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophies, Limb-Girdle/drug therapy
- Muscular Dystrophies, Limb-Girdle/genetics
- Muscular Dystrophies, Limb-Girdle/metabolism
- Muscular Dystrophies, Limb-Girdle/pathology
- Myoblasts/drug effects
- Myoblasts/metabolism
- Myoblasts/pathology
- Myosin Light Chains/genetics
- Myosin Light Chains/metabolism
- Oxidative Stress
- Phenotype
- Physical Conditioning, Animal
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Pyrimidines/pharmacology
- Signal Transduction
- Small Molecule Libraries/pharmacology
Collapse
Affiliation(s)
- Jian Liu
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesus Campagna
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Varghese John
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Pharmacology, David Geffen School of Medicine and Molecular Screening Shared Resource, Crump Imaging Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ekaterina Mokhonova
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Diana Becerra
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Huan Meng
- Department of Medicine, David Geffen School of Medicine and California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - April D. Pyle
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Irina Kramerova
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Melissa J. Spencer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
17
|
The ties that bind: functional clusters in limb-girdle muscular dystrophy. Skelet Muscle 2020; 10:22. [PMID: 32727611 PMCID: PMC7389686 DOI: 10.1186/s13395-020-00240-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a genetically pleiomorphic class of inherited muscle diseases that are known to share phenotypic features. Selected LGMD genetic subtypes have been studied extensively in affected humans and various animal models. In some cases, these investigations have led to human clinical trials of potential disease-modifying therapies, including gene replacement strategies for individual subtypes using adeno-associated virus (AAV) vectors. The cellular localizations of most proteins associated with LGMD have been determined. However, the functions of these proteins are less uniformly characterized, thus limiting our knowledge of potential common disease mechanisms across subtype boundaries. Correspondingly, broad therapeutic strategies that could each target multiple LGMD subtypes remain less developed. We believe that three major "functional clusters" of subcellular activities relevant to LGMD merit further investigation. The best known of these is the glycosylation modifications associated with the dystroglycan complex. The other two, mechanical signaling and mitochondrial dysfunction, have been studied less systematically but are just as promising with respect to the identification of significant mechanistic subgroups of LGMD. A deeper understanding of these disease pathways could yield a new generation of precision therapies that would each be expected to treat a broader range of LGMD patients than a single subtype, thus expanding the scope of the molecular medicines that may be developed for this complex array of muscular dystrophies.
Collapse
|
18
|
Hyatt HW, Powers SK. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. Int J Sports Med 2020; 41:994-1008. [PMID: 32679598 DOI: 10.1055/a-1199-7662] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calpains are cysteine proteases expressed in skeletal muscle fibers and other cells. Although calpain was first reported to act as a kinase activating factor in skeletal muscle, the consensus is now that calpains play a canonical role in protein turnover. However, recent evidence reveals new and exciting roles for calpains in skeletal muscle. This review will discuss the functions of calpains in skeletal muscle remodeling in response to both exercise and inactivity-induced muscle atrophy. Calpains participate in protein turnover and muscle remodeling by selectively cleaving target proteins and creating fragmented proteins that can be further degraded by other proteolytic systems. Nonetheless, an often overlooked function of calpains is that calpain-mediated cleavage of proteins can result in fragmented proteins that are biologically active and have the potential to actively influence cell signaling. In this manner, calpains function beyond their roles in protein turnover and influence downstream signaling effects. This review will highlight both the canonical and noncanonical roles that calpains play in skeletal muscle remodeling including sarcomere transformation, membrane repair, triad junction formation, regulation of excitation-contraction coupling, protein turnover, cell signaling, and mitochondrial function. We conclude with a discussion of key unanswered questions regarding the roles that calpains play in skeletal muscle.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Applied Physiology and Kinesiology, University of Florida, Gainesville, United States
| | - Scott K Powers
- Applied Physiology, University of Florida, Gainesville, United States
| |
Collapse
|
19
|
A muscle-specific calpain, CAPN3, forms a homotrimer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140411. [PMID: 32200007 DOI: 10.1016/j.bbapap.2020.140411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Abstract
Calpain-3 (CAPN3), a 94-kDa member of the calpain protease family, is abundant in skeletal muscle. Mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A, indicating that CAPN3 plays important roles in muscle physiology. CAPN3 has several unique features. A crystallographic study revealed that its C-terminal penta-EF-hand domains form a homodimer, suggesting that CAPN3 functions as a homodimeric protease. To analyze complex formation of CAPN3 in a more convenient manner, we performed blue native polyacrylamide gel electrophoresis and found that the observed molecular weight of native CAPN3, as well as recombinant CAPN3, was larger than 240 kDa. Further analysis by cross-linking and sequential immunoprecipitation revealed that CAPN3 in fact forms a homotrimer. Trimer formation was abolished by the deletion of the PEF domain, but not the CAPN3-specific insertion sequences NS, IS1, and IS2. The PEF domain alone formed a homodimer, as reported, but addition of the adjacent CBSW domain to its N-terminus reinforced the trimer-forming property. Collectively, these results suggest that CAPN3 forms a homotrimer in which the PEF domain's dimer-forming ability is influenced by other domains.
Collapse
|
20
|
Lasa-Elgarresta J, Mosqueira-Martín L, Naldaiz-Gastesi N, Sáenz A, López de Munain A, Vallejo-Illarramendi A. Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations. Int J Mol Sci 2019; 20:E4548. [PMID: 31540302 PMCID: PMC6770289 DOI: 10.3390/ijms20184548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a rare disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness of shoulder, pelvic, and proximal limb muscles that usually appears in children and young adults and results in loss of ambulation within 20 years after disease onset in most patients. The pathophysiological mechanisms involved in LGMDR1 remain mostly unknown, and to date, there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of Ca2+ homeostasis in the skeletal muscle is a significant underlying event in this muscular dystrophy. We also review and discuss specific clinical features of LGMDR1, CAPN3 functions, novel putative targets for therapeutic strategies, and current approaches aiming to treat LGMDR1. These novel approaches may be clinically relevant not only for LGMDR1 but also for other muscular dystrophies with secondary calpainopathy or with abnormal Ca2+ homeostasis, such as LGMD2B/LGMDR2 or sporadic inclusion body myositis.
Collapse
Affiliation(s)
- Jaione Lasa-Elgarresta
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Laura Mosqueira-Martín
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Neia Naldaiz-Gastesi
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Amets Sáenz
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Adolfo López de Munain
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
- Departmento de Neurosciencias, Universidad del País Vasco UPV/EHU, 20014 San Sebastian, Spain.
- Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Neurology Department, 20014 San Sebastian, Spain.
| | - Ainara Vallejo-Illarramendi
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
- Grupo Neurociencias, Departmento de Pediatría, Hospital Universitario Donostia, UPV/EHU, 20014 San Sebastian, Spain.
| |
Collapse
|
21
|
Kramerova I, Torres JA, Eskin A, Nelson SF, Spencer MJ. Calpain 3 and CaMKIIβ signaling are required to induce HSP70 necessary for adaptive muscle growth after atrophy. Hum Mol Genet 2019. [PMID: 29528394 PMCID: PMC5905633 DOI: 10.1093/hmg/ddy071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in CAPN3 cause autosomal recessive limb girdle muscular dystrophy 2A. Calpain 3 (CAPN3) is a calcium dependent protease residing in the myofibrillar, cytosolic and triad fractions of skeletal muscle. At the triad, it colocalizes with calcium calmodulin kinase IIβ (CaMKIIβ). CAPN3 knock out mice (C3KO) show reduced triad integrity and blunted CaMKIIβ signaling, which correlates with impaired transcriptional activation of myofibrillar and oxidative metabolism genes in response to running exercise. These data suggest a role for CAPN3 and CaMKIIβ in gene regulation that takes place during adaptation to endurance exercise. To assess whether CAPN3- CaMKIIβ signaling influences skeletal muscle remodeling in other contexts, we subjected C3KO and wild type mice to hindlimb unloading and reloading and assessed CaMKIIβ signaling and gene expression by RNA-sequencing. After induced atrophy followed by 4 days of reloading, both CaMKIIβ activation and expression of inflammatory and cellular stress genes were increased. C3KO muscles failed to activate CaMKIIβ signaling, did not activate the same pattern of gene expression and demonstrated impaired growth at 4 days of reloading. Moreover, C3KO muscles failed to activate inducible HSP70, which was previously shown to be indispensible for the inflammatory response needed to promote muscle recovery. Likewise, C3KO showed diminished immune cell infiltration and decreased expression of pro-myogenic genes. These data support a role for CaMKIIβ signaling in induction of HSP70 and promotion of the inflammatory response during muscle growth and remodeling that occurs after atrophy, suggesting that CaMKIIβ regulates remodeling in multiple contexts: endurance exercise and growth after atrophy.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| | - Jorge A Torres
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| | - Ascia Eskin
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Lostal W, Urtizberea JA, Richard I. 233rd ENMC International Workshop:: Clinical Trial Readiness for Calpainopathies, Naarden, The Netherlands, 15-17 September 2017. Neuromuscul Disord 2018; 28:540-549. [PMID: 29655529 DOI: 10.1016/j.nmd.2018.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022]
Affiliation(s)
- William Lostal
- INTEGRARE, Genethon, Inserm, University of Evry, Université Paris-Saclay, Evry, 91002, France
| | | | - Isabelle Richard
- INTEGRARE, Genethon, Inserm, University of Evry, Université Paris-Saclay, Evry, 91002, France.
| | | |
Collapse
|
23
|
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is a form of muscular dystrophy caused by
mutations in calpain 3 (CAPN3). Several studies have implicated Ca2+
dysregulation as an underlying event in several muscular dystrophies, including LGMD2A. In
this study we used mouse and human myotube cultures, and muscle biopsies in order to
determine whether dysfunction of sarco/endoplasmatic Ca2+-ATPase (SERCA) is
involved in the pathology of this disease. In CAPN3-deficient myotubes, we found decreased
levels of SERCA 1 and 2 proteins, while mRNA levels remained comparable with control
myotubes. Also, we found a significant reduction in SERCA function that resulted in
impairment of Ca2+ homeostasis, and elevated basal intracellular
[Ca2+] in human myotubes. Furthermore, small Ankyrin 1 (sAnk1), a
SERCA1-binding protein that is involved in sarcoplasmic reticulum integrity, was also
diminished in CAPN3-deficient fibres. Interestingly, SERCA2 protein was patently reduced
in muscles from LGMD2A patients, while it was normally expressed in other forms of
muscular dystrophy. Thus, analysis of SERCA2 expression may prove useful for diagnostic
purposes as a potential indicator of CAPN3 deficiency in muscle biopsies. Altogether, our
results indicate that CAPN3 deficiency leads to degradation of SERCA proteins and
Ca2+ dysregulation in the skeletal muscle. While further studies are needed
in order to elucidate the specific contribution of SERCA towards muscle degeneration in
LGMD2A, this study constitutes a reasonable foundation for the development of therapeutic
approaches targeting SERCA1, SERCA2 or sAnk1.
Collapse
|
24
|
Kramerova I, Ermolova N, Eskin A, Hevener A, Quehenberger O, Armando AM, Haller R, Romain N, Nelson SF, Spencer MJ. Failure to up-regulate transcription of genes necessary for muscle adaptation underlies limb girdle muscular dystrophy 2A (calpainopathy). Hum Mol Genet 2016; 25:2194-2207. [PMID: 27005420 DOI: 10.1093/hmg/ddw086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/11/2016] [Indexed: 12/18/2022] Open
Abstract
Limb girdle muscular dystrophy 2A is due to loss-of-function mutations in the Calpain 3 (CAPN3) gene. Our previous data suggest that CAPN3 helps to maintain the integrity of the triad complex in skeletal muscle. In Capn3 knock-out mice (C3KO), Ca2+ release and Ca2+/calmodulin kinase II (CaMKII) signaling are attenuated. We hypothesized that calpainopathy may result from a failure to transmit loading-induced Ca2+-mediated signals, necessary to up-regulate expression of muscle adaptation genes. To test this hypothesis, we compared transcriptomes of muscles from wild type (WT) and C3KO mice subjected to endurance exercise. In WT mice, exercise induces a gene signature that includes myofibrillar, mitochondrial and oxidative lipid metabolism genes, necessary for muscle adaptation. C3KO muscles fail to activate the same gene signature. Furthermore, in agreement with the aberrant transcriptional profile, we observe a commensurate functional defect in lipid metabolism whereby C3KO muscles fail to release fatty acids from stored triacylglycerol. In conjunction with the defects in oxidative metabolism, C3KO mice demonstrate reduced exercise endurance. Failure to up-regulate genes in C3KO muscles is due, in part, to decreased levels of PGC1α, a transcriptional co-regulator that orchestrates the muscle adaptation response. Destabilization of PGC1α is attributable to decreased p38 MAPK activation via diminished CaMKII signaling. Thus, we elucidate a pathway downstream of Ca2+-mediated CaMKII activation that is dysfunctional in C3KO mice, leading to reduced transcription of genes involved in muscle adaptation. These studies identify a novel mechanism of muscular dystrophy: a blunted transcriptional response to muscle loading resulting in chronic failure to adapt and remodel.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine Center for Duchenne Muscular Dystrophy
| | - Natalia Ermolova
- Department of Neurology, David Geffen School of Medicine Center for Duchenne Muscular Dystrophy
| | - Ascia Eskin
- Center for Duchenne Muscular Dystrophy Department of Human Genetics, David Geffen School of Medicine
| | - Andrea Hevener
- Center for Duchenne Muscular Dystrophy Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Oswald Quehenberger
- Department of Medicine Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Aaron M Armando
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Ronald Haller
- Department Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX 75231, USA
| | - Nadine Romain
- Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX 75231, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy Department of Human Genetics, David Geffen School of Medicine
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine Center for Duchenne Muscular Dystrophy
| |
Collapse
|
25
|
Richard I, Hogrel JY, Stockholm D, Payan CAM, Fougerousse F, Eymard B, Mignard C, Lopez de Munain A, Fardeau M, Urtizberea JA. Natural history of LGMD2A for delineating outcome measures in clinical trials. Ann Clin Transl Neurol 2016; 3:248-65. [PMID: 27081656 PMCID: PMC4818744 DOI: 10.1002/acn3.287] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/04/2015] [Accepted: 12/05/2015] [Indexed: 11/23/2022] Open
Abstract
Objective Limb‐girdle muscular dystophy 2A (LGMD2A, OMIM) is a slowly progressive myopathy caused by the deficiency in calpain 3, a calcium‐dependent cysteine protease of the skeletal muscle. Methods In this study, we carried out an observational study of clinical manifestations and disease progression in genetically confirmed LGMD2A patients for up to 4 years. A total of 85 patients, aged 14–65 years, were recruited in three centers located in metropolitan France, the Basque country, and the Reunion Island. They were followed up every 6 months for 2 years and a subgroup was assessed annually thereafter for two more years. Data collected for all patients included clinical history, blood parameters, muscle strength assessed by manual muscle testing (MMT) and quantitative muscle testing, functional scores, and pulmonary and cardiac functions. In addition, CT scans of the lower limbs were performed in a subgroup of patients. Results Our study confirms the clinical description of a slowly progressive disorder with onset in the first or second decade of life with some degree of variability related to gender and mutation type. The null mutations lead to a more severe phenotype while compound heterozygote patients are the least affected. Muscle weakness is remarkably symmetrical and predominant in the axial muscles of the trunk and proximal muscles of the lower limb. There was a high correlation between the weakness at individual muscle level as assessed by MMT and the loss of density in CT scan analysis. Interpretation All the generated data will help to determine the endpoints for further clinical studies.
Collapse
Affiliation(s)
- Isabelle Richard
- INSERMU 951 INTEGRARE Research Unit Evr F-91002 France; Généthon 1 bis rue de l'Internationale Evry F-91002 France
| | | | - Daniel Stockholm
- INSERMU 951 INTEGRARE Research Unit Evr F-91002 France; Généthon 1 bis rue de l'Internationale Evry F-91002 France; Ecole Pratique des Hautes Etudes Paris France
| | - Christine A M Payan
- Institut de Myologie GH Pitié-Salpêtriere Paris France; Present address: Institut de Neurosciences Translationnelles de Paris Service de Pharmacologie Clinique Hôpital Pitié-Salpêtrière Paris France
| | - Françoise Fougerousse
- Généthon1bis rue de l'Internationale Evry F-91002 France; Present address: Laboratoire Servier Neuilly/Seine France
| | | | - Bruno Eymard
- Institut de Myologie GH Pitié-Salpêtriere Paris France
| | - Claude Mignard
- Centre de Référence des maladies Neuromusculaires et Neurologiques rares du CHU de la Réunion La Réunion France
| | - Adolfo Lopez de Munain
- Service de Neurologie Hospital Donostia Biodonostia Institute CIBERNED University of the Basque Country UPV-EHU San Sebastian Spain
| | | | | |
Collapse
|
26
|
DiFranco M, Kramerova I, Vergara JL, Spencer MJ. Attenuated Ca(2+) release in a mouse model of limb girdle muscular dystrophy 2A. Skelet Muscle 2016; 6:11. [PMID: 26913171 PMCID: PMC4765215 DOI: 10.1186/s13395-016-0081-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/30/2016] [Indexed: 02/02/2023] Open
Abstract
Background Mutations in CAPN3 cause limb girdle muscular dystrophy type 2A (LGMD2A), a progressive muscle wasting disease. CAPN3 is a non-lysosomal, Ca-dependent, muscle-specific proteinase. Ablation of CAPN3 (calpain-3 knockout (C3KO) mice) leads to reduced ryanodine receptor (RyR1) expression and abnormal Ca2+/calmodulin-dependent protein kinase II (Ca-CaMKII)-mediated signaling. We previously reported that Ca2+ release measured by fura2-FF imaging in response to single action potential stimulation was reduced in old C3KO mice; however, the use of field stimulation prevented investigation of the mechanisms underlying this impairment. Furthermore, our prior studies were conducted on older animals, whose muscles showed advanced muscular dystrophy, which prevented us from establishing whether impaired Ca2+ handling is an early feature of disease. In the current study, we sought to overcome these matters by studying single fibers isolated from young wild-type (WT) and C3KO mice using a low affinity calcium dye and high intracellular ethylene glycol-bis(2-aminoethylether)-n,n,n′,n′-tetraacetic acid (EGTA) to measure Ca2+ fluxes. Muscles were subjected to both current and voltage clamp conditions. Methods Standard and confocal fluorescence microscopy was used to study Ca2+ release in single fibers enzymatically isolated from hind limb muscles of wild-type and C3KO mice. Two microelectrode amplifier and experiments were performed under current or voltage clamp conditions. Calcium concentration changes were detected with an impermeant low affinity dye in the presence of high EGTA intracellular concentrations, and fluxes were calculated with a single compartment model. Standard Western blotting analysis was used to measure the concentration of RyR1 and the α subunit of the dihydropyridine (αDHPR) receptors. Data are presented as mean ± SEM and compared with the Student’s test with significance set at p < 0.05. Results We found that the peak value of Ca2+ fluxes elicited by single action potentials was significantly reduced by 15–20 % in C3KO fibers, but the kinetics was unaltered. Ca2+ release elicited by tetanic stimulation was also impaired in C3KO fibers. Confocal studies confirmed that Ca2+ release was similarly reduced in all triads of C3KO mice. Voltage clamp experiments revealed a normal voltage dependence of Ca2+ release in C3KO mice but reduced peak Ca2+ fluxes as with action potential stimulation. These findings concur with biochemical observations of reduced RyR1 and αDHPR levels in C3KO muscles and reduced mechanical output. Confocal studies revealed a similar decrease in Ca2+ release at all triads consistent with a homogenous reduction of functional voltage activated Ca2+ release sites. Conclusions Overall, these results suggest that decreased Ca2+ release is an early defect in calpainopathy and may contribute to the observed reduction of CaMKII activation in C3KO mice.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, 635 Charles E. Young Dr. South, NRB Rm. 401, Los Angeles, CA 90095 USA
| | - Irina Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, 635 Charles E. Young Dr. South, NRB Rm. 401, Los Angeles, CA 90095 USA
| | - Julio L Vergara
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, 635 Charles E. Young Dr. South, NRB Rm. 401, Los Angeles, CA 90095 USA
| | - Melissa Jan Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, 635 Charles E. Young Dr. South, NRB Rm. 401, Los Angeles, CA 90095 USA
| |
Collapse
|
27
|
Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, Maciotta S, Colombo A, Meregalli M, Torrente Y. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development 2016; 143:658-69. [DOI: 10.1242/dev.126193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder characterized by muscle wasting and premature death. The defective gene is dystrophin, a structural protein, absence of which causes membrane fragility and myofiber necrosis. Several lines of evidence showed that in adult DMD patients dystrophin is involved in signaling pathways that regulate calcium homeostasis and differentiation programs. However, secondary aspects of the disease, such as inflammation and fibrosis development, might represent a bias in the analysis. Because fetal muscle is not influenced by gravity and does not suffer from mechanical load and/or inflammation, we investigated 12-week-old fetal DMD skeletal muscles, highlighting for the first time early alterations in signaling pathways mediated by the absence of dystrophin itself. We found that PLC/IP3/IP3R/Ryr1/Ca2+ signaling is widely active in fetal DMD skeletal muscles and, through the calcium-dependent PKCα protein, exerts a fundamental regulatory role in delaying myogenesis and in myofiber commitment. These data provide new insights into the origin of DMD pathology during muscle development.
Collapse
Affiliation(s)
- Andrea Farini
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Clementina Sitzia
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Letizia Cassinelli
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Federica Colleoni
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Daniele Parolini
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Umberto Giovanella
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio delle Macromolecole (CNR-ISMAC), via Bassini 15, Milano 20133, Italy
| | - Simona Maciotta
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Augusto Colombo
- Servizio ‘Legge 194’ Dipartimento BDN-Fondazione IRCCS, Policlinico Mangiagalli-Regina Elena, Via Francesco Sforza 35, Milan 20122, Italy
| | - Mirella Meregalli
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Yvan Torrente
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| |
Collapse
|
28
|
Petrie M, Suneja M, Shields RK. Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. J Appl Physiol (1985) 2015; 118:723-31. [PMID: 25635001 DOI: 10.1152/japplphysiol.00628.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The altered metabolic state after a spinal cord injury compromises systemic glucose regulation. Skeletal muscle atrophies and transforms into fast, glycolytic, and insulin-resistant tissue. Osteoporosis is common after spinal cord injury and limits the ability to exercise paralyzed muscle. We used a novel approach to study the acute effect of two frequencies of stimulation (20 and 5 Hz) on muscle fatigue and gene regulation in people with chronic paralysis. Twelve subjects with chronic (>1 yr) and motor complete spinal cord injury (ASIA A) participated in the study. We assessed the twitch force before and after a single session of electrical stimulation (5 or 20 Hz). We controlled the total number of pulses delivered for each protocol (10,000 pulses). Three hours after the completion of the electrical stimulation (5 or 20 Hz), we sampled the vastus lateralis muscle and examined genes involved with metabolic transcription, glycolysis, oxidative phosphorylation, and mitochondria remodeling. We discovered that the 5-Hz stimulation session induced a similar amount of fatigue and a five- to sixfold increase (P < 0.05) in key metabolic transcription factors, including PGC-1α, NR4A3, and ABRA as the 20-Hz session. Neither session showed a robust regulation of genes for glycolysis, oxidative phosphorylation, or mitochondria remodeling. We conclude that a low-force and low-frequency stimulation session is effective at inducing fatigue and regulating key metabolic transcription factors in human paralyzed muscle. This strategy may be an acceptable intervention to improve systemic metabolism in people with chronic paralysis.
Collapse
Affiliation(s)
- Michael Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Manish Suneja
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Veterans Affairs, Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
29
|
Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy. Proc Natl Acad Sci U S A 2014; 112:424-9. [PMID: 25548157 DOI: 10.1073/pnas.1413021112] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.
Collapse
|
30
|
The N- and C-terminal autolytic fragments of CAPN3/p94/calpain-3 restore proteolytic activity by intermolecular complementation. Proc Natl Acad Sci U S A 2014; 111:E5527-36. [PMID: 25512505 DOI: 10.1073/pnas.1411959111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CAPN3/p94/calpain-3, a calpain protease family member predominantly expressed in skeletal muscle, possesses unusually rapid and exhaustive autolytic activity. Mutations in the human CAPN3 gene impairing its protease functions cause limb-girdle muscular dystrophy type 2A (LGMD2A); yet, the connection between CAPN3's autolytic activity and the enzyme's function in vivo remain unclear. Here, we demonstrated that CAPN3 protease activity was reconstituted by intermolecular complementation (iMOC) between its two autolytic fragments. Furthermore, the activity of full-length CAPN3 active-site mutants was surprisingly rescued through iMOC with autolytic fragments containing WT amino acid sequences. These results provide evidence that WT CAPN3 can be formed by the iMOC of two different complementary CAPN3 mutants. The finding of iMOC-mediated restoration of calpain activity indicates a novel mechanism for the genotype-phenotype links in LGMD2A.
Collapse
|
31
|
Ermolova N, Kramerova I, Spencer MJ. Autolytic activation of calpain 3 proteinase is facilitated by calmodulin protein. J Biol Chem 2014; 290:996-1004. [PMID: 25389288 DOI: 10.1074/jbc.m114.588780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are broadly distributed, calcium-dependent enzymes that induce limited proteolysis in a wide range of substrates. Mutations in the gene encoding the muscle-specific family member calpain 3 (CAPN3) underlie limb-girdle muscular dystrophy 2A. We have shown previously that CAPN3 knockout muscles exhibit attenuated calcium release, reduced calmodulin kinase (CaMKII) signaling, and impaired muscle adaptation to exercise. However, neither the precise role of CAPN3 in these processes nor the mechanisms of CAPN3 activation in vivo have been fully elucidated. In this study, we identify calmodulin (CaM), a known transducer of the calcium signal, as the first positive regulator of CAPN3 autolytic activity. CaM was shown to bind CAPN3 at two sites located in the C2L domain. Biochemical studies using muscle extracts from transgenic mice overexpressing CAPN3 or its inactive mutant revealed that CaM binding enhanced CAPN3 autolytic activation. Furthermore, CaM facilitated CAPN3-mediated cleavage of its in vivo substrate titin in tissue extracts. Therefore, these studies reveal a novel interaction between CAPN3 and CaM and identify CaM as the first positive regulator of CAPN3 activity.
Collapse
Affiliation(s)
- Natalia Ermolova
- From the Department of Neurology, Geffen School of Medicine, and Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, CA 90095
| | - Irina Kramerova
- From the Department of Neurology, Geffen School of Medicine, and Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, CA 90095
| | - Melissa J Spencer
- From the Department of Neurology, Geffen School of Medicine, and Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, CA 90095
| |
Collapse
|
32
|
Abstract
Muscular dystrophies are a group of diseases characterised by the primary wasting of skeletal muscle, which compromises patient mobility and in the most severe cases originate a complete paralysis and premature death. Existing evidence implicates calcium dysregulation as an underlying crucial event in the pathophysiology of several muscular dystrophies, such as dystrophinopathies, calpainopathies or myotonic dystrophy among others. Duchenne muscular dystrophy is the most frequent myopathy in childhood, and calpainopathy or LGMD2A is the most common form of limb-girdle muscular dystrophy, whereas myotonic dystrophy is the most frequent inherited muscle disease worldwide. In this review, we summarise recent advances in our understanding of calcium ion cycling through the sarcolemma, the sarcoplasmic reticulum and mitochondria, and its involvement in the pathogenesis of these dystrophies. We also discuss some of the clinical implications of recent findings regarding Ca2+ handling as well as novel approaches to treat muscular dystrophies targeting Ca2+ regulatory proteins.
Collapse
|
33
|
Redox state and mitochondrial respiratory chain function in skeletal muscle of LGMD2A patients. PLoS One 2014; 9:e102549. [PMID: 25079074 PMCID: PMC4117472 DOI: 10.1371/journal.pone.0102549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 11/30/2022] Open
Abstract
Background Calpain-3 deficiency causes oxidative and nitrosative stress-induced damage in skeletal muscle of LGMD2A patients, but mitochondrial respiratory chain function and anti-oxidant levels have not been systematically assessed in this clinical population previously. Methods We identified 14 patients with phenotypes consistent with LGMD2A and performed CAPN3 gene sequencing, CAPN3 expression/autolysis measurements, and insilico predictions of pathogenicity. Oxidative damage, anti-oxidant capacity, and mitochondrial enzyme activities were determined in a subset of muscle biopsies. Results Twenty-one disease-causing variants were detected along the entire CAPN3 gene, five of which were novel (c.338 T>C, c.500 T>C, c.1525-1 G>T, c.2115+4 T>G, c.2366 T>A). Protein- and mRNA-based tests confirmed insilico predictions and the clinical diagnosis in 75% of patients. Reductions in antioxidant defense mechanisms (SOD-1 and NRF-2, but not SOD-2), coupled with increased lipid peroxidation and protein ubiquitination, were observed in calpain-3 deficient muscle, indicating a redox imbalance primarily affecting non-mitochondrial compartments. Although ATP synthase levels were significantly lower in LGMD2A patients, citrate synthase, cytochrome c oxidase, and complex I+III activities were not different from controls. Conclusions Despite significant oxidative damage and redox imbalance in cytosolic/myofibrillar compartments, mitochondrial respiratory chain function is largely maintained in skeletal muscle of LGMD2A patients.
Collapse
|
34
|
Affiliation(s)
- Glenn C Rowe
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
35
|
Fanin M, Nascimbeni AC, Angelini C. Muscle atrophy in
L
imb
G
irdle
M
uscular
D
ystrophy 2
A
: a morphometric and molecular study. Neuropathol Appl Neurobiol 2013; 39:762-71. [DOI: 10.1111/nan.12034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/31/2013] [Indexed: 02/01/2023]
Affiliation(s)
- M. Fanin
- Department of Neurosciences University of Padova Padova Italy
| | | | - C. Angelini
- Department of Neurosciences University of Padova Padova Italy
- IRCCS San Camillo Venice Italy
| |
Collapse
|
36
|
skNAC depletion stimulates myoblast migration and perturbs sarcomerogenesis by enhancing calpain 1 and 3 activity. Biochem J 2013; 453:303-10. [PMID: 23662692 DOI: 10.1042/bj20130195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
skNAC (skeletal and heart muscle specific variant of nascent polypeptide-associated complex α) is a skeletal and heart muscle-specific protein known to be involved in the regulation of sarcomerogenesis. The respective mechanism, however, is largely unknown. In the present paper, we demonstrate that skNAC regulates calpain activity. Specifically, we show that inhibition of skNAC gene expression leads to enhanced, and overexpression of the skNAC gene to repressed, activity of calpain 1 and, to a lesser extent, calpain 3 in myoblasts. In skNAC siRNA-treated cells, enhanced calpain activity is associated with increased migration rates, as well as with perturbed sarcomere architecture. Treatment of skNAC-knockdown cells with the calpain inhibitor ALLN (N-acetyl-leucyl-leucyl-norleucinal) reverts both the positive effect on myoblast migration and the negative effect on sarcomere architecture. Taken together, our data suggest that skNAC controls myoblast migration and sarcomere architecture in a calpain-dependent manner.
Collapse
|
37
|
Blázquez L, Aiastui A, Goicoechea M, Martins de Araujo M, Avril A, Beley C, García L, Valcárcel J, Fortes P, López de Munain A. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs. Hum Mutat 2013; 34:1387-95. [PMID: 23864287 DOI: 10.1002/humu.22379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/08/2013] [Indexed: 12/25/2022]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is the most frequent autosomal recessive muscular dystrophy. It is caused by mutations in the calpain-3 (CAPN3) gene. The majority of the mutations described to date are located in the coding sequence of the gene. However, it is estimated that 25% of the mutations are present at exon-intron boundaries and modify the pre-mRNA splicing of the CAPN3 transcript. We have previously described the first deep intronic mutation in the CAPN3 gene: c.1782+1072G>C mutation. This mutation causes the pseudoexonization of an intronic sequence of the CAPN3 gene in the mature mRNA. In the present work, we show that the point mutation generates the inclusion of the pseudoexon in the mRNA using a minigene assay. In search of a treatment that restores normal splicing, splicing modulation was induced by RNA-based strategies, which included antisense oligonucleotides and modified small-nuclear RNAs. The best effect was observed with antisense sequences, which induced pseudoexon skipping in both HeLa cells cotransfected with mutant minigene and in fibroblasts from patients. Finally, transfection of antisense sequences and siRNA downregulation of serine/arginine-rich splicing factor 1 (SRSF1) indicate that binding of this factor to splicing enhancer sequences is involved in pseudoexon activation.
Collapse
Affiliation(s)
- Lorea Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Neuroscience Area, Health Research Institute Biodonostia, San Sebastian, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
PLEIAD/SIMC1/C5orf25, a novel autolysis regulator for a skeletal-muscle-specific calpain, CAPN3, scaffolds a CAPN3 substrate, CTBP1. J Mol Biol 2013; 425:2955-72. [PMID: 23707407 DOI: 10.1016/j.jmb.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/28/2013] [Accepted: 05/15/2013] [Indexed: 11/20/2022]
Abstract
CAPN3/p94/calpain-3 is a skeletal-muscle-specific member of the calpain protease family. Multiple muscle cell functions have been reported for CAPN3, and mutations in this protease cause limb-girdle muscular dystrophy type 2A. Little is known about the molecular mechanisms that allow CAPN3 to be so multifunctional. One hypothesis is that the very rapid and exhaustive autolytic activity of CAPN3 needs to be suppressed by dynamic molecular interactions for specific periods of time. The previously identified interaction between CAPN3 and connectin/titin, a giant molecule in muscle sarcomeres, supports this assumption; however, the regulatory mechanisms of non-sarcomere-associated CAPN3 are unknown. Here, we report that a novel CAPN3-binding protein, PLEIAD [Platform element for inhibition of autolytic degradation; originally called SIMC1/C5orf25 (SUMO-interacting motif containing protein 1/chromosome 5open reading frame 25)], suppresses the protease activity of CAPN3. Database analyses showed that PLEIAD homologs, like CAPN3 homologs, are evolutionarily conserved in vertebrates. Furthermore, we found that PLEIAD also interacts with CTBP1 (C-terminal binding protein 1), a transcriptional co-regulator, and CTBP1 is proteolyzed in COS7 cells expressing CAPN3. The identified cleavage sites in CTBP1 suggested that it undergoes functional modification upon its proteolysis by CAPN3, as well as by conventional calpains. These results indicate that PLEIAD can shift its major function from CAPN3 suppression to CAPN3-substrate recruitment, depending on the cellular context. Taken together, our data suggest that PLEIAD is a novel regulatory scaffold for CAPN3, as reflected in its name.
Collapse
|
39
|
Abstract
Muscular dystrophies are a heterogeneous group of inherited disorders that share similar clinical features and dystrophic changes on muscle biopsy. An improved understanding of their molecular bases has led to more accurate definitions of the clinical features associated with known subtypes. Knowledge of disease-specific complications, implementation of anticipatory care, and medical advances have changed the standard of care, with an overall improvement in the clinical course, survival, and quality of life of affected people. A better understanding of the mechanisms underlying the molecular pathogenesis of several disorders and the availability of preclinical models are leading to several new experimental approaches, some of which are already in clinical trials. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, and therapeutic developments.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | | |
Collapse
|
40
|
C3KO mouse expression analysis: downregulation of the muscular dystrophy Ky protein and alterations in muscle aging. Neurogenetics 2012; 13:347-57. [PMID: 22820870 DOI: 10.1007/s10048-012-0336-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
Mutations in CAPN3 gene cause limb-girdle muscular dystrophy type 2A (LGMD2A) characterized by muscle wasting and progressive degeneration of scapular and pelvic musculature. Since CAPN3 knockout mice (C3KO) display features of muscle pathology similar to those features observed in the earliest-stage or preclinical LGMD2A patients, gene expression profiling analysis in C3KO mice was performed to gain insight into mechanisms of disease. Two different comparisons were carried out in order to determine, first, the differential gene expression between wild-type (WT) and C3KO soleus and, second, to identify the transcripts differentially expressed in aging muscles of WT and C3KO mice. The up/downregulation of two genes, important for normal muscle function, was identified in C3KO mice: the Ky gene, encoding a protease implicated in muscle development, and Park2 gene encoding an E3 ubiquitin ligase (parkin). The Ky gene was downregulated in C3KO muscles suggesting that Ky protease may play a complementary role in regulating muscle cytoskeleton homeostasis in response to changes in muscle activity. Park2 was upregulated in the aged WT muscles but not in C3KO muscles. Taking into account the known functions of parkin E3 ligase, it is possible that it plays a role in ubiquitination and degradation of atrophy-specific and damaged proteins that are necessary to avoid cellular toxicity and a cellular stress response in aging muscles.
Collapse
|