1
|
Loreau V, Koolhaas WH, Chan EH, De Boissier P, Brouilly N, Avosani S, Sane A, Pitaval C, Reiter S, Luis NM, Mangeol P, von Philipsborn AC, Rupprecht JF, Görlich D, Habermann BH, Schnorrer F. Titin-dependent biomechanical feedback tailors sarcomeres to specialized muscle functions in insects. SCIENCE ADVANCES 2025; 11:eads8716. [PMID: 40344069 PMCID: PMC12063666 DOI: 10.1126/sciadv.ads8716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
Sarcomeres are the universal contractile units of muscles that enable animals to move. Insect muscles display a remarkable functional diversity: they operate at extremely different contraction frequencies (ranging from ~1 to 1000 hertz) and amplitudes during flying, walking, and crawling. This is puzzling because sarcomeres are built from essentially the same actin-myosin components. Here, we address how functionally different sarcomeres are made. We show that the giant protein titin and the regulation of developmental contractility are key for the sarcomere specializations. I-band titin spans and determines the length of the sarcomeric I-band in a muscle type-specific manner. Unexpectedly, I-band titin also rules the length of the force-generating myosin filament using a feedback mechanism that is modulated by myosin contractility. We propose a model of how sarcomere specializations in insects are tuned, provide evidence for this model, and discuss its validity beyond insects.
Collapse
Affiliation(s)
- Vincent Loreau
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | | | - Eunice HoYee Chan
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Paul De Boissier
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Nicolas Brouilly
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Sabina Avosani
- Department of Neuroscience and Movement Science, Medicine Section, University of Fribourg, Fribourg, Switzerland
| | - Aditya Sane
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Christophe Pitaval
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Stefanie Reiter
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Anne C. von Philipsborn
- Department of Neuroscience and Movement Science, Medicine Section, University of Fribourg, Fribourg, Switzerland
| | | | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bianca H. Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
2
|
Ono S. Overexpression of Lifeact in the C. elegans body wall muscle causes sarcomere disorganization and embryonic or larval lethality. Front Cell Dev Biol 2024; 12:1504980. [PMID: 39605982 PMCID: PMC11599240 DOI: 10.3389/fcell.2024.1504980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Lifeact is a short peptide that is widely utilized as a probe for actin filaments in live imaging. However, high concentrations of Lifeact can alter actin filament dynamics and cause artificial modifications to the actin cytoskeleton. Here, I evaluated Caenorhabditis elegans strains expressing Lifeact fused to fluorescent proteins in the body wall muscle. I found that, while low-level expression of Lifeact from a single-copy transgene was appropriate for labeling sarcomeric actin filaments, overexpression of Lifeact from an extrachromosomal array causes severe disorganization of muscle sarcomeres and lethality at an embryonic or larval stage. Therefore, for imaging studies in C. elegans, Lifeact needs to be kept at a low level by proper management of the expression system.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Kimmich MJ, Sundaramurthy S, Geary MA, Lesanpezeshki L, Yingling CV, Vanapalli SA, Littlefield RS, Pruyne D. FHOD-1 and profilin protect sarcomeres against contraction-induced deformation> in C. elegans. Mol Biol Cell 2024; 35:ar137. [PMID: 39259762 PMCID: PMC11617102 DOI: 10.1091/mbc.e24-04-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
Formin HOmology Domain 2-containing (FHOD) proteins are a subfamily of actin-organizing formins important for striated muscle development in many animals. We showed previously that absence of the sole FHOD protein, FHOD-1, from Caenorhabditis elegans results in thin body wall muscles with misshapen dense bodies that serve as sarcomere Z-lines. We demonstrate here that mutations predicted to specifically disrupt actin polymerization by FHOD-1 similarly disrupt muscle development, and that FHOD-1 cooperates with profilin PFN-3 for dense body morphogenesis, and with profilins PFN-2 and PFN-3 to promote body wall muscle growth. We further demonstrate that dense bodies in worms lacking FHOD-1 or PFN-2/PFN-3 are less stable than in wild-type animals, having a higher proportion of dynamic protein, and becoming distorted by prolonged muscle contraction. We also observe accumulation of actin and actin depolymerization factor/cofilin homologue UNC-60B in body wall muscle of these mutants. Such accumulations may indicate targeted disassembly of thin filaments dislodged from unstable dense bodies, possibly accounting for the abnormally slow growth and reduced body wall muscle strength in fhod-1 mutants. Overall, these results implicate FHOD protein-mediated actin assembly in forming stable sarcomere Z-lines, and identify profilin as a new contributor to FHOD activity in striated muscle development.
Collapse
Affiliation(s)
- Michael J. Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Meaghan A. Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | - Curtis V. Yingling
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | | | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
4
|
Oorloff M, Hruby A, Averbukh M, Alcala A, Dutta N, Minor C, Castro Torres T, Moaddeli D, Vega M, Kim J, Bong A, Coakley AJ, Hicks D, Wang J, Wang T, Hoang S, Tharp KM, Garcia G, Higuchi-Sanabria R. Growth on stiffer substrates impacts animal health and longevity in C. elegans. PLoS One 2024; 19:e0302673. [PMID: 39264947 PMCID: PMC11392421 DOI: 10.1371/journal.pone.0302673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024] Open
Abstract
Mechanical stress is a measure of internal resistance exhibited by a body or material when external forces, such as compression, tension, bending, etc. are applied. The study of mechanical stress on health and aging is a continuously growing field, as major changes to the extracellular matrix and cell-to-cell adhesions can result in dramatic changes to tissue stiffness during aging and diseased conditions. For example, during normal aging, many tissues including the ovaries, skin, blood vessels, and heart exhibit increased stiffness, which can result in a significant reduction in function of that organ. As such, numerous model systems have recently emerged to study the impact of mechanical and physical stress on cell and tissue health, including cell-culture conditions with matrigels and other surfaces that alter substrate stiffness and ex vivo tissue models that can apply stress directly to organs like muscle or tendons. Here, we sought to develop a novel method in an in vivo model organism setting to study the impact of altering substrate stiffness on aging by changing the stiffness of solid agar medium used for growth of C. elegans. We found that greater substrate stiffness had limited effects on cellular health, gene expression, organismal health, stress resilience, and longevity. Overall, our study reveals that altering substrate stiffness of growth medium for C. elegans has only mild impact on animal health and longevity; however, these impacts were not nominal and open up important considerations for C. elegans biologists in standardizing agar medium choice for experimental assays.
Collapse
Affiliation(s)
- Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Cray Minor
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Tiffany Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Kevin M. Tharp
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
5
|
Beckett LJ, Williams PM, Toh LS, Hessel V, Gerstweiler L, Fisk I, Toronjo-Urquiza L, Chauhan VM. Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism. NPJ Microgravity 2024; 10:79. [PMID: 39060303 PMCID: PMC11282318 DOI: 10.1038/s41526-024-00418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Spaceflight presents significant challenges to the physiological state of living organisms. This can be due to the microgravity environment experienced during long-term space missions, resulting in alterations in muscle structure and function, such as atrophy. However, a comprehensive understanding of the adaptive mechanisms of biological systems is required to devise potential solutions and therapeutic approaches for adapting to spaceflight conditions. This review examines the current understanding of the challenges posed by spaceflight on physiological changes, alterations in metabolism, dysregulation of pathways and the suitability and advantages of using the model organism Caenorhabditis elegans nematodes to study the effects of spaceflight. Research has shown that changes in the gene and protein composition of nematodes significantly occur across various larval stages and rearing environments, including both microgravity and Earth gravity settings, often mirroring changes observed in astronauts. Additionally, the review explores significant insights into the fundamental metabolic changes associated with muscle atrophy and growth, which could lead to the development of diagnostic biomarkers and innovative techniques to prevent and counteract muscle atrophy. These insights not only advance our understanding of microgravity-induced muscle atrophy but also lay the groundwork for the development of targeted interventions to mitigate its effects in the future.
Collapse
Affiliation(s)
- Laura J Beckett
- School of Pharmacy, University of Nottingham, Nottingham, UK
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | | | - Li Shean Toh
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Volker Hessel
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | - Lukas Gerstweiler
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | - Ian Fisk
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- International Flavour Research Centre (Adelaide), School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Luis Toronjo-Urquiza
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
6
|
Fernicola J, Vyavahare S, Gupta SK, Kalwaghe A, Kosmac K, Davis A, Nicholson M, Isales CM, Shinde R, Fulzele S. The Role of Branched Chain Ketoacid Dehydrogenase Kinase (BCKDK) in Skeletal Muscle Biology and Pathogenesis. Int J Mol Sci 2024; 25:7601. [PMID: 39062842 PMCID: PMC11277350 DOI: 10.3390/ijms25147601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Muscle wasting can be caused by nutrition deficiency and inefficient metabolism of amino acids, including Branched Chain Amino Acids (BCAAs). Branched Chain Amino Acids are a major contributor to the metabolic needs of healthy muscle and account for over a tenth of lean muscle mass. Branched chain alpha-ketoacid dehydrogenase (BCKD) is the rate limiting enzyme of BCAA metabolism. Inhibition of BCKD is achieved through a reversible phosphorylation event by Branched Chain a-ketoacid dehydrogenase kinase (BCKDK). Our study set out to determine the importance of BCKDK in the maintenance of skeletal muscle. We used the Gene Expression Omnibus Database to understand the role of BCKDK in skeletal muscle pathogenesis, including aging, muscular disease, and interrupted muscle metabolism. We found BCKDK expression levels were consistently decreased in pathologic conditions. These results were most consistent when exploring muscular disease followed by aging. Based on our findings, we hypothesize that decreased BCKDK expression alters BCAA catabolism and impacts loss of normal muscle integrity and function. Further research could offer valuable insights into potential therapeutic strategies for addressing muscle-related disorders.
Collapse
Affiliation(s)
- Joshua Fernicola
- Department of Medicine, Division of Endocrinology, Augusta University, Augusta, GA 30912, USA
| | - Sagar Vyavahare
- Department of Medicine, Division of Endocrinology, Augusta University, Augusta, GA 30912, USA
| | - Sonu Kumar Gupta
- Department of Medicine, Division of Endocrinology, Augusta University, Augusta, GA 30912, USA
| | - Aditya Kalwaghe
- Department of Medicine, Division of Endocrinology, Augusta University, Augusta, GA 30912, USA
| | - Kate Kosmac
- Department of Physical Therapy, Augusta University, Augusta, GA 30912, USA
| | - Adam Davis
- Department of Medicine, Division of Endocrinology, Augusta University, Augusta, GA 30912, USA
| | - Matthew Nicholson
- Department of Medicine, Division of Endocrinology, Augusta University, Augusta, GA 30912, USA
| | - Carlos M Isales
- Department of Medicine, Division of Endocrinology, Augusta University, Augusta, GA 30912, USA
- Center for Healthy Aging, Augusta University, Augusta, GA 30912, USA
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute Cancer Center, Philadelphia, PA 19104, USA
| | - Sadanand Fulzele
- Department of Medicine, Division of Endocrinology, Augusta University, Augusta, GA 30912, USA
- Center for Healthy Aging, Augusta University, Augusta, GA 30912, USA
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Yarmey VR, San-Miguel A. Biomarkers for aging in Caenorhabditis elegans high throughput screening. Biochem Soc Trans 2024; 52:1405-1418. [PMID: 38884801 DOI: 10.1042/bst20231303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Aging is characterized by a functional decline in organism fitness over time due to a complex combination of genetic and environmental factors [ 1-4]. With an increasing elderly population at risk of age-associated diseases, there is a pressing need for research dedicated to promoting health and longevity through anti-aging interventions. The roundworm Caenorhabditis elegans is an established model organism for aging studies due to its short life cycle, ease of culture, and conserved aging pathways. These benefits also make the worm well-suited for high-throughput screening (HTS) methods to study biomarkers of the molecular changes, cellular dysfunction, and physiological decline associated with aging. Within this review, we offer a summary of recent advances in HTS techniques to study biomarkers of aging in C. elegans.
Collapse
Affiliation(s)
- Victoria R Yarmey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| |
Collapse
|
8
|
Peysson A, Zariohi N, Gendrel M, Chambert-Loir A, Frébault N, Cheynet E, Andrini O, Boulin T. Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles. Nat Commun 2024; 15:4935. [PMID: 38858388 PMCID: PMC11164867 DOI: 10.1038/s41467-024-49154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.
Collapse
Affiliation(s)
- Alice Peysson
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noura Zariohi
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Marie Gendrel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Amandine Chambert-Loir
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noémie Frébault
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Elise Cheynet
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Olga Andrini
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Thomas Boulin
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France.
| |
Collapse
|
9
|
Kimmich MJ, Sundaramurthy S, Geary MA, Lesanpezeshki L, Yingling CV, Vanapalli SA, Littlefield RS, Pruyne D. FHOD-1/profilin-mediated actin assembly protects sarcomeres against contraction-induced deformation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582848. [PMID: 38559004 PMCID: PMC10979920 DOI: 10.1101/2024.02.29.582848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Formin HOmology Domain 2-containing (FHOD) proteins are a subfamily of actin-organizing formins important for striated muscle development in many animals. We showed previously that absence of the sole FHOD protein, FHOD-1, from C. elegans results in thin body-wall muscles with misshapen dense bodies that serve as sarcomere Z-lines. We demonstrate here that actin polymerization by FHOD-1 is required for its function in muscle development, and that FHOD-1 cooperates with profilin PFN-3 for dense body morphogenesis, and profilins PFN-2 and PFN-3 to promote body-wall muscle growth. We further demonstrate dense bodies in fhod-1 and pfn-3 mutants are less stable than in wild type animals, having a higher proportion of dynamic protein, and becoming distorted by prolonged muscle contraction. We also observe accumulation of actin depolymerization factor/cofilin homolog UNC-60B in body-wall muscle of these mutants. Such accumulations may indicate targeted disassembly of thin filaments dislodged from unstable dense bodies, and may account for the abnormally slow growth and reduced strength of body-wall muscle in fhod-1 mutants. Overall, these results show the importance of FHOD protein-mediated actin assembly to forming stable sarcomere Z-lines, and identify profilin as a new contributor to FHOD activity in striated muscle development.
Collapse
Affiliation(s)
- Michael J. Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Meaghan A. Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | - Curtis V. Yingling
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | | | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
10
|
Shalash R, Levi-Ferber M, Cohen C, Dori A, Brodie C, Henis-Korenblit S. Cross-species modeling of muscular dystrophy in Caenorhabditis elegans using patient-derived extracellular vesicles. Dis Model Mech 2024; 17:dmm050412. [PMID: 38501170 PMCID: PMC11007864 DOI: 10.1242/dmm.050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Reliable disease models are critical for medicine advancement. Here, we established a versatile human disease model system using patient-derived extracellular vesicles (EVs), which transfer a pathology-inducing cargo from a patient to a recipient naïve model organism. As a proof of principle, we applied EVs from the serum of patients with muscular dystrophy to Caenorhabditis elegans and demonstrated their capability to induce a spectrum of muscle pathologies, including lifespan shortening and robust impairment of muscle organization and function. This demonstrates that patient-derived EVs can deliver disease-relevant pathologies between species and can be exploited for establishing novel and personalized models of human disease. Such models can potentially be used for disease diagnosis, prognosis, analyzing treatment responses, drug screening and identification of the disease-transmitting cargo of patient-derived EVs and their cellular targets. This system complements traditional genetic disease models and enables modeling of multifactorial diseases and of those not yet associated with specific genetic mutations.
Collapse
Affiliation(s)
- Rewayd Shalash
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mor Levi-Ferber
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Coral Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Amir Dori
- Department of Neurology, Sheba Medical Center, Ramat-Gan 52621, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Chaya Brodie
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
11
|
Ono S. Segregated localization of two calponin-related proteins within sarcomeric thin filaments in Caenorhabditis elegans striated muscle. Cytoskeleton (Hoboken) 2024; 81:127-140. [PMID: 37792405 PMCID: PMC11249056 DOI: 10.1002/cm.21794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells. However, biochemical studies showed that UNC-87 and CLIK-1 are different in their ability to bundle actin filaments. In this study, I extended comparison between UNC-87 and CLIK-1 and found additional differences in vitro and in vivo. Although UNC-87 and CLIK-1 bound to actin filaments similarly, UNC-87, but not CLIK-1, bound to myosin and inhibited actomyosin ATPase in vitro. In striated muscle, UNC-87 and CLIK-1 were segregated into different subregions within sarcomeric actin filaments. CLIK-1 was concentrated near the actin pointed ends, whereas UNC-87 was enriched toward the actin barbed ends. Restricted localization of UNC-87 was not altered in a clik-1-null mutant, suggesting that their segregated localization is not due to competition between the two related proteins. These results suggest that the two calponin-related proteins have both common and distinct roles in regulating actin filaments.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
12
|
Yoshina S, Izuhara L, Mashima R, Maejima Y, Kamatani N, Mitani S. Febuxostat ameliorates muscle degeneration and movement disorder of the dystrophin mutant model in Caenorhabditis elegans. J Physiol Sci 2023; 73:28. [PMID: 37950170 PMCID: PMC10717159 DOI: 10.1186/s12576-023-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited disorder with mutations in the dystrophin gene characterized by progressive muscle degeneration and weakness. Therapy such as administration of glucocorticoids, exon skipping of mutant genes and introduction of dystrophin mini-genes have been tried, but there is no radical therapy for DMD. In this study, we used C. elegans carrying mutations in the dys-1 gene as a model of DMD to examine the effects of febuxostat (FBX). We applied FBX to dys-1 mutant animals harboring a marker for muscle nuclei and mitochondria, and found that FBX ameliorates the muscle loss. We next used a severer model dys-1; unc-22 double mutant and found the dys-1 mutation causes a weakened muscle contraction. We applied FBX and other compounds to the double mutant animals and assayed the movement. We found that the administration of FBX in combination of uric acid has the best effects on the DMD model.
Collapse
Affiliation(s)
- Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Luna Izuhara
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Rei Mashima
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
- Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Yuka Maejima
- Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Naoyuki Kamatani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
- Stagen. Co. Ltd., 4-11-6, Kuramae, Taito-Ku, Tokyo 111-0051, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
13
|
Mühlberg A, Ritter P, Langer S, Goossens C, Nübler S, Schneidereit D, Taubmann O, Denzinger F, Nörenberg D, Haug M, Schürmann S, Horstmeyer R, Maier AK, Goldmann WH, Friedrich O, Kreiss L. SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for Prior-Informed Assessment of Muscle Function and Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206319. [PMID: 37582656 PMCID: PMC10558688 DOI: 10.1002/advs.202206319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis-driven and extensive prior knowledge (priors) exists. To address this, the Self-Enhancing Multi-Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)-based laboratory research is presented. It utilizes meta-learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi-task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state-of-the-art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior-only approaches.
Collapse
Affiliation(s)
- Alexander Mühlberg
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Paul Ritter
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Simon Langer
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care MedicineKU LeuvenUZ Herestraat 49 – P.O. box 7003Leuven3000Belgium
| | - Stefanie Nübler
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Dominik Schneidereit
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Oliver Taubmann
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Felix Denzinger
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Dominik Nörenberg
- Department of Radiology and Nuclear MedicineUniversity Medical Center MannheimMedical Faculty MannheimTheodor‐Kutzer‐Ufer 1–368167MannheimGermany
| | - Michael Haug
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Sebastian Schürmann
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Roarke Horstmeyer
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| | - Andreas K. Maier
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Wolfgang H. Goldmann
- Biophysics GroupDepartment of PhysicsFriedrich‐Alexander University Erlangen‐NurembergHenkestr. 9191052ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Lucas Kreiss
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| |
Collapse
|
14
|
Zhang J, He L, Wang A, Wu B, Zhang P, Zhu Y, Jiang Y, Bai J, Xiao X. Responses of bitter melon saponins to oxidative stress and aging via the IIS pathway linked with sir-2.1 and hlh-30. J Food Biochem 2022; 46:e14456. [PMID: 36226991 DOI: 10.1111/jfbc.14456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023]
Abstract
Saponins from bitter melon (BMS) exert potential bioactivities and pharmacological activities, including anti-oxidation and lifespan extension. However, the exact mechanisms of BMS in response to oxidative stress remain unknown. Results demonstrated that bitter melon saponins could strengthen locomotive activities (body bend and head thrashing) accompanied by delaying the muscle fiber damage with age in Caenorhabditis elegans. In addition, BMS inhibited the ROS accumulation, improved the activities of antioxidant enzymes like SOD (by 57.90% and 94.34% for 100 μg/ml and 200 μg/ml BMS, respectively) and CAT (by 51.45% and 56.91% for 100 μg/ml and 200 μg/ml BMS, respectively), and extend the lifespan of N2 and CL2006 worms under paraquat-induced oxidative stress. Mechanism study suggested that BMS modulated the mRNA expressions of oxidation-related regulators, like the upregulation of cat-1, hsf-1, sir-2.1, and hlh-30. Furthermore, gene-deficient mutants verified that IIS (insulin/insulin-like growth factor-1 signaling) pathway linked with sir-2.1 and hlh-30 factors were involved in the BMS's lifespan-extension effects under oxidative stress. In general, this study supplemented the explanation of BMS in promoting oxidation-resistance and lifespan-extension activities, which could be served as a potential candidate for anti-aging. PRACTICAL APPLICATIONS: Our previous studies have suggested that saponins from bitter melon exhibited fat-lowering activity in C. elegans. However, little was known about the mechanism underlying the anti-oxidation effects of BMS in C. elegans. Current results indicated that the IIS pathway linked with sir-2.1 and hlh-30 transcriptional factors jointly to increase the lifespan in BMS' responses to oxidative stress. Our findings are beneficial to understand the main nutritional ingredients in bitter melon, which are ideal and expected in functional foods for aging.
Collapse
Affiliation(s)
- Jinfu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Linzhao He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Anlin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beiqi Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Peixi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ya Jiang
- Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| |
Collapse
|
15
|
Sulfur amino acid supplementation displays therapeutic potential in a C. elegans model of Duchenne muscular dystrophy. Commun Biol 2022; 5:1255. [PMID: 36385509 PMCID: PMC9668843 DOI: 10.1038/s42003-022-04212-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (H2S). Here we show that the C. elegans DMD model displays reduced levels of H2S and expression of genes required for sulfur metabolism. These reductions can be offset by increasing bioavailability of sulfur containing amino acids (L-methionine, L-homocysteine, L-cysteine, L-glutathione, and L-taurine), augmenting healthspan primarily via improved calcium regulation, mitochondrial structure and delayed muscle cell death. Additionally, we show distinct differences in preservation mechanisms between sulfur amino acid vs H2S administration, despite similarities in required health-preserving pathways. Our results suggest that the H2S deficit in DMD is likely caused by altered sulfur metabolism and that modulation of this pathway may improve DMD muscle health via multiple evolutionarily conserved mechanisms. A C. elegans model of Duchenne muscular dystrophy reveals a potential role for disrupted sulfur metabolism in the disease and thus the therapeutic potential of sulfur amino acid supplementation.
Collapse
|
16
|
Gu Y, Bai J, Zhang J, Zhao Y, Pan R, Dong Y, Cui H, Meng R, Xiao X. Lactiplantibacillus plantarum fermented barley extracts ameliorate high-fat-diet-induced muscle dysfunction via mitophagy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5261-5271. [PMID: 35307832 DOI: 10.1002/jsfa.11879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/11/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A reduced level of fatty acid oxidation (FAO) by skeletal muscle leads to the accumulation of intermuscular fat (IMF), which is linked to impaired exercise capacity. Previously, we have reported that Lactiplantibacillus plantarum fermented barley extract (LFBE) has effective anti-obesity properties. In this study, the effects of LFBE on muscle were investigated. RESULTS LFBE improved running endurance and muscle strength, which was caused by the elevation of FAO in muscle. In addition, LFBE renovated muscle regeneration through the upregulation of paired box 7 and myogenic differentiation 1 expression avoiding the injury of skeletal muscle fibers. Furthermore, total polyphenol isolated from LFBE (FTP) reinforced mobility and showed a significant protective effect on maintaining muscle fiber morphogenesis in Caenorhabditis elegans. Transmission electron microscope observation suggested FTP induced mitophagy in C. elegans body wall muscle, which was strongly connected with enhanced FAO in mitochondria. CONCLUSIONS Our findings highlighted the beneficial bioactivities of FTP and its potential application for stimulating mitophagy and muscle function in obese individuals. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaoguang Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruirong Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Henglin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ranhui Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| |
Collapse
|
17
|
Nisaa K, Ben-Zvi A. HLH-1 Modulates Muscle Proteostasis During Caenorhabditis elegans Larval Development. Front Cell Dev Biol 2022; 10:920569. [PMID: 35733850 PMCID: PMC9207508 DOI: 10.3389/fcell.2022.920569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Muscle proteostasis is shaped by the myogenic transcription factor MyoD which regulates the expression of chaperones during muscle differentiation. Whether MyoD can also modulate chaperone expression in terminally differentiated muscle cells remains open. Here we utilized a temperature-sensitive (ts) conditional knockdown nonsense mutation in MyoD ortholog in C. elegans, HLH-1, to ask whether MyoD plays a role in maintaining muscle proteostasis post myogenesis. We showed that hlh-1 is expressed during larval development and that hlh-1 knockdown at the first, second, or third larval stages resulted in severe defects in motility and muscle organization. Motility defects and myofilament organization were rescued when the clearance of hlh-1(ts) mRNA was inhibited, and hlh-1 mRNA levels were restored. Moreover, hlh-1 knockdown modulated the expression of chaperones with putative HLH-1 binding sites in their promoters, supporting HLH-1 role in muscle maintenance during larval development. Finally, mild disruption of hlh-1 expression during development resulted in earlier dysregulation of muscle maintenance and function during adulthood. We propose that the differentiation transcription factor, HLH-1, contributes to muscle maintenance and regulates cell-specific chaperone expression post differentiation. HLH-1 may thus impact muscle proteostasis and potentially the onset and manifestation of sarcopenia.
Collapse
Affiliation(s)
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
18
|
Luan P, D'Amico D, Andreux PA, Laurila PP, Wohlwend M, Li H, Imamura de Lima T, Place N, Rinsch C, Zanou N, Auwerx J. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci Transl Med 2021; 13:13/588/eabb0319. [PMID: 33827972 DOI: 10.1126/scitranslmed.abb0319] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy, and despite advances in genetic and pharmacological disease-modifying treatments, its management remains a major challenge. Mitochondrial dysfunction contributes to DMD, yet the mechanisms by which this occurs remain elusive. Our data in experimental models and patients with DMD show that reduced expression of genes involved in mitochondrial autophagy, or mitophagy, contributes to mitochondrial dysfunction. Mitophagy markers were reduced in skeletal muscle and in muscle stem cells (MuSCs) of a mouse model of DMD. Administration of the mitophagy activator urolithin A (UA) rescued mitophagy in DMD worms and mice and in primary myoblasts from patients with DMD, increased skeletal muscle respiratory capacity, and improved MuSCs' regenerative ability, resulting in the recovery of muscle function and increased survival in DMD mouse models. These data indicate that restoration of mitophagy alleviates symptoms of DMD and suggest that UA may have potential therapeutic applications for muscular dystrophies.
Collapse
Affiliation(s)
- Peiling Luan
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Davide D'Amico
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,Amazentis SA, Ecole Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, 1015 Lausanne, Switzerland
| | - Pénélope A Andreux
- Amazentis SA, Ecole Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, 1015 Lausanne, Switzerland
| | - Pirkka-Pekka Laurila
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Martin Wohlwend
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hao Li
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tanes Imamura de Lima
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, Quartier UNIL-Centre, Faculty of Biology-Medicine, University of Lausanne, Bâtiment Synathlon, 1015 Lausanne, Switzerland
| | - Chris Rinsch
- Amazentis SA, Ecole Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, 1015 Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, Quartier UNIL-Centre, Faculty of Biology-Medicine, University of Lausanne, Bâtiment Synathlon, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
19
|
Sofela S, Sahloul S, Song YA. Biophysical analysis of drug efficacy on C. elegans models for neurodegenerative and neuromuscular diseases. PLoS One 2021; 16:e0246496. [PMID: 34115761 PMCID: PMC8195402 DOI: 10.1371/journal.pone.0246496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Caenorhabditis elegans has emerged as a powerful model organism for drug screening due to its cellular simplicity, genetic amenability and homology to humans combined with its small size and low cost. Currently, high-throughput drug screening assays are mostly based on image-based phenotyping with the focus on morphological-descriptive traits not exploiting key locomotory parameters of this multicellular model with muscles such as its thrashing force, a critical biophysical parameter when screening drugs for muscle-related diseases. In this study, we demonstrated the use of a micropillar-based force assay chip in combination with a fluorescence assay to evaluate the efficacy of various drugs currently used in treatment of neurodegenerative and neuromuscular diseases. Using this two-dimensional approach, we showed that the force assay was generally more sensitive in measuring efficacy of drug treatment in Duchenne Muscular Dystrophy and Parkinson's Disease mutant worms as well as partly in Amyotrophic Lateral Sclerosis model. These results underline the potential of our force assay chip in screening of potential drug candidates for the treatment of neurodegenerative and neuromuscular diseases when combined with a fluorescence assay in a two-dimensional analysis approach.
Collapse
Affiliation(s)
- Samuel Sofela
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Tandon School of Engineering, New York University, New York, NY, United States of America
| | - Sarah Sahloul
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Tandon School of Engineering, New York University, New York, NY, United States of America
| |
Collapse
|
20
|
Ellwood RA, Piasecki M, Szewczyk NJ. Caenorhabditis elegans as a Model System for Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22094891. [PMID: 34063069 PMCID: PMC8125261 DOI: 10.3390/ijms22094891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
The nematode worm Caenorhabditis elegans has been used extensively to enhance our understanding of the human neuromuscular disorder Duchenne Muscular Dystrophy (DMD). With new arising clinically relevant models, technologies and treatments, there is a need to reconcile the literature and collate the key findings associated with this model.
Collapse
Affiliation(s)
- Rebecca A. Ellwood
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Mathew Piasecki
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence:
| |
Collapse
|
21
|
Ellwood RA, Hewitt JE, Torregrossa R, Philp AM, Hardee JP, Hughes S, van de Klashorst D, Gharahdaghi N, Anupom T, Slade L, Deane CS, Cooke M, Etheridge T, Piasecki M, Antebi A, Lynch GS, Philp A, Vanapalli SA, Whiteman M, Szewczyk NJ. Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model. Proc Natl Acad Sci U S A 2021; 118:e2018342118. [PMID: 33627403 PMCID: PMC7936346 DOI: 10.1073/pnas.2018342118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.
Collapse
MESH Headings
- Animals
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Humans
- Hydrogen Sulfide/metabolism
- Hydrogen Sulfide/pharmacology
- Locomotion/drug effects
- Locomotion/genetics
- Male
- Mice
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Morpholines/metabolism
- Morpholines/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Organophosphorus Compounds/metabolism
- Organophosphorus Compounds/pharmacology
- Organothiophosphorus Compounds/metabolism
- Organothiophosphorus Compounds/pharmacology
- Prednisone/pharmacology
- Sirtuins/genetics
- Sirtuins/metabolism
- Thiones/metabolism
- Thiones/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Utrophin/deficiency
- Utrophin/genetics
Collapse
Affiliation(s)
- Rebecca A Ellwood
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Jennifer E Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Roberta Torregrossa
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Ashleigh M Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales (UNSW) Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Samantha Hughes
- HAN BioCentre, HAN University of Applied Sciences, Nijmegen 6525EM, The Netherlands
| | | | - Nima Gharahdaghi
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Taslim Anupom
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409
| | - Luke Slade
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Colleen S Deane
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
- Living System Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Michael Cooke
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Mathew Piasecki
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Adam Antebi
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales (UNSW) Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom;
| | - Nathaniel J Szewczyk
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom;
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH 45701
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| |
Collapse
|
22
|
Mournetas V, Massouridès E, Dupont JB, Kornobis E, Polvèche H, Jarrige M, Dorval ARL, Gosselin MRF, Manousopoulou A, Garbis SD, Górecki DC, Pinset C. Myogenesis modelled by human pluripotent stem cells: a multi-omic study of Duchenne myopathy early onset. J Cachexia Sarcopenia Muscle 2021; 12:209-232. [PMID: 33586340 PMCID: PMC7890274 DOI: 10.1002/jcsm.12665] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5000 male births. Symptoms appear in early childhood, with a diagnosis made mostly around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise-even asymptomatically-is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. METHODS We have used both human tissue-derived myoblasts and human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis and compared their differentiation dynamics with that of healthy control cells by a comprehensive multi-omic analysis at seven time points. Results were strengthened with the analysis of isogenic CRISPR-edited human embryonic stem cells and through comparisons against published transcriptomic and proteomic datasets from human DMD muscles. The study was completed with DMD knockdown/rescue experiments in hiPSC-derived skeletal muscle progenitor cells and adenosine triphosphate measurement in hiPSC-derived myotubes. RESULTS Transcriptome and miRnome comparisons combined with protein analyses demonstrated that hiPSC differentiation (i) leads to embryonic/foetal myotubes that mimic described DMD phenotypes at the differentiation endpoint and (ii) homogeneously and robustly recapitulates key developmental steps-mesoderm, somite, and skeletal muscle. Starting at the somite stage, DMD dysregulations concerned almost 10% of the transcriptome. These include mitochondrial genes whose dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of DMD skeletal muscle cells that begins early during myogenesis. All the omics data are available online for exploration through a graphical interface at https://muscle-dmd.omics.ovh/. CONCLUSIONS Our data argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin roles during muscle development. This hiPSC model of skeletal muscle differentiation offers the possibility to explore these functions as well as find earlier DMD biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Etienne Kornobis
- Biomics, C2RT, Institut Pasteur, Paris, France.,Hub de Bioinformatique et Biostatistique - Département BiologieComputationnelle, Paris, France
| | | | | | | | - Maxime R F Gosselin
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Antigoni Manousopoulou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Spiros D Garbis
- Unit for Cancer Sciences, Centre for Proteomics Research, Institute for Life Sciences, University of Southampton, Southampton, UK.,Proteas Bioanalytics Inc., BioLabs at The Lundquist Institute, Torrance, CA, USA
| | - Dariusz C Górecki
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | |
Collapse
|
23
|
Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Belosludtseva NV, Belosludtsev KN. The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle Mitochondria in Duchenne Muscular Dystrophy. Int J Mol Sci 2020; 21:8763. [PMID: 33228255 PMCID: PMC7699511 DOI: 10.3390/ijms21228763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a lack of dystrophin, a protein essential for myocyte integrity. Mitochondrial dysfunction is reportedly responsible for DMD. This study examines the effect of glucocorticoid deflazacort on the functioning of the skeletal-muscle mitochondria of dystrophin-deficient mdx mice and WT animals. Deflazacort administration was found to improve mitochondrial respiration of mdx mice due to an increase in the level of ETC complexes (complexes III and IV and ATP synthase), which may contribute to the normalization of ATP levels in the skeletal muscle of mdx animals. Deflazacort treatment improved the rate of Ca2+ uniport in the skeletal muscle mitochondria of mdx mice, presumably by affecting the subunit composition of the calcium uniporter of organelles. At the same time, deflazacort was found to reduce the resistance of skeletal mitochondria to MPT pore opening, which may be associated with a change in the level of ANT2 and CypD. In this case, deflazacort also affected the mitochondria of WT mice. The paper discusses the mechanisms underlying the effect of deflazacort on the functioning of mitochondria and contributing to the improvement of the muscular function of mdx mice.
Collapse
MESH Headings
- Adenine Nucleotide Translocator 2/genetics
- Adenine Nucleotide Translocator 2/metabolism
- Adenosine Triphosphate/biosynthesis
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Peptidyl-Prolyl Isomerase F/genetics
- Peptidyl-Prolyl Isomerase F/metabolism
- Electron Transport Complex III/genetics
- Electron Transport Complex III/metabolism
- Electron Transport Complex IV/genetics
- Electron Transport Complex IV/metabolism
- Gene Expression Regulation/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondrial Proton-Translocating ATPases/genetics
- Mitochondrial Proton-Translocating ATPases/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Pregnenediones/pharmacology
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Kirill S. Tenkov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Vlada S. Starinets
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Biophotonics Center, Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov st. 38, 119991 Moscow, Russia
| |
Collapse
|
24
|
Schmeisser S, Li S, Bouchard B, Ruiz M, Des Rosiers C, Roy R. Muscle-Specific Lipid Hydrolysis Prolongs Lifespan through Global Lipidomic Remodeling. Cell Rep 2020; 29:4540-4552.e8. [PMID: 31875559 DOI: 10.1016/j.celrep.2019.11.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/20/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that changes in fat metabolism may have a significant effect on lifespan. Accumulation of lipid deposits in non-adipose tissue appears to be critical for age-related pathologies and may also contribute to the aging process itself. We established a model of lipid storage in muscle cells of C. elegans to reveal a mechanism that promotes longevity non-cell-autonomously. Here, we describe how muscle-specific activation of adipose triglyceride lipase (ATGL) and the phospholipase A2 (PLA2) ortholog IPLA-7 collectively affect inter-tissular communication and systemic adaptation that requires the activity of AMP-dependent protein kinase (AMPK) and a highly conserved nuclear receptor outside of the muscle. Our data suggest that muscle-specific bioactive lipid signals, or "lipokines," are generated following triglyceride breakdown and that these signals impinge on a complex network of genes that modify the global lipidome, consequently extending the lifespan.
Collapse
Affiliation(s)
| | - Shaolin Li
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Bertrand Bouchard
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Christine Des Rosiers
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Nutrition, University of Montreal, Montreal, QC H2T 1A8, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
25
|
Varga B, Meli AC, Radoslavova S, Panel M, Lacampagne A, Gergely C, Cazorla O, Cloitre T. Internal structure and remodeling in dystrophin-deficient cardiomyocytes using second harmonic generation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102295. [PMID: 32889047 DOI: 10.1016/j.nano.2020.102295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating disorder related to dystrophin encoding gene mutations, often associated with dilated cardiomyopathy. However, it is still unclear how dystrophin deficiency affects cardiac sarcomere remodeling and contractile dysfunction. We employed second harmonic generation (SHG) microscopy, a nonlinear optical imaging technique that allows studying contractile apparatus organization without histologic fixation and immunostaining. Images were acquired on alive DMD (mdx) and wild type cardiomyocytes at different ages and at various external calcium concentrations. An automated image processing was developed to identify individual myofibrils and extract data about their organization. We observed a structural aging-dependent remodeling in mdx cardiomyocytes affecting sarcomere sinuosity, orientation and length that could not be anticipated from standard optical imaging. These results revealed for the first time the interest of SHG to evaluate the intracellular and sarcomeric remodeling of DMD cardiac tissue in an age-dependent manner that could participate in progressive contractile dysfunction.
Collapse
Affiliation(s)
- Béla Varga
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Albano C Meli
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Silviya Radoslavova
- L2C, University of Montpellier, CNRS, Montpellier, France; PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Mathieu Panel
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Csilla Gergely
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | | |
Collapse
|
26
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
27
|
Gil-Gálvez A, Carbonell-Corvillo P, Paradas C, Miranda-Vizuete A. Cautionary note on the use of Caenorhabditis elegans to study muscle phenotypes caused by mutations in the human MYH7 gene. Biotechniques 2020; 68:296-299. [PMID: 32301330 DOI: 10.2144/btn-2020-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mutations in the human MYH7 gene, encoding a slow skeletal muscle/β-cardiac myosin heavy chain, cause different types of myopathies. The nematode model Caenorhabditis elegans has frequently been employed to study the molecular and physiological consequences of MYH7 mutations in muscle function by introducing mutations into the unc-54 gene, the worm MYH7 ortholog. We report here that the C. elegans model is not appropriate for such studies if they involve expression of the UNC-54 protein (wild-type or fused to green fluorescent protein) above endogenous levels.
Collapse
Affiliation(s)
- Alejandro Gil-Gálvez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Pilar Carbonell-Corvillo
- Neuromuscular Unit, Department of Neurology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Carmen Paradas
- Neuromuscular Unit, Department of Neurology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| |
Collapse
|
28
|
Physical exertion exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2019; 116:3508-3517. [PMID: 30755520 DOI: 10.1073/pnas.1811379116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by loss of the protein dystrophin. In humans, DMD has early onset, causes developmental delays, muscle necrosis, loss of ambulation, and death. Current animal models have been challenged by their inability to model the early onset and severity of the disease. It remains unresolved whether increased sarcoplasmic calcium observed in dystrophic muscles follows or leads the mechanical insults caused by the muscle's disrupted contractile machinery. This knowledge has important implications for patients, as potential physiotherapeutic treatments may either help or exacerbate symptoms, depending on how dystrophic muscles differ from healthy ones. Recently we showed how burrowing dystrophic (dys-1) C. elegans recapitulate many salient phenotypes of DMD, including loss of mobility and muscle necrosis. Here, we report that dys-1 worms display early pathogenesis, including dysregulated sarcoplasmic calcium and increased lethality. Sarcoplasmic calcium dysregulation in dys-1 worms precedes overt structural phenotypes (e.g., mitochondrial, and contractile machinery damage) and can be mitigated by reducing calmodulin expression. To learn how dystrophic musculature responds to altered physical activity, we cultivated dys-1 animals in environments requiring high intensity or high frequency of muscle exertion during locomotion. We find that several muscular parameters (e.g., size) improve with increased activity. However, longevity in dystrophic animals was negatively associated with muscular exertion, regardless of effort duration. The high degree of phenotypic conservation between dystrophic worms and humans provides a unique opportunity to gain insight into the pathology of the disease as well as the initial assessment of potential treatment strategies.
Collapse
|
29
|
Hewitt JE, Pollard AK, Lesanpezeshki L, Deane CS, Gaffney CJ, Etheridge T, Szewczyk NJ, Vanapalli SA. Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of Caenorhabditis elegans and its functional response to drugs. Dis Model Mech 2018; 11:dmm036137. [PMID: 30396907 PMCID: PMC6307913 DOI: 10.1242/dmm.036137] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Muscle strength is a key clinical parameter used to monitor the progression of human muscular dystrophies, including Duchenne and Becker muscular dystrophies. Although Caenorhabditis elegans is an established genetic model for studying the mechanisms and treatments of muscular dystrophies, analogous strength-based measurements in this disease model are lacking. Here, we describe the first demonstration of the direct measurement of muscular strength in dystrophin-deficient C. elegans mutants using a micropillar-based force measurement system called NemaFlex. We show that dys-1(eg33) mutants, but not dys-1(cx18) mutants, are significantly weaker than their wild-type counterparts in early adulthood, cannot thrash in liquid at wild-type rates, display mitochondrial network fragmentation in the body wall muscles, and have an abnormally high baseline mitochondrial respiration. Furthermore, treatment with prednisone, the standard treatment for muscular dystrophy in humans, and melatonin both improve muscular strength, thrashing rate and mitochondrial network integrity in dys-1(eg33), and prednisone treatment also returns baseline respiration to normal levels. Thus, our results demonstrate that the dys-1(eg33) strain is more clinically relevant than dys-1(cx18) for muscular dystrophy studies in C. elegans This finding, in combination with the novel NemaFlex platform, can be used as an efficient workflow for identifying candidate compounds that can improve strength in the C. elegans muscular dystrophy model. Our study also lays the foundation for further probing of the mechanism of muscle function loss in dystrophin-deficient C. elegans, leading to knowledge translatable to human muscular dystrophy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jennifer E Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Amelia K Pollard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Colleen S Deane
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Christopher J Gaffney
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
- Lancaster Medical School, Furness College, Lancaster University, Lancaster LA1 4YG, UK
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
30
|
Scholtes C, Bellemin S, Martin E, Carre-Pierrat M, Mollereau B, Gieseler K, Walter L. DRP-1-mediated apoptosis induces muscle degeneration in dystrophin mutants. Sci Rep 2018; 8:7354. [PMID: 29743663 PMCID: PMC5943356 DOI: 10.1038/s41598-018-25727-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are double-membrane subcellular organelles with highly conserved metabolic functions including ATP production. Mitochondria shapes change continually through the combined actions of fission and fusion events rendering mitochondrial network very dynamic. Mitochondria are largely implicated in pathologies and mitochondrial dynamics is often disrupted upon muscle degeneration in various models. Currently, the exact roles of mitochondria in the molecular mechanisms that lead to muscle degeneration remain poorly understood. Here we report a role for DRP-1 in regulating apoptosis induced by dystrophin-dependent muscle degeneration. We found that: (i) dystrophin-dependent muscle degeneration was accompanied by a drastic increase in mitochondrial fragmentation that can be rescued by genetic manipulations of mitochondrial dynamics (ii) the loss of function of the fission gene drp-1 or the overexpression of the fusion genes eat-3 and fzo-1 provoked a reduction of muscle degeneration and an improved mobility of dystrophin mutant worms (iii) the functions of DRP-1 in apoptosis and of others apoptosis executors are important for dystrophin-dependent muscle cell death (iv) DRP-1-mediated apoptosis is also likely to induce age-dependent loss of muscle cell. Collectively, our findings point toward a mechanism involving mitochondrial dynamics to respond to trigger(s) of muscle degeneration via apoptosis in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.,NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Stéphanie Bellemin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Edwige Martin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Maïté Carre-Pierrat
- Biology of Caenorhabditis elegans facility, Universite Lyon 1, UMS3421, Lyon 69008, France
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France
| | - Kathrin Gieseler
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France.
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.
| |
Collapse
|
31
|
Mergoud dit Lamarche A, Molin L, Pierson L, Mariol M, Bessereau J, Gieseler K, Solari F. UNC-120/SRF independently controls muscle aging and lifespan in Caenorhabditis elegans. Aging Cell 2018; 17:e12713. [PMID: 29314608 PMCID: PMC5847867 DOI: 10.1111/acel.12713] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is commonly defined as the loss of global homeostasis, which results from progressive alteration of all organs function. This model is currently challenged by recent data showing that interventions that extend lifespan do not always increase the overall fitness of the organism. These data suggest the existence of tissue-specific factors that regulate the pace of aging in a cell-autonomous manner. Here, we investigated aging of Caenorhabditis elegans striated muscles at the subcellular and the physiological level. Our data show that muscle aging is characterized by a dramatic decrease in the expression of genes encoding proteins required for muscle contraction, followed by a change in mitochondria morphology, and an increase in autophagosome number. Myofilaments, however, remain unaffected during aging. We demonstrated that the conserved transcription factor UNC-120/SRF regulates muscle aging biomarkers. Interestingly, the role of UNC-120/SRF in the control of muscle aging can be dissociated from its broader effect on lifespan. In daf-2/insulin/IGF1 receptor mutants, which exhibit a delayed appearance of muscle aging biomarkers and are long-lived, disruption of unc-120 accelerates muscle aging but does not suppress the lifespan phenotype of daf-2 mutant. Conversely, unc-120 overexpression delays muscle aging but does not increase lifespan. Overall, we demonstrate that UNC-120/SRF controls the pace of muscle aging in a cell-autonomous manner downstream of the insulin/IGF1 receptor.
Collapse
Affiliation(s)
- Adeline Mergoud dit Lamarche
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laurent Molin
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laura Pierson
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Marie‐Christine Mariol
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Jean‐Louis Bessereau
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
- Hospices Civils de LyonFaculté de Médecine Lyon EstLyonFrance
| | - Kathrin Gieseler
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Florence Solari
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| |
Collapse
|
32
|
Velleman SG, Clark DL, Tonniges JR. The Effect of the Wooden Breast Myopathy on Sarcomere Structure and Organization. Avian Dis 2018; 62:28-35. [DOI: 10.1637/11766-110217-reg.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sandra G. Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Daniel L. Clark
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Jeffrey R. Tonniges
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
33
|
Modulation of Protein Quality Control and Proteasome to Autophagy Switch in Immortalized Myoblasts from Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2018; 19:ijms19010178. [PMID: 29316663 PMCID: PMC5796127 DOI: 10.3390/ijms19010178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/17/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
The maintenance of proteome integrity is of primary importance in post-mitotic tissues such as muscle cells; thus, protein quality control mechanisms must be carefully regulated to ensure their optimal efficiency, a failure of these processes being associated with various muscular disorders. Duchenne muscular dystrophy (DMD) is one of the most common and severe forms of muscular dystrophies and is caused by mutations in the dystrophin gene. Protein quality control modulations have been diversely observed in degenerating muscles of patients suffering from DMD or in animal models of the disease. In this study, we investigated whether modulations of protein quality control mechanisms already pre-exist in undifferentiated myoblasts originating from DMD patients. We report for the first time that the absence of dystrophin in human myoblasts is associated with protein aggregation stress characterized by an increase of protein aggregates. This stress is combined with BAG1 to BAG3 switch, NFκB activation and up-regulation of BAG3/HSPB8 complexes that ensure preferential routing of misfolded/aggregated proteins to autophagy rather than to deficient 26S proteasome. In this context, restoration of pre-existing alterations of protein quality control processes might represent an alternative strategy for DMD therapies.
Collapse
|
34
|
Galliot B, Crescenzi M, Jacinto A, Tajbakhsh S. Trends in tissue repair and regeneration. Development 2017; 144:357-364. [PMID: 28143842 DOI: 10.1242/dev.144279] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 6th EMBO conference on the Molecular and Cellular Basis of Regeneration and Tissue Repair took place in Paestum (Italy) on the 17th-21st September, 2016. The 160 scientists who attended discussed the importance of cellular and tissue plasticity, biophysical aspects of regeneration, the diverse roles of injury-induced immune responses, strategies to reactivate regeneration in mammals, links between regeneration and ageing, and the impact of non-mammalian models on regenerative medicine.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva 04, Switzerland
| | - Marco Crescenzi
- Department of Cell Biology and Neurosciences, National Institute of Health, I-00161 Roma, Italy
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Lisboa 1169-056, Portugal
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Stem Cells & Development Unit, CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
35
|
Lehmann S, Bass JJ, Barratt TF, Ali MZ, Szewczyk NJ. Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle. J Cachexia Sarcopenia Muscle 2017; 8:660-672. [PMID: 28508547 PMCID: PMC5566650 DOI: 10.1002/jcsm.12196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Skeletal muscle is central to locomotion and metabolic homeostasis. The laboratory worm Caenorhabditis elegans has been developed into a genomic model for assessing the genes and signals that regulate muscle development and protein degradation. Past work has identified a receptor tyrosine kinase signalling network that combinatorially controls autophagy, nerve signal to muscle to oppose proteasome-based degradation, and extracellular matrix-based signals that control calpain and caspase activation. The last two discoveries were enabled by following up results from a functional genomic screen of known regulators of muscle. Recently, a screen of the kinome requirement for muscle homeostasis identified roughly 40% of kinases as required for C. elegans muscle health; 80 have identified human orthologues and 53 are known to be expressed in skeletal muscle. To complement this kinome screen, here, we screen most of the phosphatases in C. elegans. METHODS RNA interference was used to knockdown phosphatase-encoding genes. Knockdown was first conducted during development with positive results also knocked down only in fully developed adult muscle. Protein homeostasis, mitochondrial structure, and sarcomere structure were assessed using transgenic reporter proteins. Genes identified as being required to prevent protein degradation were also knocked down in conditions that blocked proteasome or autophagic degradation. Genes identified as being required to prevent autophagic degradation were also assessed for autophagic vesicle accumulation using another transgenic reporter. Lastly, bioinformatics were used to look for overlap between kinases and phosphatases required for muscle homeostasis, and the prediction that one phosphatase was required to prevent mitogen-activated protein kinase activation was assessed by western blot. RESULTS A little over half of all phosphatases are each required to prevent abnormal development or maintenance of muscle. Eighty-six of these phosphatases have known human orthologues, 57 of which are known to be expressed in human skeletal muscle. Of the phosphatases required to prevent abnormal muscle protein degradation, roughly half are required to prevent increased autophagy. CONCLUSIONS A significant portion of both the kinome and phosphatome are required for establishing and maintaining C. elegans muscle health. Autophagy appears to be the most commonly triggered form of protein degradation in response to disruption of phosphorylation-based signalling. The results from these screens provide measurable phenotypes for analysing the combined contribution of kinases and phosphatases in a multi-cellular organism and suggest new potential regulators of human skeletal muscle for further analysis.
Collapse
Affiliation(s)
- Susann Lehmann
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Joseph J Bass
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Thomas F Barratt
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Mohammed Z Ali
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| |
Collapse
|
36
|
A Differentiation Transcription Factor Establishes Muscle-Specific Proteostasis in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006531. [PMID: 28036392 PMCID: PMC5201269 DOI: 10.1371/journal.pgen.1006531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Safeguarding the proteome is central to the health of the cell. In multi-cellular organisms, the composition of the proteome, and by extension, protein-folding requirements, varies between cells. In agreement, chaperone network composition differs between tissues. Here, we ask how chaperone expression is regulated in a cell type-specific manner and whether cellular differentiation affects chaperone expression. Our bioinformatics analyses show that the myogenic transcription factor HLH-1 (MyoD) can bind to the promoters of chaperone genes expressed or required for the folding of muscle proteins. To test this experimentally, we employed HLH-1 myogenic potential to genetically modulate cellular differentiation of Caenorhabditis elegans embryonic cells by ectopically expressing HLH-1 in all cells of the embryo and monitoring chaperone expression. We found that HLH-1-dependent myogenic conversion specifically induced the expression of putative HLH-1-regulated chaperones in differentiating muscle cells. Moreover, disrupting the putative HLH-1-binding sites on ubiquitously expressed daf-21(Hsp90) and muscle-enriched hsp-12.2(sHsp) promoters abolished their myogenic-dependent expression. Disrupting HLH-1 function in muscle cells reduced the expression of putative HLH-1-regulated chaperones and compromised muscle proteostasis during and after embryogenesis. In turn, we found that modulating the expression of muscle chaperones disrupted the folding and assembly of muscle proteins and thus, myogenesis. Moreover, muscle-specific over-expression of the DNAJB6 homolog DNJ-24, a limb-girdle muscular dystrophy-associated chaperone, disrupted the muscle chaperone network and exposed synthetic motility defects. We propose that cellular differentiation could establish a proteostasis network dedicated to the folding and maintenance of the muscle proteome. Such cell-specific proteostasis networks can explain the selective vulnerability that many diseases of protein misfolding exhibit even when the misfolded protein is ubiquitously expressed. Molecular chaperones protect proteins from misfolding and aggregation. In multi-cellular organisms, the composition and expression levels of chaperones vary between tissues. However, little is known of how such differential expression is regulated. We hypothesized that the cellular differentiation that regulates the cell-type specific expression program may be involved in establishing a cell-type specific chaperone network. To test this possibility, we addressed the myogenic commitment transcription factor HLH-1 (CeMyoD) that converts embryonic cells to muscle cells in Caenorhabditis elegans. We demonstrated that HLH-1 regulates the expression of muscle chaperones during muscle differentiation. Moreover, we showed that HLH-1-dependent expression of chaperones is required for embryonic development and muscle function. We propose that cellular differentiation results in cell-specific differences in the chaperone network that may be detrimental in terms of the susceptibility of neurons and muscle cells to protein misfolding diseases.
Collapse
|