1
|
Moore JA, Kang C, Vigneshwaran V, Stanley EAM, Memon A, Wilms M, Forkert ND. Towards realistic simulation of disease progression in the visual cortex with CNNs. Sci Rep 2025; 15:6099. [PMID: 39972104 PMCID: PMC11839997 DOI: 10.1038/s41598-025-89738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Convolutional neural networks (CNNs) and mammalian visual systems share architectural and information processing similarities. We leverage these parallels to develop an in-silico CNN model simulating diseases affecting the visual system. This model aims to replicate neural complexities in an experimentally controlled environment. Therefore, we examine object recognition and internal representations of a CNN under neurodegeneration and neuroplasticity conditions simulated through synaptic weight decay and retraining. This approach can model neurodegeneration from events like tau accumulation, reflecting cognitive decline in diseases such as posterior cortical atrophy, a condition that can accompany Alzheimer's disease and primarily affects the visual system. After each degeneration iteration, we retrain unaffected synapses to simulate ongoing neuroplasticity. Our results show that with significant synaptic decay and limited retraining, the model's representational similarity decreases compared to a healthy model. Early CNN layers retain high similarity to the healthy model, while later layers are more prone to degradation. The results of this study reveal a progressive decline in object recognition proficiency, mirroring posterior cortical atrophy progression. In-silico modeling of neurodegenerative diseases can enhance our understanding of disease progression and aid in developing targeted rehabilitation and treatments.
Collapse
Affiliation(s)
- Jasmine A Moore
- Department of Radiology, University of Calgary, Calgary, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada.
| | - Chris Kang
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Vibujithan Vigneshwaran
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Emma A M Stanley
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada
| | - Ashar Memon
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Calgary, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Pierson SR, Fiock KL, Wang R, Balasubramanian N, Reinhardt J, Khan KM, James TD, Hunter ML, Cooper BJ, Williamsen HR, Betters R, Deniz K, Lee G, Aldridge G, Hefti MM, Marcinkiewcz CA. Tau pathology in the dorsal raphe may be a prodromal indicator of Alzheimer's disease. Mol Psychiatry 2025; 30:532-546. [PMID: 39143322 PMCID: PMC12010729 DOI: 10.1038/s41380-024-02664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
Protein aggregation in brainstem nuclei is thought to occur in the early stages of Alzheimer's disease (AD), but its specific role in driving prodromal symptoms and disease progression is largely unknown. The dorsal raphe nucleus (DRN) contains a large population of serotonin (5-hydroxytryptamine; 5-HT) neurons that regulate mood, reward-related behavior, and sleep, which are all disrupted in AD. We report here that tau pathology is present in the DRN of individuals 25-80 years old without a known history of dementia, and its prevalence was comparable to the locus coeruleus (LC). By comparison, fewer cases were positive for other pathological proteins including α-synuclein, β-amyloid, and TDP-43. To evaluate how early tau pathology impacts behavior, we overexpressed human P301L-tau in the DRN of mice and observed depressive-like behaviors and hyperactivity without deficits in spatial memory. Tau pathology was predominantly found in neurons relative to glia and colocalized with a significant proportion of Tph2-expressing neurons in the DRN. 5-HT neurons were also hyperexcitable in P301L-tauDRN mice, and there was an increase in the amplitude of excitatory post-synaptic currents (EPSCs). Moreover, astrocytic density was elevated in the DRN and accompanied by an increase in IL-1α and Frk expression, which suggests increased inflammatory signaling. Additionally, tau pathology was detected in axonal processes in the thalamus, hypothalamus, amygdala, and caudate putamen. A significant proportion of this tau pathology colocalized with the serotonin reuptake transporter (SERT), suggesting that tau may spread in an anterograde manner to regions outside the DRN. Together these results indicate that tau pathology accumulates in the DRN in a subset of individuals over 50 years and may lead to behavioral dysregulation, 5-HT neuronal dysfunction, and activation of local astrocytes which may be prodromal indicators of AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kimberly L Fiock
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Jessica Reinhardt
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kanza M Khan
- Psychological Sciences Department, Daemen University, Amherst, NY, 14226, USA
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikayla L Hunter
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin J Cooper
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Ryan Betters
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaancan Deniz
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Georgina Aldridge
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Lu W, Shue F, Kurti A, Jeevaratnam S, Macyczko JR, Roy B, Izhar T, Wang N, Bu G, Kanekiyo T, Li Y. Amyloid pathology and cognitive impairment in hAβ-KI and APP SAA-KI mouse models of Alzheimer's disease. Neurobiol Aging 2025; 145:13-23. [PMID: 39447490 DOI: 10.1016/j.neurobiolaging.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The hAβ-KI and APPSAA-KI are two amyloid models that harbor mutations in the endogenous mouse App gene. Both hAβ-KI and APPSAA-KI mice contain a humanized Aβ sequence, and APPSAA-KI mice carry three additional familial AD mutations. We herein report that the Aβ levels and Aβ42/Aβ40 ratio in APPSAA-KI homozygotes are dramatically higher than those in hAβ-KI homozygotes at 14 months of age. In addition, APPSAA-KI mice display a widespread distribution of amyloid plaques in the brain, whereas the plaques are undetectable in hAβ-KI mice. Moreover, there are no sex differences in amyloid pathology in APPSAA-KI mice. Both APPSAA-KI and hAβ-KI mice exhibit cognitive impairments, wherein no significant differences are found between these two models, although APPSAA KI mice show a trend towards worse cognitive function. Notably, female hAβ-KI and APPSAA-KI mice have a more pronounced cognitive impairments compared to their respective males. Our findings suggest that Aβ humanization contributes to cognitive deficits in APPSAA-KI mice, and that amyloid deposition might not be closely associated with cognitive impairments in APPSAA-KI mice.
Collapse
Affiliation(s)
- Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Suren Jeevaratnam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jesse R Macyczko
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bhaskar Roy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taha Izhar
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
4
|
Alava BR, Morris AR, Liu AC, Abisambra JF, Esser KA. AAV8-P301L tau expression confers age-related disruptions in sleep quantity and timing. NPJ BIOLOGICAL TIMING AND SLEEP 2024; 1:8. [PMID: 39363957 PMCID: PMC11445076 DOI: 10.1038/s44323-024-00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024]
Abstract
Sleep timing and quantity disturbances persist in tauopathy patients. This has been studied in transgenic models of primary tau neuropathology using traditional electroencephalograms (EEGs) and more recently, the PiezoSleep Mouse Behavioral Tracking System. Here, we generated a primary tauopathy model using an intracerebroventricular injection of human mutant hSyn-P301L-tau, using adeno-associated virus of serotype 8 (AAV8). We discovered distinctions in sleep architecture with altered quantity and timing in AAV8-P301L tau expressing mice of both sexes using the noninvasive PiezoSleep System. The AAV8-P301L tau mice exhibit striking age-related increases in sleep duration specifically at the active phase onset, suggesting a critical and sensitive time-of-day for tauopathy related sleep disturbances to occur. Since our findings show sleep behavior changes at specific transitional periods of the day, tau neuropathology may impact normal diurnal variation in biological processes, which should be explored using the AAV8-P301L tauopathy model.
Collapse
Affiliation(s)
- Bryan R. Alava
- Department of Physiology and Aging, University of Florida, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL USA
| | - Andrew R. Morris
- Department of Physiology and Aging, University of Florida, Gainesville, FL USA
| | - Andrew C. Liu
- Department of Physiology and Aging, University of Florida, Gainesville, FL USA
| | - Jose F. Abisambra
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL USA
- Department of Neuroscience, University of Florida, Gainesville, FL USA
- Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL USA
| |
Collapse
|
5
|
Chung DEC, Deng X, Yalamanchili HK, Revelli JP, Han AL, Tadros B, Richman R, Dias M, Naini FA, Boeynaems S, Hyman BT, Zoghbi HY. The big tau splice isoform resists Alzheimer's-related pathological changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605685. [PMID: 39211086 PMCID: PMC11360890 DOI: 10.1101/2024.07.30.605685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In Alzheimer's disease (AD), the microtubule-binding protein tau becomes abnormally hyperphosphorylated and aggregated in selective brain regions such as the cortex and hippocampus 1-3 . However, other brain regions like the cerebellum and brain stem remain largely intact despite the universal expression of tau throughout the brain. Here, we found that an understudied splice isoform of tau termed "big tau" is significantly more abundant in the brain regions less vulnerable to tau pathology compared to tau pathology-vulnerable regions. We used various cellular and animal models to demonstrate that big tau possesses multiple properties that can resist AD-related pathological changes. Importantly, human AD patients show a higher expression level of pathology-resisting big tau in the cerebellum, the brain region spared from tau pathology. Our study examines the unique properties of big tau, expanding our current understanding of tau pathophysiology. Altogether, our data suggest that alternative splicing to favor big tau is a viable strategy to modulate tau pathology.
Collapse
|
6
|
Martinez P, Jury-Garfe N, Patel H, You Y, Perkins A, You Y, Lee-Gosselin A, Vidal R, Lasagna-Reeves CA. Phosphorylation at serine 214 correlates with tau seeding activity in an age-dependent manner in two mouse models for tauopathies and is required for tau transsynaptic propagation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604618. [PMID: 39211286 PMCID: PMC11361173 DOI: 10.1101/2024.07.22.604618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pathological aggregation and propagation of hyperphosphorylated and aberrant forms of tau are critical features of the clinical progression of Alzheimer's disease and other tauopathies. To better understand the correlation between these pathological tau species and disease progression, we profiled the temporal progression of tau seeding activity and the levels of various phospho- and conformational tau species in the brains of two mouse models of human tauopathies. Our findings indicate that tau seeding is an early event that occurs well before the appearance of AT8-positive NFT. Specifically, we observed that tau phosphorylation in serine 214 (pTau-Ser214) positively correlates to tau seeding activity during disease progression in both mouse models. Furthermore, we found that the histopathology of pTau-Ser214 appears much earlier and has a distinct pattern and compartmentalization compared to the pathology of AT8, demonstrating the diversity of tau species within the same region of the brain. Importantly, we also observed that preventing the phosphorylation of tau at Ser214 significantly decreases tau propagation in mouse primary neurons, and seeding activity in a Drosophila model of tauopathy, suggesting a role for this tau phosphorylation in spreading pathological forms of tau. Together, these results suggest that the diverse spectrum of soluble pathological tau species could be responsible for the distinct pathological properties of tau and that it is critical to dissect the nature of the tau seed in the context of disease progression.
Collapse
|
7
|
Alava B, Hery G, Sidhom S, Gutierrez-Monreal M, Prokop S, Esser KA, Abisambra J. Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function. AGING BRAIN 2024; 5:100110. [PMID: 38419621 PMCID: PMC10900120 DOI: 10.1016/j.nbas.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.
Collapse
Affiliation(s)
- Bryan Alava
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
| | - Gabriela Hery
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
| | - Silvana Sidhom
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | | | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
8
|
Alava B, Hery G, Sidhom S, Prokop S, Esser K, Abisambra J. Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567586. [PMID: 38014109 PMCID: PMC10680826 DOI: 10.1101/2023.11.17.567586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.
Collapse
Affiliation(s)
- Bryan Alava
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
| | - Gabriela Hery
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
| | - Silvana Sidhom
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
- Department of Pathology, University of Florida, Gainesville, Florida, 32610, USA
| | - Karyn Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, 32610, USA
- Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, Florida, 32601, USA
| |
Collapse
|
9
|
Acri DJ, You Y, Tate MD, Karahan H, Martinez P, McCord B, Sharify AD, John S, Kim B, Dabin LC, Philtjens S, Wijeratne HS, McCray TJ, Smith DC, Bissel SJ, Lamb BT, Lasagna-Reeves CA, Kim J. Network analysis identifies strain-dependent response to tau and tau seeding-associated genes. J Exp Med 2023; 220:e20230180. [PMID: 37606887 PMCID: PMC10443211 DOI: 10.1084/jem.20230180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/05/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023] Open
Abstract
Previous research demonstrated that genetic heterogeneity is a critical factor in modeling amyloid accumulation and other Alzheimer's disease phenotypes. However, it is unknown what mechanisms underlie these effects of genetic background on modeling tau aggregate-driven pathogenicity. In this study, we induced tau aggregation in wild-derived mice by expressing MAPT. To investigate the effect of genetic background on the action of tau aggregates, we performed RNA sequencing with brains of C57BL/6J, CAST/EiJ, PWK/PhJ, and WSB/EiJ mice (n = 64) and determined core transcriptional signature conserved in all genetic backgrounds and signature unique to wild-derived backgrounds. By measuring tau seeding activity using the cortex, we identified 19 key genes associated with tau seeding and amyloid response. Interestingly, microglial pathways were strongly associated with tau seeding activity in CAST/EiJ and PWK/PhJ backgrounds. Collectively, our study demonstrates that mouse genetic context affects tau-mediated alteration of transcriptome and tau seeding. The gene modules associated with tau seeding provide an important resource to better model tauopathy.
Collapse
Affiliation(s)
- Dominic J. Acri
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Mason D. Tate
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Pablo Martinez
- Department of Anatomy, Cell Biology and Physiology, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Brianne McCord
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - A. Daniel Sharify
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Sutha John
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Byungwook Kim
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Luke C. Dabin
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Stéphanie Philtjens
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - H.R. Sagara Wijeratne
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Tyler J. McCray
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Daniel C. Smith
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Stephanie J. Bissel
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Cristian A. Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Lee J, Dimitry JM, Song JH, Son M, Sheehan PW, King MW, Travis Tabor G, Goo YA, Lazar MA, Petrucelli L, Musiek ES. Microglial REV-ERBα regulates inflammation and lipid droplet formation to drive tauopathy in male mice. Nat Commun 2023; 14:5197. [PMID: 37626048 PMCID: PMC10457319 DOI: 10.1038/s41467-023-40927-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease, the most common age-related neurodegenerative disease, is characterized by tau aggregation and associated with disrupted circadian rhythms and dampened clock gene expression. REV-ERBα is a core circadian clock protein which also serves as a nuclear receptor and transcriptional repressor involved in lipid metabolism and macrophage function. Global REV-ERBα deletion has been shown to promote microglial activation and mitigate amyloid plaque formation. However, the cell-autonomous effects of microglial REV-ERBα in healthy brain and in tauopathy are unexplored. Here, we show that microglial REV-ERBα deletion enhances inflammatory signaling, disrupts lipid metabolism, and causes lipid droplet (LD) accumulation specifically in male microglia. These events impair microglial tau phagocytosis, which can be partially rescued by blockage of LD formation. In vivo, microglial REV-ERBα deletion exacerbates tau aggregation and neuroinflammation in two mouse tauopathy models, specifically in male mice. These data demonstrate the importance of microglial lipid droplets in tau accumulation and reveal REV-ERBα as a therapeutically accessible, sex-dependent regulator of microglial inflammatory signaling, lipid metabolism, and tauopathy.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie M Dimitry
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Minsoo Son
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick W Sheehan
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Melvin W King
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - G Travis Tabor
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Erik S Musiek
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Pickles S, Zanetti Alepuz D, Koike Y, Yue M, Tong J, Liu P, Zhou Y, Jansen-West K, Daughrity LM, Song Y, DeTure M, Oskarsson B, Graff-Radford NR, Boeve BF, Petersen RC, Josephs KA, Dickson DW, Ward ME, Dong L, Prudencio M, Cook CN, Petrucelli L. CRISPR interference to evaluate modifiers of C9ORF72-mediated toxicity in FTD. Front Cell Dev Biol 2023; 11:1251551. [PMID: 37614226 PMCID: PMC10443592 DOI: 10.3389/fcell.2023.1251551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Treatments for neurodegenerative disease, including Frontotemporal dementia (FTD) and Amyotrophic lateral sclerosis (ALS), remain rather limited, underscoring the need for greater mechanistic insight and disease-relevant models. Our ability to develop novel disease models of genetic risk factors, disease modifiers, and other FTD/ALS-relevant targets is impeded by the significant amount of time and capital required to develop conventional knockout and transgenic mice. To overcome these limitations, we have generated a novel CRISPRi interference (CRISPRi) knockin mouse. CRISPRi uses a catalytically dead form of Cas9, fused to a transcriptional repressor to knockdown protein expression, following the introduction of single guide RNA against the gene of interest. To validate the utility of this model we have selected the TAR DNA binding protein (TDP-43) splicing target, stathmin-2 (STMN2). STMN2 RNA is downregulated in FTD/ALS due to loss of TDP-43 activity and STMN2 loss is suggested to play a role in ALS pathogenesis. The involvement of STMN2 loss of function in FTD has yet to be determined. We find that STMN2 protein levels in familial FTD cases are significantly reduced compared to controls, supporting that STMN2 depletion may be involved in the pathogenesis of FTD. Here, we provide proof-of-concept that we can simultaneously knock down Stmn2 and express the expanded repeat in the Chromosome 9 open reading frame 72 (C9ORF72) gene, successfully replicating features of C9-associated pathology. Of interest, depletion of Stmn2 had no effect on expression or deposition of dipeptide repeat proteins (DPRs), but significantly decreased the number of phosphorylated Tdp-43 (pTdp-43) inclusions. We submit that our novel CRISPRi mouse provides a versatile and rapid method to silence gene expression in vivo and propose this model will be useful to understand gene function in isolation or in the context of other neurodegenerative disease models.
Collapse
Affiliation(s)
- Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuka Koike
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yugui Zhou
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Bradley F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Keith A. Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
12
|
Acri DJ, You Y, Tate MD, McCord B, Sharify AD, John S, Karahan H, Kim B, Dabin LC, Philtjens S, Wijeratne HS, McCray TJ, Smith DC, Bissel SJ, Lamb BT, Lasagna-Reeves CA, Kim J. Network analysis reveals strain-dependent response to misfolded tau aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526029. [PMID: 36778440 PMCID: PMC9915505 DOI: 10.1101/2023.01.28.526029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mouse genetic backgrounds have been shown to modulate amyloid accumulation and propagation of tau aggregates. Previous research into these effects has highlighted the importance of studying the impact of genetic heterogeneity on modeling Alzheimer's disease. However, it is unknown what mechanisms underly these effects of genetic background on modeling Alzheimer's disease, specifically tau aggregate-driven pathogenicity. In this study, we induced tau aggregation in wild-derived mice by expressing MAPT (P301L). To investigate the effect of genetic background on the action of tau aggregates, we performed RNA sequencing with brains of 6-month-old C57BL/6J, CAST/EiJ, PWK/PhJ, and WSB/EiJ mice (n=64). We also measured tau seeding activity in the cortex of these mice. We identified three gene signatures: core transcriptional signature, unique signature for each wild-derived genetic background, and tau seeding-associated signature. Our data suggest that microglial response to tau seeds is elevated in CAST/EiJ and PWK/PhJ mice. Together, our study provides the first evidence that mouse genetic context influences the seeding of tau. SUMMARY Seeding of tau predates the phosphorylation and spreading of tau aggregates. Acri and colleagues report transcriptomic responses to tau and elevated tau seeds in wild-derived mice. This paper creates a rich resource by combining genetics, tau biosensor assays, and transcriptomics.
Collapse
|
13
|
Tetlow AM, Jackman BM, Alhadidy MM, Perumal V, Morgan DG, Gordon MN. Influence of Host Age on Intracranial AAV9 TauP301L Induced Tauopathy. J Alzheimers Dis 2023; 93:365-378. [PMID: 36970910 PMCID: PMC10540220 DOI: 10.3233/jad-221276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Advanced age is the greatest risk factor for the development of Alzheimer's disease (AD). This implies that some aspect of the aged milieu is possibly accelerating the development of AD related pathologies. OBJECTIVE We hypothesized that intracranially injected with AAV9 tauP301L may cause a greater degree of pathology in old versus young mice. METHODS Animals were injected with viral vectors overexpressing the mutant tauP301L or control protein (green fluorescent protein, GFP) into the brains of mature, middle-aged, and old C57BL/6Nia mice. The tauopathy phenotype was monitored four months after injection using behavioral, histological, and neurochemical measures. RESULTS Phosphorylated-tau immunostaining (AT8) or Gallyas staining of aggregated tau increased with age, but other measures of tau accumulation were not significantly affected. Overall, AAV-tau injected mice had impaired radial arm water maze performance, increased microglial activation, and showed evidence of hippocampal atrophy. Aging impaired open field and rotarod performance in both AAV-tau and control mice. The efficiency of viral transduction and gene expression were the same at all animal ages. CONCLUSION We conclude that tauP301L over expression results in a tauopathy phenotype with memory impairment and accumulation of aggregated tau. However, the effects of aging on this phenotype are modest and not detected by some markers of tau accumulation, similar to prior work on this topic. Thus, although age does influence the development of tauopathy, it is likely that other factors, such as ability to compensate for tau pathology, are more responsible for the increased risk of AD with advanced age.
Collapse
Affiliation(s)
- Amber M. Tetlow
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- School of Aging Studies, University of South Florida, Tampa, FL, USA
- Neuroscience Institute, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Brianna M. Jackman
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Mohammed M. Alhadidy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Varshini Perumal
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - David G. Morgan
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Marcia N. Gordon
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
14
|
Steuer EL, Kemper LJ, Hlynialuk CJW, Leinonen-Wright K, Montonye ML, Lapcinski IP, Forster CL, Ashe KH, Liu P. Blocking Site-Specific Cleavage of Human Tau Delays Progression of Disease-Related Phenotypes in Genetically Matched Tau-Transgenic Mice Modeling Frontotemporal Dementia. J Neurosci 2022; 42:4737-4754. [PMID: 35508385 PMCID: PMC9186797 DOI: 10.1523/jneurosci.0543-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
Studies have recently demonstrated that a caspase-2-mediated cleavage of human tau (htau) at asparate-314 (D314) is responsible for cognitive deficits and neurodegeneration in mice modeling frontotemporal dementia (FTD). However, these animal studies may be confounded by flaws in their model systems, such as endogenous functional gene disruption and inequivalent transgene expression. To avoid these weaknesses, we examined the pathogenic role of this site-specific htau cleavage in FTD using genetically matched htau targeted-insertion mouse lines: rT2 and rT3. Both male and female mice were included in this study. rT2 mice contain a single copy of the FTD-linked htau proline-to-leucine mutation at amino acid 301 (htau P301L), inserted into a neutral site to avoid dysregulation of host gene expression. The similarly constructed rT3 mice harbor an additional D314-to-glutamate (D314E) mutation that blocks htau cleavage. We demonstrate that htau transgene expression occurs primarily in the forebrain at similar levels in rT2 and rT3 mice. Importantly, expression of the cleavage-resistant D314E mutant delays transgene-induced tau accumulation in the postsynaptic density, brain atrophy, hippocampal neurodegeneration, and spatial memory impairment, without altering age-related progression of pathologic tau conformation and phosphorylation. Our comprehensive investigation of age-dependent disease phenotypes associated with the htau P301L variant in precisely engineered FTD-modeling mice unveils a transiently protective effect of blocking htau cleavage at D314. Findings of this study advance our understanding of the contribution of this tau cleavage to the pathogenesis of FTD, and aid the development of effective dementia-targeting therapies.SIGNIFICANCE STATEMENT A site-specific and caspase-2-mediated cleavage of human tau plays a pathologic role in dementia. In this study, we investigate the contribution of this cleavage to the pathogenesis of frontotemporal dementia (FTD) using two genetically matched, tau-transgene targeted-insertion mouse lines that differ only by a cleavage-resistant mutation. The use of these mice avoids confounding effects associated with the random integration of tau transgenes to the mouse genome and allows us to comprehensively evaluate the impact of the tau cleavage on FTD phenotypes. Our data reveal that blocking this tau cleavage delays memory impairment and neurodegeneration of FTD-modeling mice. These findings improve our understanding of the pathogenic mechanisms underlying FTD and will facilitate the development of effective therapeutics.
Collapse
Affiliation(s)
- Elizabeth L Steuer
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| | - Lisa J Kemper
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| | | | | | | | - Ian P Lapcinski
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| | - Colleen L Forster
- N. Bud Grossman Center for Memory Research and Care
- UMN Academic Health Center Biological Materials Procurement Network, University of Minnesota, Minneapolis, Minnesota 55455
| | - Karen H Ashe
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
- Geriatric Research, Education, and Clinical Centers, Veterans Affairs Medical Center, Minneapolis, Minnesota 55417
| | - Peng Liu
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| |
Collapse
|
15
|
Tag SH, Kim B, Bae J, Chang KA, Im HI. Neuropathological and behavioral features of an APP/PS1/MAPT (6xTg) transgenic model of Alzheimer’s disease. Mol Brain 2022; 15:51. [PMID: 35676711 PMCID: PMC9175339 DOI: 10.1186/s13041-022-00933-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease is associated with various brain dysfunctions, including memory impairment, neuronal loss, astrocyte activation, amyloid-β plaques, and neurofibrillary tangles. Transgenic animal models of Alzheimer's disease have proven to be invaluable for the basic research of Alzheimer's disease. However, Alzheimer's disease mouse models developed so far do not fully recapitulate the pathological and behavioral features reminiscent of Alzheimer's disease in humans. Here, we investigated the neurobehavioral sequelae in the novel 6xTg mouse model of Alzheimer's disease, which was developed by incorporating human tau containing P301L mutation in the widely used 5xFAD mouse model of Alzheimer's disease. At 11-months-old, 6xTg mice displayed the core pathological processes found in Alzheimer's disease, including accumulation of amyloid-β plaque, extensive neuronal loss, elevated level of astrocyte activation, and abnormal tau phosphorylation in the brain. At 9 to 11-months-old, 6xTg mice exhibited both cognitive and non-cognitive behavioral impairments relevant to Alzheimer’s disease, including memory loss, hyperlocomotion, anxiety-like behavior, depression-like behavior, and reduced sensorimotor gating. Our data suggest that the aged 6xTg mouse model of Alzheimer's disease presents pathological and cognitive-behavioral features reminiscent of Alzheimer's disease in humans. Thus, the 6xTg mouse model of Alzheimer's disease may be a valuable model for studying Alzheimer’s disease-relevant non-cognitive behaviors.
Collapse
|
16
|
Jansen-West K, Todd TW, Daughrity LM, Yue M, Tong J, Carlomagno Y, Del Rosso G, Kurti A, Jones CY, Dunmore JA, Castanedes-Casey M, Dickson DW, Wszolek ZK, Fryer JD, Petrucelli L, Prudencio M. Plasma PolyQ-ATXN3 Levels Associate With Cerebellar Degeneration and Behavioral Abnormalities in a New AAV-Based SCA3 Mouse Model. Front Cell Dev Biol 2022; 10:863089. [PMID: 35386195 PMCID: PMC8977414 DOI: 10.3389/fcell.2022.863089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited cerebellar ataxia caused by the expansion of a polyglutamine (polyQ) repeat in the gene encoding ATXN3. The polyQ expansion induces protein inclusion formation in the neurons of patients and results in neuronal degeneration in the cerebellum and other brain regions. We used adeno-associated virus (AAV) technology to develop a new mouse model of SCA3 that recapitulates several features of the human disease, including locomotor defects, cerebellar-specific neuronal loss, polyQ-expanded ATXN3 inclusions, and TDP-43 pathology. We also found that neurofilament light is elevated in the cerebrospinal fluid (CSF) of the SCA3 animals, and the expanded polyQ-ATXN3 protein can be detected in the plasma. Interestingly, the levels of polyQ-ATXN3 in plasma correlated with measures of cerebellar degeneration and locomotor deficits in 6-month-old SCA3 mice, supporting the hypothesis that this factor could act as a biomarker for SCA3.
Collapse
Affiliation(s)
- Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Tiffany W. Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | | | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Giulia Del Rosso
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Caroline Y. Jones
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Judith A. Dunmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | | | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | | | - John D. Fryer
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
17
|
Amro Z, Yool AJ, Collins-Praino LE. The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain Behav Immun Health 2021; 14:100242. [PMID: 34589757 PMCID: PMC8474563 DOI: 10.1016/j.bbih.2021.100242] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Dementia is one of the leading causes of death worldwide, with tauopathies, a class of diseases defined by pathology associated with the microtubule-enriched protein, tau, as the major contributor. Although tauopathies, such as Alzheimer's disease and Frontotemporal dementia, are common amongst the ageing population, current effective treatment options are scarce, primarily due to the incomplete understanding of disease pathogenesis. The mechanisms via which aggregated forms of tau are able to propagate from one anatomical area to another to cause disease spread and progression is yet unknown. The prion-like hypothesis of tau propagation proposes that tau can propagate along neighbouring anatomical areas in a similar manner to prion proteins in prion diseases, such as Creutzfeldt-Jacob disease. This hypothesis has been supported by a plethora of studies that note the ability of tau to be actively secreted by neurons, propagated and internalised by neighbouring neuronal cells, causing disease spread. Surfacing research suggests a role of reactive astrocytes and microglia in early pre-clinical stages of tauopathy through their inflammatory actions. Furthermore, both glial types are able to internalise and secrete tau from the extracellular space, suggesting a potential role in tau propagation; although understanding the physiological mechanisms by which this can occur remains poorly understood. This review will discuss the current literature around the prion-like propagation of tau, with particular emphasis on glial-mediated neuroinflammation and the contribution it may play in this propagation process.
Collapse
Affiliation(s)
- Zein Amro
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | |
Collapse
|
18
|
Ongnok B, Khuanjing T, Chunchai T, Pantiya P, Kerdphoo S, Arunsak B, Nawara W, Jaiwongkam T, Apaijai N, Chattipakorn N, Chattipakorn SC. Donepezil Protects Against Doxorubicin-Induced Chemobrain in Rats via Attenuation of Inflammation and Oxidative Stress Without Interfering With Doxorubicin Efficacy. Neurotherapeutics 2021; 18:2107-2125. [PMID: 34312765 PMCID: PMC8608968 DOI: 10.1007/s13311-021-01092-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Although doxorubicin (Dox) is an effective chemotherapy medication used extensively in the treatment of breast cancer, it frequently causes debilitating neurological deficits known as chemobrain. Donepezil (DPZ), an acetylcholinesterase inhibitor, provides therapeutic benefits in various neuropathological conditions. However, comprehensive mechanistic insights regarding the neuroprotection of DPZ on cognition and brain pathologies in a Dox-induced chemobrain model remain obscure. Here, we demonstrated that Dox-treated rats manifested conspicuous cognitive deficits and developed chemobrain pathologies as indicated by brain inflammatory and oxidative insults, glial activation, defective mitochondrial homeostasis, increased potential lesions associated with Alzheimer's disease, disrupted neurogenesis, loss of dendritic spines, and ultimately neuronal death through both apoptosis and necroptosis. Intervention with DPZ co-treatment completely restored cognitive function by attenuating these pathological conditions induced by DOX. We also confirmed that DPZ treatment does not affect the anti-cancer efficacy of Dox in breast cancer cells. Together, our findings suggest that DPZ treatment confers potential neuroprotection against Dox-induced chemobrain.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Thawatchai Khuanjing
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Patcharapong Pantiya
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, 50200, Chiang Mai, Thailand.
| |
Collapse
|
19
|
Ciampa I, Operto G, Falcon C, Minguillon C, Castro de Moura M, Piñeyro D, Esteller M, Molinuevo JL, Guigó R, Navarro A, Gispert JD, Vilor-Tejedor N. Genetic Predisposition to Alzheimer's Disease Is Associated with Enlargement of Perivascular Spaces in Centrum Semiovale Region. Genes (Basel) 2021; 12:genes12060825. [PMID: 34072165 PMCID: PMC8226614 DOI: 10.3390/genes12060825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study investigated whether genetic factors involved in Alzheimer’s disease (AD) are associated with enlargement of Perivascular Spaces (ePVS) in the brain. A total of 680 participants with T2-weighted MRI scans and genetic information were acquired from the ALFA study. ePVS in the basal ganglia (BG) and the centrum semiovale (CS) were assessed based on a validated visual rating scale. We used univariate and multivariate logistic regression models to investigate associations between ePVS in BG and CS with BIN1-rs744373, as well as APOE genotypes. We found a significant association of the BIN1-rs744373 polymorphism in the CS subscale (p value = 0.019; OR = 2.564), suggesting that G allele carriers have an increased risk of ePVS in comparison with A allele carriers. In stratified analysis by APOE-ε4 status (carriers vs. non-carriers), these results remained significant only for ε4 carriers (p value = 0.011; OR = 1.429). To our knowledge, the present study is the first suggesting that genetic predisposition for AD is associated with ePVS in CS. These findings provide evidence that underlying biological processes affecting AD may influence CS-ePVS.
Collapse
Affiliation(s)
- Iacopo Ciampa
- Department of Radiology, Hospital Universitari Sagrat Cor, 08029 Barcelona, Spain;
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Manuel Castro de Moura
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; (M.C.d.M.); (D.P.); (M.E.)
| | - David Piñeyro
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; (M.C.d.M.); (D.P.); (M.E.)
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), 28019 Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; (M.C.d.M.); (D.P.); (M.E.)
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), 28019 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08097 Barcelona, Spain
| | - Jose Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain;
| | - Roderic Guigó
- Universitat Pompeu Fabra, 08005 Barcelona, Spain;
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Arcadi Navarro
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
- Correspondence: (J.D.G.); (N.V.-T.)
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- Universitat Pompeu Fabra, 08005 Barcelona, Spain;
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Correspondence: (J.D.G.); (N.V.-T.)
| | | |
Collapse
|
20
|
Crist AM, Hinkle KM, Wang X, Moloney CM, Matchett BJ, Labuzan SA, Frankenhauser I, Azu NO, Liesinger AM, Lesser ER, Serie DJ, Quicksall ZS, Patel TA, Carnwath TP, DeTure M, Tang X, Petersen RC, Duara R, Graff-Radford NR, Allen M, Carrasquillo MM, Li H, Ross OA, Ertekin-Taner N, Dickson DW, Asmann YW, Carter RE, Murray ME. Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer's disease. Nat Commun 2021; 12:2311. [PMID: 33875655 PMCID: PMC8055900 DOI: 10.1038/s41467-021-22399-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Selective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer's disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.
Collapse
Affiliation(s)
- Angela M Crist
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Kelly M Hinkle
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Isabelle Frankenhauser
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Paracelsus Medical Private University, Salzburg, Austria
| | - Nkem O Azu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Elizabeth R Lesser
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Daniel J Serie
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tulsi A Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Troy P Carnwath
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | | | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
21
|
Bajracharya R, Brici D, Bodea LG, Janowicz PW, Götz J, Nisbet RM. Tau antibody isotype induces differential effects following passive immunisation of tau transgenic mice. Acta Neuropathol Commun 2021; 9:42. [PMID: 33712083 PMCID: PMC7953551 DOI: 10.1186/s40478-021-01147-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
One of the main pathological hallmarks of Alzheimer's disease (AD) is the intraneuronal accumulation of hyperphosphorylated tau. Passive immunotherapy is a promising strategy for the treatment of AD and there are currently a number of tau-specific monoclonal antibodies in clinical trials. A proposed mechanism of action is to engage and clear extracellular, pathogenic forms of tau. This process has been shown in vitro to be facilitated by microglial phagocytosis through interactions between the antibody-tau complex and microglial Fc-receptors. As this interaction is mediated by the conformation of the antibody's Fc domain, this suggests that the antibody isotype may affect the microglial phagocytosis and clearance of tau, and hence, the overall efficacy of tau antibodies. We therefore aimed to directly compare the efficacy of the tau-specific antibody, RN2N, cloned into a murine IgG1/κ framework, which has low affinity Fc-receptor binding, to that cloned into a murine IgG2a/κ framework, which has high affinity Fc-receptor binding. Our results demonstrate, for RN2N, that although enhanced microglial activation via the IgG2a/κ isotype increased extracellular tau phagocytosis in vitro, the IgG1/κ isoform demonstrated enhanced ability to reduce tau pathology and microgliosis following passive immunisation of the P301L tau transgenic pR5 mouse model.
Collapse
|
22
|
Clark I, Vissel B. Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. J Alzheimers Dis 2021; 79:931-948. [PMID: 33459706 PMCID: PMC7990436 DOI: 10.3233/jad-201186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.
Collapse
Affiliation(s)
- I.A. Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B. Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, Australia
| |
Collapse
|
23
|
Wojtas AM, Carlomagno Y, Sens JP, Kang SS, Jensen TD, Kurti A, Baker KE, Berry TJ, Phillips VR, Castanedes MC, Awan A, DeTure M, De Castro CHF, Librero AL, Yue M, Daughrity L, Jansen-West KR, Cook CN, Dickson DW, Petrucelli L, Fryer JD. Clusterin ameliorates tau pathology in vivo by inhibiting fibril formation. Acta Neuropathol Commun 2020; 8:210. [PMID: 33261653 PMCID: PMC7708249 DOI: 10.1186/s40478-020-01079-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
The molecular chaperone Clusterin (CLU) impacts the amyloid pathway in Alzheimer's disease (AD) but its role in tau pathology is unknown. We observed CLU co-localization with tau aggregates in AD and primary tauopathies and CLU levels were upregulated in response to tau accumulation. To further elucidate the effect of CLU on tau pathology, we utilized a gene delivery approach in CLU knock-out (CLU KO) mice to drive expression of tau bearing the P301L mutation. We found that loss of CLU was associated with exacerbated tau pathology and anxiety-like behaviors in our mouse model of tauopathy. Additionally, we found that CLU dramatically inhibited tau fibrilization using an in vitro assay. Together, these results demonstrate that CLU plays a major role in both amyloid and tau pathologies in AD.
Collapse
Affiliation(s)
- Aleksandra M Wojtas
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, 85259, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jonathon P Sens
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, 85259, USA
| | - Silvia S Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tanner D Jensen
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Kelsey E Baker
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Taylor J Berry
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | | | | | - Ayesha Awan
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Ariston L Librero
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, 85259, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, 85259, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, 85259, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA.
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
24
|
Wojtas AM, Sens JP, Kang SS, Baker KE, Berry TJ, Kurti A, Daughrity L, Jansen-West KR, Dickson DW, Petrucelli L, Bu G, Liu CC, Fryer JD. Astrocyte-derived clusterin suppresses amyloid formation in vivo. Mol Neurodegener 2020; 15:71. [PMID: 33246484 PMCID: PMC7694353 DOI: 10.1186/s13024-020-00416-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). The clusterin (CLU) gene confers a risk for AD and CLU is highly upregulated in AD patients, with the common non-coding, protective CLU variants associated with increased expression. Although there is strong evidence implicating CLU in amyloid metabolism, the exact mechanism underlying the CLU involvement in AD is not fully understood or whether physiologic alterations of CLU levels in the brain would be protective. RESULTS We used a gene delivery approach to overexpress CLU in astrocytes, the major source of CLU expression in the brain. We found that CLU overexpression resulted in a significant reduction of total and fibrillar amyloid in both cortex and hippocampus in the APP/PS1 mouse model of AD amyloidosis. CLU overexpression also ameliorated amyloid-associated neurotoxicity and gliosis. To complement these overexpression studies, we also analyzed the effects of haploinsufficiency of Clu using heterozygous (Clu+/-) mice and control littermates in the APP/PS1 model. CLU reduction led to a substantial increase in the amyloid plaque load in both cortex and hippocampus in APP/PS1; Clu+/- mice compared to wild-type (APP/PS1; Clu+/+) littermate controls, with a concomitant increase in neuritic dystrophy and gliosis. CONCLUSIONS Thus, both physiologic ~ 30% overexpression or ~ 50% reduction in CLU have substantial impacts on amyloid load and associated pathologies. Our results demonstrate that CLU plays a major role in Aβ accumulation in the brain and suggest that efforts aimed at CLU upregulation via pharmacological or gene delivery approaches offer a promising therapeutic strategy to regulate amyloid pathology.
Collapse
Affiliation(s)
- Aleksandra M. Wojtas
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Silvia S. Kang
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Kelsey E. Baker
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
| | - Taylor J. Berry
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Karen R. Jansen-West
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| |
Collapse
|
25
|
Bell BJ, Malvankar MM, Tallon C, Slusher BS. Sowing the Seeds of Discovery: Tau-Propagation Models of Alzheimer's Disease. ACS Chem Neurosci 2020; 11:3499-3509. [PMID: 33050700 DOI: 10.1021/acschemneuro.0c00531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The propagation of pathological proteins throughout the brain is the primary physiological hallmark of the progression of Alzheimer's Disease (AD). A growing body of evidence indicates that hyperphosphorylated Tau proteins are spread transcellularly between neurons in a prionlike fashion, inducing misfolding and aggregation into neurofibrillary tangles which accumulate along specific connectivity pathways. Earlier transgenic rodent AD models did not capture this disease-relevant spread, and therefore, seeded Tau-propagation models have been developed. Here, mutant human Tau (as isolated protein or packaged into an adeno-associated virus (AAV) viral vector) is stereotaxically injected into select brain regions and its histopathological propagation to downstream neurons quantified. These models offer a faster and more direct mechanism to evaluate genetic components and therapeutic approaches which attenuate Tau spreading in vivo. Recently, these Tau-seeding models have revealed several new targets for AD drug discovery, including nSMase2, SIRT1, p300/CBP, LRP1, and TYROBP, as well as the potential therapeutics based on melatonin and chondroitinase ABC. Importantly, these Tau-propagation rodent models more closely phenocopy the progression of AD in humans and are therefore likely to improve preclinical studies and derisk future moves into clinical trials.
Collapse
Affiliation(s)
- Benjamin J. Bell
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Medhinee M. Malvankar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
26
|
Liu G, Fiock KL, Levites Y, Golde TE, Hefti MM, Lee G. Fyn depletion ameliorates tau P301L-induced neuropathology. Acta Neuropathol Commun 2020; 8:108. [PMID: 32665013 PMCID: PMC7362472 DOI: 10.1186/s40478-020-00979-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Src family non-receptor tyrosine kinase Fyn has been implicated in neurodegeneration of Alzheimer's disease through interaction with amyloid β (Aβ). However, the role of Fyn in the pathogenesis of primary tauopathies such as FTDP-17, where Aβ plaques are absent, is poorly understood. In the current study, we used AAV2/8 vectors to deliver tauP301L to the brains of WT and Fyn KO mice, generating somatic transgenic tauopathy models with the presence or absence of Fyn. Although both genotypes developed tau pathology, Fyn KO developed fewer neurofibrillary tangles on Bielschowsky and Thioflavin S stained sections and showed lower levels of phosphorylated tau. In addition, tauP301L-induced behavior abnormalities and depletion of synaptic proteins were not observed in the Fyn KO model. Our work provides evidence for Fyn being a critical protein in the disease pathogenesis of FTDP-17.
Collapse
Affiliation(s)
- Guanghao Liu
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Kimberly L. Fiock
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Yona Levites
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL USA
| | - Todd E. Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL USA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Gloria Lee
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 500 Newton Road, ML B191, Iowa City, IA 52242 USA
| |
Collapse
|
27
|
Koller EJ, Gonzalez De La Cruz E, Machula T, Ibanez KR, Lin WL, Williams T, Riffe CJ, Ryu D, Strang KH, Liu X, Janus C, Golde TE, Dickson D, Giasson BI, Chakrabarty P. Combining P301L and S320F tau variants produces a novel accelerated model of tauopathy. Hum Mol Genet 2020; 28:3255-3269. [PMID: 31261380 DOI: 10.1093/hmg/ddz151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the biological functions of tau variants can illuminate differential etiologies of Alzheimer's disease (AD) and primary tauopathies. Though the end-stage neuropathological attributes of AD and primary tauopathies are similar, the etiology and behavioral outcomes of these diseases follow unique and divergent trajectories. To study the divergent physiological properties of tau variants on a uniform immunogenetic background, we created somatic transgenesis CNS models of tauopathy utilizing neonatal delivery of adeno-associated viruses expressing wild-type (WT) or mutant tau in non-transgenic mice. We selected four different tau variants-WT tau associated with AD, P301L mutant tau associated with frontotemporal dementia (FTD), S320F mutant tau associated with Pick's disease and a combinatorial approach using P301L/S320F mutant tau. CNS-targeted expression of WT and P301L mutant tau results in robust tau hyperphosphorylation without tangle pathology, gradually developing age-progressive memory deficits. In contrast, the S320F variant, especially in combination with P301L, produces an AD-type tangle pathology, focal neuroinflammation and memory impairment on an accelerated time scale. Using the doubly mutated P301L/S320F tau variant, we demonstrate that combining different mutations can have an additive effect on neuropathologies and associated co-morbidities, possibly hinting at involvement of unique functional pathways. Importantly, we also show that overexpression of wild-type tau as well as an FTD-associated tau variant can lead to cognitive deficits even in the absence of tangles. Together, our data highlights the synergistic neuropathologies and associated cognitive and synaptic alterations of the combinatorial tau variant leading to a robust model of tauopathy.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Timothy Machula
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Kristen R Ibanez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA
| | - Tosha Williams
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Cara J Riffe
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Daniel Ryu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Kevin H Strang
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Xuefei Liu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Christopher Janus
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Li Y, Xu P, Shan J, Sun W, Ji X, Chi T, Liu P, Zou L. Interaction between hyperphosphorylated tau and pyroptosis in forskolin and streptozotocin induced AD models. Biomed Pharmacother 2020; 121:109618. [DOI: 10.1016/j.biopha.2019.109618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
|
29
|
Knockout of p75 neurotrophin receptor attenuates the hyperphosphorylation of Tau in pR5 mouse model. Aging (Albany NY) 2019; 11:6762-6791. [PMID: 31479419 PMCID: PMC6756909 DOI: 10.18632/aging.102202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/12/2019] [Indexed: 02/02/2023]
Abstract
p75 neurotrophin receptor (p75NTR) has been implicated in Alzheimer's disease (AD). However, whether p75NTR is involved in Tau hyperphosphorylation, one of the pathologies observed in AD, remains unclear. In our previous study, the extracellular domain of p75NTR blocked amyloid beta (Aβ) toxicity and attenuated Aβ-induced Tau hyperphosphorylation. Here we show that, in the absence of Aβ, p75NTR regulates Tau phosphorylation in the transgenic mice with the P301L human Tau mutation (pR5). The knockout of p75NTR in pR5 mice attenuated the phosphorylation of human Tau. In addition, the elevated activity of kinases responsible for Tau phosphorylation including glycogen synthase kinase 3 beta; cyclin-dependent-kinase 5; and Rho-associated protein kinase was also inhibited when p75NTR is knocked out in pR5 mice at 9 months of age. The increased caspase-3 activity observed in pR5 mice was also abolished in the absence of p75NTR. Our study also showed that p75NTR is required for Aβ- and pro-brain derived neurotrophin factor (proBDNF)-induced Tau phosphorylation, in vitro. Overall, our data indicate that p75NTR is required for Tau phosphorylation, a key event in the formation of neurofibrillary tangles, another hallmark of AD. Thus, targeting p75NTR could reduce or prevent the pathologic hyperphosphorylation of Tau.
Collapse
|
30
|
Craven KM, Kochen WR, Hernandez CM, Flinn JM. Zinc Exacerbates Tau Pathology in a Tau Mouse Model. J Alzheimers Dis 2019; 64:617-630. [PMID: 29914030 DOI: 10.3233/jad-180151] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hyperphosphorylated tau protein is a key pathology in Alzheimer's disease (AD), frontotemporal dementia, chronic traumatic encephalopathy, and Parkinson's disease. The essential trace element zinc exacerbates tauopathy in vitro as well as in a Drosophila model of AD. However, the interaction has never been assessed behaviorally or biochemically in mammals. Zinc supplementation is prevalent in society, finding use as a treatment for macular degeneration and cataracts, and is also taken as an immune system booster with high levels appearing in multivitamins marketed toward the elderly. Using a transgenic mouse model that contains the human gene for tau protein (P301L), we assessed the effects of excess chronic zinc supplementation on tau pathology. Behavioral tests included nest building, circadian rhythm, Morris Water Maze, fear conditioning, and open field. Biochemically, total tau and Ser396 phosphorylation were assessed using western blot. Number of tangles were assessed by Thioflavin-S and free zinc levels were assessed by Zinpyr-1. Tau mice demonstrated behavioral deficits compared to control mice. Zinc supplementation exacerbated tauopathic deficits in circadian rhythm, nesting behavior, and Morris Water Maze. Biochemically, zinc-supplemented tau mice showed increased phosphorylation at pSer396. Zinc supplementation in tau mice also increased tangle numbers in the hippocampus while decreasing free-zinc levels, demonstrating that tangles were sequestering zinc. These results show that zinc intensified the deficits in behavior and biochemistry caused by tau.
Collapse
|
31
|
Chiang AC, Huo X, Kavelaars A, Heijnen CJ. Chemotherapy accelerates age-related development of tauopathy and results in loss of synaptic integrity and cognitive impairment. Brain Behav Immun 2019; 79:319-325. [PMID: 30953771 PMCID: PMC6591052 DOI: 10.1016/j.bbi.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer and its treatment are associated with neurotoxic side effects, including cognitive dysfunction, altered functional connectivity in the brain and structural abnormalities in white matter. There is evidence that cancer and its treatment can accelerate aging. Tau is a microtubule associated protein that contributes to microtubule stability thereby playing a key role in neuronal function. Clustering of tau is commonly observed in the aged brain and is related to cognitive decline. We hypothesized that chemotherapy-induced cognitive impairment is associated with accelerated development of tau clustering in the brain as a sign of accelerated aging. We show for the first time that treatment of adult (7-8 month-old) male C57BL/6 mice with cisplatin results in reduced cognitive function and a marked increase in the number of large endogenous tau clusters in the hippocampus when assessed 4 months later. In contrast, we detected only few small tau clusters in the hippocampus of age-matched 11-12 month-old control mice. Astrocyte GFAP expression was increased in close vicinity to the tau clusters in cisplatin-treated mice. We did not detect changes in the microglial marker Iba-1 in the brain of mice treated with cisplatin. The accelerated formation of Tau-1 clusters in cisplatin-treated mice was associated with a decrease in the levels of the post-synaptic marker PSD95 and of the presynaptic marker synaptophysin in the hippocampus. We demonstrate here for the first time that chemotherapy markedly accelerates development of signs of tauopathy and loss of synaptic integrity in the hippocampus. These findings provide a mechanistic link between chemotherapy cognitive decline and accelerated aging in cancer survivors.
Collapse
Affiliation(s)
- Angie C.A. Chiang
- Neuroimmunology Laboratory, Department of Symptom Research, and University of Texas MD Anderson Cancer Center
| | - Xiaojiao Huo
- Neuroimmunology Laboratory, Department of Symptom Research, and University of Texas MD Anderson Cancer Center
| | - Annemieke Kavelaars
- Neuroimmunology Laboratory, Department of Symptom Research, and University of Texas MD Anderson Cancer Center
| | - Cobi J. Heijnen
- Neuroimmunology Laboratory, Department of Symptom Research, and University of Texas MD Anderson Cancer Center
| |
Collapse
|
32
|
Factors other than hTau overexpression that contribute to tauopathy-like phenotype in rTg4510 mice. Nat Commun 2019; 10:2479. [PMID: 31171783 PMCID: PMC6554306 DOI: 10.1038/s41467-019-10428-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/10/2019] [Indexed: 12/17/2022] Open
Abstract
The tauopathy-like phenotype observed in the rTg4510 mouse line, in which human tauP301L expression specifically within the forebrain can be temporally controlled, has largely been attributed to high overexpression of mutant human tau in the forebrain region. Unexpectedly, we found that in a different mouse line with a targeted-insertion of the same transgene driven by the same tetracycline-TransActivator (tTA) allele, but with even higher overexpression of tauP301L than rTg4510, atrophy and tau histopathology are delayed, and a different behavioral profile is observed. This suggests that it is not overexpression of mutant human tau alone that contributes to the phenotype in rTg4510 mice. Furthermore we show that the tauopathy-like phenotype seen in rTg4510 requires a ~70-copy tau-transgene insertion in a 244 kb deletion in Fgf14, a ~7-copy tTA-transgene insertion in a 508 kb deletion that disrupts another five genes, in addition to high transgene overexpression. We propose that these additional effects need to be accounted for in any studies using rTg4510.
Collapse
|
33
|
Ittner LM, Klugmann M, Ke YD. Adeno-associated virus-based Alzheimer's disease mouse models and potential new therapeutic avenues. Br J Pharmacol 2019; 176:3649-3665. [PMID: 30817847 DOI: 10.1111/bph.14637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/23/2018] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that presents with cognitive decline. The current understanding of underlying disease mechanisms remains incomplete. Genetically modified mouse models have been instrumental in deciphering pathomechanisms in AD. While these models were typically generated by classical transgenesis and genome editing, the use of adeno-associated viruses (AAVs) to model and investigate AD in mice, as well as to develop novel gene-therapy approaches, is emerging. Here, we reviewed literature that used AAVs to study and model AD and discuss potential gene therapy strategies. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Harischandra DS, Rokad D, Neal ML, Ghaisas S, Manne S, Sarkar S, Panicker N, Zenitsky G, Jin H, Lewis M, Huang X, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein. Sci Signal 2019; 12:eaau4543. [PMID: 30862700 PMCID: PMC6435331 DOI: 10.1126/scisignal.aau4543] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aggregation of α-synuclein (αSyn) is considered a key pathophysiological feature of certain neurodegenerative disorders, collectively termed synucleinopathies. Given that a prion-like, cell-to-cell transfer of misfolded αSyn has been recognized in the spreading of αSyn pathology in synucleinopathies, we investigated the biological mechanisms underlying the propagation of the disease with respect to environmental neurotoxic stress. Considering the potential role of the divalent metal manganese (Mn2+) in protein aggregation, we characterized its effect on αSyn misfolding and transmission in experimental models of Parkinson's disease. In cultured dopaminergic neuronal cells stably expressing wild-type human αSyn, misfolded αSyn was secreted through exosomes into the extracellular medium upon Mn2+ exposure. These exosomes were endocytosed through caveolae into primary microglial cells, thereby mounting neuroinflammatory responses. Furthermore, Mn2+-elicited exosomes exerted a neurotoxic effect in a human dopaminergic neuronal model (LUHMES cells). Moreover, bimolecular fluorescence complementation (BiFC) analysis revealed that Mn2+ accelerated the cell-to-cell transmission of αSyn, resulting in dopaminergic neurotoxicity in a mouse model of Mn2+ exposure. Welders exposed to Mn2+ had increased misfolded αSyn content in their serum exosomes. Stereotaxically delivering αSyn-containing exosomes, isolated from Mn2+-treated αSyn-expressing cells, into the striatum initiated Parkinsonian-like pathological features in mice. Together, these results indicate that Mn2+ exposure promotes αSyn secretion in exosomal vesicles, which subsequently evokes proinflammatory and neurodegenerative responses in both cell culture and animal models.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Dharmin Rokad
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew L Neal
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Shivani Ghaisas
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Sireesha Manne
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Souvarish Sarkar
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Nikhil Panicker
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Gary Zenitsky
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Huajun Jin
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Mechelle Lewis
- Departments of Neurology and Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xuemei Huang
- Departments of Neurology and Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
35
|
Chung DEC, Carlomagno Y, Cook CN, Jansen-West K, Daughrity L, Lewis-Tuffin LJ, Castanedes-Casey M, DeTure M, Dickson DW, Petrucelli L. Tau exhibits unique seeding properties in globular glial tauopathy. Acta Neuropathol Commun 2019; 7:36. [PMID: 30845985 PMCID: PMC6404306 DOI: 10.1186/s40478-019-0691-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by aggregation of microtubule associated tau protein in neurons and glia. They are clinically and pathologically heterogeneous depending on the isoform of tau protein that accumulates (three or four 31-to-32-amino-acid repeats [3R or 4R] in the microtubule binding domain), as well as the cellular and neuroanatomical distribution of tau pathology. Growing evidence suggests that distinct tau conformers may contribute to the characteristic features of various tauopathies. Globular glial tauopathy (GGT) is a rare 4R tauopathy with globular cytoplasmic inclusions within neurons and glial cells. Given the unique cellular distribution and morphology of tau pathology in GGT, we sought to determine if tau species in GGT had distinctive biological properties. To address this question, we performed seeding analyses with postmortem brain tissues using a commercial tau biosensor cell line. We found that brain lysates from GGT cases had significantly higher seeding competency than other tauopathies, including corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Alzheimer’s disease (AD). The robust seeding activity of GGT brain lysates was independent of phosphorylated tau burden and diminished upon removal of tau from samples, suggesting that seeding properties were indeed mediated by tau in the lysates. In addition, cellular inclusions in the tau biosensor cell line induced by GGT had a distinct, globular morphology that was markedly different from inclusions induced by other tauopathies, further highlighting the unique nature of tau species in GGT. Characterization of different tau species in GGT showed that detergent-insoluble, fibril-like tau contained the highest seeding activity, as reflected in its ability to increase tau aggregation in primary glial cultures. Taken together, our data suggest that unique seeding properties differentiate GGT-tau from other tauopathies, which provides new insight into pathogenic heterogeneity of primary neurodegenerative tauopathies.
Collapse
|
36
|
Carlomagno Y, Chung DEC, Yue M, Kurti A, Avendano NM, Castanedes-Casey M, Hinkle KM, Jansen-West K, Daughrity LM, Tong J, Phillips V, Rademakers R, DeTure M, Fryer JD, Dickson DW, Petrucelli L, Cook C. Enhanced phosphorylation of T153 in soluble tau is a defining biochemical feature of the A152T tau risk variant. Acta Neuropathol Commun 2019; 7:10. [PMID: 30674342 PMCID: PMC6345061 DOI: 10.1186/s40478-019-0661-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Pathogenic mutations in the tau gene (microtubule associated protein tau, MAPT) are linked to the onset of tauopathy, but the A152T variant is unique in acting as a risk factor for a range of disorders including Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and dementia with Lewy bodies (DLB). In order to provide insight into the mechanism by which A152T modulates disease risk, we developed a novel mouse model utilizing somatic brain transgenesis with adeno-associated virus (AAV) to drive tau expression in vivo, and validated the model by confirming the distinct biochemical features of A152T tau in postmortem brain tissue from human carriers. Specifically, TauA152T-AAV mice exhibited increased tau phosphorylation that unlike animals expressing the pathogenic P301L mutation remained localized to the soluble fraction. To investigate the possibility that the A152T variant might alter the phosphorylation state of tau on T152 or the neighboring T153 residue, we generated a novel antibody that revealed significant accumulation of soluble tau species that were hyperphosphorylated on T153 (pT153) in TauA152T-AAV mice, which were absent the soluble fraction of TauP301L-AAV mice. Providing new insight into the role of A152T in modifying risk of tauopathy, as well as validating the TauA152T-AAV model, we demonstrate that the presence of soluble pT153-positive tau species in human postmortem brain tissue differentiates A152T carriers from noncarriers, independent of disease classification. These results implicate both phosphorylation of T153 and an altered solubility profile in the mechanism by which A152T modulates disease risk.
Collapse
|
37
|
APOE ε2 is associated with increased tau pathology in primary tauopathy. Nat Commun 2018; 9:4388. [PMID: 30348994 PMCID: PMC6197187 DOI: 10.1038/s41467-018-06783-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease mainly by modulating amyloid-β pathology. APOE ε4 is also shown to exacerbate neurodegeneration and neuroinflammation in a tau transgenic mouse model. To further evaluate the association of APOE genotype with the presence and severity of tau pathology, we express human tau via an adeno-associated virus gene delivery approach in human APOE targeted replacement mice. We find increased hyperphosphorylated tau species, tau aggregates, and behavioral abnormalities in mice expressing APOE ε2/ε2. We also show that in humans, the APOE ε2 allele is associated with increased tau pathology in the brains of progressive supranuclear palsy (PSP) cases. Finally, we identify an association between the APOE ε2/ε2 genotype and risk of tauopathies using two series of pathologically-confirmed cases of PSP and corticobasal degeneration. Our data together suggest APOE ε2 status may influence the risk and progression of tauopathy. The APOE ε4 allele is a strong genetic risk factor for Alzheimer’s disease, whereas the APOE ε2 allele is protective. Here the authors show that mice expressing the human APOE ε2/ε2 genotype have increased tau pathology and related behavioral deficits; they also find that the APOE ε2 allele is associated with an increased burden of tau pathology in postmortem human brains with progressive supranuclear palsy.
Collapse
|
38
|
Thei L, Imm J, Kaisis E, Dallas ML, Kerrigan TL. Microglia in Alzheimer's Disease: A Role for Ion Channels. Front Neurosci 2018; 12:676. [PMID: 30323735 PMCID: PMC6172337 DOI: 10.3389/fnins.2018.00676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, it is estimated to affect over 40 million people worldwide. Classically, the disease has been characterized by the neuropathological hallmarks of aggregated extracellular amyloid-β and intracellular paired helical filaments of hyperphosphorylated tau. A wealth of evidence indicates a pivotal role for the innate immune system, such as microglia, and inflammation in the pathology of Alzheimer's disease. The over production and aggregation of Alzheimer's associated proteins results in chronic inflammation and disrupts microglial clearance of these depositions. Despite being non-excitable, microglia express a diverse array of ion channels which shape their physiological functions. In support of this, there is a growing body of evidence pointing to the involvement of microglial ion channels contributing to neurodegenerative diseases such as Alzheimer's disease. In this review, we discuss the evidence for an array of microglia ion channels and their importance in modulating microglial homeostasis and how this process could be disrupted in Alzheimer's disease. One promising avenue for assessing the role that microglia play in the initiation and progression of Alzheimer's disease is through using induced pluripotent stem cell derived microglia. Here, we examine what is already understood in terms of the molecular underpinnings of inflammation in Alzheimer's disease, and the utility that inducible pluripotent stem cell derived microglia may have to advance this knowledge. We outline the variability that occurs between the use of animal and human models with regards to the importance of microglial ion channels in generating a relevant functional model of brain inflammation. Overcoming these hurdles will be pivotal in order to develop new drug targets and progress our understanding of the pathological mechanisms involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Thei
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Jennifer Imm
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Eleni Kaisis
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Talitha L Kerrigan
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
39
|
Clark IA, Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br J Pharmacol 2018; 175:3859-3875. [PMID: 30097997 PMCID: PMC6151331 DOI: 10.1111/bph.14471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 12/24/2022] Open
Abstract
While cytokines such as TNF have long been recognized as essential to normal cerebral physiology, the implications of their chronic excessive production within the brain are now also increasingly appreciated. Syndromes as diverse as malaria and lead poisoning, as well as non‐infectious neurodegenerative diseases, illustrate this. These cytokines also orchestrate changes in tau, α‐synuclein, amyloid‐β levels and degree of insulin resistance in most neurodegenerative states. New data on the effects of salbutamol, an indirect anti‐TNF agent, on α‐synuclein and Parkinson's disease, APOE4 and tau add considerably to the rationale of the anti‐TNF approach to understanding, and treating, these diseases. Therapeutic advances being tested, and arguably useful for a number of the neurodegenerative diseases, include a reduction of excess cerebral TNF, whether directly, with a specific anti‐TNF biological agent such as etanercept via Batson's plexus, or indirectly via surgically implanting stem cells. Inhaled salbutamol also warrants investigating further across the neurodegenerative disease spectrum. It is now timely to integrate this range of new information across the neurodegenerative disease spectrum, rather than keep seeing it through the lens of individual disease states.
Collapse
Affiliation(s)
- I A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
40
|
Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, Sens JP, Kocher JP, Petrucelli L, Fryer JD. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med 2018; 215:2235-2245. [PMID: 30082275 PMCID: PMC6122978 DOI: 10.1084/jem.20180653] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/25/2018] [Accepted: 07/20/2018] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease characterized by amyloidosis, tauopathy, and activation of microglia, the brain resident innate immune cells. We show that a RiboTag translational profiling approach can bypass biases due to cellular enrichment/cell sorting. Using this approach in models of amyloidosis, tauopathy, and aging, we revealed a common set of alterations and identified a central APOE-driven network that converged on CCL3 and CCL4 across all conditions. Notably, aged females demonstrated a significant exacerbation of many of these shared transcripts in this APOE network, revealing a potential mechanism for increased AD susceptibility in females. This study has broad implications for microglial transcriptomic approaches and provides new insights into microglial pathways associated with different pathological aspects of aging and AD.
Collapse
Affiliation(s)
- Silvia S Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | - Kelsey E Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Xuewei Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Jonathon P Sens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL
| | | | | | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL
| |
Collapse
|
41
|
Liu D, Lu H, Stein E, Zhou Z, Yang Y, Mattson MP. Brain regional synchronous activity predicts tauopathy in 3×TgAD mice. Neurobiol Aging 2018; 70:160-169. [PMID: 30015035 DOI: 10.1016/j.neurobiolaging.2018.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/20/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive impairment and by extensive neuronal loss associated with extracellular amyloid β-peptide (Aβ) plaques and intraneuronal tau pathology in temporal and parietal lobes. AD patients are at increased risk for epileptic seizures, and data from experimental models of AD suggest that aberrant neuronal network activity occurs early in the disease process before cognitive deficits and neuronal degeneration. The contributions of Aβ and/or tau pathologies to dysregulation of neuronal network activity are unclear. Using a transgenic mouse model of AD (3×TgAD mice) in which there occurs differential age-dependent development of tau and Aβ plaque pathologies, we applied analysis of resting state functional magnetic resonance imaging regional homogeneity, a measure of local synchronous activity, to discriminate the effects of Aβ and tau on neuronal network activity throughout the brain. Compared to age-matched wild-type mice, 6- to 8-month-old 3×TgAD mice exhibited increased regional homogeneity in the hippocampus and parietal and temporal cortices, regions with tau pathology but not Aβ pathology at this age. By 18-24 months of age, 3×TgAD mice exhibited extensive tau and Aβ pathologies involving the hippocampus and multiple functionally related brain regions, with a spatial expansion of increased local synchronous activity to include those regions. Our findings demonstrate that age-related brain regional hypersynchronous activity is associated with early tau pathology in a mouse model, consistent with a role for early tau pathology in the neuronal circuit hyperexcitability that is believed to precede and contribute to neuronal degeneration in AD.
Collapse
Affiliation(s)
- Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Elliot Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, USA.
| |
Collapse
|
42
|
Kang SS, Kurti A, Baker KE, Liu CC, Colonna M, Ulrich JD, Holtzman DM, Bu G, Fryer JD. Behavioral and transcriptomic analysis of Trem2-null mice: not all knockout mice are created equal. Hum Mol Genet 2018; 27:211-223. [PMID: 29040522 PMCID: PMC5886290 DOI: 10.1093/hmg/ddx366] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/31/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023] Open
Abstract
It is clear that innate immune system status is altered in numerous neurodegenerative diseases. Human genetic studies have demonstrated that triggering receptor expressed in myeloid cells 2 (TREM2) coding variants have a strong association with Alzheimer's disease (AD) and other neurodegenerative diseases. To more thoroughly understand the impact of TREM2 in vivo, we studied the behavioral and cognitive functions of wild-type (WT) and Trem2-/- (KO) mice during basal conditions and brain function in the context of innate immune stimulation with peripherally administered lipopolysaccharide (LPS). Early markers of neuroinflammation preceded Aif1 and Trem2 upregulation that occurred at later stages (24-48 h post-LPS). We performed a transcriptomic study of these cohorts and found numerous transcripts and pathways that were altered in Trem2-/- mice both at baseline and 48 h after LPS challenge. Importantly, our transcriptome analysis revealed that our Trem2-/- mouse line (Velocigene allele) results in exaggerated Treml1 upregulation. In contrast, aberrantly high Treml1 expression was absent in the Trem2 knockout line generated by the Colonna lab and the Jackson Labs CRISPR/Cas9 Trem2 knockout line. Notably, removal of the floxed neomycin selection cassette ameliorated aberrant Treml1 expression, validating the artifactual nature of Treml1 expression in the original Trem2-/- Velocigene line. Clearly further studies are needed to decipher whether the Treml1 transcriptional artifact is functionally meaningful, but our data indicate that caution is warranted when interpreting functional studies with this particular line. Additionally, our results indicate that other Velocigene alleles or targeting strategies with strong heterologous promoters need to carefully consider downstream genes.
Collapse
Affiliation(s)
- Silvia S Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kelsey E Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Jason D Ulrich
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
43
|
Nguyen APT, Daniel G, Valdés P, Islam MS, Schneider BL, Moore DJ. G2019S LRRK2 enhances the neuronal transmission of tau in the mouse brain. Hum Mol Genet 2018; 27:120-134. [PMID: 29088368 DOI: 10.1093/hmg/ddx389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 11/12/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). LRRK2 mutations typically give rise to Lewy pathology in the brains of PD subjects yet can induce tau-positive neuropathology in some cases. The pathological interaction between LRRK2 and tau remains poorly defined. To explore this interaction in vivo, we crossed a well-characterized human P301S-tau transgenic mouse model of tauopathy with human G2019S-LRRK2 transgenic mice or LRRK2 knockout (KO) mice. We find that endogenous or pathogenic LRRK2 expression has minimal effects on the steady-state levels, solubility and abnormal phosphorylation of human P301S-tau throughout the mouse brain. We next developed a new model of tauopathy by delivering AAV2/6 vectors expressing human P301S-tau to the hippocampal CA1 region of G2019S-LRRK2 transgenic or LRRK2 KO mice. P301S-tau expression induces hippocampal tau pathology and marked degeneration of CA1 pyramidal neurons in mice, however, this occurs independently of endogenous or pathogenic LRRK2 expression. We further developed new AAV2/6 vectors co-expressing human WT-tau and GFP to monitor the neuron-to-neuron transmission of tau within defined hippocampal neuronal circuits. While endogenous LRRK2 is not required for tau transmission, we find that G2019S-LRRK2 markedly enhances the neuron-to-neuron transmission of tau in mice. Our data suggest that mutant tau-induced neuropathology occurs independently of LRRK2 expression in two mouse models of tauopathy but identifies a novel pathogenic role for G2019S-LRRK2 in promoting the neuronal transmission of WT-tau protein. These findings may have important implications for understanding the development of tau neuropathology in LRRK2-linked PD brains.
Collapse
Affiliation(s)
- An Phu Tran Nguyen
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Pamela Valdés
- Neurodegenerative Disease Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Md Shariful Islam
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Bernard L Schneider
- Neurodegenerative Disease Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Laboratory of Molecular Neurodegenerative Research
| |
Collapse
|
44
|
Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:89. [PMID: 29273078 PMCID: PMC5741956 DOI: 10.1186/s13024-017-0231-7] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is behaviorally identified by progressive memory impairment and pathologically characterized by the triad of β-amyloid plaques, neurofibrillary tangles, and neurodegeneration. Genetic mutations and risk factors have been identified that are either causal or modify the disease progression. These genetic and pathological features serve as basis for the creation and validation of mouse models of AD. Efforts made in the past quarter-century have produced over 100 genetically engineered mouse lines that recapitulate some aspects of AD clinicopathology. These models have been valuable resources for understanding genetic interactions that contribute to disease and cellular reactions that are engaged in response. Here we focus on mouse models that have been widely used stalwarts of the field or that are recently developed bellwethers of the future. Rather than providing a summary of each model, we endeavor to compare and contrast the genetic approaches employed and to discuss their respective advantages and limitations. We offer a critical account of the variables which may contribute to inconsistent findings and the factors that should be considered when choosing a model and interpreting the results. We hope to present an insightful review of current AD mouse models and to provide a practical guide for selecting models best matched to the experimental question at hand.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Lathuilière A, Valdés P, Papin S, Cacquevel M, Maclachlan C, Knott GW, Muhs A, Paganetti P, Schneider BL. Motifs in the tau protein that control binding to microtubules and aggregation determine pathological effects. Sci Rep 2017; 7:13556. [PMID: 29051562 PMCID: PMC5648870 DOI: 10.1038/s41598-017-13786-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/02/2017] [Indexed: 02/04/2023] Open
Abstract
Tau pathology is associated with cognitive decline in Alzheimer’s disease, and missense tau mutations cause frontotemporal dementia. Hyperphosphorylation and misfolding of tau are considered critical steps leading to tauopathies. Here, we determine how motifs controlling conformational changes in the microtubule-binding domain determine tau pathology in vivo. Human tau was overexpressed in the adult mouse forebrain to compare variants carrying residues that modulate tau propensity to acquire a β-sheet conformation. The P301S mutation linked to frontotemporal dementia causes tau aggregation and rapidly progressing motor deficits. By comparison, wild-type tau becomes heavily hyperphosphorylated, and induces behavioral impairments that do not progress over time. However, the behavioral defects caused by wild-type tau can be suppressed when β-sheet breaking proline residues are introduced in the microtubule-binding domain of tau. This modification facilitates tau interaction with microtubules, as shown by lower levels of phosphorylation, and by the enhanced protective effects of mutated tau against the severing of the cytoskeleton in neurons exposed to vinblastine. Altogether, motifs that are critical for tau conformation determine interaction with microtubules and subsequent pathological modifications, including phosphorylation and aggregation.
Collapse
Affiliation(s)
- Aurélien Lathuilière
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pamela Valdés
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphanie Papin
- AC Immune SA, Lausanne, Switzerland.,Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Via Tesserete 46, CH-6900, Lugano, Switzerland
| | - Matthias Cacquevel
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Graham W Knott
- Centre of Interdisciplinary Electron Microscopy, EPFL, Switzerland
| | | | - Paolo Paganetti
- AC Immune SA, Lausanne, Switzerland.,Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Via Tesserete 46, CH-6900, Lugano, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
46
|
Carlomagno Y, Chung DEC, Yue M, Castanedes-Casey M, Madden BJ, Dunmore J, Tong J, DeTure M, Dickson DW, Petrucelli L, Cook C. An acetylation-phosphorylation switch that regulates tau aggregation propensity and function. J Biol Chem 2017; 292:15277-15286. [PMID: 28760828 PMCID: PMC5602388 DOI: 10.1074/jbc.m117.794602] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/26/2017] [Indexed: 12/26/2022] Open
Abstract
The aberrant accumulation of tau protein is a pathological hallmark of a class of neurodegenerative diseases known as tauopathies, including Alzheimer's disease and related dementias. On the basis of previous observations that tau is a direct substrate of histone deacetylase 6 (HDAC6), we sought to map all HDAC6-responsive sites in tau and determine how acetylation in a site-specific manner affects tau's biophysical properties in vitro. Our findings indicate that several acetylation sites in tau are responsive to HDAC6 and that acetylation on Lys-321 (within a KCGS motif) is both essential for acetylation-mediated inhibition of tau aggregation in vitro and a molecular tactic for preventing phosphorylation on the downstream Ser-324 residue. To determine the functional consequence of this HDAC6-regulated phosphorylation event, we examined tau's ability to promote microtubule assembly and found that phosphorylation of Ser-324 interferes with the normal microtubule-stabilizing function of tau. Tau phosphorylation of Ser-324 (pSer-324) has not previously been evaluated in the context of tauopathy, and here we observed increased deposition of pSer-324–positive tau both in mouse models of tauopathy and in patients with Alzheimer's disease. These findings uncover a novel acetylation–phosphorylation switch at Lys-321/Ser-324 that coordinately regulates tau polymerization and function. Because the disease relevance of this finding is evident, additional studies are needed to examine the role of pSer-324 in tau pathobiology and to determine whether therapeutically modulating this acetylation–phosphorylation switch affects disease progression in vivo.
Collapse
Affiliation(s)
- Yari Carlomagno
- From the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Dah-Eun Chloe Chung
- From the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224.,the Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida 32224, and
| | - Mei Yue
- From the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | | | - Benjamin J Madden
- the Medical Genome Facility Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905
| | - Judy Dunmore
- From the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Jimei Tong
- From the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Michael DeTure
- From the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Dennis W Dickson
- From the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224.,the Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida 32224, and
| | - Leonard Petrucelli
- From the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, .,the Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida 32224, and
| | - Casey Cook
- From the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, .,the Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida 32224, and
| |
Collapse
|
47
|
Leyns CEG, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener 2017; 12:50. [PMID: 28662669 PMCID: PMC5492997 DOI: 10.1186/s13024-017-0192-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023] Open
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by aggregation of the tau protein into filamentous inclusions that can be found in neurons and glial cells. Activated microglia, astrocytes and elevated levels of proinflammatory molecules are also pathological hallmarks that are found in brain regions affected by tau pathology. There has been abundant research in recent years to understand the role of gliosis and neuroinflammation in neurodegenerative diseases, particularly in Alzheimer's disease (AD) which is the most common form of dementia. AD is a tauopathy characterized by both extracellular amyloid-β plaques in addition to intracellular neurofibrillary tangles and neuropil threads containing aggregated tau protein. Accumulating evidence suggests that neuroinflammation offers a possible mechanistic link between these pathologies. Additionally, there appears to be a role for neuroinflammation in aggravating tau pathology and neurodegeneration in tauopathies featuring tau deposits as the predominant pathological signature. In this review, we survey the literature regarding inflammatory mechanisms that may impact neurodegeneration in AD and related tauopathies. We consider a physical role for microglia in the spread of tau pathology as well as the non-cell autonomous effects of secreted proinflammatory cytokines, specifically interleukin 1 beta, interleukin 6, tumor necrosis factor alpha and complement proteins. These molecules appear to have direct effects on tau pathophysiology and overall neuronal health. They also indirectly impact neuronal homeostasis by altering glial function. We conclude by proposing a complex role for gliosis and neuroinflammation in accelerating the progression of AD and other tauopathies.
Collapse
Affiliation(s)
- Cheryl E. G. Leyns
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| |
Collapse
|
48
|
Delenclos M, Faroqi AH, Yue M, Kurti A, Castanedes-Casey M, Rousseau L, Phillips V, Dickson DW, Fryer JD, McLean PJ. Neonatal AAV delivery of alpha-synuclein induces pathology in the adult mouse brain. Acta Neuropathol Commun 2017. [PMID: 28645308 PMCID: PMC5481919 DOI: 10.1186/s40478-017-0455-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abnormal accumulation of alpha-synuclein (αsyn) is a pathological hallmark of Lewy body related disorders such as Parkinson's disease and Dementia with Lewy body disease. During the past two decades, a myriad of animal models have been developed to mimic pathological features of synucleinopathies by over-expressing human αsyn. Although different strategies have been used, most models have little or no reliable and predictive phenotype. Novel animal models are a valuable tool for understanding neuronal pathology and to facilitate development of new therapeutics for these diseases. Here, we report the development and characterization of a novel model in which mice rapidly express wild-type αsyn via somatic brain transgenesis mediated by adeno-associated virus (AAV). At 1, 3, and 6 months of age following intracerebroventricular (ICV) injection, mice were subjected to a battery of behavioral tests followed by pathological analyses of the brains. Remarkably, significant levels of αsyn expression are detected throughout the brain as early as 1 month old, including olfactory bulb, hippocampus, thalamic regions and midbrain. Immunostaining with a phospho-αsyn (pS129) specific antibody reveals abundant pS129 expression in specific regions. Also, pathologic αsyn is detected using the disease specific antibody 5G4. However, this model did not recapitulate behavioral phenotypes characteristic of rodent models of synucleinopathies. In fact no deficits in motor function or cognition were observed at 3 or 6 months of age. Taken together, these findings show that transduction of neonatal mouse with AAV-αsyn can successfully lead to rapid, whole brain transduction of wild-type human αsyn, but increased levels of wildtype αsyn do not induce behavior changes at an early time point (6 months), despite pathological changes in several neurons populations as early as 1 month.
Collapse
|
49
|
Abstract
Intracellular accumulation of abnormally phosphorylated tau in different types of neurons is a pathological characteristic of Alzheimer's disease (AD). While tau modification and associated neuronal loss and hypometabolism start in the entorhinal cortex (EC) in early AD patients, the mechanism by which mutant P301L hTau leads to dementia is not fully elucidated. Here, we studied the effects of P301L hTau transduction in the medial EC (MEC) of mice on tau phosphorylation and accumulation, and cognitive deficit. We found that the exogenous mutant tau protein was restricted in MEC without spreading to other brain regions at one month after transduction. Interestingly, expression of the mutant tau in MEC induces endogenous tau hyperphosphorylation and accumulation in hippocampus and cortex, and inhibits neuronal activity with attenuated PP-DG synapse plasticity, leading to hippocampus-dependent memory deficit with intact olfactory function. These findings suggest a novel neuropathological mechanism of early AD, which is initiated by tau accumulation in MEC, and demonstrate a tau pathological model of early stage AD.
Collapse
|
50
|
Rogers JT, Liu CC, Zhao N, Wang J, Putzke T, Yang L, Shinohara M, Fryer JD, Kanekiyo T, Bu G. Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice. Neurobiol Aging 2017; 53:112-121. [PMID: 28254590 PMCID: PMC5385269 DOI: 10.1016/j.neurobiolaging.2017.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
Aging is accompanied by increased neuroinflammation, synaptic dysfunction, and cognitive deficits both in rodents and humans, yet the onset and progression of these deficits throughout the life span remain unknown. These aging-related deficits affect the quality of life and present challenges to our aging society. Here, we defined age-dependent and progressive impairments of synaptic and cognitive functions and showed that reducing astrocyte-related neuroinflammation through anti-inflammatory drug treatment in aged mice reverses these events. By comparing young (3 months), middle-aged (18 months), aged (24 months), and advanced-aged wild-type mice (30 months), we found that the levels of an astrocytic marker, glial fibrillary acidic protein, progressively increased after 18 months of age, which preceded the decreases of the synaptic marker PSD-95. Hippocampal long-term potentiation was also suppressed in an age-dependent manner, where significant deficits were observed after 24 months of age. Fear conditioning tests demonstrated that associative memory in the context and cued conditions was decreased starting at the ages of 18 and 30 months, respectively. When the mice were tested on hidden platform water maze, spatial learning memory was significantly impaired after 24 months of age. Importantly, subacute treatment with the anti-inflammatory drug ibuprofen suppressed astrocyte activation and restored synaptic plasticity and memory function in advanced-aged mice. These results support the critical contribution of aging-related inflammatory responses to hippocampal-dependent cognitive function and synaptic plasticity, in particular during advanced aging. Our findings provide strong evidence that suppression of neuroinflammation could be a promising treatment strategy to preserve cognition during aging.
Collapse
Affiliation(s)
- Justin T Rogers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Jian Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Travis Putzke
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Longyu Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, China
| | | | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, China; Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL, USA.
| |
Collapse
|