1
|
Signoria I, Zwartkruis MM, Geerlofs L, Perenthaler E, Faller KM, James R, McHale-Owen H, Green JW, Kortooms J, Snellen SH, Asselman FL, Gillingwater TH, Viero G, Wadman RI, van der Pol WL, Groen EJ. Patient-specific responses to SMN2 splice-modifying treatments in spinal muscular atrophy fibroblasts. Mol Ther Methods Clin Dev 2024; 32:101379. [PMID: 39655308 PMCID: PMC11626024 DOI: 10.1016/j.omtm.2024.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
The availability of three therapies for the neuromuscular disease spinal muscular atrophy (SMA) highlights the need to match patients to the optimal treatment. Two of these treatments (nusinersen and risdiplam) target splicing of SMN2, but treatment outcomes vary from patient to patient. An incomplete understanding of the complex interactions among SMA genetics, SMN protein and mRNA levels, and gene-targeting treatments, limits our ability to explain this variability and identify optimal treatment strategies for individual patients. To address this, we analyzed responses to nusinersen and risdiplam in 45 primary fibroblast cell lines. Pre-treatment SMN2-FL, SMN2Δ7 mRNA, and SMN protein levels were influenced by SMN2 copy number, age, and sex. After treatment, SMN and mRNA levels were more heterogeneous. In 43% of patients, response to both therapies was similar, but in 57% one treatment led to a significantly higher SMN increase than the other treatment. Younger age, higher SMN2 copy number, and higher SMN levels before treatment predicted better in vitro efficacy. These findings showcase patient-derived fibroblasts as a tool for identifying molecular predictors for personalized treatment.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Maria M. Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lotte Geerlofs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | | | - Kiterie M.E. Faller
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Rachel James
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Harriet McHale-Owen
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Jared W. Green
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Joris Kortooms
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Sophie H. Snellen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Thomas H. Gillingwater
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | | | - Renske I. Wadman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Ewout J.N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
2
|
Fortuna TR, Kour S, Chimata AV, Muiños-Bühl A, Anderson EN, Nelson Iv CH, Ward C, Chauhan O, O'Brien C, Rajasundaram D, Rajan DS, Wirth B, Singh A, Pandey UB. SMN regulates GEMIN5 expression and acts as a modifier of GEMIN5-mediated neurodegeneration. Acta Neuropathol 2023; 146:477-498. [PMID: 37369805 PMCID: PMC11348892 DOI: 10.1007/s00401-023-02607-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
GEMIN5 is essential for core assembly of small nuclear Ribonucleoproteins (snRNPs), the building blocks of spliceosome formation. Loss-of-function mutations in GEMIN5 lead to a neurodevelopmental syndrome among patients presenting with developmental delay, motor dysfunction, and cerebellar atrophy by perturbing SMN complex protein expression and assembly. Currently, molecular determinants of GEMIN5-mediated disease have yet to be explored. Here, we identified SMN as a genetic suppressor of GEMIN5-mediated neurodegeneration in vivo. We discovered that an increase in SMN expression by either SMN gene therapy replacement or the antisense oligonucleotide (ASO), Nusinersen, significantly upregulated the endogenous levels of GEMIN5 in mammalian cells and mutant GEMIN5-derived iPSC neurons. Further, we identified a strong functional association between the expression patterns of SMN and GEMIN5 in patient Spinal Muscular Atrophy (SMA)-derived motor neurons harboring loss-of-function mutations in the SMN gene. Interestingly, SMN binds to the C-terminus of GEMIN5 and requires the Tudor domain for GEMIN5 binding and expression regulation. Finally, we show that SMN upregulation ameliorates defective snRNP biogenesis and alternative splicing defects caused by loss of GEMIN5 in iPSC neurons and in vivo. Collectively, these studies indicate that SMN acts as a regulator of GEMIN5 expression and neuropathologies.
Collapse
Affiliation(s)
- Tyler R Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Anixa Muiños-Bühl
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Charlie H Nelson Iv
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Om Chauhan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Signoria I, van der Pol WL, Groen EJN. Innovating spinal muscular atrophy models in the therapeutic era. Dis Model Mech 2023; 16:dmm050352. [PMID: 37787662 PMCID: PMC10565113 DOI: 10.1242/dmm.050352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, monogenetic, neuromuscular disease. A thorough understanding of its genetic cause and the availability of robust models has led to the development and approval of three gene-targeting therapies. This is a unique and exciting development for the field of neuromuscular diseases, many of which remain untreatable. The development of therapies for SMA not only opens the door to future therapeutic possibilities for other genetic neuromuscular diseases, but also informs us about the limitations of such treatments. For example, treatment response varies widely and, for many patients, significant disability remains. Currently available SMA models best recapitulate the severe types of SMA, and these models are genetically and phenotypically more homogeneous than patients. Furthermore, treating patients is leading to a shift in phenotypes with increased variability in SMA clinical presentation. Therefore, there is a need to generate model systems that better reflect these developments. Here, we will first discuss current animal models of SMA and their limitations. Next, we will discuss the characteristics required to future-proof models to assist the field in the development of additional, novel therapies for SMA.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J. N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
4
|
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int J Mol Sci 2023; 24:11939. [PMID: 37569314 PMCID: PMC10418635 DOI: 10.3390/ijms241511939] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| |
Collapse
|
5
|
Muiños-Bühl A, Rombo R, Ling KK, Zilio E, Rigo F, Bennett CF, Wirth B. Long-Term SMN- and Ncald-ASO Combinatorial Therapy in SMA Mice and NCALD-ASO Treatment in hiPSC-Derived Motor Neurons Show Protective Effects. Int J Mol Sci 2023; 24:ijms24044198. [PMID: 36835624 PMCID: PMC9961752 DOI: 10.3390/ijms24044198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023] Open
Abstract
For SMA patients with only two SMN2 copies, available therapies might be insufficient to counteract lifelong motor neuron (MN) dysfunction. Therefore, additional SMN-independent compounds, supporting SMN-dependent therapies, might be beneficial. Neurocalcin delta (NCALD) reduction, an SMA protective genetic modifier, ameliorates SMA across species. In a low-dose SMN-ASO-treated severe SMA mouse model, presymptomatic intracerebroventricular (i.c.v.) injection of Ncald-ASO at postnatal day 2 (PND2) significantly ameliorates histological and electrophysiological SMA hallmarks at PND21. However, contrary to SMN-ASOs, Ncald-ASOs show a shorter duration of action limiting a long-term benefit. Here, we investigated the longer-term effect of Ncald-ASOs by additional i.c.v. bolus injection at PND28. Two weeks after injection of 500 µg Ncald-ASO in wild-type mice, NCALD was significantly reduced in the brain and spinal cord and well tolerated. Next, we performed a double-blinded preclinical study combining low-dose SMN-ASO (PND1) with 2× i.c.v. Ncald-ASO or CTRL-ASO (100 µg at PND2, 500 µg at PND28). Ncald-ASO re-injection significantly ameliorated electrophysiological defects and NMJ denervation at 2 months. Moreover, we developed and identified a non-toxic and highly efficient human NCALD-ASO that significantly reduced NCALD in hiPSC-derived MNs. This improved both neuronal activity and growth cone maturation of SMA MNs, emphasizing the additional protective effect of NCALD-ASO treatment.
Collapse
Affiliation(s)
- Anixa Muiños-Bühl
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Roman Rombo
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | | | - Eleonora Zilio
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Frank Rigo
- IONIS Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases Cologne, University Hospital of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
6
|
Johns AE, Maragakis NJ. Exploring Motor Neuron Diseases Using iPSC Platforms. Stem Cells 2022; 40:2-13. [PMID: 35511862 PMCID: PMC9199844 DOI: 10.1093/stmcls/sxab006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The degeneration of motor neurons is a pathological hallmark of motor neuron diseases (MNDs), but emerging evidence suggests that neuronal vulnerability extends well beyond this cell subtype. The ability to assess motor function in the clinic is limited to physical examination, electrophysiological measures, and tissue-based or neuroimaging techniques which lack the resolution to accurately assess neuronal dysfunction as the disease progresses. Spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS) are all MNDs with devastating clinical outcomes that contribute significantly to disease burden as patients are no longer able to carry out normal activities of daily living. The critical need to accurately assess the cause and progression of motor neuron dysfunction, especially in the early stages of those diseases, has motivated the use of human iPSC-derived motor neurons (hiPSC-MN) to study the neurobiological mechanisms underlying disease pathogenesis and to generate platforms for therapeutic discovery and testing. As our understanding of MNDs has grown, so too has our need to develop more complex in vitro models which include hiPSC-MN co-cultured with relevant non-neuronal cells in 2D as well as in 3D organoid and spheroid systems. These more complex hiPSC-derived culture systems have led to the implementation of new technologies, including microfluidics, multielectrode array, and machine learning which offer novel insights into the functional correlates of these emerging model systems.
Collapse
Affiliation(s)
- Alexandra E Johns
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
7
|
Charvériat M, Lafon V, Mouthon F, Zimmer L. Innovative approaches in CNS drug discovery. Therapie 2021; 76:101-109. [DOI: 10.1016/j.therap.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
|
8
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
9
|
Adami R, Bottai D. Spinal Muscular Atrophy Modeling and Treatment Advances by Induced Pluripotent Stem Cells Studies. Stem Cell Rev Rep 2020; 15:795-813. [PMID: 31863335 DOI: 10.1007/s12015-019-09910-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal Muscular Atrophy (SMA) is a neurodegenerative disease characterized by specific and predominantly lower motor neuron (MN) loss. SMA is the main reason for infant death, while about one in 40 children born is a healthy carrier. SMA is caused by decreased levels of production of a ubiquitously expressed gene: the survival motor neuron (SMN). All SMA patients present mutations of the telomeric SMN1 gene, but many copies of a centromeric, partially functional paralog gene, SMN2, can somewhat compensate for the SMN1 deficiency, scaling inversely with phenotypic harshness. Because the study of neural tissue in and from patients presents too many challenges and is very often not feasible; the use of animal models, such as the mouse, had a pivotal impact in our understanding of SMA pathology but could not portray totally satisfactorily the elaborate regulatory mechanisms that are present in higher animals, particularly in humans. And while recent therapeutic achievements have been substantial, especially for very young infants, some issues should be considered for the treatment of older patients. An alternative way to study SMA, and other neurological pathologies, is the use of induced pluripotent stem cells (iPSCs) derived from patients. In this work, we will present a wide analysis of the uses of iPSCs in SMA pathology, starting from basic science to their possible roles as therapeutic tools.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy
| | - Daniele Bottai
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy.
| |
Collapse
|
10
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
11
|
Ortuño-Costela MDC, Cerrada V, García-López M, Gallardo ME. The Challenge of Bringing iPSCs to the Patient. Int J Mol Sci 2019; 20:E6305. [PMID: 31847153 PMCID: PMC6940848 DOI: 10.3390/ijms20246305] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
The implementation of induced pluripotent stem cells (iPSCs) in biomedical research more than a decade ago, resulted in a huge leap forward in the highly promising area of personalized medicine. Nowadays, we are even closer to the patient than ever. To date, there are multiple examples of iPSCs applications in clinical trials and drug screening. However, there are still many obstacles to overcome. In this review, we will focus our attention on the advantages of implementing induced pluripotent stem cells technology into the clinics but also commenting on all the current drawbacks that could hinder this promising path towards the patient.
Collapse
Affiliation(s)
- María del Carmen Ortuño-Costela
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain. Instituto de Investigaciones Biomédicas “Alberto Sols”, (UAM-CSIC), 28029 Madrid, Spain;
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Victoria Cerrada
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Marta García-López
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - M. Esther Gallardo
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
- Centro de Investigación Biomédica en Red (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
12
|
Niculite CM, Enciu AM, Hinescu ME. CD 36: Focus on Epigenetic and Post-Transcriptional Regulation. Front Genet 2019; 10:680. [PMID: 31379931 PMCID: PMC6659770 DOI: 10.3389/fgene.2019.00680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
CD36 is a transmembrane protein involved in fatty acid translocation, scavenging for oxidized fatty acids acting as a receptor for adhesion molecules. It is expressed on macrophages, as well as other types of cells, such as endothelial and adipose cells. CD36 participates in muscle lipid uptake, adipose energy storage, and gut fat absorption. Recently, several preclinical and clinical studies demonstrated that upregulation of CD36 is a prerequisite for tumor metastasis. Cancer metastasis-related research emerged much later and has been less investigated, though it is equally or even more important. CD36 protein expression can be modified by epigenetic changes and post-transcriptional interference from non-coding RNAs. Some data indicate modulation of CD36 expression in specific cell types by epigenetic changes via DNA methylation patterns or histone tails, or through miRNA interference, but this is largely unexplored. The few papers addressing this topic refer mostly to lipid metabolism-related pathologies, whereas in cancer research, data are even more scarce. The aim of this review was to summarize major epigenetic and post-transcriptional mechanisms that impact CD36 expression in relation to various pathologies while highlighting the areas in need of further exploration.
Collapse
Affiliation(s)
- Cristina-Mariana Niculite
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
13
|
Shorrock HK, Gillingwater TH, Groen EJN. Overview of Current Drugs and Molecules in Development for Spinal Muscular Atrophy Therapy. Drugs 2019; 78:293-305. [PMID: 29380287 PMCID: PMC5829132 DOI: 10.1007/s40265-018-0868-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily characterized by a loss of spinal motor neurons, leading to progressive paralysis and premature death in the most severe cases. SMA is caused by homozygous deletion of the survival motor neuron 1 (SMN1) gene, leading to low levels of SMN protein. However, a second SMN gene (SMN2) exists, which can be therapeutically targeted to increase SMN levels. This has recently led to the first disease-modifying therapy for SMA gaining formal approval from the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). Spinraza (nusinersen) is a modified antisense oligonucleotide that targets the splicing of SMN2, leading to increased SMN protein levels, capable of improving clinical phenotypes in many patients. In addition to Spinraza, several other therapeutic approaches are currently in various stages of clinical development. These include SMN-dependent small molecule and gene therapy approaches along with SMN-independent strategies, such as general neuroprotective factors and muscle strength-enhancing compounds. For each therapy, we provide detailed information on clinical trial design and pharmacological/safety data where available. Previous clinical studies are also discussed to provide context on SMA clinical trial development and the insights these provided for the design of current studies.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Ewout J N Groen
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
14
|
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a neuromuscular disorder classified into four types based on the age of onset of the disease. Early onset is correlated with a higher mortality rate, mainly due to respiratory complications. Valproic acid (VPA) is a histone deacetylase (HDAC) inhibitor that has shown positive results on SMA both in experimental and cohort studies. OBJECTIVES This systematic review and meta-analysis aimed to investigate the efficacy and safety of VPA in patients with SMA. METHODS Eleven databases were systematically searched on 30 May 2017 for clinical trials that reported the efficacy and safety of VPA in SMA patients. The primary outcome was the efficacy of VPA in terms of gross motor function and expression of both full-length spinal motor neuron (SMN) gene (FL-SMN) and exon 7-lacking SMN. The secondary outcome was the safety of VPA in terms of reported adverse effects. The protocol was registered at PROSPERO (CRD42017067203). RESULTS Five of the ten included studies were used in the meta-analysis (n = 126). The overall effect estimate, comparing pre- and post-VPA treatment, regardless of carnitine co-administration and design of the studies, showed significant improvement in gross motor function (standard mean difference [SMD] = 0.302, 95% confidence interval [CI] 0.048-0.556, P = 0.02) using the Hammersmith Functional Motor Scale (HFMS), Modified Hammersmith Functional Motor Scale (MHFMS), and MHFMS-Extend, with no significant heterogeneity. Similarly, in non-randomized controlled studies, the results indicated that there was a significant improvement detected (SMD = 0.335, 95% CI 0.041-0.628, P = 0.025), with no significant heterogeneity. Meanwhile, our results suggest that there was no significant improvement in treatment with co-administered carnitine (SMD = 0.28, 95% CI - 0.02 to 0.581, P = 0.067). No significant differences were found between pre- and post-VPA treatment co-administered with carnitine, in terms of the change in FL-SMN and exon 7-lacking SMN. Qualitative synthesis showed that other motor functions were not improved, while respiratory function test results were contradictory. Regarding the safety of the treatment, a double-blind, randomized, placebo-controlled trial reported no statistically significant differences for adverse events (AEs) between groups. Moreover, most of the included studies reported no serious AEs related to VPA use, although weight gain, gastrointestinal symptoms and respiratory symptoms were notable problems. CONCLUSIONS Our study suggests that VPA treatment results in an improvement in gross motor functions for SMA patients, but not in other assessments of motor function or, possibly, in respiratory function. Furthermore, VPA appears to be a relatively safe drug, although treatment may be associated with a wide range of AEs (including body weight increase, fatigue, fever, flu-like symptoms, irritability, and pain). Double-blind, randomized, controlled trials are required to confirm these findings.
Collapse
|
15
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
16
|
Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discov Today 2017; 22:1730-1739. [DOI: 10.1016/j.drudis.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/28/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022]
|
17
|
Soliman MA, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry 2017; 22:1241-1249. [PMID: 28322279 PMCID: PMC5582162 DOI: 10.1038/mp.2017.40] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023]
Abstract
Neuropsychiatric disorders place an enormous medical burden on patients across all social and economic ranks. The current understanding of the molecular and cellular causes of neuropsychiatric disease remains limited, which leads to a lack of targeted therapies. Human-induced pluripotent stem cell (iPSC) technology offers a novel platform for modeling the genetic contribution to mental disorders and yields access to patient-specific cells for drug discovery and personalized medicine. Here, we review recent progress in using iPSC technology to model and potentially treat neuropsychiatric disorders by focusing on the most prevalent conditions in psychiatry, including depression, anxiety disorders, bipolar disorder and schizophrenia.
Collapse
Affiliation(s)
- M A Soliman
- Weill Cornell Medical College, Cornell University, New York, NY, USA
- Developmental Biology and Center of Stem Cell Biology, Sloan-Kettering Cancer Center, New York, NY, USA
| | - F Aboharb
- Weill Cornell Medical College, Cornell University, New York, NY, USA
- Rockefeller University, New York, NY, USA
| | - N Zeltner
- Developmental Biology and Center of Stem Cell Biology, Sloan-Kettering Cancer Center, New York, NY, USA
| | - L Studer
- Weill Cornell Medical College, Cornell University, New York, NY, USA
- Developmental Biology and Center of Stem Cell Biology, Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
18
|
Papapetrou EP. Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 2017; 22:1392-1401. [PMID: 27923030 DOI: 10.1038/nm.4238] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Together with recent advances in the processing and culture of human tissue, bioengineering, xenotransplantation and genome editing, Induced pluripotent stem cells (iPSCs) present a range of new opportunities for the study of human cancer. Here we discuss the main advantages and limitations of iPSC modeling, and how the method intersects with other patient-derived models of cancer, such as organoids, organs-on-chips and patient-derived xenografts (PDXs). We highlight the opportunities that iPSC models can provide beyond those offered by existing systems and animal models and present current challenges and crucial areas for future improvements toward wider adoption of this technology.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Farrelly-Rosch A, Lau CL, Patil N, Turner BJ, Shabanpoor F. Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts. Neurochem Int 2017; 108:213-221. [PMID: 28389270 DOI: 10.1016/j.neuint.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality worldwide, is characterised by the homozygous loss of the survival motor neuron 1 (SMN1) gene. The consequent degeneration of spinal motor neurons and progressive atrophy of voluntary muscle groups results in paralysis and eventually premature infantile death. Humans possess a second nearly identical copy of SMN1, known as SMN2. However, SMN2 produces only 10-20% functional SMN protein due to aberrant splicing of its pre-mRNA that leads to the exclusion of exon 7. This level of SMN is insufficient to rescue the phenotype. Recently developed splice-switching antisense oligonuclotides (SSO) have shown great promise in correcting the aberrant splicing of SMN2 towards producing functional SMN protein. Several FDA approved drugs are being repurposed for SMA treatment including valproic acid (VPA), a histone deacetylase inhibitor, which has been shown to increase overall SMN2 expression. In this study, we have characterised the effects of single and combined treatment of VPA and a SSO based on phosphorodiamidate morpholino oligomer (PMO) chemistry. We conjugated both VPA and PMO to a single cell-penetrating peptide (Apolipoprotein E (ApoE)) for their simultaneous intracellular delivery. Treatment of SMA Type I patient-derived fibroblasts with the conjugates showed no additive increase in the level of full-length SMN2 mRNA expression over both 4 and 16 h treatments indicating that conjugation of VPA to ApoE-PMO has limited benefit. However, treatment with a combination of VPA and ApoE-PMO induced more favourable splice switching activity than either agent alone, promoting exon 7 inclusion in SMN2 transcripts. Our results suggest that combination therapy of VPA and ApoE-PMO is superior in upregulating SMN2 production in vitro, as compared to singular treatment of each compound at both transcriptional and protein levels. This study provides the first indication of a novel dual therapy approach for the potential treatment of SMA.
Collapse
Affiliation(s)
- Anna Farrelly-Rosch
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Chew Ling Lau
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Nitin Patil
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia; School of Chemistry, University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
20
|
Hung SSC, Khan S, Lo CY, Hewitt AW, Wong RCB. Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases. Pharmacol Ther 2017; 177:32-43. [PMID: 28223228 DOI: 10.1016/j.pharmthera.2017.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The revolution of induced pluripotent stem cell (iPSC) technology provides a platform for development of cell therapy, disease modeling and drug discovery. Recent technological advances now allow us to reprogram a patient's somatic cells into induced pluripotent stem cells (iPSCs). Together with methods to differentiate these iPSCs into disease-relevant cell types, we are now able to model disease in vitro using iPSCs. Importantly, this represents a robust in vitro platform using patient-specific cells, providing opportunity for personalized precision medicine. Here we provide a review of advances using iPSC for drug development, and discuss the potential and limitations of iPSCs for drug discovery in neurodegenerative and ocular diseases. Emerging technologies that can facilitate the search for new drugs by assessment using in vitro disease models will also be discussed, including organoid differentiation, organ-on-chip, direct reprogramming and humanized animal models.
Collapse
Affiliation(s)
- Sandy S C Hung
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Shahnaz Khan
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Camden Y Lo
- Monash Micro Imaging, Monash University, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia; Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia.
| |
Collapse
|
21
|
Jaiswal MK. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease. Neural Regen Res 2017; 12:723-736. [PMID: 28616022 PMCID: PMC5461603 DOI: 10.4103/1673-5374.206635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and motor neuron diseases (MNDs) are progressive neurodegenerative diseases that affect nerve cells in the brain affecting upper and lower motor neurons (UMNs/LMNs), brain stem and spinal cord. The clinical phenotype is characterized by loss of motor neurons (MNs), muscular weakness and atrophy eventually leading to paralysis and death due to respiratory failure within 3-5 years after disease onset. No effective treatment or cure is currently available that halts or reverses ALS and MND except FDA approved drug riluzole that only modestly slows the progression of ALS in some patients. Recent advances in human derived induced pluripotent stem cells have made it possible for the first time to obtain substantial amounts of human cells to recapitulate in vitro "disease in dish" and test some of the underlying pathogenetic mechanisms involved in ALS and MNDs. In this review, I discussed the opportunities and challenges of induced pluropotent stem cells-derived motor neurons for treatment of ALS and MND patients with special emphasis on their implications in finding a cure for ALS and MNDs.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- Molecular Imaging and Neuropathology Division, New York State Psychiatry Institute, Columbia University, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
A new era of disease modeling and drug discovery using induced pluripotent stem cells. Arch Pharm Res 2016; 40:1-12. [DOI: 10.1007/s12272-016-0871-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/27/2016] [Indexed: 12/21/2022]
|
23
|
Wadman RI, Stam M, Jansen MD, van der Weegen Y, Wijngaarde CA, Harschnitz O, Sodaar P, Braun KPJ, Dooijes D, Lemmink HH, van den Berg LH, van der Pol WL. A Comparative Study of SMN Protein and mRNA in Blood and Fibroblasts in Patients with Spinal Muscular Atrophy and Healthy Controls. PLoS One 2016; 11:e0167087. [PMID: 27893852 PMCID: PMC5125671 DOI: 10.1371/journal.pone.0167087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022] Open
Abstract
Background Clinical trials to test safety and efficacy of drugs for patients with spinal muscular atrophy (SMA) are currently underway. Biomarkers that document treatment-induced effects are needed because disease progression in childhood forms of SMA is slow and clinical outcome measures may lack sensitivity to detect meaningful changes in motor function in the period of 1–2 years of follow-up during randomized clinical trials. Objective To determine and compare SMN protein and mRNA levels in two cell types (i.e. PBMCs and skin-derived fibroblasts) from patients with SMA types 1–4 and healthy controls in relation to clinical characteristics and SMN2 copy numbers. Materials and methods We determined SMN1, SMN2-full length (SMN2-FL), SMN2-delta7 (SMN2-Δ7), GAPDH and 18S mRNA levels and SMN protein levels in blood and fibroblasts from a total of 150 patients with SMA and 293 healthy controls using qPCR and ELISA. We analyzed the association with clinical characteristics including disease severity and duration, and SMN2 copy number. Results SMN protein levels in PBMCs and fibroblasts were higher in controls than in patients with SMA (p<0.01). Stratification for SMA type did not show differences in SMN protein (p>0.1) or mRNA levels (p>0.05) in either cell type. SMN2 copy number was associated with SMN protein levels in fibroblasts (p = 0.01), but not in PBMCs (p = 0.06). Protein levels in PBMCs declined with age in patients (p<0.01) and controls (p<0.01)(power 1-beta = 0.7). Ratios of SMN2-Δ7/SMN2-FL showed a broad range, primarily explained by the variation in SMN2-Δ7 levels, even in patients with a comparable SMN2 copy number. Levels of SMN2 mRNA did not correlate with SMN2 copy number, SMA type or age in blood (p = 0.7) or fibroblasts (p = 0.09). Paired analysis between blood and fibroblasts did not show a correlation between the two different tissues with respect to the SMN protein or mRNA levels. Conclusions SMN protein levels differ considerably between tissues and activity is age dependent in patients and controls. SMN protein levels in fibroblasts correlate with SMN2 copy number and have potential as a biomarker for disease severity.
Collapse
Affiliation(s)
- Renske I. Wadman
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail: (RIW); (WLP)
| | - Marloes Stam
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marc D. Jansen
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yana van der Weegen
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Camiel A. Wijngaarde
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Oliver Harschnitz
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter Sodaar
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kees P. J. Braun
- Brain Centre Rudolf Magnus, Department of Neurology and Child Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Henny H. Lemmink
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Leonard H. van den Berg
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - W. Ludo van der Pol
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail: (RIW); (WLP)
| |
Collapse
|
24
|
Heesen L, Peitz M, Torres-Benito L, Hölker I, Hupperich K, Dobrindt K, Jungverdorben J, Ritzenhofen S, Weykopf B, Eckert D, Hosseini-Barkooie SM, Storbeck M, Fusaki N, Lonigro R, Heller R, Kye MJ, Brüstle O, Wirth B. Plastin 3 is upregulated in iPSC-derived motoneurons from asymptomatic SMN1-deleted individuals. Cell Mol Life Sci 2016; 73:2089-104. [PMID: 26573968 PMCID: PMC11108513 DOI: 10.1007/s00018-015-2084-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating motoneuron (MN) disorder caused by homozygous loss of SMN1. Rarely, SMN1-deleted individuals are fully asymptomatic despite carrying identical SMN2 copies as their SMA III-affected siblings suggesting protection by genetic modifiers other than SMN2. High plastin 3 (PLS3) expression has previously been found in lymphoblastoid cells but not in fibroblasts of asymptomatic compared to symptomatic siblings. To find out whether PLS3 is also upregulated in MNs of asymptomatic individuals and thus a convincing SMA protective modifier, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of three asymptomatic and three SMA III-affected siblings from two families and compared these to iPSCs from a SMA I patient and control individuals. MNs were differentiated from iPSC-derived small molecule neural precursor cells (smNPCs). All four genotype classes showed similar capacity to differentiate into MNs at day 8. However, SMA I-derived MN survival was significantly decreased while SMA III- and asymptomatic-derived MN survival was moderately reduced compared to controls at day 27. SMN expression levels and concomitant gem numbers broadly matched SMN2 copy number distribution; SMA I presented the lowest levels, whereas SMA III and asymptomatic showed similar levels. In contrast, PLS3 was significantly upregulated in mixed MN cultures from asymptomatic individuals pinpointing a tissue-specific regulation. Evidence for strong PLS3 accumulation in shaft and rim of growth cones in MN cultures from asymptomatic individuals implies an important role in neuromuscular synapse formation and maintenance. These findings provide strong evidence that PLS3 is a genuine SMA protective modifier.
Collapse
Affiliation(s)
- Ludwig Heesen
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Laura Torres-Benito
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
| | - Kristina Hupperich
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Kristina Dobrindt
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Johannes Jungverdorben
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Swetlana Ritzenhofen
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Beatrice Weykopf
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Daniela Eckert
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Seyyed Mohsen Hosseini-Barkooie
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
| | - Markus Storbeck
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
| | - Noemi Fusaki
- Keio University School of Medicine and JST PRESTO, Tokyo, Japan
| | - Renata Lonigro
- Department of Biological and Medical Sciences, University of Udine, Udine, Italy
- Institute of Clinical Pathology, A. O. U, Udine, Italy
| | - Raoul Heller
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
| | - Min Jeong Kye
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany.
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| |
Collapse
|
25
|
Spitalieri P, Talarico VR, Murdocca M, Novelli G, Sangiuolo F. Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J Stem Cells 2016; 8:118-35. [PMID: 27114745 PMCID: PMC4835672 DOI: 10.4252/wjsc.v8.i4.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/21/2016] [Accepted: 02/14/2016] [Indexed: 02/06/2023] Open
Abstract
Recent and advanced protocols are now available to derive human induced pluripotent stem cells (hiPSCs) from patients affected by genetic diseases. No curative treatments are available for many of these diseases; thus, hiPSCs represent a major impact on patient' health. hiPSCs represent a valid model for the in vitro study of monogenic diseases, together with a better comprehension of the pathogenic mechanisms of the pathology, for both cell and gene therapy protocol applications. Moreover, these pluripotent cells represent a good opportunity to test innovative pharmacological treatments focused on evaluating the efficacy and toxicity of novel drugs. Today, innovative gene therapy protocols, especially gene editing-based, are being developed, allowing the use of these cells not only as in vitro disease models but also as an unlimited source of cells useful for tissue regeneration and regenerative medicine, eluding ethical and immune rejection problems. In this review, we will provide an up-to-date of modelling monogenic disease by using hiPSCs and the ultimate applications of these in vitro models for cell therapy. We consider and summarize some peculiar aspects such as the type of parental cells used for reprogramming, the methods currently used to induce the transcription of the reprogramming factors, and the type of iPSC-derived differentiated cells, relating them to the genetic basis of diseases and to their inheritance model.
Collapse
Affiliation(s)
- Paola Spitalieri
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Valentina Rosa Talarico
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Michela Murdocca
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Giuseppe Novelli
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Federica Sangiuolo
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
26
|
Zeltner N, Studer L. Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr Opin Cell Biol 2015; 37:102-10. [PMID: 26629748 DOI: 10.1016/j.ceb.2015.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/18/2015] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) can yield unlimited numbers of patient-specific cells of any type and may be an important tool in efforts to overcome current shortcomings in biomedical research. In vitro disease models based on the use of hiPSCs have been proposed for various applications. Those include drug discovery and validation, efficacy, safety and toxicity assays, the elucidation of previously unknown disease mechanisms, the enhancement of animal based assays, the promise of conducting clinical trials in the dish and the identification of cell types and stages suitable for cell replacement therapies. Here, we provide an overview of the current state of hiPSC-based disease modeling and discuss recent progress and remaining challenges on the road to realizing the full potential of this novel technology.
Collapse
Affiliation(s)
- Nadja Zeltner
- Developmental Biology, Sloan Kettering Institute, New York, USA; Center for Stem Cell Biology, Sloan Kettering Institute, New York, USA
| | - Lorenz Studer
- Developmental Biology, Sloan Kettering Institute, New York, USA; Center for Stem Cell Biology, Sloan Kettering Institute, New York, USA.
| |
Collapse
|
27
|
Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 2015; 14:681-92. [PMID: 26391880 DOI: 10.1038/nrd4738] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pluripotent stem cells (PSCs) hold great promise for drug discovery and regenerative medicine owing to their ability to differentiate into any cell type in the body. After more than three decades of research, including delays due to the potential tumorigenicity of PSCs and inefficiencies in differentiation methods, the field is at a turning point, with a number of clinical trials across the globe now testing PSC-derived products in humans. Ocular diseases dominate these first-in-man trials, and Phase l/ll results are showing promising safety data as well as possible efficacy. In addition, the advent of induced PSC (iPSC) technology is enabling the development of a wide range of cell-based disease models from genetically predisposed patients, thereby facilitating drug discovery. In this Review, we discuss the recent progress and remaining challenges for the use of PSCs in regenerative medicine and drug development.
Collapse
Affiliation(s)
- Erin A Kimbrel
- Ocata Therapeutics, 33 Locke Drive, Marlborough, Massachusetts 01752, USA
| | - Robert Lanza
- Ocata Therapeutics, 33 Locke Drive, Marlborough, Massachusetts 01752, USA
| |
Collapse
|
28
|
Wertz MH, Sahin M. Developing therapies for spinal muscular atrophy. Ann N Y Acad Sci 2015; 1366:5-19. [PMID: 26173388 DOI: 10.1111/nyas.12813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy is an autosomal-recessive pediatric neurodegenerative disease characterized by loss of spinal motor neurons. It is caused by mutation in the gene survival of motor neuron 1 (SMN1), leading to loss of function of the full-length SMN protein. SMN has a number of functions in neurons, including RNA splicing and snRNP biogenesis in the nucleus, and RNA trafficking in neurites. The expression level of full-length SMN protein from the SMN2 locus modifies disease severity. Increasing full-length SMN protein by a small amount can lead to significant improvements in the neurological phenotype. Currently available interventions for spinal muscular atrophy patients are physical therapy and orthopedic, nutritional, and pulmonary interventions; these are palliative or supportive measures and do not address the etiology of the disease. In the past decade, there has been a push for developing therapeutics to improve motor phenotypes and increase life span of spinal muscular atrophy patients. These therapies are aimed primarily at restoration of full-length SMN protein levels, but other neuroprotective treatments have been investigated as well. Here, we discuss recent advances in basic and clinical studies toward finding safe and effective treatments of spinal muscular atrophy using gene therapy, antisense oligonucleotides, and other small molecule modulators of SMN expression.
Collapse
Affiliation(s)
- Mary H Wertz
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Wirth B, Barkats M, Martinat C, Sendtner M, Gillingwater TH. Moving towards treatments for spinal muscular atrophy: hopes and limits. Expert Opin Emerg Drugs 2015; 20:353-6. [PMID: 25920617 DOI: 10.1517/14728214.2015.1041375] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Spinal muscular atrophy (SMA), one of the most frequent and devastating genetic disorders causing neuromuscular degeneration, has reached the forefront of clinical translation. The quite unique genetic situation of SMA patients, who lack functional SMN1 but carry the misspliced SMN2 copy gene, creates the possibility of correcting SMN2 splicing by antisense oligonucleotides or drugs. Both strategies showed impressive results in pre-clinical trials and are now in Phase II-III clinical trials. SMN gene therapy approaches using AAV9-SMN vectors are also highly promising and have entered a Phase I clinical trial. However, careful analysis of SMA animal models and patients has revealed some limitations that need to be taken very seriously, including: i) a limited time-window for successful therapy delivery, making neonatal screening of SMA mandatory; ii) multi-organ impairment, requiring systemic delivery of therapies; and iii) a potential need for combined therapies that both increase SMN levels and target pathways that preserve/rescue motor neuron function over the lifespan. Meeting these challenges will likely be crucial to cure SMA, instead of only ameliorating symptoms, particularly in its most severe form. This review discusses therapies currently in clinical trials, the hopes for SMA therapy, and the potential limitations of these new approaches.
Collapse
Affiliation(s)
- Brunhilde Wirth
- a 1 University of Cologne, Institute of Human Genetics, Institute for Genetics, Center for Molecular Medicine Cologne , Kerpener Street 34, 50931 Cologne, Germany +49 221 478 86464 ; +49 221 478 86465 ;
| | | | | | | | | |
Collapse
|
30
|
Renusch SR, Harshman S, Pi H, Workman E, Wehr A, Li X, Prior TW, Elsheikh BH, Swoboda KJ, Simard LR, Kissel JT, Battle D, Parthun MR, Freitas MA, Kolb SJ. Spinal Muscular Atrophy Biomarker Measurements from Blood Samples in a Clinical Trial of Valproic Acid in Ambulatory Adults. J Neuromuscul Dis 2015; 2:119-130. [PMID: 27858735 PMCID: PMC5271431 DOI: 10.3233/jnd-150081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Clinical trials of therapies for spinal muscular atrophy (SMA) that are designed to increase the expression the SMN protein ideally include careful assessment of relevant SMN biomarkers. Objective: In the SMA VALIANT trial, a recent double-blind placebo-controlled crossover study of valproic acid (VPA) in ambulatory adult subjects with SMA, we investigated relevant pharmacodynamic biomarkers in blood samples from SMA subjects by direct longitudinal measurement of histone acetylation and SMN mRNA and protein levels in the presence and absence of VPA treatment. Methods: Thirty-three subjects were randomized to either VPA or placebo for the first 6 months followed by crossover to the opposite arm for an additional 6 months. Outcome measures were compared between the two treatments (VPA and placebo) using a standard crossover analysis. Results: A significant increase in histone H4 acetylation was observed with VPA treatment (p = 0.005). There was insufficient evidence to suggest a treatment effect with either full length or truncated SMN mRNA transcript levels or SMN protein levels. Conclusions: These measures were consistent with the observed lack of change in the primary clinical outcome measure in the VALIANT trial. These results also highlight the added benefit of molecular and pharmacodynamic biomarker measurements in the interpretation of clinical trial outcomes.
Collapse
Affiliation(s)
- Samantha R Renusch
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sean Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hongyang Pi
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eileen Workman
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Allison Wehr
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaobai Li
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thomas W Prior
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bakri H Elsheikh
- Department of Neurology, Dhahran Medical Center, Dhahran, Saudi Arabia
| | - Kathryn J Swoboda
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Louise R Simard
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John T Kissel
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel Battle
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mark R Parthun
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael A Freitas
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
31
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
32
|
Kaczmarek A, Schneider S, Wirth B, Riessland M. Investigational therapies for the treatment of spinal muscular atrophy. Expert Opin Investig Drugs 2015; 24:867-81. [DOI: 10.1517/13543784.2015.1038341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anna Kaczmarek
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Svenja Schneider
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Brunhilde Wirth
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Markus Riessland
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
33
|
Corti S, Faravelli I, Cardano M, Conti L. Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery. Expert Opin Drug Discov 2015; 10:615-29. [PMID: 25891144 DOI: 10.1517/17460441.2015.1037737] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Although intensive efforts have been made, effective treatments for neurodegenerative and neurodevelopmental diseases have not been yet discovered. Possible reasons for this include the lack of appropriate disease models of human neurons and a limited understanding of the etiological and neurobiological mechanisms. Recent advances in pluripotent stem cell (PSC) research have now opened the path to the generation of induced pluripotent stem cells (iPSCs) starting from somatic cells, thus offering an unlimited source of patient-specific disease-relevant neuronal cells. AREAS COVERED In this review, the authors focus on the use of human PSC-derived cells in modeling neurological disorders and discovering of new drugs and provide their expert perspectives on the field. EXPERT OPINION The advent of human iPSC-based disease models has fuelled renewed enthusiasm and enormous expectations for insights of disease mechanisms and identification of more disease-relevant and novel molecular targets. Human PSCs offer a unique tool that is being profitably exploited for high-throughput screening (HTS) platforms. This process can lead to the identification and optimization of molecules/drugs and thus move forward new pharmacological therapies for a wide range of neurodegenerative and neurodevelopmental conditions. It is predicted that improvements in the production of mature neuronal subtypes, from patient-specific human-induced pluripotent stem cells and their adaptation to culture, to HTS platforms will allow the increased exploitation of human pluripotent stem cells in drug discovery programs.
Collapse
Affiliation(s)
- Stefania Corti
- University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico , via Francesco Sforza 35, Milan 20122 , Italy +39 02 55033817 ;
| | | | | | | |
Collapse
|
34
|
Abstract
Integration of physiologically relevant in vitro assays at the earliest stages of drug discovery may improve the likelihood of successfully translating preclinical discoveries to the clinic. Assays based on in vitro-differentiated, human pluripotent stem cell (IVD hPSC)-derived cells, which may better model human physiology, are starting to impact the drug discovery process, but their implementation has been slower than originally anticipated. In this Perspective, we discuss imperatives for incorporating IVD hPSCs into drug discovery and the associated challenges.
Collapse
Affiliation(s)
- Sandra J Engle
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | | |
Collapse
|
35
|
Pluripotent stem cell-based models of spinal muscular atrophy. Mol Cell Neurosci 2014; 64:44-50. [PMID: 25511182 DOI: 10.1016/j.mcn.2014.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Motor neuron diseases, as the vast majority of neurodegenerative disorders in humans, are incurable conditions that are challenging to study in vitro, owing to the obstacles in obtaining the cell types majorly involved in the pathogenesis. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, have opened up the possibility of generating a substantial amount of disease-specific neuronal cells, including motor neurons and glial cells. The present review analyzes the practical implications of iPSCs, generated from fibroblasts of patients affected by spinal muscular atrophy (SMA), and discusses the challenges in the development and optimization of in vitro disease models. Research on patient-derived disease-specific cells may shed light on the pathological processes behind neuronal dysfunction and death in SMA, thus providing new insights for the development of novel effective therapies.
Collapse
|
36
|
Faravelli I, Frattini E, Ramirez A, Stuppia G, Nizzardo M, Corti S. iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development. J Clin Med 2014; 3:1124-45. [PMID: 26237595 PMCID: PMC4470174 DOI: 10.3390/jcm3041124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022] Open
Abstract
Motor neuron diseases (MNDs) are neuromuscular disorders affecting rather exclusively upper motor neurons (UMNs) and/or lower motor neurons (LMNs). The clinical phenotype is characterized by muscular weakness and atrophy leading to paralysis and almost invariably death due to respiratory failure. Adult MNDs include sporadic and familial amyotrophic lateral sclerosis (sALS-fALS), while the most common infantile MND is represented by spinal muscular atrophy (SMA). No effective treatment is ccurrently available for MNDs, as for the vast majority of neurodegenerative disorders, and cures are limited to supportive care and symptom relief. The lack of a deep understanding of MND pathogenesis accounts for the difficulties in finding a cure, together with the scarcity of reliable in vitro models. Recent progresses in stem cell field, in particular in the generation of induced Pluripotent Stem Cells (iPSCs) has made possible for the first time obtaining substantial amounts of human cells to recapitulate in vitro some of the key pathogenetic processes underlying MNDs. In the present review, recently published studies involving the use of iPSCs to unravel aspects of ALS and SMA pathogenesis are discussed with an overview of their implications in the process of finding a cure for these still orphan disorders.
Collapse
Affiliation(s)
- Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy.
| | - Emanuele Frattini
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy.
| | - Agnese Ramirez
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy.
| | - Giulia Stuppia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy.
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy.
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
37
|
Valproate Treatment in an ALS Patient Carrying a c.194G>A Spastin Mutation and SMN2 Homozygous Deletion. Case Rep Neurol Med 2014; 2014:216094. [PMID: 25143843 PMCID: PMC4124810 DOI: 10.1155/2014/216094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/25/2014] [Accepted: 06/29/2014] [Indexed: 01/22/2023] Open
Abstract
Here we report the case of an ALS patient found to carry both a novel heterozygous change (c.194G>A) within the spastin gene and a homozygous deletion of the SMN2 gene. The patient was started on valproic acid (VPA, 600 mg/die per os) considering the capacity of this drug of increasing survival motor neuron through an epigenetic mechanism. Patient clinical course and molecular effects of VPA on skin fibroblasts obtained from the proband are described. This c.194G>A spastin mutation might expand the previously known borders of type 4 spastic paraplegia (SPG4) and we suggest the intriguing possibility that the absence of SMN2 might have acted as a contributory risk factor for starting lower motor neuron damage. Exploring the relationship genocopy-phenocopy in selected ALS patients might represent an interesting strategy for understanding its clinical variability.
Collapse
|
38
|
Naturally occurring plant polyphenols as potential therapies for inherited neuromuscular diseases. Future Med Chem 2014; 5:2091-101. [PMID: 24215348 DOI: 10.4155/fmc.13.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There are several lines of laboratory-based evidence emerging to suggest that purified polyphenol compounds such as resveratrol, found naturally in red grapes, epigallocatechin galate from green tea and curcumin from turmeric, might be useful for the treatment of various inherited neuromuscular diseases, including spinal muscular atrophy, Duchenne muscular dystrophy and Charcot-Marie-Tooth disease. Here, we critically examine the scientific evidence related to the known molecular effects that these polyphenols have on different models of inherited neuromuscular disease, with particular attention to problems with the validity of in vitro evidence. We also present proteomic evidence that polyphenols have in vitro effects on cells related to metal ion chelation in cell-culture media. Although their precise mechanisms of action remain somewhat elusive, polyphenols could be an attractive approach to therapy for inherited neuromuscular disease, especially since they may be safer to use on young children, compared with some of the other drug candidates.
Collapse
|
39
|
Adami R, Scesa G, Bottai D. Stem cell transplantation in neurological diseases: improving effectiveness in animal models. Front Cell Dev Biol 2014; 2:17. [PMID: 25364724 PMCID: PMC4206985 DOI: 10.3389/fcell.2014.00017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/22/2014] [Indexed: 12/14/2022] Open
Abstract
Neurological diseases afflict a growing proportion of the human population. There are two reasons for this: first, the average age of the population (especially in the industrialized world) is increasing, and second, the diagnostic tools to detect these pathologies are now more sophisticated and can be used on a higher percentage of the population. In many cases, neurological disease has a pharmacological treatment which, as in the case of Alzheimer's disease, Parkinson's disease, Epilepsy, and Multiple Sclerosis can reduce the symptoms and slow down the course of the disease but cannot reverse its effects or heal the patient. In the last two decades the transplantation approach, by means of stem cells of different origin, has been suggested for the treatment of neurological diseases. The choice of slightly different animal models and the differences in methods of stem cell preparation make it difficult to compare the results of transplantation experiments. Moreover, the translation of these results into clinical trials with human subjects is difficult and has so far met with little success. This review seeks to discuss the reasons for these difficulties by considering the differences between human and animal cells (including isolation, handling and transplantation) and between the human disease model and the animal disease model.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Science, Faculty of Medicine, University of Milan Milan, Italy
| | - Giuseppe Scesa
- Department of Health Science, Faculty of Medicine, University of Milan Milan, Italy
| | - Daniele Bottai
- Department of Health Science, Faculty of Medicine, University of Milan Milan, Italy
| |
Collapse
|
40
|
Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. EMBO J 2014; 33:409-17. [PMID: 24500035 DOI: 10.1002/embj.201387098] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The induced pluripotent stem cell (iPSC) technology is instrumental in advancing the fields of disease modeling and cell transplantation. We herein discuss the various issues regarding disease modeling and cell transplantation presented in previous reports, and also describe new iPSC-based medicine including iPSC clinical trials. In such trials, iPSCs from patients can be used to predict drug responders/non-responders by analyzing the efficacy of the drug on iPSC-derived cells. They could also be used to stratify patients after actual clinical trials, including those with sporadic diseases, based on the drug responsiveness of each patient in the clinical trials. iPSC-derived cells can be used for the identification of response markers, leading to increased success rates in such trials. Since iPSCs can be used in micromedicine for drug discovery, and in macromedicine for actual clinical trials, their use would tightly connect both micro- and macromedicine. The use of iPSCs in disease modeling, cell transplantation, and clinical trials could therefore lead to significant changes in the future of medicine.
Collapse
Affiliation(s)
- Haruhisa Inoue
- Center for iPS Cell Research and Application(CiRA), Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
41
|
Roberts JM, Ennajdaoui H, Edmondson C, Wirth B, Sanford J, Chen B. Splicing factor TRA2B is required for neural progenitor survival. J Comp Neurol 2014; 522:372-92. [PMID: 23818142 PMCID: PMC3855887 DOI: 10.1002/cne.23405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023]
Abstract
Alternative splicing of pre-mRNAs can rapidly regulate the expression of large groups of proteins. The RNA binding protein TRA2B (SFRS10) plays well-established roles in developmentally regulated alternative splicing during Drosophila sexual differentiation. TRA2B is also essential for mammalian embryogenesis and is implicated in numerous human diseases. Precise regulation of alternative splicing is critical to the development and function of the central nervous system; however, the requirements for specific splicing factors in neurogenesis are poorly understood. This study focuses on the role of TRA2B in mammalian brain development. We show that, during murine cortical neurogenesis, TRA2B is expressed in both neural progenitors and cortical projection neurons. Using cortex-specific Tra2b mutant mice, we show that TRA2B depletion results in apoptosis of the neural progenitor cells as well as disorganization of the cortical plate. Thus, TRA2B is essential for proper development of the cerebral cortex.
Collapse
Affiliation(s)
- Jacqueline M Roberts
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Hanane Ennajdaoui
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Carina Edmondson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany
| | - Jeremy Sanford
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
42
|
Nurputra DK, Lai PS, Harahap NIF, Morikawa S, Yamamoto T, Nishimura N, Kubo Y, Takeuchi A, Saito T, Takeshima Y, Tohyama Y, Tay SKH, Low PS, Saito K, Nishio H. Spinal muscular atrophy: from gene discovery to clinical trials. Ann Hum Genet 2013; 77:435-63. [PMID: 23879295 DOI: 10.1111/ahg.12031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/26/2013] [Indexed: 12/25/2022]
Abstract
Spinal muscular atrophy (SMA) is a common neuromuscular disorder with autosomal recessive inheritance, resulting in the degeneration of motor neurons. The incidence of the disease has been estimated at 1 in 6000-10,000 newborns with a carrier frequency of 1 in 40-60. SMA is caused by mutations of the SMN1 gene, located on chromosome 5q13. The gene product, survival motor neuron (SMN) plays critical roles in a variety of cellular activities. SMN2, a homologue of SMN1, is retained in all SMA patients and generates low levels of SMN, but does not compensate for the mutated SMN1. Genetic analysis demonstrates the presence of homozygous deletion of SMN1 in most patients, and allows screening of heterozygous carriers in affected families. Considering high incidence of carrier frequency in SMA, population-wide newborn and carrier screening has been proposed. Although no effective treatment is currently available, some treatment strategies have already been developed based on the molecular pathophysiology of this disease. Current treatment strategies can be classified into three major groups: SMN2-targeting, SMN1-introduction, and non-SMN targeting. Here, we provide a comprehensive and up-to-date review integrating advances in molecular pathophysiology and diagnostic testing with therapeutic developments for this disease including promising candidates from recent clinical trials.
Collapse
Affiliation(s)
- Dian K Nurputra
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wirth B, Garbes L, Riessland M. How genetic modifiers influence the phenotype of spinal muscular atrophy and suggest future therapeutic approaches. Curr Opin Genet Dev 2013; 23:330-8. [PMID: 23602330 DOI: 10.1016/j.gde.2013.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/26/2013] [Accepted: 03/18/2013] [Indexed: 01/06/2023]
Abstract
Both complex disorders and monogenetic diseases are often modulated in their phenotype by further genetic, epigenetic or extrinsic factors. This gives rise to extensive phenotypic variability and potentially protection from disease manifestations, known as incomplete penetrance. Approaches including whole transcriptome, exome, genome, methylome or proteome analyses of highly discordant phenotypes in a few individuals harboring mutations at the same locus can help to identify these modifiers. This review describes the complexity of modifying factors of one of the most frequent autosomal recessively inherited disorders in humans, spinal muscular atrophy (SMA). We will outline how this knowledge contributes to understanding of the regulatory networks and molecular pathology of SMA and how this knowledge will influence future approaches to therapies.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|