1
|
Shin GS, Jo AR, Kim J, Kim JY, Kim CH, An MJ, Lee HM, Park Y, Hwangbo Y, Kim JW. Lamin B1 regulates RNA splicing factor expression by modulating the spatial positioning and chromatin interactions of the ETS1 gene locus. Anim Cells Syst (Seoul) 2025; 29:149-162. [PMID: 39968360 PMCID: PMC11834782 DOI: 10.1080/19768354.2025.2465325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Lamin B1, a crucial component of the nuclear lamina, plays a pivotal role in chromatin organization and transcriptional regulation in eukaryotic cells. While recent studies have highlighted the connection between Lamin B1 and RNA splicing regulation, the precise molecular mechanisms remain elusive. In this study, we demonstrate that Lamin B1 depletion leads to a global reduction in splicing factor expression, as evidenced by analysis of multiple RNA-seq datasets. Motif analysis suggests that members of the ETS transcription factor family likely bind to the promoter regions of these splicing factors. Further analysis using transcription factor databases and ChIP-seq data identified ETS1 as a key regulator of splicing factor expression. Hi-C sequencing revealed that the loss of Lamin B1 disrupts inter-LAD chromatin interactions near the ETS1 gene locus, resulting in its downregulation. These findings suggest that Lamin B1 indirectly regulates RNA splicing by sustaining proper ETS1 expression, uncovering a novel link between nuclear architecture, gene regulation, and RNA splicing.
Collapse
Affiliation(s)
- Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ah-Ra Jo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jinho Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Mi-Jin An
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Min Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yuna Park
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yujeong Hwangbo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Dimartino P, Zadorozhna M, Yumiceba V, Basile A, Cani I, Melo US, Henck J, Breur M, Tonon C, Lodi R, Brusco A, Pippucci T, Koufi FD, Boschetti E, Ramazzotti G, Manzoli L, Ratti S, Pinto E Vairo F, Delatycki MB, Vaula G, Cortelli P, Bugiani M, Spielmann M, Giorgio E. Structural Variants at the LMNB1 Locus: Deciphering Pathomechanisms in Autosomal Dominant Adult-Onset Demyelinating Leukodystrophy. Ann Neurol 2024; 96:855-870. [PMID: 39078102 DOI: 10.1002/ana.27038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE We aimed to elucidate the pathogenic mechanisms underlying autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), and to understand the genotype/phenotype correlation of structural variants (SVs) in the LMNB1 locus. BACKGROUND Since the discovery of 3D genome architectures and topologically associating domains (TADs), new pathomechanisms have been postulated for SVs, regardless of gene dosage changes. ADLD is a rare genetic disease associated with duplications (classical ADLD) or noncoding deletions (atypical ADLD) in the LMNB1 locus. METHODS High-throughput chromosome conformation capture, RNA sequencing, histopathological analyses of postmortem brain tissues, and clinical and neuroradiological investigations were performed. RESULTS We collected data from >20 families worldwide carrying SVs in the LMNB1 locus and reported strong clinical variability, even among patients carrying duplications of the entire LMNB1 gene, ranging from classical and atypical ADLD to asymptomatic carriers. We showed that patients with classic ADLD always carried intra-TAD duplications, resulting in a simple gene dose gain. Atypical ADLD was caused by LMNB1 forebrain-specific misexpression due to inter-TAD deletions or duplications. The inter-TAD duplication, which extends centromerically and crosses the 2 TAD boundaries, did not cause ADLD. Our results provide evidence that astrocytes are key players in ADLD pathology. INTERPRETATION Our study sheds light on the 3D genome and TAD structural changes associated with SVs in the LMNB1 locus, and shows that a duplication encompassing LMNB1 is not sufficient per se to diagnose ADLD, thereby strongly affecting genetic counseling. Our study supports breaking TADs as an emerging pathogenic mechanism that should be considered when studying brain diseases. ANN NEUROL 2024;96:855-870.
Collapse
Affiliation(s)
- Paola Dimartino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mariia Zadorozhna
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Verónica Yumiceba
- Institute of Human Genetics, Universitätsklinikum Schleswig Holstein, University of Lübeck and University of Kiel, Lübeck, Germany
| | - Anna Basile
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Cani
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Human Molecular Genomics Group, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, Berlin, Germany
| | - Jana Henck
- Max Planck Institute for Molecular Genetics, Human Molecular Genomics Group, Berlin, Germany
| | - Marjolein Breur
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy
- Unit of Medical Genetics, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Foteini-Dionysia Koufi
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Elisa Boschetti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Giovanna Vaula
- Department of Neuroscience, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marianna Bugiani
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Malte Spielmann
- Institute of Human Genetics, Universitätsklinikum Schleswig Holstein, University of Lübeck and University of Kiel, Lübeck, Germany
- Max Planck Institute for Molecular Genetics, Human Molecular Genomics Group, Berlin, Germany
- Institute of Human Genetics, Universitätsklinikum Schleswig Holstein Campus Kiel and Christian-Albrechts-Universität, Kiel, Germany
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Benarroch E. What Is the Role of Nuclear Envelope Proteins in Neurologic Disorders? Neurology 2024; 102:e209202. [PMID: 38330281 DOI: 10.1212/wnl.0000000000209202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
|
4
|
Neri I, Ramazzotti G, Mongiorgi S, Rusciano I, Bugiani M, Conti L, Cousin M, Giorgio E, Padiath QS, Vaula G, Cortelli P, Manzoli L, Ratti S. Understanding the Ultra-Rare Disease Autosomal Dominant Leukodystrophy: an Updated Review on Morpho-Functional Alterations Found in Experimental Models. Mol Neurobiol 2023; 60:6362-6372. [PMID: 37450245 PMCID: PMC10533580 DOI: 10.1007/s12035-023-03461-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Autosomal dominant leukodystrophy (ADLD) is an ultra-rare, slowly progressive, and fatal neurodegenerative disorder associated with the loss of white matter in the central nervous system (CNS). Several years after its first clinical description, ADLD was found to be caused by coding and non-coding variants in the LMNB1 gene that cause its overexpression in at least the brain of patients. LMNB1 encodes for Lamin B1, a protein of the nuclear lamina. Lamin B1 regulates many cellular processes such as DNA replication, chromatin organization, and senescence. However, its functions have not been fully characterized yet. Nevertheless, Lamin B1 together with the other lamins that constitute the nuclear lamina has firstly the key role of maintaining the nuclear structure. Being the nucleus a dynamic system subject to both biochemical and mechanical regulation, it is conceivable that changes to its structural homeostasis might translate into functional alterations. Under this light, this review aims at describing the pieces of evidence that to date have been obtained regarding the effects of LMNB1 overexpression on cellular morphology and functionality. Moreover, we suggest that further investigation on ADLD morpho-functional consequences is essential to better understand this complex disease and, possibly, other neurological disorders affecting CNS myelination.
Collapse
Affiliation(s)
- Irene Neri
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1105, Amsterdam, The Netherlands
| | - Luciano Conti
- Department of Cellular, Computational, and Integrative Biology (CIBIO), Università Degli Studi Di Trento, 38123, Povo-Trento, Italy
| | - Margot Cousin
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Quasar S Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Giovanna Vaula
- Department of Neuroscience, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126, Turin, Italy
| | - Pietro Cortelli
- IRCCS, Istituto Di Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 , Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
5
|
Koufi FD, Neri I, Ramazzotti G, Rusciano I, Mongiorgi S, Marvi MV, Fazio A, Shin M, Kosodo Y, Cani I, Giorgio E, Cortelli P, Manzoli L, Ratti S. Lamin B1 as a key modulator of the developing and aging brain. Front Cell Neurosci 2023; 17:1263310. [PMID: 37720548 PMCID: PMC10501396 DOI: 10.3389/fncel.2023.1263310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Lamin B1 is an essential protein of the nuclear lamina that plays a crucial role in nuclear function and organization. It has been demonstrated that lamin B1 is essential for organogenesis and particularly brain development. The important role of lamin B1 in physiological brain development and aging has only recently been at the epicenter of attention and is yet to be fully elucidated. Regarding the development of brain, glial cells that have long been considered as supporting cells to neurons have overturned this representation and current findings have displayed their active roles in neurogenesis and cerebral development. Although lamin B1 has increased levels during the differentiation of the brain cells, during aging these levels drop leading to senescent phenotypes and inciting neurodegenerative disorders such as Alzheimer's and Parkinson's disease. On the other hand, overexpression of lamin B1 leads to the adult-onset neurodegenerative disease known as Autosomal Dominant Leukodystrophy. This review aims at highlighting the importance of balancing lamin B1 levels in glial cells and neurons from brain development to aging.
Collapse
Affiliation(s)
- Foteini-Dionysia Koufi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Irene Neri
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Minkyung Shin
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yoichi Kosodo
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Ilaria Cani
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Liu S, Zheng Q, Zhang R, Li T, Zhan J. Construction of a combined random forest and artificial neural network diagnosis model to screening potential biomarker for hepatoblastoma. Pediatr Surg Int 2022; 38:2023-2034. [PMID: 36271952 DOI: 10.1007/s00383-022-05255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The purpose of our study is to identify potential biomarkers of hepatoblastoma (HB) and further explore the pathogenesis of it. METHODS Differentially expressed genes (DEGs) were incorporated into the combined random forest and artificial neural network diagnosis model to screen candidate genes for HB. Gene set enrichment analysis (GSEA) was used to analyze the ARHGEF2. Student's t test was performed to evaluate the difference of tumor-infiltrating immune cells (TIICs) between normal and HB samples. Spearson correlation analysis was used to calculate the correlation between ARHGEF2 and TIICs. RESULTS ARHGEF2, TCF3, TMED3, STMN1 and RAVER2 were screened by the new model. The GSEA of ARHGEF2 included cell cycle pathway and antigen processing presenting pathway. There were significant differences in the composition of partial TIICs between HB and normal samples (p < 0.05). ARHGEF2 was significantly correlated with memory B cells (Cor = 0.509, p < 0.05). CONCLUSION These 5 candidate genes contribute to the molecular diagnosis and targeted therapy of HB. And we found "ARHGEF2-RhoA-Cyclin D1/CDK4/CDK6-EF2" is a key mechanism regulating cell cycle pathway in HB. This will be helpful in the treatment of HB. The occurrence of HB is related to abnormal TIICs. We speculated that memory B cells play an important role in HB.
Collapse
Affiliation(s)
- Shaowen Liu
- Clinical School of Paediatrics, Tianjin Medical University, 238 Longyan Road, Beichen District, Tianjin, 300400, China
| | - Qipeng Zheng
- Clinical School of Paediatrics, Tianjin Medical University, 238 Longyan Road, Beichen District, Tianjin, 300400, China
| | - Ruifeng Zhang
- Clinical School of Paediatrics, Tianjin Medical University, 238 Longyan Road, Beichen District, Tianjin, 300400, China
| | - Tengfei Li
- Clinical School of Paediatrics, Tianjin Medical University, 238 Longyan Road, Beichen District, Tianjin, 300400, China
| | - Jianghua Zhan
- Clinical School of Paediatrics, Tianjin Medical University, 238 Longyan Road, Beichen District, Tianjin, 300400, China. .,Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300400, China.
| |
Collapse
|
7
|
Padonou F, Gonzalez V, Provin N, Yayilkan S, Jmari N, Maslovskaja J, Kisand K, Peterson P, Irla M, Giraud M. Aire-dependent transcripts escape Raver2-induced splice-event inclusion in the thymic epithelium. EMBO Rep 2022; 23:e53576. [PMID: 35037357 PMCID: PMC8892270 DOI: 10.15252/embr.202153576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Aire allows medullary thymic epithelial cells (mTECs) to express and present a large number of self-antigens for central tolerance. Although mTECs express a high diversity of self-antigen splice isoforms, the extent and regulation of alternative splicing events (ASEs) in their transcripts, notably in those induced by Aire, is unknown. In contrast to Aire-neutral genes, we find that transcripts of Aire-sensitive genes show only a low number of ASEs in mTECs, with about a quarter present in peripheral tissues excluded from the thymus. We identify Raver2, as a splicing-related factor overexpressed in mTECs and dependent on H3K36me3 marks, that promotes ASEs in transcripts of Aire-neutral genes, leaving Aire-sensitive ones unaffected. H3K36me3 profiling reveals its depletion at Aire-sensitive genes and supports a mechanism that is preceding Aire expression leading to transcripts of Aire-sensitive genes with low ASEs that escape Raver2-induced alternative splicing. The lack of ASEs in Aire-induced transcripts would result in an incomplete Aire-dependent negative selection of autoreactive T cells, thus highlighting the need of complementary tolerance mechanisms to prevent activation of these cells in the periphery.
Collapse
Affiliation(s)
- Francine Padonou
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,Institut CochinINSERMCNRSParis UniversitéParisFrance
| | | | - Nathan Provin
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance
| | - Sümeyye Yayilkan
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance
| | - Nada Jmari
- Institut CochinINSERMCNRSParis UniversitéParisFrance
| | | | - Kai Kisand
- Molecular Pathology Research GroupUniversity of TartuTartuEstonia
| | - Pärt Peterson
- Molecular Pathology Research GroupUniversity of TartuTartuEstonia
| | - Magali Irla
- Aix‐Marseille UniversitéCNRSINSERMCIML, Centre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Matthieu Giraud
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,Institut CochinINSERMCNRSParis UniversitéParisFrance
| |
Collapse
|
8
|
Evangelisti C, Rusciano I, Mongiorgi S, Ramazzotti G, Lattanzi G, Manzoli L, Cocco L, Ratti S. The wide and growing range of lamin B-related diseases: from laminopathies to cancer. Cell Mol Life Sci 2022; 79:126. [PMID: 35132494 PMCID: PMC8821503 DOI: 10.1007/s00018-021-04084-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
B-type lamins are fundamental components of the nuclear lamina, a complex structure that acts as a scaffold for organization and function of the nucleus. Lamin B1 and B2, the most represented isoforms, are encoded by LMNB1 and LMNB2 gene, respectively. All B-type lamins are synthesized as precursors and undergo sequential post-translational modifications to generate the mature protein. B-type lamins are involved in a wide range of nuclear functions, including DNA replication and repair, regulation of chromatin and nuclear stiffness. Moreover, lamins B1 and B2 regulate several cellular processes, such as tissue development, cell cycle, cellular proliferation, senescence, and DNA damage response. During embryogenesis, B-type lamins are essential for organogenesis, in particular for brain development. As expected from the numerous and pivotal functions of B-type lamins, mutations in their genes or fluctuations in their expression levels are critical for the onset of several diseases. Indeed, a growing range of human disorders have been linked to lamin B1 or B2, increasing the complexity of the group of diseases collectively known as laminopathies. This review highlights the recent findings on the biological role of B-type lamins under physiological or pathological conditions, with a particular emphasis on brain disorders and cancer.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Vigeland MD, Flåm ST, Vigeland MD, Espeland A, Kristoffersen PM, Vetti N, Wigemyr M, Bråten LCH, Gjefsen E, Schistad EI, Haugen AJ, Froholdt A, Skouen JS, Zwart JA, Storheim K, Pedersen LM, Lie BA. Correlation between gene expression and MRI STIR signals in patients with chronic low back pain and Modic changes indicates immune involvement. Sci Rep 2022; 12:215. [PMID: 34997115 PMCID: PMC8741947 DOI: 10.1038/s41598-021-04189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/16/2021] [Indexed: 01/02/2023] Open
Abstract
Disability and distress caused by chronic low back pain (LBP) lacking clear pathoanatomical explanations cause huge problems both for patients and society. A subgroup of patients has Modic changes (MC), identifiable by MRI as vertebral bone marrow lesions. The cause of such changes and their relationship to pain are not yet understood. We explored the pathobiology of these lesions using profiling of gene expression in blood, coupled with an edema-sensitive MRI technique known as short tau inversion recovery (STIR) imaging. STIR images and total RNA from blood were collected from 96 patients with chronic LBP and MC type I, the most inflammatory MC state. We found the expression of 37 genes significantly associated with STIR signal volume, ten genes with edema abundancy (a constructed combination of STIR signal volume, height, and intensity), and one gene with expression levels significantly associated with maximum STIR signal intensity. Gene sets related to interferon signaling, mitochondrial metabolism and defense response to virus were identified as significantly enriched among the upregulated genes in all three analyses. Our results point to inflammation and immunological defense as important players in MC biology in patients with chronic LBP.
Collapse
Affiliation(s)
- Maria Dehli Vigeland
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ansgar Espeland
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Per Martin Kristoffersen
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Nils Vetti
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Monica Wigemyr
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Lars Christian Haugli Bråten
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Gjefsen
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Anne Froholdt
- Department of Physical Medicine and Rehabilitation, Drammen Hospital, Drammen, Norway
| | - Jan Sture Skouen
- Department of Physical Medicine and Rehabilitation, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - John-Anker Zwart
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjersti Storheim
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | - Linda Margareth Pedersen
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | | | | |
Collapse
|
10
|
Sengupta D, Ali SN, Bhattacharya A, Mustafi J, Mukhopadhyay A, Sengupta K. A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology. PLoS One 2022; 17:e0261181. [PMID: 34995293 PMCID: PMC8741040 DOI: 10.1371/journal.pone.0261181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
Nuclear morphological features are potent determining factors for clinical diagnostic approaches adopted by pathologists to analyze the malignant potential of cancer cells. Considering the structural alteration of the nucleus in cancer cells, various groups have developed machine learning techniques based on variation in nuclear morphometric information like nuclear shape, size, nucleus-cytoplasm ratio and various non-parametric methods like deep learning have also been tested for analyzing immunohistochemistry images of tissue samples for diagnosing various cancers. We aim to correlate the morphometric features of the nucleus along with the distribution of nuclear lamin proteins with classical machine learning to differentiate between normal and ovarian cancer tissues. It has already been elucidated that in ovarian cancer, the extent of alteration in nuclear shape and morphology can modulate genetic changes and thus can be utilized to predict the outcome of low to a high form of serous carcinoma. In this work, we have performed exhaustive imaging of ovarian cancer versus normal tissue and developed a dual pipeline architecture that combines the matrices of morphometric parameters with deep learning techniques of auto feature extraction from pre-processed images. This novel Deep Hybrid Learning model, though derived from classical machine learning algorithms and standard CNN, showed a training and validation AUC score of 0.99 whereas the test AUC score turned out to be 1.00. The improved feature engineering enabled us to differentiate between cancerous and non-cancerous samples successfully from this pilot study.
Collapse
Affiliation(s)
- Duhita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- Homi Bhaba National Institute, Mumbai, India
| | - Sk Nishan Ali
- Artificial Intelligence and Machine Learning Division, MUST Research Trust, Hyderabad, Telangana, India
| | - Aditya Bhattacharya
- Artificial Intelligence and Machine Learning Division, MUST Research Trust, Hyderabad, Telangana, India
| | - Joy Mustafi
- Artificial Intelligence and Machine Learning Division, MUST Research Trust, Hyderabad, Telangana, India
| | - Asima Mukhopadhyay
- Chittaranjan National Cancer Institute, Newtown, Kolkata, West Bengal, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Ratti S, Rusciano I, Mongiorgi S, Owusu Obeng E, Cappellini A, Teti G, Falconi M, Talozzi L, Capellari S, Bartoletti-Stella A, Guaraldi P, Cortelli P, Suh PG, Cocco L, Manzoli L, Ramazzotti G. Cell signaling pathways in autosomal-dominant leukodystrophy (ADLD): the intriguing role of the astrocytes. Cell Mol Life Sci 2021; 78:2781-2795. [PMID: 33034697 PMCID: PMC8004488 DOI: 10.1007/s00018-020-03661-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/02/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Autosomal-dominant leukodystrophy (ADLD) is a rare fatal neurodegenerative disorder with overexpression of the nuclear lamina component, Lamin B1 due to LMNB1 gene duplication or deletions upstream of the gene. The molecular mechanisms responsible for driving the onset and development of this pathology are not clear yet. Vacuolar demyelination seems to be one of the most significant histopathological observations of ADLD. Considering the role of oligodendrocytes, astrocytes, and leukemia inhibitory factor (LIF)-activated signaling pathways in the myelination processes, this work aims to analyze the specific alterations in different cell populations from patients with LMNB1 duplications and engineered cellular models overexpressing Lamin B1 protein. Our results point out, for the first time, that astrocytes may be pivotal in the evolution of the disease. Indeed, cells from ADLD patients and astrocytes overexpressing LMNB1 show severe ultrastructural nuclear alterations, not present in oligodendrocytes overexpressing LMNB1. Moreover, the accumulation of Lamin B1 in astrocytes induces a reduction in LIF and in LIF-Receptor (LIF-R) levels with a consequential decrease in LIF secretion. Therefore, in both our cellular models, Jak/Stat3 and PI3K/Akt axes, downstream of LIF/LIF-R, are downregulated. Significantly, the administration of exogenous LIF can partially reverse the toxic effects induced by Lamin B1 accumulation with differences between astrocytes and oligodendrocytes, highlighting that LMNB1 overexpression drastically affects astrocytic function reducing their fundamental support to oligodendrocytes in the myelination process. In addition, inflammation has also been investigated, showing an increased activation in ADLD patients' cells.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Eric Owusu Obeng
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Gabriella Teti
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Mirella Falconi
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Lia Talozzi
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC NeuroMet, Bologna, Italy
| | | | - Pietro Guaraldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC NeuroMet, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC NeuroMet, Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea
- School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Giorgio E, Pesce E, Pozzi E, Sondo E, Ferrero M, Morerio C, Borrelli G, Della Sala E, Lorenzati M, Cortelli P, Buffo A, Pedemonte N, Brusco A. A high-content drug screening strategy to identify protein level modulators for genetic diseases: A proof-of-principle in autosomal dominant leukodystrophy. Hum Mutat 2020; 42:102-116. [PMID: 33252173 DOI: 10.1002/humu.24147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 11/07/2022]
Abstract
In genetic diseases, the most prevalent mechanism of pathogenicity is an altered expression of dosage-sensitive genes. Drugs that restore physiological levels of these genes should be effective in treating the associated conditions. We developed a screening strategy, based on a bicistronic dual-reporter vector, for identifying compounds that modulate protein levels, and used it in a pharmacological screening approach. To provide a proof-of-principle, we chose autosomal dominant leukodystrophy (ADLD), an ultra-rare adult-onset neurodegenerative disorder caused by lamin B1 (LMNB1) overexpression. We used a stable Chinese hamster ovary (CHO) cell line that simultaneously expresses an AcGFP reporter fused to LMNB1 and a Ds-Red normalizer. Using high-content imaging analysis, we screened a library of 717 biologically active compounds and approved drugs, and identified alvespimycin, an HSP90 inhibitor, as a positive hit. We confirmed that alvespimycin can reduce LMNB1 levels by 30%-80% in five different cell lines (fibroblasts, NIH3T3, CHO, COS-7, and rat primary glial cells). In ADLD fibroblasts, alvespimycin reduced cytoplasmic LMNB1 by about 50%. We propose this approach for effectively identifying potential drugs for treating genetic diseases associated with deletions/duplications and paving the way toward Phase II clinical trials.
Collapse
Affiliation(s)
- Elisa Giorgio
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marta Ferrero
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy
| | - Cristina Morerio
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giusy Borrelli
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy
| | - Edoardo Della Sala
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy
| | - Martina Lorenzati
- Department of Neuroscience Rita Levi Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Torino, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Torino, Italy
| | | | - Alfredo Brusco
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| |
Collapse
|
13
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
14
|
Zhang Y, Li J, Bai R, Wang J, Peng T, Chen L, Wang J, Liu Y, Tian T, Lu H. LMNB1-Related Adult-Onset Autosomal Dominant Leukodystrophy Presenting as Movement Disorder: A Case Report and Review of the Literature. Front Neurosci 2019; 13:1030. [PMID: 31695592 PMCID: PMC6816284 DOI: 10.3389/fnins.2019.01030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/11/2019] [Indexed: 11/30/2022] Open
Abstract
Adult-onset autosomal dominant leukodystrophy (ADLD) is a lately described rare form of leukodystrophy with only one family report from China. As the only disease associated with increased lamina B1 encoded by LMNB1, ADLDs have different clinical presentations, ranging from autonomic to pyramidal tract and cerebellar ataxia. Here, we report a case of ADLD that presented with positional tremor as the initial symptom. T2-weighted brain MRI showed brain atrophy and diffuse high signal intensity of the cerebral white matter and the brain stem. The precise diagnosis was made by identification of the mutated gene. To the best of our knowledge, this is perhaps the first case report of ADLD presenting as tremor in China.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Bai
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijie Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingtao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Giorgio E, Garelli E, Carando A, Bellora S, Rubino E, Quarello P, Sirchia F, Marrama F, Gallone S, Grosso E, Pasini B, Massa R, Brussino A, Brusco A. Design of a multiplex ligation-dependent probe amplification assay for SLC20A2: identification of two novel deletions in primary familial brain calcification. J Hum Genet 2019; 64:1083-1090. [PMID: 31501477 DOI: 10.1038/s10038-019-0668-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023]
Abstract
Primary familial brain calcification (PFBC) is a rare disease characterized by brain calcifications that mainly affect the basal ganglia, thalamus, and cerebellum. Among the four autosomal-dominant genes known to be associated with the disease, SLC20A2 pathogenic variants are the most common, accounting for up to 40% of PFBC dominant cases; variants include both point mutations, small insertions/deletions and intragenic deletions. Over the last 7 years, we have collected a group of 50 clinically diagnosed PFBC patients, who were screened for single nucleotide changes and small insertions/deletions in SLC20A2 by Sanger sequencing. We found seven pathogenic/likely pathogenic variants: four were previously described by our group, and three are reported here (c.303delG, c.21delG, and c.1795-1G>A). We developed and validated a synthetic Multiplex Ligation-dependent Probe Amplification (MLPA) assay for SLC20A2 deletions, covering all ten coding exons and the 5' UTR (SLC20A2-MLPA). Using this method, we screened a group of 43 PFBC-patients negative for point mutations and small insertions/deletions, and identified two novel intragenic deletions encompassing exon 6 NC_000008.10:g.(42297172_42302163)_(423022281_42317413)del, and exons 7-11 including the 3'UTR NC_000008.10:g.(?_42275320)_(42297172_42302163)del. Overall, SLC20A2 deletions may be highly underestimated PFBC cases, and we suggest MLPA should be included in the routine molecular test for PFBC diagnosis.
Collapse
Affiliation(s)
- Elisa Giorgio
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Emanuela Garelli
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Adriana Carando
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Stefania Bellora
- Pediatric Neuropsychiatry Unit, "SS Antonio e Biagio e Cesare Arrigo" Hospital, Alessandria, Italy
| | - Elisa Rubino
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Quarello
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Fabio Sirchia
- Institute for Maternal and Child Health IRCCS Burlo Garofalo, Trieste, Italy
| | - Federico Marrama
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Salvatore Gallone
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Enrico Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Torino, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Roberto Massa
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy. .,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.
| |
Collapse
|
16
|
Giorgio E, Lorenzati M, Rivetti di Val Cervo P, Brussino A, Cernigoj M, Della Sala E, Bartoletti Stella A, Ferrero M, Caiazzo M, Capellari S, Cortelli P, Conti L, Cattaneo E, Buffo A, Brusco A. Allele-specific silencing as treatment for gene duplication disorders: proof-of-principle in autosomal dominant leukodystrophy. Brain 2019; 142:1905-1920. [PMID: 31143934 DOI: 10.1093/brain/awz139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/16/2019] [Accepted: 03/31/2019] [Indexed: 11/14/2022] Open
Abstract
Allele-specific silencing by RNA interference (ASP-siRNA) holds promise as a therapeutic strategy for downregulating a single mutant allele with minimal suppression of the corresponding wild-type allele. This approach has been effectively used to target autosomal dominant mutations and single nucleotide polymorphisms linked with aberrantly expanded trinucleotide repeats. Here, we propose ASP-siRNA as a preferable choice to target duplicated disease genes, avoiding potentially harmful excessive downregulation. As a proof-of-concept, we studied autosomal dominant adult-onset demyelinating leukodystrophy (ADLD) due to lamin B1 (LMNB1) duplication, a hereditary, progressive and fatal disorder affecting myelin in the CNS. Using a reporter system, we screened the most efficient ASP-siRNAs preferentially targeting one of the alleles at rs1051644 (average minor allele frequency: 0.45) located in the 3' untranslated region of the gene. We identified four siRNAs with a high efficacy and allele-specificity, which were tested in ADLD patient-derived fibroblasts. Three of the small interfering RNAs were highly selective for the target allele and restored both LMNB1 mRNA and protein levels close to control levels. Furthermore, small interfering RNA treatment abrogates the ADLD-specific phenotypes in fibroblasts and in two disease-relevant cellular models: murine oligodendrocytes overexpressing human LMNB1, and neurons directly reprogrammed from patients' fibroblasts. In conclusion, we demonstrated that ASP-silencing by RNA interference is a suitable and promising therapeutic option for ADLD. Moreover, our results have a broad translational value extending to several pathological conditions linked to gene-gain in copy number variations.
Collapse
Affiliation(s)
- Elisa Giorgio
- University of Torino, Department of Medical Sciences, Torino, Italy
| | - Martina Lorenzati
- University of Torino, Department of Neuroscience Rita Levi Montalcini and Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - Pia Rivetti di Val Cervo
- University of Milan, Department of Biosciences, Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Milan, Italy
| | | | - Manuel Cernigoj
- University of Milan, Department of Biosciences, Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Milan, Italy
| | | | | | - Marta Ferrero
- University of Torino, Department of Medical Sciences, Torino, Italy
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, CG, Utrecht, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', Naples, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Luciano Conti
- University of Trento, Centre for Integrative Biology (CIBIO), Laboratory of Computational Oncology, Trento, Italy
| | - Elena Cattaneo
- University of Milan, Department of Biosciences, Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Milan, Italy
- National Institute of Molecular Genetics (INGM) Romeo and Enrica Invernizzi, Milano, Italy
| | - Annalisa Buffo
- University of Torino, Department of Neuroscience Rita Levi Montalcini and Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - Alfredo Brusco
- University of Torino, Department of Medical Sciences, Torino, Italy
- Città della Salute e della Scienza University Hospital, Medical Genetics Unit, Torino, Italy
| |
Collapse
|
17
|
Padiath QS. Autosomal Dominant Leukodystrophy: A Disease of the Nuclear Lamina. Front Cell Dev Biol 2019; 7:41. [PMID: 30949481 PMCID: PMC6435485 DOI: 10.3389/fcell.2019.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/05/2019] [Indexed: 01/23/2023] Open
Abstract
The nuclear lamina is a fibrous meshwork of proteins found adjacent to the inner nuclear membrane that plays a critical role in the maintenance of nuclear architecture. Made up of A and B type lamins, the nuclear lamina has recently been shown to contribute to numerous cellular functions such as chromatin organization, DNA replication, cellular proliferation, senescence, and aging. While at least a dozen disorders are associated with LMNA, the focus of this review is Autosomal Dominant Leukodystrophy (ADLD), the only disease associated with the lamin B1 gene (LMNB1). ADLD is a fatal, adult onset CNS demyelinating disorder that is caused by either genomic duplications involving LMNB1 or deletions upstream of the gene. Both mutation types result in increased LMNB1 gene expression. How the increased levels of this widely expressed nuclear structural component results a phenotype as specific as demyelination is a great mystery. This review summarizes what is currently known about the disease and describes recent work using animal and cell culture models that have provided critical insights into ADLD pathological mechanisms. The delineation of these pathways provides a fascinating glimpse into entirely novel roles for the nuclear lamina and will be critical for the identification of therapies for this fatal disease.
Collapse
Affiliation(s)
- Quasar S Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Finnsson J, Lubberink M, Savitcheva I, Fällmar D, Melberg A, Kumlien E, Raininko R. Glucose metabolism in the brain in LMNB1-related autosomal dominant leukodystrophy. Acta Neurol Scand 2019; 139:135-142. [PMID: 30192380 PMCID: PMC6585974 DOI: 10.1111/ane.13024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/02/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE LMNB1-related autosomal dominant leukodystrophy is caused by an overexpression of the protein lamin B1, usually due to a duplication of the LMNB1 gene. Symptoms start in 5th to 6th decade. This slowly progressive disease terminates with death. We studied brain glucose metabolism in this disease using 18 F-fluorodeoxyglucose positron emission tomography (PET). METHODS We examined 8 patients, aged 48-64 years, in varying stages of clinical symptomatology. Two patients were investigated with quantitative PET on clinical indications after which six more patients were recruited. Absolute glucose metabolism was analyzed with the PVElab software in 6 patients and 18 healthy controls. A semiquantitative analysis using the CortexID software was performed in seven investigations, relating local metabolism levels to global glucose metabolism. RESULTS The clinical quantitative PET revealed low global glucose metabolism, with the most marked reduction in the cerebellum. In the PVElab analysis, patients presented low mean glucose metabolism in the cerebellum, brainstem and global grey matter. In the semiquantitative analysis, 2 patients showed a decreased metabolism in the cerebellum and 4 patients a relatively higher metabolism in parts of the temporal lobes. Since none of the patients showed an increased metabolism in the quantitative analysis, we interpret these increases as "pseudo-increases" related to a globally reduced metabolism. CONCLUSIONS Global reduction of grey matter glucose metabolism in this white matter disease most likely depends on a combination of cortical afferent dysfunction and, in later stages, neuronal loss. The lowest metabolism in the cerebellum is consistent with histopathological findings and prominent cerebellar symptoms.
Collapse
Affiliation(s)
| | | | - Irina Savitcheva
- Nuclear Medicine and PETUppsala UniversityUppsalaSweden
- Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
| | | | - Atle Melberg
- Neuroscience, NeurologyUppsala UniversityUppsalaSweden
| | - Eva Kumlien
- Neuroscience, NeurologyUppsala UniversityUppsalaSweden
| | | |
Collapse
|
19
|
Bartoletti-Stella A, Corrado P, Mometto N, Baiardi S, Durrenberger PF, Arzberger T, Reynolds R, Kretzschmar H, Capellari S, Parchi P. Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease. Mol Neurobiol 2018; 56:5009-5024. [PMID: 30446946 DOI: 10.1007/s12035-018-1421-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regulation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002). Taken together, these results confirm and expand previous microarray expression profile data in sCJD. Most significantly, they also demonstrate the involvement of the endosomal-lysosomal system. Since the latter is a common pathogenic pathway linking together diseases, such as Alzheimer's and Parkinson's, it might be the focus of future studies aimed to identify new therapeutic targets in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40139, Bologna, Italy
| | - Patrizia Corrado
- Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy
| | - Nicola Mometto
- Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy
| | - Simone Baiardi
- Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy
| | - Pascal F Durrenberger
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, Rayne Building, London, UK
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Hans Kretzschmar
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40139, Bologna, Italy. .,Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40139, Bologna, Italy. .,Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, 40138, Bologna, Italy.
| |
Collapse
|
20
|
Lo Martire V, Alvente S, Bastianini S, Berteotti C, Bombardi C, Calandra-Buonaura G, Capellari S, Cohen G, Cortelli P, Gasparini L, Padiath Q, Valli A, Zoccoli G, Silvani A. Mice overexpressing lamin B1 in oligodendrocytes recapitulate the age-dependent motor signs, but not the early autonomic cardiovascular dysfunction of autosomal-dominant leukodystrophy (ADLD). Exp Neurol 2018; 301:1-12. [PMID: 29262292 PMCID: PMC5809293 DOI: 10.1016/j.expneurol.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/02/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Autosomal dominant leukodystrophy (ADLD) is a rare adult-onset demyelinating disease caused by overexpression of lamin B1, a nuclear lamina filament. Early autonomic dysfunction involving the cardiovascular system before progressive somatic motor dysfunction is a striking feature of most cases of ADLD. In the Plp-FLAG-LMNB1 transgenic mouse model, lamin B1 overexpression in oligodendrocytes elicits somatic motor dysfunction and neuropathology akin to ADLD. Here, we investigate whether Plp-FLAG-LMNB1 mice also develop autonomic cardiovascular dysfunction before or after somatic motor dysfunction. We find that Plp-FLAG-LMNB1 mice have preserved cardiovascular responses to changes in wake-sleep state and ambient temperature and normal indexes of autonomic modulation at 37-42weeks of age despite a progressive somatic motor dysfunction, which includes impairments of walking ability (the ability to walk on a narrow path was impaired in 80% of mice at 34-38weeks of age) and subtle breathing derangements. Only late in the development of the disease phenotype did Plp-FLAG-LMNB1 mice develop a structural deficit of sympathetic noradrenergic fibers, with a 38% decrease in fiber profiles in the kidneys at 44-47weeks of age. We demonstrate that while the Plp-FLAG-LMNB1 mouse model recapitulates the age-dependent motor dysfunction of ADLD, it does not show signs of early autonomic cardiovascular dysfunction, raising the possibility that oligodendrocyte dysfunction may not be sufficient to cause the full spectrum of clinical features present in ADLD.
Collapse
Affiliation(s)
- Viviana Lo Martire
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Sara Alvente
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Stefano Bastianini
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Chiara Berteotti
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Giovanna Calandra-Buonaura
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Bologna, Italy
| | - Sabina Capellari
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Bologna, Italy
| | - Gary Cohen
- Sleep Investigation Laboratory, Centre for Sleep Health and Research, Royal North Shore Hospital, Sydney, Australia
| | - Pietro Cortelli
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Bologna, Italy
| | - Laura Gasparini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Quasar Padiath
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alice Valli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giovanna Zoccoli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Alessandro Silvani
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
21
|
Mahajani S, Giacomini C, Marinaro F, De Pietri Tonelli D, Contestabile A, Gasparini L. Lamin B1 levels modulate differentiation into neurons during embryonic corticogenesis. Sci Rep 2017; 7:4897. [PMID: 28687747 PMCID: PMC5501862 DOI: 10.1038/s41598-017-05078-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/24/2017] [Indexed: 01/10/2023] Open
Abstract
Lamin B1, a key component of the nuclear lamina, plays an important role in brain development. Ablation of endogenous Lamin B1 (Lmnb1) in the mouse strongly impairs embryonic brain development and corticogenesis. However, the mechanisms underlying these neurodevelopmental effects are unknown. Here, we report that Lamin B1 levels modulate the differentiation of murine neural stem cells (NSCs) into neurons and astroglial-like cells. In vitro, endogenous Lmnb1 depletion favors NSC differentiation into glial fibrillar acidic protein (GFAP)-immunoreactive cells over neurons, while overexpression of human Lamin B1 (LMNB1) increases the proportion of neurons. In Lmnb1-null embryos, neurogenesis is reduced, while in vivo Lmnb1 silencing in mouse embryonic brain by in utero electroporation of a specific Lmnb1 sh-RNA results in aberrant cortical positioning of neurons and increased expression of the astrocytic marker GFAP in the cortex of 7-day old pups. Together, these results indicate that finely tuned levels of Lamin B1 are required for NSC differentiation into neurons, proper expression of the astrocytic marker GFAP and corticogenesis.
Collapse
Affiliation(s)
- Sameehan Mahajani
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- Universitaetsmedizin Goettingen, Waldweg 33, Goettingen, 37073, Germany
| | - Caterina Giacomini
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- Division of Cancer Studies, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Federica Marinaro
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Andrea Contestabile
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Laura Gasparini
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.
- Abbvie Deutschland GmbH & Co, Knollstr, Ludwigshafen, 67061, Germany.
| |
Collapse
|
22
|
Padiath QS. Lamin B1 mediated demyelination: Linking Lamins, Lipids and Leukodystrophies. Nucleus 2016; 7:547-553. [PMID: 27854160 PMCID: PMC5214339 DOI: 10.1080/19491034.2016.1260799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023] Open
Abstract
Autosomal Dominant Leukodystrophy (ADLD), a fatal adult onset demyelinating disorder, is the only human disease that has been linked to mutations of the nuclear lamina protein, lamin B1, and is primarily caused by duplications of the LMNB1 gene. Why CNS myelin is specifically targeted and the mechanisms underlying ADLD are unclear. Recent work from our group has demonstrated that over expression of lamin B1 in oligodendrocytes, the myelin producing cells in the CNS, resulted in age dependent epigenetic modifications, transcriptional down-regulation of lipogenic gene expression and significant reductions of myelin-enriched lipids. Given the high lipid content of meylin, we hypothesize that lipid loss is one of the primary drivers of the demyelination phenotype. These results can, at least partially, explain the age dependence and cell type specificity in ADLD and are discussed in the context of the existing literature, in an attempt to delineate potential pathways underlying the disease phenotype.
Collapse
Affiliation(s)
- Quasar S. Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Terlizzi R, Calandra-Buonaura G, Zanigni S, Barletta G, Capellari S, Guaraldi P, Donadio V, Cason E, Contin M, Poda R, Tonon C, Sambati L, Gallassi R, Liguori R, Lodi R, Cortelli P. A longitudinal study of a family with adult-onset autosomal dominant leukodystrophy: Clinical, autonomic and neuropsychological findings. Auton Neurosci 2016; 195:20-6. [PMID: 26896090 DOI: 10.1016/j.autneu.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/20/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Adult-onset autosomal dominant leukodystrophy (ADLD) is a rare progressive neurological disorder caused by Lamin B1 duplication (LMNB1). Our aim was to investigate longitudinally the pattern of the autonomic dysfunction and the degree of neuropsychological involvement. METHODS Three related ADLD patients and one asymptomatic carrier of LMNB1 duplication underwent a standardized evaluation of autonomic nervous system, including cardiovascular reflexes, pharmacological testing, microneurography, skin biopsy, Metaiodobenzylguanidine scintigraphy and a complete neuropsychological battery. RESULTS An early neurogenic orthostatic hypotension was detected in all patients and confirmed by a low rise in noradrenaline levels on Tilt Test. However infusion of noradrenaline resulted in normal blood pressure rise as well as the infusion of clonidine. At the insulin tolerance test the increase in adrenaline resulted pathological in two out three patients. Microneurography failed to detect muscle sympathetic nerve activity bursts. Skin biopsy revealed a poor adrenergic innervation, while cardiac sympathetic nerves were normal. None of ADLD patients showed a global cognitive deficit but a selective impairment in the executive functions. CONCLUSION Autonomic disorder in ADLD involves selectively the postganglionic sympathetic system including the sympatho-adrenal response. Cognitive involvement consisting in an early impairment of executive tasks that might precede brain MR abnormalities.
Collapse
Affiliation(s)
- Rossana Terlizzi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Zanigni
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; Functional MR Unit, Policlinico S. Orsola-Malpighi, Italy
| | - Giorgio Barletta
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Pietro Guaraldi
- Neurology outpatient Clinic, Department of Primary Care, Local Health Authority of Modena, Modena, Italy
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Ernesto Cason
- Unit of Nuclear Medicine, Maggiore Hospital of Bologna, Italy
| | - Manuela Contin
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Roberto Poda
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; Functional MR Unit, Policlinico S. Orsola-Malpighi, Italy
| | - Luisa Sambati
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Roberto Gallassi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; Functional MR Unit, Policlinico S. Orsola-Malpighi, Italy
| | - Pietro Cortelli
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
24
|
Giacomini C, Mahajani S, Ruffilli R, Marotta R, Gasparini L. Lamin B1 protein is required for dendrite development in primary mouse cortical neurons. Mol Biol Cell 2016; 27:35-47. [PMID: 26510501 PMCID: PMC4694760 DOI: 10.1091/mbc.e15-05-0307] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 01/15/2023] Open
Abstract
Lamin B1, a key component of the nuclear lamina, plays an important role in brain development and function. A duplication of the human lamin B1 (LMNB1) gene has been linked to adult-onset autosomal dominant leukodystrophy, and mouse and human loss-of-function mutations in lamin B1 are susceptibility factors for neural tube defects. In the mouse, experimental ablation of endogenous lamin B1 (Lmnb1) severely impairs embryonic corticogenesis. Here we report that in primary mouse cortical neurons, LMNB1 overexpression reduces axonal outgrowth, whereas deficiency of endogenous Lmnb1 results in aberrant dendritic development. In the absence of Lmnb1, both the length and complexity of dendrites are reduced, and their growth is unresponsive to KCl stimulation. This defective dendritic outgrowth stems from impaired ERK signaling. In Lmnb1-null neurons, ERK is correctly phosphorylated, but phospho-ERK fails to translocate to the nucleus, possibly due to delocalization of nuclear pore complexes (NPCs) at the nuclear envelope. Taken together, these data highlight a previously unrecognized role of lamin B1 in dendrite development of mouse cortical neurons through regulation of nuclear shuttling of specific signaling molecules and NPC distribution.
Collapse
Affiliation(s)
- Caterina Giacomini
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| | - Sameehan Mahajani
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| | - Roberta Ruffilli
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Roberto Marotta
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Laura Gasparini
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| |
Collapse
|
25
|
Abstract
The human transcriptome is composed of a vast RNA population that undergoes further diversification by splicing. Detecting specific splice sites in this large sequence pool is the responsibility of the major and minor spliceosomes in collaboration with numerous splicing factors. This complexity makes splicing susceptible to sequence polymorphisms and deleterious mutations. Indeed, RNA mis-splicing underlies a growing number of human diseases with substantial societal consequences. Here, we provide an overview of RNA splicing mechanisms followed by a discussion of disease-associated errors, with an emphasis on recently described mutations that have provided new insights into splicing regulation. We also discuss emerging strategies for splicing-modulating therapy.
Collapse
Affiliation(s)
- Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| |
Collapse
|
26
|
Visigalli D, Castagnola P, Capodivento G, Geroldi A, Bellone E, Mancardi G, Pareyson D, Schenone A, Nobbio L. Alternative Splicing in the HumanPMP22Gene: Implications in CMT1A Neuropathy. Hum Mutat 2015; 37:98-109. [DOI: 10.1002/humu.22921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/11/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Davide Visigalli
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | | | - Giovanna Capodivento
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Alessandro Geroldi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Emilia Bellone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Gianluigi Mancardi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit; IRCCS Foundation; C. Besta Neurological Institute; Milan Italy
| | - Angelo Schenone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Lucilla Nobbio
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| |
Collapse
|
27
|
Rolyan H, Tyurina YY, Hernandez M, Amoscato AA, Sparvero LJ, Nmezi BC, Lu Y, Estécio MRH, Lin K, Chen J, He RR, Gong P, Rigatti LH, Dupree J, Bayır H, Kagan VE, Casaccia P, Padiath QS. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci 2015; 35:12002-17. [PMID: 26311780 PMCID: PMC4549407 DOI: 10.1523/jneurosci.1668-15.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/24/2015] [Accepted: 07/23/2015] [Indexed: 11/21/2022] Open
Abstract
Lamin B1 is a component of the nuclear lamina and plays a critical role in maintaining nuclear architecture, regulating gene expression and modulating chromatin positioning. We have previously shown that LMNB1 gene duplications cause autosomal dominant leukodystrophy (ADLD), a fatal adult onset demyelinating disease. The mechanisms by which increased LMNB1 levels cause ADLD are unclear. To address this, we used a transgenic mouse model where Lamin B1 overexpression is targeted to oligodendrocytes. These mice showed severe vacuolar degeneration of the spinal cord white matter together with marked astrogliosis, microglial infiltration, and secondary axonal damage. Oligodendrocytes in the transgenic mice revealed alterations in histone modifications favoring a transcriptionally repressed state. Chromatin changes were accompanied by reduced expression of genes involved in lipid synthesis pathways, many of which are known to play important roles in myelin regulation and are preferentially expressed in oligodendrocytes. Decreased lipogenic gene expression resulted in a significant reduction in multiple classes of lipids involved in myelin formation. Many of these gene expression changes and lipid alterations were observed even before the onset of the phenotype, suggesting a causal role. Our findings establish, for the first time, a link between LMNB1 and lipid synthesis in oligodendrocytes, and provide a mechanistic framework to explain the age dependence and white matter involvement of the disease phenotype. These results have implications for disease pathogenesis and may also shed light on the regulation of lipid synthesis pathways in myelin maintenance and turnover. SIGNIFICANCE STATEMENT Autosomal dominant leukodystrophy (ADLD) is fatal neurological disorder caused by increased levels of the nuclear protein, Lamin B1. The disease is characterized by an age-dependent loss of myelin, the fatty sheath that covers nerve fibers. We have studied a mouse model where Lamin B1 level are increased in oligodendrocytes, the cell type that produces myelin in the CNS. We demonstrate that destruction of myelin in the spinal cord is responsible for the degenerative phenotype in our mouse model. We show that this degeneration is mediated by reduced expression of lipid synthesis genes and the subsequent reduction in myelin enriched lipids. These findings provide a mechanistic framework to explain the age dependence and tissue specificity of the ADLD disease phenotype.
Collapse
Affiliation(s)
- Harshvardhan Rolyan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15216
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Marylens Hernandez
- Friedman Brain Institute Center for Neural Repair, Department of Neuroscience, and Graduate School of Biological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Louis J Sparvero
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Bruce C Nmezi
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15216
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Marcos R H Estécio
- Department of Epigenetics and Molecular Carcinogenesis, and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Junda Chen
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15216
| | - Rong-Rong He
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Pin Gong
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jeffrey Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, and
| | - Hülya Bayır
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, Safar Center for Resuscitation Research and Departments of Critical Care Medicine
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, Pharmacology and Chemical Biology, Chemistry, and Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Patrizia Casaccia
- Graduate School of Biological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Quasar S Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15216,
| |
Collapse
|