1
|
Ramesh V, Tsoukala E, Kougianou I, Kozic Z, Burr K, Viswanath B, Hampton D, Story D, Reddy BK, Pal R, Dando O, Kind PC, Chattarji S, Selvaraj BT, Chandran S, Zoupi L. The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes. Glia 2025; 73:1203-1220. [PMID: 39928301 PMCID: PMC12012330 DOI: 10.1002/glia.24680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The Fragile X Messenger Ribonucleoprotein (FMRP) is an RNA binding protein that regulates the translation of multiple mRNAs and is expressed by neurons and glia in the mammalian brain. Loss of FMRP leads to fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. While most research has been focusing on the neuronal contribution to FXS pathophysiology, the role of glia, particularly oligodendrocytes, is largely unknown. FXS individuals are characterized by white matter changes, which imply impairments in oligodendrocyte differentiation and myelination. We hypothesized that FMRP regulates oligodendrocyte maturation and myelination during postnatal development. Using a combination of human pluripotent stem cell-derived oligodendrocytes and an Fmr1 knockout rat model, we studied the role of FMRP on mammalian oligodendrocyte development. We found that the loss of FMRP leads to shared defects in oligodendrocyte morphology in both rat and human systems in vitro, which persist in the presence of FMRP-expressing axons in chimeric engraftment models. Our findings point to species-conserved, cell-autonomous defects during oligodendrocyte maturation in FXS.
Collapse
|
2
|
Gouveia FV, Germann J, Ibrahim GM. Brain network alterations in fragile X syndrome. Neurosci Biobehav Rev 2025; 172:106101. [PMID: 40074163 DOI: 10.1016/j.neubiorev.2025.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Fragile X syndrome (FXS), caused by FMR1 gene mutations, leads to widespread brain alterations significantly impacting cognition and behaviour. Recent advances have provided a deeper understanding of the neural substrates of FXS. This review provides a comprehensive overview of the current knowledge of neuronal network alterations in FXS. We highlight imaging studies that demonstrate network-level disruptions within resting-state networks, including the default mode network, frontoparietal network, salience network, and basal ganglia network, linked to cognitive, emotional and motor deficits in FXS. Next, we link dysregulated network activity in FXS to molecular studies showing neurometabolic imbalances, particularly in GABAergic and glutamatergic systems. Additionally, gene-brain-behavior correlations are explored with gene expression maps to illustrate regional FMR1 expression patterns tied to clinical symptoms. A graph analysis and meta-analytic mapping further link these dysfunctional networks to the specific symptoms of FXS. We conclude by highlighting gaps in the literature, including the need for greater global collaboration, inclusion of underrepresented populations, and consideration of transdiagnostic effects in future research to advance neuroimaging and therapeutic approaches for FXS.
Collapse
Affiliation(s)
| | - Jürgen Germann
- Division of Brain, Imaging and Behaviour, Krembil Research Institute, University Health Network and University of Toronto, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Neuroscience and Mental Health, The Hospital for Sick Children, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Division of Neurosurgery, The Hospital for Sick Children, Canada
| |
Collapse
|
3
|
Arsenault J, Kong T, Saghian R, Weng OY, Pathak SS, Yang C, Chao OY, Rakhaminov G, Forman-Kay JD, Ditlev JA, Yang YM, Wang LY. Essential lipids enrich membrane-associated condensates to rescue synaptic morpho-functional deficits in a mouse model of autism. Cell Rep 2025; 44:115573. [PMID: 40232934 DOI: 10.1016/j.celrep.2025.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/14/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Synaptic proteins form intracellular condensates with their scaffolds, but it is unknown whether and how essential lipids transform dynamic cytosolic condensates into stable, functional macromolecular assemblies at the membrane. We show that docosahexaenoic acid (DHA), independent of canonical fatty acid receptor 4 signaling, facilitates the re-localization of cytosolic "full-droplet" condensates composed of the key synaptic elements PSD95 and Kv1.2 to the plasma membrane as "half-droplets." To exploit the therapeutic potential of DHA in vivo, we briefly place juvenile wild-type and Fmr1 KO mice, modeling human fragile X syndrome (FXS), under DHA-enriched or -depleted diets. DHA reverses the inhibitory overtone by promoting the re-localization of presynaptic PSD95-Kv1.2 condensates to interneuron terminal membranes and corrects morpho-functional synaptic defects and stereotypic behaviors. These findings reveal an unexpected role of essential lipids in translocating dynamic condensates into stable synaptic condensates, providing long-lasting benefits for rectifying excitation-inhibition imbalance in FXS and potentially other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jason Arsenault
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tian Kong
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rayan Saghian
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Octavia Yifang Weng
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Chengye Yang
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Gaddy Rakhaminov
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathon A Ditlev
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Program in Cell Biology, SickKids Research Institute, Toronto, ON M5G 1X8, Canada.
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA.
| | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
Ozarkar SS, Patel RKR, Vulli T, Friar CA, Burette AC, Philpot BD. Regional analysis of myelin basic protein across postnatal brain development of C57BL/6J mice. Front Neuroanat 2025; 19:1535745. [PMID: 40114847 PMCID: PMC11922784 DOI: 10.3389/fnana.2025.1535745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Healthy brain development hinges on proper myelination, with disruption contributing to a wide array of neurological disorders. Immunohistochemical analysis of myelin basic protein (MBP) is a fundamental technique for investigating myelination and related disorders. However, despite decades of MBP research, detailed accounts of normal MBP progression in the developing mouse brain have been lacking. This study aims to address this gap by providing a detailed spatiotemporal account of MBP distribution across 13 developmental ages from postnatal day 2 to 60. We used an optimized immunohistochemistry protocol to overcome the challenges of myelin's unique lipid-rich composition, enabling more consistent staining across diverse brain structures and developmental stages, offering a robust baseline for typical myelination patterns, and enabling comparisons with pathological models. To support and potentially accelerate research into myelination disorders, we have made >1,400 high-resolution micrographs accessible online under the Creative Commons license.
Collapse
Affiliation(s)
- Siddhi S. Ozarkar
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ridthi K. R. Patel
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tasmai Vulli
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carlee A. Friar
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alain C. Burette
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. Philpot
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Gong H, Lu Y, Deng SL, Lv KY, Luo J, Luo Y, Du ZL, Wu LF, Liu TY, Wang XQ, Zhao JH, Wang L, Xia ML, Zhu DM, Wang LW, Fan XT. Targeting S100A9 attenuates social dysfunction by modulating neuroinflammation and myelination in a mouse model of autism. Pharmacol Res 2025; 211:107568. [PMID: 39733843 DOI: 10.1016/j.phrs.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/15/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Growing evidence supports a role for dysregulated neuroinflammation in autism. However, the underlying mechanisms of microglia-evoked neuroinflammation in the development of autistic phenotypes have not been elucidated. This study aimed to investigate the role and underlying mechanisms of microglial S100 calcium-binding protein A9 (S100A9) in autistic phenotypes. We utilized the BTBR T + tf/J (BTBR) mouse, a reliable preclinical model for autism that displays core behavioral features of autism as well as persistent immune dysregulation. A combination of behavioral, pharmacological, immunological, genetic, molecular, and transcriptomics approaches were used to uncover the potential role of S100A9 in autism. Significant overexpression of microglial S100A9 was observed in the hippocampus of BTBR mice. BTBR mice displayed decreased social communication and increased repetitive behaviors compared to C57BL/6 mice. Interestingly, the above social dysfunction was attenuated by a pharmacological inhibitor of S100A9, accompanied by a significant reduction in the activated microglia morphological phenotype, inflammatory receptors, and proinflammatory cytokines. Notably, S100A9 inhibition decreased c-Fos+ cells and promoted myelination in the cornu ammonis 3 of BTBR mice. Furthermore, the promyelinating compound administration ameliorated the autism-relevant behaviors in BTBR mice. Our findings indicate that microglia-derived S100A9 triggers the neuroinflammation cascade, myelination deficits, and social dysfunction. Targeting S100A9 could, therefore, be a promising therapeutic strategy for neuroinflammation-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yao Lu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 22100, China
| | - Shi-Long Deng
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Nursing Department, The Affiliated Hospital of Southwest Medical University, Sichuan Province, Luzhou 646000, China
| | - Ke-Yi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhu-Lin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Ling-Feng Wu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Battalion 7 of the Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Tian-Yao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Xia-Qing Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing-Hui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Mei-Ling Xia
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dong-Mei Zhu
- Department of Hospital Infection Control, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Hospital Infection Control, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Li-Wei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, China; Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, China.
| | - Xiao-Tang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
6
|
Heine VM, Dooves S. Neuroglia in autism spectrum disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:303-311. [PMID: 40148051 DOI: 10.1016/b978-0-443-19102-2.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication, and repetitive behavior, typically diagnosed during early childhood and attributed to altered neuronal network connectivity. Several genetic and environmental risk factors contribute to ASD, including pre- or early life immune activation, which can trigger microglial and astroglial reactivity, impacting early neurodevelopment. In ASD, astrocytes show altered glutamate metabolism, directly influencing neuronal network activity, while microglia display impaired synaptic pruning, an essential developmental process for the refinement of neuronal connections. Additionally, reduced myelination in specific cortical and subcortical regions may affect brain connectivity in ASD, with white matter integrity correlating with the severity of the disorder, suggesting an important role for oligodendrocytes and myelin in ASD. This chapter provides an overview of current literature on the role of neuroglia cells in ASD, with a focus on immune activation, glutamate signaling, synaptic pruning, and myelination.
Collapse
Affiliation(s)
- Vivi M Heine
- Department of Child and Adolescence Psychiatry, Emma Center for Personalized Medicine, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Stephanie Dooves
- Department of Child and Adolescence Psychiatry, Emma Center for Personalized Medicine, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Juárez JCC, Gómez AA, Díaz AES, Arévalo GS. Understanding pathophysiology in fragile X syndrome: a comprehensive review. Neurogenetics 2024; 26:6. [PMID: 39585476 DOI: 10.1007/s10048-024-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Fragile X syndrome (FXS) is the leading hereditary cause of intellectual disability and the most commonly associated genetic cause of autism. Historically, research into its pathophysiology has focused predominantly on neurons; however, emerging evidence suggests involvement of additional cell types and systems. The objective of this study was to review and synthesize current evidence regarding the pathophysiology of Fragile X syndrome. A comprehensive literature review was conducted using databases such as PubMed and Google Scholar, employing MeSH terms including "Fragile X Syndrome," "FMR1 gene," and "FMRP." Studies on both human and animal models, from inception to 2022, published in recognized journals were included. The evidence supports those neurons, glial cells, stem cells, the immune system, and lipid metabolism pathways contribute to the pathophysiology of Fragile X syndrome. Further research is necessary to explore these fields independently and to elucidate their interactions.
Collapse
Affiliation(s)
| | - Alejandro Aguilar Gómez
- Faculty of Medical Sciences, Universidad of San Carlos of Guatemala, Guatemala City, Guatemala
| | | | - Gabriel Silva Arévalo
- Genetics and Metabolic Clinic Coordinator, Hospital Obras Sociales del Santo Hermano Pedro, Antigua Guatemala City, Guatemala
| |
Collapse
|
8
|
Yenkoyan K, Grigoryan A, Kutna V, Shorter S, O'Leary VB, Asadollahi R, Ovsepian SV. Cerebellar impairments in genetic models of autism spectrum disorders: A neurobiological perspective. Prog Neurobiol 2024; 242:102685. [PMID: 39515458 DOI: 10.1016/j.pneurobio.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive. Studies in experimental animals have been critical in uncovering molecular pathology and neuro-behavioural correlates, providing a model for investigating complex disease conditions. Herein, we review commonalities and differences of the most extensively characterised genetic lines of ASD with reference to the cerebellum. We revisit structural, functional, and molecular alterations which may contribute to neurobehavioral phenotypes. The cross-model analysis of this study provides an integrated outlook on the role of cerebellar alterations in pathobiology of ASD that may benefit future translational research and development of therapies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia.
| | - Artem Grigoryan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia
| | - Viera Kutna
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10000, Czech Republic
| | - Reza Asadollahi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom.
| |
Collapse
|
9
|
Kim N, Bonnycastle K, Kind PC, Cousin MA. Delayed recruitment of activity-dependent bulk endocytosis in Fmr1 knockout neurons. J Neurochem 2024; 168:3019-3033. [PMID: 38978454 DOI: 10.1111/jnc.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The presynapse performs an essential role in brain communication via the activity-dependent release of neurotransmitters. However, the sequence of events through which a presynapse acquires functionality is relatively poorly understood, which is surprising, since mutations in genes essential for its operation are heavily implicated in neurodevelopmental disorders. We addressed this gap in knowledge by determining the developmental trajectory of synaptic vesicle (SV) recycling pathways in primary cultures of rat hippocampal neurons. Exploiting a series of optical and morphological assays, we revealed that the majority of nerve terminals displayed activity-dependent calcium influx from 3 days in vitro (DIV), immediately followed by functional evoked exocytosis and endocytosis, although the number of responsive nerve terminals continued to increase until the second week in vitro. However, the most intriguing discovery was that activity-dependent bulk endocytosis (ADBE) was only observed from DIV 14 onwards. Importantly, optimal ADBE recruitment was delayed until DIV 21 in Fmr1 knockout neurons, which model Fragile X Syndrome (FXS). This implicates the delayed recruitment of ADBE as a potential contributing factor in the development of circuit dysfunction in FXS, and potentially other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nawon Kim
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - Katherine Bonnycastle
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Hourani S, Pouladi MA. Oligodendroglia and myelin pathology in fragile X syndrome. J Neurochem 2024; 168:2214-2226. [PMID: 38898700 DOI: 10.1111/jnc.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Studies of the pathophysiology of fragile X syndrome (FXS) have predominantly focused on synaptic and neuronal disruptions in the disease. However, emerging studies highlight the consistency of white matter abnormalities in the disorder. Recent investigations using animal models of FXS have suggested a role for the fragile X translational regulator 1 protein (FMRP) in the development and function of oligodendrocytes, the myelinating cells of the central nervous system. These studies are starting to uncover FMRP's involvement in the regulation of myelin-related genes, such as myelin basic protein, and its influence on the maturation and functionality of oligodendrocyte precursor cells and oligodendrocytes. Here, we consider evidence of white matter abnormalities in FXS, review our current understanding of FMRP's role in oligodendrocyte development and function, and highlight gaps in our knowledge of the pathogenic mechanisms that may contribute to white matter abnormalities in FXS. Addressing these gaps may help identify new therapeutic strategies aimed at enhancing outcomes for individuals affected by FXS.
Collapse
Affiliation(s)
- Shaima Hourani
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Kim JH, Bae HG, Wu WC, Nip K, Gould E. SCN2A-linked myelination deficits and synaptic plasticity alterations drive auditory processing disorders in ASD. RESEARCH SQUARE 2024:rs.3.rs-4925935. [PMID: 39257993 PMCID: PMC11384822 DOI: 10.21203/rs.3.rs-4925935/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by complex sensory processing deficits. A key unresolved question is how alterations in neural connectivity and communication translate into the behavioral manifestations seen in ASD. Here, we investigate how oligodendrocyte dysfunction alters myelin plasticity and neuronal activity, leading to auditory processing disorder associated with ASD. We focus on the SCN2A gene, an ASD-risk factor, to understand its role in myelination and neural processing within the auditory nervous system. Through transcriptional profiling, we identified alterations in the expression of myelin-associated genes in Scn2a conditional knockout mice, highlighting the cellular consequences engendered by Scn2a deletion in oligodendrocytes. The results reveal a nuanced interplay between oligodendrocytes and axons, where Scn2a deletion causes alterations in the intricate process of myelination. This disruption instigates changes in axonal properties, presynaptic excitability, and synaptic plasticity at the single cell level. Furthermore, oligodendrocyte-specific Scn2a deletion compromises the integrity of neural circuitry within auditory pathways, leading to auditory hypersensitivity. Our findings reveal a novel pathway linking myelin deficits to synaptic activity and sensory abnormalities in ASD.
Collapse
|
12
|
D'Antoni S, Spatuzza M, Bonaccorso CM, Catania MV. Role of fragile X messenger ribonucleoprotein 1 in the pathophysiology of brain disorders: a glia perspective. Neurosci Biobehav Rev 2024; 162:105731. [PMID: 38763180 DOI: 10.1016/j.neubiorev.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Fragile X messenger ribonucleoprotein 1 (FMRP) is a widely expressed RNA binding protein involved in several steps of mRNA metabolism. Mutations in the FMR1 gene encoding FMRP are responsible for fragile X syndrome (FXS), a leading genetic cause of intellectual disability and autism spectrum disorder, and fragile X-associated tremor-ataxia syndrome (FXTAS), a neurodegenerative disorder in aging men. Although FMRP is mainly expressed in neurons, it is also present in glial cells and its deficiency or altered expression can affect functions of glial cells with implications for the pathophysiology of brain disorders. The present review focuses on recent advances on the role of glial subtypes, astrocytes, oligodendrocytes and microglia, in the pathophysiology of FXS and FXTAS, and describes how the absence or reduced expression of FMRP in these cells can impact on glial and neuronal functions. We will also briefly address the role of FMRP in radial glial cells and its effects on neural development, and gliomas and will speculate on the role of glial FMRP in other brain disorders.
Collapse
Affiliation(s)
- S D'Antoni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - M Spatuzza
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - C M Bonaccorso
- Oasi Research Institute - IRCCS, via Conte Ruggero 73, Troina 94018, Italy
| | - M V Catania
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
13
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg KJ, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome analysis identifies an ASD-Like phenotype in oligodendrocytes and microglia from C58/J amygdala that is dependent on sex and sociability. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:14. [PMID: 38898502 PMCID: PMC11188533 DOI: 10.1186/s12993-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
Affiliation(s)
- George D Dalton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | | | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheryl S Moy
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Molecular Genetics and Microbiology Duke Molecular Physiology Institute, 300 N. Duke Street, DUMC 104775, Durham, NC, 27701, USA.
| |
Collapse
|
14
|
Zhang W, Tariq M, Roy B, Shen J, Khan A, Altaf Malik N, He S, Baig SM, Fang X, Zhang J. Whole exome sequencing identified a homozygous novel variant in DOP1A gene in the Pakistan family with neurodevelopmental disabilities: case report and literature review. Front Genet 2024; 15:1351710. [PMID: 38818041 PMCID: PMC11137318 DOI: 10.3389/fgene.2024.1351710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Background Hereditary neurodevelopmental disorders (NDDs) are prevalent in poorly prognostic pediatric diseases, but the pathogenesis of NDDs is still unclear. Irregular myelination could be one of the possible causes of NDDs. Case presentation Here, whole exome sequencing was carried out for a consanguineous Pakistani family with NDDs to identify disease-associated variants. The co-segregation of candidate variants in the family was validated using Sanger sequencing. The potential impact of the gene on NDDs has been supported by conservation analysis, protein prediction, and expression analysis. A novel homozygous variant DOP1A(NM_001385863.1):c.2561A>G was identified. It was concluded that the missense variant might affect the protein-protein binding sites of the critical MEC interaction region of DOP1A, and DOP1A-MON2 may cause stability deficits in Golgi-endosome protein traffic. Proteolipid protein (PLP) and myelin-associate glycoprotein (MAG) could be targets of the DOP1A-MON2 Golgi-endosome traffic complex, especially during the fetal stage and the early developmental stages. This further supports the perspective that disorganized myelinogenesis due to congenital DOP1A deficiency might cause neurodevelopmental disorders (NDDs). Conclusion Our case study revealed the potential pathway of myelinogenesis-relevant NDDs and identified DOP1A as a potential NDDs-relevant gene in humans.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Genomics, Shenzhen, China
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Bhaskar Roy
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Juan Shen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ayaz Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Sijie He
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang, China
- Clin Lab, BGI Genomics, Shijiazhuang, China
| | - Shahid Mahmood Baig
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Xiaodong Fang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jianguo Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Rokach M, Portioli C, Brahmachari S, Estevão BM, Decuzzi P, Barak B. Tackling myelin deficits in neurodevelopmental disorders using drug delivery systems. Adv Drug Deliv Rev 2024; 207:115218. [PMID: 38403255 DOI: 10.1016/j.addr.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Interest in myelin and its roles in almost all brain functions has been greatly increasing in recent years, leading to countless new studies on myelination, as a dominant process in the development of cognitive functions. Here, we explore the unique role myelin plays in the central nervous system and specifically discuss the results of altered myelination in neurodevelopmental disorders. We present parallel developmental trajectories involving myelination that correlate with the onset of cognitive impairment in neurodevelopmental disorders and discuss the key challenges in the treatment of these chronic disorders. Recent developments in drug repurposing and nano/micro particle-based therapies are reviewed as a possible pathway to circumvent some of the main hurdles associated with early intervention, including patient's adherence and compliance, side effects, relapse, and faster route to possible treatment of these disorders. The strategy of drug encapsulation overcomes drug solubility and metabolism, with the possibility of drug targeting to a specific compartment, reducing side effects upon systemic administration.
Collapse
Affiliation(s)
- May Rokach
- Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Corinne Portioli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Bianca Martins Estevão
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Boaz Barak
- Sagol School of Neuroscience, Tel-Aviv University, Israel; Faculty of Social Sciences, The School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
16
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg K, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome Analysis Identifies An ASD-Like Phenotype In Oligodendrocytes And Microglia From C58/J Amygdala That Is Dependent On Sex and Sociability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575733. [PMID: 38293238 PMCID: PMC10827122 DOI: 10.1101/2024.01.15.575733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. Methods Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. Results C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. Limitations Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its potential as an ASD therapeutic. Conclusions Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
|
17
|
Ma M, Yu Q, Delafield DG, Cui Y, Li Z, Li M, Wu W, Shi X, Westmark PR, Gutierrez A, Ma G, Gao A, Xu M, Xu W, Westmark CJ, Li L. On-Tissue Spatial Proteomics Integrating MALDI-MS Imaging with Shotgun Proteomics Reveals Soy Consumption-Induced Protein Changes in a Fragile X Syndrome Mouse Model. ACS Chem Neurosci 2024; 15:119-133. [PMID: 38109073 PMCID: PMC11127747 DOI: 10.1021/acschemneuro.3c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS), the leading cause of inherited intellectual disability and autism, is caused by the transcriptional silencing of the FMR1 gene, which encodes the fragile X messenger ribonucleoprotein (FMRP). FMRP interacts with numerous brain mRNAs that are involved in synaptic plasticity and implicated in autism spectrum disorders. Our published studies indicate that single-source, soy-based diets are associated with increased seizures and autism. Thus, there is an acute need for an unbiased protein marker identification in FXS in response to soy consumption. Herein, we present a spatial proteomics approach integrating mass spectrometry imaging with label-free proteomics in the FXS mouse model to map the spatial distribution and quantify levels of proteins in the hippocampus and hypothalamus brain regions. In total, 1250 unique peptides were spatially resolved, demonstrating the diverse array of peptidomes present in the tissue slices and the broad coverage of the strategy. A group of proteins that are known to be involved in glycolysis, synaptic transmission, and coexpression network analysis suggest a significant association between soy proteins and metabolic and synaptic processes in the Fmr1KO brain. Ultimately, this spatial proteomics work represents a crucial step toward identifying potential candidate protein markers and novel therapeutic targets for FXS.
Collapse
Affiliation(s)
- Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Daniel G. Delafield
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Xudong Shi
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Pamela R. Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Alejandra Gutierrez
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
- Molecular Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Gui Ma
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Ang Gao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Meng Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
- Molecular Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
18
|
Cao G, Sun C, Shen H, Qu D, Shen C, Lu H. Conditional Deletion of Foxg1 Delayed Myelination during Early Postnatal Brain Development. Int J Mol Sci 2023; 24:13921. [PMID: 37762220 PMCID: PMC10530892 DOI: 10.3390/ijms241813921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
FOXG1 (forkhead box G1) syndrome is a neurodevelopmental disorder caused by variants in the Foxg1 gene that affect brain structure and function. Individuals affected by FOXG1 syndrome frequently exhibit delayed myelination in neuroimaging studies, which may impair the rapid conduction of nerve impulses. To date, the specific effects of FOXG1 on oligodendrocyte lineage progression and myelination during early postnatal development remain unclear. Here, we investigated the effects of Foxg1 deficiency on myelin development in the mouse brain by conditional deletion of Foxg1 in neural progenitors using NestinCreER;Foxg1fl/fl mice and tamoxifen induction at postnatal day 0 (P0). We found that Foxg1 deficiency resulted in a transient delay in myelination, evidenced by decreased myelin formation within the first two weeks after birth, but ultimately recovered to the control levels by P30. We also found that Foxg1 deletion prevented the timely attenuation of platelet-derived growth factor receptor alpha (PDGFRα) signaling and reduced the cell cycle exit of oligodendrocyte precursor cells (OPCs), leading to their excessive proliferation and delayed maturation. Additionally, Foxg1 deletion increased the expression of Hes5, a myelin formation inhibitor, as well as Olig2 and Sox10, two promoters of OPC differentiation. Our results reveal the important role of Foxg1 in myelin development and provide new clues for further exploring the pathological mechanisms of FOXG1 syndrome.
Collapse
Affiliation(s)
- Guangliang Cao
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Congli Sun
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hualin Shen
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Dewei Qu
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Chuanlu Shen
- Department of Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haiqin Lu
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| |
Collapse
|
19
|
Yu X, Wang Y. Peripheral Fragile X messenger ribonucleoprotein is required for the timely closure of a critical period for neuronal susceptibility in the ventral cochlear nucleus. Front Cell Neurosci 2023; 17:1186630. [PMID: 37305436 PMCID: PMC10248243 DOI: 10.3389/fncel.2023.1186630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Alterations in neuronal plasticity and critical periods are common across neurodevelopmental diseases, including Fragile X syndrome (FXS), the leading single-gene cause of autism. Characterized with sensory dysfunction, FXS is the result of gene silencing of Fragile X messenger ribonucleoprotein 1 (FMR1) and loss of its product, Fragile X messenger ribonucleoprotein (FMRP). The mechanisms underlying altered critical period and sensory dysfunction in FXS are obscure. Here, we performed genetic and surgical deprivation of peripheral auditory inputs in wildtype and Fmr1 knockout (KO) mice across ages and investigated the effects of global FMRP loss on deafferentation-induced neuronal changes in the ventral cochlear nucleus (VCN) and auditory brainstem responses. The degree of neuronal cell loss during the critical period was unchanged in Fmr1 KO mice. However, the closure of the critical period was delayed. Importantly, this delay was temporally coincidental with reduced hearing sensitivity, implying an association with sensory inputs. Functional analyses further identified early-onset and long-lasting alterations in signal transmission from the spiral ganglion to the VCN, suggesting a peripheral site of FMRP action. Finally, we generated conditional Fmr1 KO (cKO) mice with selective deletion of FMRP in spiral ganglion but not VCN neurons. cKO mice recapitulated the delay in the VCN critical period closure in Fmr1 KO mice, confirming an involvement of cochlear FMRP in shaping the temporal features of neuronal critical periods in the brain. Together, these results identify a novel peripheral mechanism of neurodevelopmental pathogenesis.
Collapse
Affiliation(s)
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
20
|
Li BZ, Sumera A, Booker SA, McCullagh EA. Current Best Practices for Analysis of Dendritic Spine Morphology and Number in Neurodevelopmental Disorder Research. ACS Chem Neurosci 2023; 14:1561-1572. [PMID: 37070364 PMCID: PMC10161226 DOI: 10.1021/acschemneuro.3c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Quantitative methods for assessing neural anatomy have rapidly evolved in neuroscience and provide important insights into brain health and function. However, as new techniques develop, it is not always clear when and how each may be used to answer specific scientific questions posed. Dendritic spines, which are often indicative of synapse formation and neural plasticity, have been implicated across many brain regions in neurodevelopmental disorders as a marker for neural changes reflecting neural dysfunction or alterations. In this Perspective we highlight several techniques for staining, imaging, and quantifying dendritic spines as well as provide a framework for avoiding potential issues related to pseudoreplication. This framework illustrates how others may apply the most rigorous approaches. We consider the cost-benefit analysis of the varied techniques, recognizing that the most sophisticated equipment may not always be necessary for answering some research questions. Together, we hope this piece will help researchers determine the best strategy toward using the ever-growing number of techniques available to determine neural changes underlying dendritic spine morphology in health and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ben-Zheng Li
- Department
of Physiology and Biophysics, University
of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anna Sumera
- Simons
Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Sam A Booker
- Simons
Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Elizabeth A. McCullagh
- Department
of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
21
|
Saggar M, Bruno JL, Hall SS. Brief intensive social gaze training reorganizes functional brain connectivity in boys with fragile X syndrome. Cereb Cortex 2023; 33:5218-5227. [PMID: 36376964 PMCID: PMC10151883 DOI: 10.1093/cercor/bhac411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Boys with fragile X syndrome (FXS), the leading known genetic cause of autism spectrum disorder (ASD), demonstrate significant impairments in social gaze and associated weaknesses in communication, social interaction, and other areas of adaptive functioning. Little is known, however, concerning the impact of behavioral treatments for these behaviors on functional brain connectivity in this population. As part of a larger study, boys with FXS (mean age 13.23 ± 2.31 years) and comparison boys with ASD (mean age 12.15 ± 2.76 years) received resting-state functional magnetic resonance imaging scans prior to and following social gaze training administered by a trained behavior therapist in our laboratory. Network-agnostic connectome-based predictive modeling of pretreatment resting-state functional connectivity data revealed a set of positive (FXS > ASD) and negative (FXS < ASD) edges that differentiated the groups significantly and consistently across all folds of cross-validation. Following administration of the brief training, the FXS and ASD groups demonstrated reorganization of connectivity differences. The divergence in the spatial pattern of reorganization response, based on functional connectivity differences pretreatment, suggests a unique pattern of response to treatment in the FXS and ASD groups. These results provide further support for implementing targeted behavioral treatments to ameliorate syndrome-specific behavioral features in FXS.
Collapse
Affiliation(s)
- Manish Saggar
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, United States
| | - Jennifer L Bruno
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, United States
| | - Scott S Hall
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, United States
| |
Collapse
|
22
|
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023; 430:108720. [PMID: 36809742 PMCID: PMC9998378 DOI: 10.1016/j.heares.2023.108720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds a selected set of mRNAs and proteins to guide neural circuit assembly and regulate synaptic plasticity. Loss of FMRP is responsible for Fragile X syndrome, a neuropsychiatric disorder characterized with auditory processing problems and social difficulty. FMRP actions in synaptic formation, maturation, and plasticity are site-specific among the four compartments of a synapse: presynaptic and postsynaptic neurons, astrocytes, and extracellular matrix. This review summarizes advancements in understanding FMRP localization, signals, and functional roles in axons and presynaptic terminals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
23
|
Lin J, de Rezende VL, de Aguiar da Costa M, de Oliveira J, Gonçalves CL. Cholesterol metabolism pathway in autism spectrum disorder: From animal models to clinical observations. Pharmacol Biochem Behav 2023; 223:173522. [PMID: 36717034 DOI: 10.1016/j.pbb.2023.173522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/18/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by a persistent impairment of social skills, including aspects of perception, interpretation, and response, combined with restricted and repetitive behavior. ASD is a complex and multifactorial condition, and its etiology could be attributed to genetic and environmental factors. Despite numerous clinical and experimental studies, no etiological factor, biomarker, and specific model of transmission have been consistently associated with ASD. However, an imbalance in cholesterol levels has been observed in many patients, more specifically, a condition of hypocholesterolemia, which seems to be shared between ASD and ASD-related genetic syndromes such as fragile X syndrome (FXS), Rett syndrome (RS), and Smith- Lemli-Opitz (SLO). Furthermore, it is known that alterations in cholesterol levels lead to neuroinflammation, oxidative stress, impaired myelination and synaptogenesis. Thus, the aim of this review is to discuss the cholesterol metabolic pathways in the ASD context, as well as in genetic syndromes related to ASD, through clinical observations and animal models. In fact, SLO, FXS, and RS patients display early behavioral markers of ASD followed by cholesterol disturbances. Several studies have demonstrated the role of cholesterol in psychiatric conditions and how its levels modulate brain neurodevelopment. This review suggests an important relationship between ASD pathology and cholesterol metabolism impairment; thus, some strategies could be raised - at clinical and pre-clinical levels - to explore whether cholesterol metabolism disturbance has a generally adverse effect in exacerbating the symptoms of ASD patients.
Collapse
Affiliation(s)
- Jaime Lin
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jade de Oliveira
- Laboratory for Research in Metabolic Disorders and Neurodegenerative Diseases, Graduate Program in Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
24
|
Physical exercise mediates a cortical FMRP-mTOR pathway to improve resilience against chronic stress in adolescent mice. Transl Psychiatry 2023; 13:16. [PMID: 36658152 PMCID: PMC9852236 DOI: 10.1038/s41398-023-02311-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Aerobic exercise effectively relieves anxiety disorders via modulating neurogenesis and neural activity. The molecular mechanism of exercise-mediated anxiolysis, however, remains incomplete. On a chronic restrain stress (CRS) model in adolescent mice, we showed that 14-day treadmill exercise profoundly maintained normal neural activity and axonal myelination in the medial prefrontal cortex (mPFC), in association with the prevention of anxiety-like behaviors. Further interrogation of molecular mechanisms revealed the activation of the mechanistic target of the rapamycin (mTOR) pathway within mPFC under exercise training. At the upstream of mTOR, exercise-mediated brain RNA methylation inhibited the expression of Fragile X mental retardation protein (FMRP) to activate the mTOR pathway. In summary, treadmill exercise modulates an FMRP-mTOR pathway to maintain cortical neural activity and axonal myelination, contributing to improved stress resilience. These results extended our understanding of the molecular substrate of exercise-mediated anxiolytic effect during adolescent period.
Collapse
|
25
|
Wang X, Fan Q, Yu X, Wang Y. Cellular distribution of the Fragile X mental retardation protein in the inner ear: a developmental and comparative study in the mouse, rat, gerbil, and chicken. J Comp Neurol 2023; 531:149-169. [PMID: 36222577 PMCID: PMC9691623 DOI: 10.1002/cne.25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
The Fragile X mental retardation protein (FMRP) is an mRNA binding protein that is essential for neural circuit assembly and synaptic plasticity. Loss of functional FMRP leads to Fragile X syndrome (FXS), a neurodevelopmental disorder characterized by sensory dysfunction including abnormal auditory processing. While the central mechanisms of FMRP regulation have been studied in the brain, whether FMRP is expressed in the auditory periphery and how it develops and functions remains unknown. In this study, we characterized the spatiotemporal distribution pattern of FMRP immunoreactivity in the inner ear of mice, rats, gerbils, and chickens. Across species, FMRP was expressed in hair cells and supporting cells, with a particularly high level in immature hair cells during the prehearing period. Interestingly, the distribution of cytoplasmic FMRP displayed an age-dependent translocation in hair cells, and this feature was conserved across species. In the auditory ganglion (AG), FMRP immunoreactivity was detected in neuronal cell bodies as well as their peripheral and central processes. Distinct from hair cells, FMRP intensity in AG neurons was high both during development and after maturation. Additionally, FMRP was evident in mature glial cells surrounding AG neurons. Together, these observations demonstrate distinct developmental trajectories across cell types in the auditory periphery. Given the importance of peripheral inputs to the maturation of auditory circuits, these findings implicate involvement of FMRP in inner ear development as well as a potential contribution of periphery FMRP to the generation of auditory dysfunction in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Qiwei Fan
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
26
|
Yang D, Zhao Y, Nie B, An L, Wan X, Wang Y, Wang W, Cai G, Wu S. Progress in magnetic resonance imaging of autism model mice brain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1616. [PMID: 35930672 DOI: 10.1002/wcs.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by social disorder and stereotypical behaviors with an increasing incidence. ASD patients are suffering from varying degrees of mental retardation and language development abnormalities. Magnetic resonance imaging (MRI) is a noninvasive imaging technology to detect brain structural and functional dysfunction in vivo, playing an important role in the early diagnosisbasic research of ASD. High-field, small-animal MRI in basic research of autism model mice has provided a new approach to research the pathogenesis, characteristics, and intervention efficacy in autism. This article reviews MRI studies of mouse models of autism over the past 20 years. Reduced gray matter, abnormal connections of brain networks, and abnormal development of white matter fibers have been demonstrated in these studies, which are present in different proportions in the various mouse models. This provides a more macroscopic view for subsequent research on autism model mice. This article is categorized under: Cognitive Biology > Genes and Environment Neuroscience > Computation Neuroscience > Genes, Molecules, and Cells Neuroscience > Development.
Collapse
Affiliation(s)
- Dingding Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Leiting An
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiangdong Wan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
McCullagh EA, Poleg S, Stich D, Moldovan R, Klug A. Coherent Anti-Stokes Raman Spectroscopy (CARS) Application for Imaging Myelination in Brain Slices. J Vis Exp 2022:10.3791/64013. [PMID: 35938838 PMCID: PMC9484306 DOI: 10.3791/64013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Coherent anti-Stokes Raman spectroscopy (CARS) is a technique classically employed by chemists and physicists to produce a coherent signal of signature vibrations of molecules. However, these vibrational signatures are also characteristic of molecules within anatomical tissue such as the brain, making it increasingly useful and applicable for Neuroscience applications. For example, CARS can measure lipids by specifically exciting chemical bonds within these molecules, allowing for quantification of different aspects of tissue, such as myelin involved in neurotransmission. In addition, compared to other techniques typically used to quantify myelin, CARS can also be set up to be compatible with immunofluorescent techniques, allowing for co-labeling with other markers such as sodium channels or other components of synaptic transmission. Myelination changes are an inherently important mechanism in demyelinating diseases such as multiple sclerosis or other neurological conditions such as Fragile X Syndrome or autism spectrum disorders is an emerging area of research. In conclusion, CARS can be utilized in innovative ways to answer pressing questions in Neuroscience and provide evidence for underlying mechanisms related to many different neurological conditions.
Collapse
Affiliation(s)
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz
| | - Dominik Stich
- Advanced Light Microscopy Core, University of Colorado Anschutz
| | - Radu Moldovan
- Advanced Light Microscopy Core, University of Colorado Anschutz
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz
| |
Collapse
|
28
|
Malara M, Lutz AK, Incearap B, Bauer HF, Cursano S, Volbracht K, Lerner JJ, Pandey R, Delling JP, Ioannidis V, Arévalo AP, von Bernhardi JE, Schön M, Bockmann J, Dimou L, Boeckers TM. SHANK3 deficiency leads to myelin defects in the central and peripheral nervous system. Cell Mol Life Sci 2022; 79:371. [PMID: 35726031 PMCID: PMC9209365 DOI: 10.1007/s00018-022-04400-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
Mutations or deletions of the SHANK3 gene are causative for Phelan–McDermid syndrome (PMDS), a syndromic form of autism spectrum disorders (ASDs). We analyzed Shank3Δ11(−/−) mice and organoids from PMDS individuals to study effects on myelin. SHANK3 was found to be expressed in oligodendrocytes and Schwann cells, and MRI analysis of Shank3Δ11(−/−) mice revealed a reduced volume of the corpus callosum as seen in PMDS patients. Myelin proteins including myelin basic protein showed significant temporal and regional differences with lower levels in the CNS but increased amounts in the PNS of Shank3Δ11(−/−) animals. Node, as well as paranode, lengths were increased and ultrastructural analysis revealed region-specific alterations of the myelin sheaths. In PMDS hiPSC-derived cerebral organoids we observed an altered number and delayed maturation of myelinating cells. These findings provide evidence that, in addition to a synaptic deregulation, impairment of myelin might profoundly contribute to the clinical manifestation of SHANK3 deficiency.
Collapse
Affiliation(s)
- Mariagiovanna Malara
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, 89081, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Berra Incearap
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, 89081, Ulm, Germany
| | - Helen Friedericke Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, 89081, Ulm, Germany
| | - Silvia Cursano
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Katrin Volbracht
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Joanna Janina Lerner
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, 89081, Ulm, Germany
| | - Rakshita Pandey
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Andrea Pérez Arévalo
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Leda Dimou
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany.
- DZNE, Ulm Site, 89081, Ulm, Germany.
| |
Collapse
|
29
|
Tsurugizawa T. Translational Magnetic Resonance Imaging in Autism Spectrum Disorder From the Mouse Model to Human. Front Neurosci 2022; 16:872036. [PMID: 35585926 PMCID: PMC9108701 DOI: 10.3389/fnins.2022.872036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous syndrome characterized by behavioral features such as impaired social communication, repetitive behavior patterns, and a lack of interest in novel objects. A multimodal neuroimaging using magnetic resonance imaging (MRI) in patients with ASD shows highly heterogeneous abnormalities in function and structure in the brain associated with specific behavioral features. To elucidate the mechanism of ASD, several ASD mouse models have been generated, by focusing on some of the ASD risk genes. A specific behavioral feature of an ASD mouse model is caused by an altered gene expression or a modification of a gene product. Using these mouse models, a high field preclinical MRI enables us to non-invasively investigate the neuronal mechanism of the altered brain function associated with the behavior and ASD risk genes. Thus, MRI is a promising translational approach to bridge the gap between mice and humans. This review presents the evidence for multimodal MRI, including functional MRI (fMRI), diffusion tensor imaging (DTI), and volumetric analysis, in ASD mouse models and in patients with ASD and discusses the future directions for the translational study of ASD.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tomokazu Tsurugizawa,
| |
Collapse
|
30
|
Lucas A, Poleg S, Klug A, McCullagh EA. Myelination Deficits in the Auditory Brainstem of a Mouse Model of Fragile X Syndrome. Front Neurosci 2021; 15:772943. [PMID: 34858133 PMCID: PMC8632548 DOI: 10.3389/fnins.2021.772943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Auditory symptoms are one of the most frequent sensory issues described in people with Fragile X Syndrome (FXS), the most common genetic form of intellectual disability. However, the mechanisms that lead to these symptoms are under explored. In this study, we examined whether there are defects in myelination in the auditory brainstem circuitry. Specifically, we studied myelinated fibers that terminate in the Calyx of Held, which encode temporally precise sound arrival time, and are some of the most heavily myelinated axons in the brain. We measured anatomical myelination characteristics using coherent anti-stokes Raman spectroscopy (CARS) and electron microscopy (EM) in a FXS mouse model in the medial nucleus of the trapezoid body (MNTB) where the Calyx of Held synapses. We measured number of mature oligodendrocytes (OL) and oligodendrocyte precursor cells (OPCs) to determine if changes in myelination were due to changes in the number of myelinating or immature glial cells. The two microscopy techniques (EM and CARS) showed a decrease in fiber diameter in FXS mice. Additionally, EM results indicated reductions in myelin thickness and axon diameter, and an increase in g-ratio, a measure of structural and functional myelination. Lastly, we showed an increase in both OL and OPCs in MNTB sections of FXS mice suggesting that the myelination phenotype is not due to an overall decrease in number of myelinating OLs. This is the first study to show that a myelination defects in the auditory brainstem that may underly auditory phenotypes in FXS.
Collapse
Affiliation(s)
- Alexandra Lucas
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth A McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
31
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
32
|
Vacher CM, Lacaille H, O'Reilly JJ, Salzbank J, Bakalar D, Sebaoui S, Liere P, Clarkson-Paredes C, Sasaki T, Sathyanesan A, Kratimenos P, Ellegood J, Lerch JP, Imamura Y, Popratiloff A, Hashimoto-Torii K, Gallo V, Schumacher M, Penn AA. Placental endocrine function shapes cerebellar development and social behavior. Nat Neurosci 2021; 24:1392-1401. [PMID: 34400844 PMCID: PMC8481124 DOI: 10.1038/s41593-021-00896-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Compromised placental function or premature loss has been linked to diverse neurodevelopmental disorders. Here we show that placenta allopregnanolone (ALLO), a progesterone-derived GABA-A receptor (GABAAR) modulator, reduction alters neurodevelopment in a sex-linked manner. A new conditional mouse model, in which the gene encoding ALLO's synthetic enzyme (akr1c14) is specifically deleted in trophoblasts, directly demonstrated that placental ALLO insufficiency led to cerebellar white matter abnormalities that correlated with autistic-like behavior only in male offspring. A single injection of ALLO or muscimol, a GABAAR agonist, during late gestation abolished these alterations. Comparison of male and female human preterm infant cerebellum also showed sex-linked myelination marker alteration, suggesting similarities between mouse placental ALLO insufficiency and human preterm brain development. This study reveals a new role for a placental hormone in shaping brain regions and behaviors in a sex-linked manner. Placental hormone replacement might offer novel therapeutic opportunities to prevent later neurobehavioral disorders.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA.
| | - Helene Lacaille
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Jiaqi J O'Reilly
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Jacquelyn Salzbank
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Dana Bakalar
- National Institutes of Health, Bethesda, MD, USA
| | - Sonia Sebaoui
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Philippe Liere
- U1195 INSERM, Paris-Saclay University, Le Kremlin-Bicêtre Cedex, France
| | | | - Toru Sasaki
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Aaron Sathyanesan
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Pediatrics, Washington, DC, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Yuka Imamura
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Pittsburgh, PA, USA
| | - Anastas Popratiloff
- The George Washington University, Nanofabrication and Imaging Center, Washington, DC, USA
- The George Washington University, SMHS, Anatomy & Cell Biology, Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Pediatrics, Washington, DC, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Pediatrics, Washington, DC, USA
| | | | - Anna A Penn
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA.
| |
Collapse
|
33
|
Hooper AW, Wong H, Niibori Y, Abdoli R, Karumuthil-Melethil S, Qiao C, Danos O, Bruder JT, Hampson DR. Gene therapy using an ortholog of human fragile X mental retardation protein partially rescues behavioral abnormalities and EEG activity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:196-209. [PMID: 34485605 PMCID: PMC8399347 DOI: 10.1016/j.omtm.2021.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/30/2021] [Indexed: 01/28/2023]
Abstract
Fragile X syndrome (FXS), a neurodevelopmental disorder with no known cure, is caused by a lack of expression of the fragile X mental retardation protein (FMRP). As a single-gene disorder, FXS is an excellent candidate for viral-vector-based gene therapy, although that is complicated by the existence of multiple isoforms of FMRP, whose individual cellular functions are unknown. We studied the effects of rat and mouse orthologs of human isoform 17, a major expressed isoform of FMRP. Injection of neonatal Fmr1 knockout rats and mice with adeno-associated viral vectors (AAV9 serotype) under the control of an MeCP2 mini-promoter resulted in widespread distribution of the FMRP transgenes throughout the telencephalon and diencephalon. Transgene expression occurred mainly in non-GABAergic neurons, with little expression in glia. Early postnatal treatment resulted in partial rescue of the Fmr1 KO rat phenotype, including improved social dominance in treated Fmr1 KO females and partial rescue of locomotor activity in males. Electro-encephalogram (EEG) recordings showed correction of abnormal slow-wave activity during the sleep-like state in male Fmr1 KO rats. These findings support the use of AAV-based gene therapy as a treatment for FXS and specifically demonstrate the potential therapeutic benefit of human FMRP isoform 17 orthologs.
Collapse
Affiliation(s)
- Alexander W.M. Hooper
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Hayes Wong
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Yosuke Niibori
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Rozita Abdoli
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | | | - Chunping Qiao
- Research and Early Development, REGENXBIO Inc. Rockville, Maryland, U.S.A. 20850
| | - Olivier Danos
- Research and Early Development, REGENXBIO Inc. Rockville, Maryland, U.S.A. 20850
| | - Joseph T. Bruder
- Research and Early Development, REGENXBIO Inc. Rockville, Maryland, U.S.A. 20850
| | - David R. Hampson
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- Corresponding author: David R. Hampson, PhD, Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, Univerity of Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
34
|
Bastin G, Luu L, Batchuluun B, Mighiu A, Beadman S, Zhang H, He C, Al Rijjal D, Wheeler MB, Heximer SP. RGS4-Deficiency Alters Intracellular Calcium and PKA-Mediated Control of Insulin Secretion in Glucose-Stimulated Beta Islets. Biomedicines 2021; 9:biomedicines9081008. [PMID: 34440212 PMCID: PMC8391461 DOI: 10.3390/biomedicines9081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
A number of diverse G-protein signaling pathways have been shown to regulate insulin secretion from pancreatic β-cells. Accordingly, regulator of G-protein signaling (RGS) proteins have also been implicated in coordinating this process. One such protein, RGS4, is reported to show both positive and negative effects on insulin secretion from β-cells depending on the physiologic context under which it was studied. We here use an RGS4-deficient mouse model to characterize previously unknown G-protein signaling pathways that are regulated by RGS4 during glucose-stimulated insulin secretion from the pancreatic islets. Our data show that loss of RGS4 results in a marked deficiency in glucose-stimulated insulin secretion during both phase I and phase II of insulin release in intact mice and isolated islets. These deficiencies are associated with lower cAMP/PKA activity and a loss of normal calcium surge (phase I) and oscillatory (phase II) kinetics behavior in the RGS4-deficient β-cells, suggesting RGS4 may be important for regulation of both Gαi and Gαq signaling control during glucose-stimulated insulin secretion. Together, these studies add to the known list of G-protein coupled signaling events that are controlled by RGS4 during glucose-stimulated insulin secretion and highlight the importance of maintaining normal levels of RGS4 function in healthy pancreatic tissues.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON M5S 3H2, Canada
- Correspondence: ; Tel.: +33-658-469-334
| | - Lemieux Luu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Battsetseg Batchuluun
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Alexandra Mighiu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Stephanie Beadman
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Hangjung Zhang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Changhao He
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Dana Al Rijjal
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Michael B. Wheeler
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Scott P. Heximer
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
35
|
Kawamura A, Katayama Y, Nishiyama M, Shoji H, Tokuoka K, Ueta Y, Miyata M, Isa T, Miyakawa T, Hayashi-Takagi A, Nakayama KI. Oligodendrocyte dysfunction due to Chd8 mutation gives rise to behavioral deficits in mice. Hum Mol Genet 2021; 29:1274-1291. [PMID: 32142125 DOI: 10.1093/hmg/ddaa036] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Mutations in the gene encoding the chromatin remodeler CHD8 are strongly associated with autism spectrum disorder (ASD). CHD8 haploinsufficiency also results in autistic phenotypes in humans and mice. Although myelination defects have been observed in individuals with ASD, whether oligodendrocyte dysfunction is responsible for autistic phenotypes has remained unknown. Here we show that reduced expression of CHD8 in oligodendrocytes gives rise to abnormal behavioral phenotypes in mice. CHD8 was found to regulate the expression of many myelination-related genes and to be required for oligodendrocyte maturation and myelination. Ablation of Chd8 specifically in oligodendrocytes of mice impaired myelination, slowed action potential propagation and resulted in behavioral deficits including increased social interaction and anxiety-like behavior, with similar effects being apparent in Chd8 heterozygous mutant mice. Our results thus indicate that CHD8 is essential for myelination and that dysfunction of oligodendrocytes as a result of CHD8 haploinsufficiency gives rise to several neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kota Tokuoka
- Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshifumi Ueta
- Department of Physiology I (Neurophysiology), Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Department of Physiology I (Neurophysiology), Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
36
|
Doll CA, Scott K, Appel B. Fmrp regulates oligodendrocyte lineage cell specification and differentiation. Glia 2021; 69:2349-2361. [PMID: 34110049 DOI: 10.1002/glia.24041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022]
Abstract
Neurodevelopment requires the precise integration of a wide variety of neuronal and glial cell types. During early embryonic development, motor neurons and then oligodendrocyte precursor cells (OPCs) are specified from neural progenitors residing in the periventricular pMN progenitor domain of the spinal cord. Following gliogenesis, OPCs can differentiate as oligodendrocytes (OLs)-the myelinating glial cells of the central nervous system-or remain as OPCs. To generate unique cell types capable of highly divergent functions, these specification and differentiation events require specialized gene expression programs. RNA binding proteins (RBPs) regulate mRNA localization and translation in the developing nervous system and are linked to many neurodevelopmental disorders. One example is Fragile X syndrome (FXS), caused by the loss of the RBP fragile X mental retardation protein (FMRP). Importantly, infants with FXS have reduced white matter and we previously showed that zebrafish Fmrp is autonomously required in OLs to promote myelin sheath growth. We now find that Fmrp regulates cell specification in pMN progenitor cells such that fmr1 mutant zebrafish generate fewer motor neurons and excess OPCs. Fmrp subsequently promotes differentiation of OPCs, leading to fewer differentiating OLs in the developing spinal cord of fmr1 larvae. Although the early patterning of spinal progenitor domains appears largely normal in fmr1 mutants during early embryogenesis, Shh signaling is greatly diminished. Taken together, these results suggest cell stage-specific requirements for Fmrp in the specification and differentiation of oligodendrocyte lineage cells.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kayt Scott
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
37
|
Westmark CJ. Consumption of Breast Milk Is Associated with Decreased Prevalence of Autism in Fragile X Syndrome. Nutrients 2021; 13:nu13061785. [PMID: 34073785 PMCID: PMC8225095 DOI: 10.3390/nu13061785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Breastfeeding is associated with numerous health benefits, but early life nutrition has not been specifically studied in the neurodevelopmental disorder fragile X syndrome (FXS). Herein, I evaluate associations between the consumption of breast milk during infancy and the prevalence of autism, allergies, diabetes, gastrointestinal (GI) problems and seizures in FXS. The study design was a retrospective survey of families enrolled in the Fragile X Online Registry and Accessible Research Database (FORWARD). There was a 1.7-fold reduction in the prevalence of autism in FXS participants who were fed breast milk for 12 months or longer. There were strong negative correlations between increased time the infant was fed breast milk and the prevalence of autism and seizures and moderate negative correlations with the prevalence of GI problems and allergies. However, participants reporting GI problems or allergies commenced these comorbidities significantly earlier than those not fed breast milk. Parsing the data by sex indicated that males exclusively fed breast milk exhibited decreased prevalence of GI problems and allergies. These data suggest that long-term or exclusive use of breast milk is associated with reduced prevalence of key comorbidities in FXS, although breast milk is associated with the earlier development of GI problems and allergies.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; ; Tel.: +1-608-262-9730
- Molecular & Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
38
|
RNA Localization and Local Translation in Glia in Neurological and Neurodegenerative Diseases: Lessons from Neurons. Cells 2021; 10:cells10030632. [PMID: 33809142 PMCID: PMC8000831 DOI: 10.3390/cells10030632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cell polarity is crucial for almost every cell in our body to establish distinct structural and functional domains. Polarized cells have an asymmetrical morphology and therefore their proteins need to be asymmetrically distributed to support their function. Subcellular protein distribution is typically achieved by localization peptides within the protein sequence. However, protein delivery to distinct cellular compartments can rely, not only on the transport of the protein itself but also on the transport of the mRNA that is then translated at target sites. This phenomenon is known as local protein synthesis. Local protein synthesis relies on the transport of mRNAs to subcellular domains and their translation to proteins at target sites by the also localized translation machinery. Neurons and glia specially depend upon the accurate subcellular distribution of their proteome to fulfil their polarized functions. In this sense, local protein synthesis has revealed itself as a crucial mechanism that regulates proper protein homeostasis in subcellular compartments. Thus, deregulation of mRNA transport and/or of localized translation can lead to neurological and neurodegenerative diseases. Local translation has been more extensively studied in neurons than in glia. In this review article, we will summarize the state-of-the art research on local protein synthesis in neuronal function and dysfunction, and we will discuss the possibility that local translation in glia and deregulation thereof contributes to neurological and neurodegenerative diseases.
Collapse
|
39
|
Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10120951. [PMID: 33302549 PMCID: PMC7764453 DOI: 10.3390/brainsci10120951] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is an early neurodevelopmental disorder that involves deficits in interpersonal communication, social interaction, and repetitive behaviors. Although ASD pathophysiology is still uncertain, alterations in the abnormal development of the frontal lobe, limbic areas, and putamen generate an imbalance between inhibition and excitation of neuronal activity. Interestingly, recent findings suggest that a disruption in neuronal connectivity is associated with neural alterations in white matter production and myelination in diverse brain regions of patients with ASD. This review is aimed to summarize the most recent evidence that supports the notion that abnormalities in the oligodendrocyte generation and axonal myelination in specific brain regions are involved in the pathophysiology of ASD. Fundamental molecular mediators of these pathological processes are also examined. Determining the role of alterations in oligodendrogenesis and myelination is a fundamental step to understand the pathophysiology of ASD and identify possible therapeutic targets.
Collapse
|
40
|
Braz SO, Dinca DM, Gourdon G, Gomes-Pereira M. Real Time Videomicroscopy and Semiautomated Analysis of Brain Cell Culture Models of Trinucleotide Repeat Expansion Diseases. Methods Mol Biol 2020; 2056:217-240. [PMID: 31586351 DOI: 10.1007/978-1-4939-9784-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proper brain function requires the coordinated and intricate interaction between neuronal and glial cells. Like many other neurological conditions, trinucleotide repeat expansion disorders are likely initiated by the synergistic combination of abnormalities hitting different brain cell types, which ultimately disrupt brain function and lead to the onset of neurological symptoms. Understanding how trinucleotide repeat expansions affect the phenotypes and physiology of neurons and glia is fundamental to improve our understanding of disease mechanisms in the brain and shape the design of future therapeutic interventions.Here we describe a protocol for semiautomated videomicroscopy analysis of cultured brain cells, maintained under suitable and controlled conditions. Through real-time monitoring of basic cell phenotypes (such as proliferation, cell morphology, differentiation, and migration) this method provides an accurate primary assessment of the impact of the repeat expansion on the physiology of neurons and glia. The versatility of the system, the automated image acquisition and the semiautomated processing of the data collected allow rapid phenotypic analysis of individual cell types, as well as the investigation of cell-cell interactions. The stability of the acquisition system provides reproducible and robust results. The raw data can be easily exported to other software to perform more sophisticated imaging analysis and statistical tests. In summary, the methods described offer versatile, reproducible, and time-effective means to dissect the impact of the repeat expansion on different brain cell types and on intercellular interactions.
Collapse
Affiliation(s)
- Sandra O Braz
- Laboratory CTGDM, Inserm UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes- Sorbonne Paris Cité, Paris, France
| | - Diana M Dinca
- Laboratory CTGDM, Inserm UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes- Sorbonne Paris Cité, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, Inserm UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes- Sorbonne Paris Cité, Paris, France.,Centre de Recherche en Myologie (CRM), Inserm UMRS974, Association Institut de Myologie, Sorbonne Université, Paris, France
| | - Mário Gomes-Pereira
- Laboratory CTGDM, Inserm UMR1163, Paris, France. .,Institut Imagine, Université Paris Descartes- Sorbonne Paris Cité, Paris, France. .,Centre de Recherche en Myologie (CRM), Inserm UMRS974, Association Institut de Myologie, Sorbonne Université, Paris, France.
| |
Collapse
|
41
|
Arsenault J, Hooper AWM, Gholizadeh S, Kong T, Pacey LK, Koxhioni E, Niibori Y, Eubanks JH, Wang LY, Hampson DR. Interregulation between fragile X mental retardation protein and methyl CpG binding protein 2 in the mouse posterior cerebral cortex. Hum Mol Genet 2020; 29:3744-3756. [PMID: 33084871 PMCID: PMC7861017 DOI: 10.1093/hmg/ddaa226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Several X-linked neurodevelopmental disorders including Rett syndrome, induced by mutations in the MECP2 gene, and fragile X syndrome (FXS), caused by mutations in the FMR1 gene, share autism-related features. The mRNA coding for methyl CpG binding protein 2 (MeCP2) has previously been identified as a substrate for the mRNA-binding protein, fragile X mental retardation protein (FMRP), which is silenced in FXS. Here, we report a homeostatic relationship between these two key regulators of gene expression in mouse models of FXS (Fmr1 Knockout (KO)) and Rett syndrome (MeCP2 KO). We found that the level of MeCP2 protein in the cerebral cortex was elevated in Fmr1 KO mice, whereas MeCP2 KO mice displayed reduced levels of FMRP, implicating interplay between the activities of MeCP2 and FMRP. Indeed, knockdown of MeCP2 with short hairpin RNAs led to a reduction of FMRP in mouse Neuro2A and in human HEK-293 cells, suggesting a reciprocal coupling in the expression level of these two regulatory proteins. Intra-cerebroventricular injection of an adeno-associated viral vector coding for FMRP led to a concomitant reduction in MeCP2 expression in vivo and partially corrected locomotor hyperactivity. Additionally, the level of MeCP2 in the posterior cortex correlated with the severity of the hyperactive phenotype in Fmr1 KO mice. These results demonstrate that MeCP2 and FMRP operate within a previously undefined homeostatic relationship. Our findings also suggest that MeCP2 overexpression in Fmr1 KO mouse posterior cerebral cortex may contribute to the fragile X locomotor hyperactivity phenotype.
Collapse
Affiliation(s)
- Jason Arsenault
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Alexander W M Hooper
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Shervin Gholizadeh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Tian Kong
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Laura K Pacey
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Enea Koxhioni
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yosuke Niibori
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Lu-Yang Wang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - David R Hampson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
42
|
Xin W, Chan JR. Myelin plasticity: sculpting circuits in learning and memory. Nat Rev Neurosci 2020; 21:682-694. [PMID: 33046886 DOI: 10.1038/s41583-020-00379-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Throughout our lifespan, new sensory experiences and learning continually shape our neuronal circuits to form new memories. Plasticity at the level of synapses has been recognized and studied for decades, but recent work has revealed an additional form of plasticity - affecting oligodendrocytes and the myelin sheaths they produce - that plays a crucial role in learning and memory. In this Review, we summarize recent work characterizing plasticity in the oligodendrocyte lineage following sensory experience and learning, the physiological and behavioural consequences of manipulating that plasticity, and the evidence for oligodendrocyte and myelin dysfunction in neurodevelopmental disorders with cognitive symptoms. We also discuss the limitations of existing approaches and the conceptual and technical advances that are needed to move forward this rapidly developing field.
Collapse
Affiliation(s)
- Wendy Xin
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Jonah R Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
43
|
Wang X, Kohl A, Yu X, Zorio DAR, Klar A, Sela-Donenfeld D, Wang Y. Temporal-specific roles of fragile X mental retardation protein in the development of the hindbrain auditory circuit. Development 2020; 147:dev.188797. [PMID: 32747436 DOI: 10.1242/dev.188797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein abundant in the nervous system. Functional loss of FMRP leads to sensory dysfunction and severe intellectual disabilities. In the auditory system, FMRP deficiency alters neuronal function and synaptic connectivity and results in perturbed processing of sound information. Nevertheless, roles of FMRP in embryonic development of the auditory hindbrain have not been identified. Here, we developed high-specificity approaches to genetically track and manipulate throughout development of the Atoh1+ neuronal cell type, which is highly conserved in vertebrates, in the cochlear nucleus of chicken embryos. We identified distinct FMRP-containing granules in the growing axons of Atoh1+ neurons and post-migrating NM cells. FMRP downregulation induced by CRISPR/Cas9 and shRNA techniques resulted in perturbed axonal pathfinding, delay in midline crossing, excess branching of neurites, and axonal targeting errors during the period of circuit development. Together, these results provide the first in vivo identification of FMRP localization and actions in developing axons of auditory neurons, and demonstrate the importance of investigating early embryonic alterations toward understanding the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.,Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Xiaoyan Yu
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Diego A R Zorio
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Avihu Klar
- Department of Medical Neurobiology IMRIC, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
44
|
Chao OY, Pathak SS, Zhang H, Dunaway N, Li JS, Mattern C, Nikolaus S, Huston JP, Yang YM. Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol Brain 2020; 13:111. [PMID: 32778145 PMCID: PMC7418402 DOI: 10.1186/s13041-020-00649-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The dopamine (DA) system has a profound impact on reward-motivated behavior and is critically involved in neurodevelopmental disorders, such as autism spectrum disorder (ASD). Although DA defects are found in autistic patients, it is not well defined how the DA pathways are altered in ASD and whether DA can be utilized as a potential therapeutic agent for ASD. To this end, we employed a phenotypic and a genetic ASD model, i.e., Black and Tan BRachyury T+Itpr3tf/J (BTBR) mice and Fragile X Mental Retardation 1 knockout (Fmr1-KO) mice, respectively. Immunostaining of tyrosine hydroxylase (TH) to mark dopaminergic neurons revealed an overall reduction in the TH expression in the substantia nigra, ventral tegmental area and dorsal striatum of BTBR mice, as compared to C57BL/6 J wild-type ones. In contrast, Fmr1-KO animals did not show such an alteration but displayed abnormal morphology of TH-positive axons in the striatum with higher "complexity" and lower "texture". Both strains exhibited decreased expression of striatal dopamine transporter (DAT) and increased spatial coupling between vesicular glutamate transporter 1 (VGLUT1, a label for glutamatergic terminals) and TH signals, while GABAergic neurons quantified by glutamic acid decarboxylase 67 (GAD67) remained intact. Intranasal administration of DA rescued the deficits in non-selective attention, object-based attention and social approaching of BTBR mice, likely by enhancing the level of TH in the striatum. Application of intranasal DA to Fmr1-KO animals alleviated their impairment of social novelty, in association with reduced striatal TH protein. These results suggest that although the DA system is modified differently in the two ASD models, intranasal treatment with DA effectively rectifies their behavioral phenotypes, which may present a promising therapy for diverse types of ASD.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Salil S Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Hao Zhang
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Nathan Dunaway
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Jay-Shake Li
- Department of Psychology, National Chung Cheng University, Minhsiung, Chiayi, Taiwan, Republic of China
| | - Claudia Mattern
- M et P Pharma AG, Emmetten, Switzerland
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Susanne Nikolaus
- Clinic of Nuclear Medicine, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Heinrich Heine University of Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany.
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
45
|
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020; 12:13. [PMID: 32359368 PMCID: PMC7196229 DOI: 10.1186/s11689-020-09310-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/13/2020] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. .,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
| |
Collapse
|
46
|
Shi D, Xu S, Zhuo J, McKenna MC, Gullapalli RP. White Matter Alterations in Fmr1 Knockout Mice during Early Postnatal Brain Development. Dev Neurosci 2020; 41:274-289. [PMID: 32348987 DOI: 10.1159/000506679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/19/2020] [Indexed: 01/20/2023] Open
Abstract
Fragile X syndrome (FXS) is the most commonly inherited form of intellectual disability ascribed to the autism spectrum disorder. Studies with FXS patients have reported altered white matter volume compared to controls. The Fmr1 knockout (KO) mouse, a model for FXS, showed evidence of delayed myelination during postnatal brain development. In this study, we examined several white matter regions in the male Fmr1 KO mouse brain compared to male wild-type (WT) mice at postnatal days (PND) 18, 21, 30, and 60, which coincide with critical stages of myelination and postnatal brain development. White matter volume, T2 relaxation time, and magnetization transfer ratio (MTR) were measured using magnetic resonance imaging and myelin content was determined with histological staining of myelin. Differences in the developmental accumulation of white matter and myelin between Fmr1 KO and WT mice were observed in the corpus callosum, external and internal capsules, cerebral peduncle, and fimbria. Alterations were more predominant in the external and internal capsules and fimbria of Fmr1 KO mice, where the MTR was lower at PND 18, then elevated at PND 30, and again lower at PND 60 compared to the corresponding regions in WT mice. The pattern of changes in MTR were similar to those observed in myelin staining and could be related to the altered protein synthesis that is a hallmark of FXS. While no significant changes in white matter volumes and T2 relaxation time between the Fmr1 KO and WT mice were observed, the altered pattern of myelin staining and MTR, particularly in the external capsule, reflecting the abnormalities associated with myelin content is suggestive of a developmental delay in the white matter of Fmr1 KO mouse brain. These early differences in white matter during critical developmental stages may contribute to altered brain networks in the Fmr1 KO mice.
Collapse
Affiliation(s)
- Da Shi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA, .,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA, .,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
47
|
A myelin-related transcriptomic profile is shared by Pitt-Hopkins syndrome models and human autism spectrum disorder. Nat Neurosci 2020; 23:375-385. [PMID: 32015540 PMCID: PMC7065955 DOI: 10.1038/s41593-019-0578-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is genetically heterogeneous with convergent symptomatology, suggesting common dysregulated pathways. We analyzed brain transcriptional changes in five mouse models of Pitt-Hopkins Syndrome (PTHS), a syndromic form of ASD caused by mutations in TCF4 (transcription factor 4, not TCF7L2 / T-Cell Factor 4). Analyses of differentially expressed genes (DEGs) highlighted oligodendrocyte (OL) dysregulation, which we confirmed in two additional mouse models of syndromic ASD (Ptenm3m4/m3m4 and Mecp2tm1.1Bird). The PTHS mouse models showed cell-autonomous reductions in OL numbers and myelination, functionally confirming OL transcriptional signatures. Next, we integrated PTHS mouse model DEGs with human idiopathic ASD postmortem brain RNA-seq data, and found significant enrichment of overlapping DEGs and common myelination-associated pathways. Importantly, DEGs from syndromic ASD mouse models, and reduced deconvoluted OL numbers, distinguished human idiopathic ASD cases from controls across three postmortem brain datasets. These results implicate disruptions in OL biology as a cellular mechanism in ASD pathology.
Collapse
|
48
|
Fernández M, Sierra-Arregui T, Peñagarikano O. The Cerebellum and Autism: More than Motor Control. Behav Neurosci 2019. [DOI: 10.5772/intechopen.85897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Doll CA, Yergert KM, Appel BH. The RNA binding protein fragile X mental retardation protein promotes myelin sheath growth. Glia 2019; 68:495-508. [PMID: 31626382 DOI: 10.1002/glia.23731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022]
Abstract
During development, oligodendrocytes in the central nervous system extend a multitude of processes that wrap axons with myelin. The highly polarized oligodendrocytes generate myelin sheaths on many different axons, which are far removed from the cell body. Neurons use RNA binding proteins to transport, stabilize, and locally translate mRNA in distal domains of neurons. Local synthesis of synaptic proteins during neurodevelopment facilitates the rapid structural and functional changes underlying neural plasticity and avoids extensive protein transport. We hypothesize that RNA binding proteins also regulate local mRNA regulation in oligodendrocytes to promote myelin sheath growth. Fragile X mental retardation protein (FMRP), an RNA binding protein that plays essential roles in the growth and maturation of neurons, is also expressed in oligodendrocytes. To determine whether oligodendrocytes require FMRP for myelin sheath development, we examined fmr1-/- mutant zebrafish and drove FMR1 expression specifically in oligodendrocytes. We found oligodendrocytes in fmr1-/- mutants developed myelin sheaths of diminished length, a phenotype that can be autonomously rescued in oligodendrocytes with FMR1 expression. Myelin basic protein (Mbp), an essential myelin protein, was reduced in myelin tracts of fmr1-/- mutants, but loss of FMRP function did not impact the localization of mbpa transcript in myelin. Finally, expression of FMR1-I304N, a missense allele that abrogates FMRP association with ribosomes, failed to rescue fmr1-/- mutant sheath growth and induced short myelin sheaths in oligodendrocytes of wild-type larvae. Taken together, these data suggest that FMRP promotes sheath growth through local regulation of translation.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Katie M Yergert
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Bruce H Appel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
50
|
Abstract
Autism spectrum disorder (ASD) has been hypothesized to be a result of altered connectivity in the brain. Recent imaging studies suggest accelerated maturation of the white matter in young children with ASD, with underlying mechanisms unknown. Myelin is an integral part of the white matter and critical for connectivity; however, its role in ASD remains largely unclear. Here, we investigated myelin development in a model of idiopathic ASD, the BTBR mice. Magnetic resonance imaging revealed that fiber tracts in the frontal brain of the BTBR mice had increased volume at postnatal day 6, but the difference reduced over time, reminiscent of the findings in young patients. We further identified that myelination in the frontal brain of both male and female neonatal BTBR mice was increased, associated with elevated levels of myelin basic protein. However, myelin pattern was unaltered in adult BTBR mice, revealing accelerated developmental trajectory of myelination. Consistently, we found that signaling of platelet-derived growth factor receptor alpha (PDGFRα) was reduced in the frontal brain of neonatal BTBR mice. However, levels of microRNA species known to regulate PDGFRα signaling and myelination were unaltered. Together, these results suggest that precocious myelination could potentially contribute to increased volume and connectivity of the white matter observed in young children with ASD.
Collapse
|