1
|
Luo Y, Pedersen CET, Eliasen AU, Brustad N, Chen L, Wang N, Jiang J, Trivedi U, Li X, Sørensen SJ, Chawes BL, Stokholm J, Thorsen J, Bønnelykke K. Maternal and child FUT2 secretor status affect gastroenteritis risk and gut microbiota composition in early life. Clin Microbiol Infect 2025:S1198-743X(25)00216-2. [PMID: 40339805 DOI: 10.1016/j.cmi.2025.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
OBJECTIVE To investigate associations between maternal and child secretor status and early-life gastroenteritis risk, considering the roles of gut microbiota, breastfeeding, and daycare attendance. METHODS In the COPSAC2010 cohort (n=700), parents recorded gastroenteritis episodes during the first three years of life. Secretor status, rs601338 in the FUT2 gene, was genotyped in both parents and children. The association between secretor status and gastroenteritis was assessed using quasi-Poisson regression. Fecal samples were collected at 1 week, 1 month, 1 year after birth. The interaction between secretor status, breastfeeding and daycare attendance were analyzed through Cox regression. RESULTS Maternal secretor status increased first-year gastroenteritis risk (incidence rate ratio [IRR]=1.48, 95% confidence interval [CI]:1.05-2.16, p=0.033); child status increased second-year risk (IRR=1.56, 95%CI:1.11-2.27, p=0.015), especially after daycare attendance (interaction p=0.006). Maternal status associated with microbiota differences at 1 week (weighted UniFrac F=2.4, R2=0.47%, p=0.048) and 1 month (F=3.3, R2=0.62%, p=0.026); child status at 1 year (F=2.5, R2=0.45%, p=0.027). Secretor children showed lower Bacteroides vulgatus (Median [interquartile range (IQR)]:1.00% [0.04-12.92] vs. 5.00% [0.09-24.80], p=0.023) but higher Escherichia/Shigella (1.35% [IQR:0.28-7.42] vs. 0.56% [IQR:0.13-2.62], p=0.002). B. vulgatus mediated 14% of child status effects (average causal mediation effect [ACME] IRR=0.95, 95% CI: 0.89-0.99, p=0.014). CONCLUSION Maternal and child FUT2 status demonstrates age-specific impacts on gastroenteritis and microbiota in early life, providing new insights into gastrointestinal health genetics and host-microbiome dynamics.
Collapse
Affiliation(s)
- Yang Luo
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Casper-Emil T Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Anders Ulrik Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Nicklas Brustad
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Liang Chen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Ni Wang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Jie Jiang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Urvish Trivedi
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Xuanji Li
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bo L Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, 4200 Slagelse, Denmark; Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Copenhagen, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark.
| |
Collapse
|
2
|
Tsukamoto B, Kurebayashi Y, Takahashi T, Abe Y, Ota R, Wakabayashi Y, Nishiie A, Minami A, Suzuki T, Takeuchi H. VP1 of human and murine noroviruses recognizes glycolipid sulfatide via the P domain. J Biochem 2024; 176:299-312. [PMID: 39012025 DOI: 10.1093/jb/mvae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
Noroviruses are a prevalent cause of human viral gastroenteritis, yet the precise mechanisms underlying their infection cycle, particularly their interactions with and entry into cells, remain poorly understood. Human norovirus (HuNoV) primarily targets human small intestinal epithelial cells, within which 3-O-sulfogalactosylceramide (sulfatide) ranks among the most abundant glycosphingolipids (GSLs). While sulfatide involvement in the binding and infection mechanism of several viruses has been documented, its interaction with noroviruses remains underexplored. This study investigated whether noroviruses interact with sulfatide. We found that the recombinant viral capsid protein VP1 of HuNoV (genogroups I and II) and murine norovirus (genogroup V) exhibited robust binding to sulfatide compared with other tested GSLs using enzyme-linked immunosorbent assay, thin-layer chromatography binding assay and real-time quantitative reverse transcription polymerase chain reaction binding assay. VP1 also bound 3-O-sulfated lactosylceramide, which shares the 3-O-sulfated galactose moiety with sulfatide. However, both VP1 and its P domain, identified as the sulfatide-binding domain, exhibited limited binding to structural analogues of sulfatide and other sulfated compounds. These findings suggest a specific recognition of the 3-O-sulfated galactose moiety. Notably, we found that sulfatide is a novel binding target for norovirus particles. Overall, our findings reveal a previously unknown norovirus-sulfatide interaction, proposing sulfatide as a potential candidate for norovirus infection receptors.
Collapse
Affiliation(s)
- Bunta Tsukamoto
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yusuke Abe
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryohei Ota
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshiki Wakabayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Anju Nishiie
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
3
|
Kotowski MJ, Ostrowski P, Sieńko J, Czerny B, Tejchman K, Machaliński B, Górska A, Mrozikiewicz AE, Bogacz A. The Importance of the FUT2 rs602662 Polymorphism in the Risk of Cardiovascular Complications in Patients after Kidney Transplantation. Int J Mol Sci 2024; 25:6562. [PMID: 38928269 PMCID: PMC11203847 DOI: 10.3390/ijms25126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The FUT2 gene encodes an enzyme called α-1,2-fucosyltransferase, which is involved in the formation of blood group antigens AB0(H) and is also involved in the processes of vitamin B12 absorption and its transport between cells. FUT2 gene polymorphisms are associated with vitamin B12 levels in the body. Vitamin B12 deficiency associated with hyperhomocysteinemia is a major risk factor for cardiovascular diseases (CVDs), which are one of the main causes of death in patients after kidney transplantation. The aim of our study was to determine the impact of the rs602662 (G>A) polymorphism of the FUT2 gene on the functionality of transplanted kidneys and the risk of CVD in patients after kidney transplantation. The study included 402 patients treated with immunosuppression (183 patients taking cyclosporine (CsA) and 219 patients taking tacrolimus (TAC)). The analysis of the FUT2 rs602662 (G>A) polymorphism was performed using real-time PCR. Patients with CsA were more likely to be underweight (1.64% vs. 0.91%) and obese (27.87% vs. 15.98%), while those taking TAC were more likely to be of normal weight (39.27%) or overweight (43.84%). No statistically significant differences were observed comparing the mean blood pressure, both systolic and diastolic. The renal profile showed a higher median urea nitrogen concentration in patients with CsA (26.45 mg/dL (20.60-35.40) vs. 22.95 mg/dL (17.60-33.30), p = 0.004). The observed frequency of rs602662 alleles of the FUT2 gene was similar in the analyzed groups. The A allele was present in 43.7% of patients with CsA and 41.1% of those taking TAC (OR = 0.898; 95% CI: 0.678-1.189; p = 0.453). In the group with CsA, the GG genotype was present in 32.2% of patients, the GA in 48.1% and the AA in 19.7%. A similar distribution was obtained in the TAC group: GG-33.8%, GA-50.2%, and AA-16.0%. An association of genotypes containing the G allele with a higher incidence of hypertension was observed. The G allele was present in 65% of people with hypertension and in 56% of patients with normal blood pressure (p = 0.036). Moreover, the evaluation of the renal parameters showed no effect of the FUT2 polymorphism on the risk of organ rejection because the levels of creatinine, eGFR, potassium, and urea nitrogen were prognostic of successful transplantation. Our results suggest that the rs6022662 FUT2 polymorphism may influence the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Maciej Józef Kotowski
- Department of General Surgery and Transplantology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.J.K.); (P.O.); (K.T.)
| | - Piotr Ostrowski
- Department of General Surgery and Transplantology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.J.K.); (P.O.); (K.T.)
| | - Jerzy Sieńko
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland;
| | - Bogusław Czerny
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland; (B.C.); (A.G.)
- Department of Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-230 Szczecin, Poland
| | - Karol Tejchman
- Department of General Surgery and Transplantology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.J.K.); (P.O.); (K.T.)
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Aleksandra Górska
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland; (B.C.); (A.G.)
| | - Aleksandra E. Mrozikiewicz
- Department of Obstetrics and Women’s Diseases, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Anna Bogacz
- Department of Personalized Medicine and Cell Therapy, Regional Blood Center, Marcelińska 44, 60-354 Poznan, Poland
| |
Collapse
|
4
|
Kyvsgaard JN, Brustad N, Hesselberg LM, Vahman N, Thorsen J, Schoos AMM, Bønnelykke K, Stokholm J, Chawes BL. Key risk factors of asthma-like symptoms are mediated through infection burden in early childhood. J Allergy Clin Immunol 2024; 153:684-694. [PMID: 37995855 DOI: 10.1016/j.jaci.2023.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Risk factors of asthma-like symptoms in childhood may act through an increased infection burden because infections often trigger these symptoms. OBJECTIVE We sought to investigate whether the effect of established risk factors of asthma-like episodes in early childhood is mediated through burden and subtypes of common infections. METHODS The study included 662 children from the Copenhagen Prospective Studies on Asthma in Childhood 2010 mother-child cohort, in which infections were registered prospectively in daily diaries from age 0 to 3 years. The association between established risk factors of asthma-like episodes and infection burden was analyzed by quasi-Poisson regressions, and mediation analyses were performed for significant risk factors. RESULTS In the first 3 years of life, the children experienced a median of 16 (interquartile range, 12-23) infectious episodes. We found that the infection burden significantly (PACME < .05) mediated the association of maternal asthma (36.6% mediated), antibiotics during pregnancy (47.3%), siblings at birth (57.7%), an asthma exacerbation polygenic risk score (30.6%), and a bacterial airway immune score (80.2%) with number of asthma-like episodes, whereas the higher number of episodes from male sex, low birth weight, low gestational age, and maternal antibiotic use after birth was not mediated through an increased infection burden. Subtypes of infections driving the mediation were primarily colds, pneumonia, gastroenteritis, and fever, but not acute otitis media or acute tonsillitis. CONCLUSIONS Several risk factors of asthma-like symptoms in early childhood act through an increased infection burden in the first 3 years of life. Prevention of infectious episodes may therefore be beneficial to reduce the burden of asthma-like symptoms in early childhood.
Collapse
Affiliation(s)
- Julie Nyholm Kyvsgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Laura Marie Hesselberg
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nilo Vahman
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark; Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Bo Lund Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Størdal K, Tapia G, Lund-Blix NA, Stene LC. Genotypes predisposing for celiac disease and autoimmune diabetes and risk of infections in early childhood. J Pediatr Gastroenterol Nutr 2024; 78:295-303. [PMID: 38374560 DOI: 10.1002/jpn3.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Infections in early childhood have been associated with risk of celiac disease (CD) and type 1 diabetes (T1D). We investigated whether this is driven by susceptibility genes for autoimmune disease by comparing infection frequency by genetic susceptibility variants for CD or T1D. METHODS We genotyped 373 controls and 384 children who developed CD or T1D in the population-based Norwegian Mother, Father and Child Cohort study (MoBa) study for human leukocyte antigen (HLA)-DQ, FUT2, SH2B3, and PTPN22, and calculated a weighted non-HLA genetic risk score (GRS) for CD and T1D based on over 40 SNPs. Parents reported infections in questionnaires when children were 6 and 18 months old. We used negative binomial regression to estimate incidence rate ratio (IRR) for infections by genotype. RESULTS HLA genotypes for CD and T1D or non-HLA GRS for T1D were not associated with infections. The non-HLA GRS for CD was associated with a nonsignificantly lower frequency of infections (aIRR: 0.95, 95% CI: 0.87-1.03 per weighted allele score), and significantly so when restricting to healthy controls (aIRR: 0.89, 0.81-0.99). Participants homozygous for rs601338(A;A) at FUT2, often referred to as nonsecretors, had a nonsignificantly lower risk of infections (aIRR: 0.91, 95% CI: 0.83-1.01). SH2B3 and PTPN22 genotypes were not associated with infections. The association between infections and risk of CD (OR: 1.15 per five infections) was strengthened after adjustment for HLA genotype and non-HLA GRS (OR: 1.24). CONCLUSIONS HLA variants and non-HLA GRS conferring susceptibility for CD were not associated with increased risk of infections in early childhood and is unlikely to drive the observed association between infections and risk of CD or T1D in many studies.
Collapse
Affiliation(s)
- Ketil Størdal
- Department of Pediatric Research, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - German Tapia
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Lars C Stene
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
6
|
Pérez-Castro S, D’Auria G, Llambrich M, Fernández-Barrés S, Lopez-Espinosa MJ, Llop S, Regueiro B, Bustamante M, Francino MP, Vrijheid M, Maitre L. Influence of perinatal and childhood exposure to tobacco and mercury in children's gut microbiota. Front Microbiol 2024; 14:1258988. [PMID: 38249448 PMCID: PMC10799562 DOI: 10.3389/fmicb.2023.1258988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Background Early life determinants of the development of gut microbiome composition in infants have been widely investigated; however, if early life pollutant exposures, such as tobacco or mercury, have a persistent influence on the gut microbial community, its stabilization at later childhood remains largely unknown. Objective In this exposome-wide study, we aimed at identifying the contribution of exposure to tobacco and mercury from the prenatal period to childhood, to individual differences in the fecal microbiome composition of 7-year-old children, considering co-exposure to a width of established lifestyle and clinical determinants. Methods Gut microbiome was studied by 16S rRNA amplicon sequencing in 151 children at the genus level. Exposure to tobacco was quantified during pregnancy through questionnaire (active tobacco consumption, second-hand smoking -SHS) and biomonitoring (urinary cotinine) at 4 years (urinary cotinine, SHS) and 7 years (SHS). Exposure to mercury was quantified during pregnancy (cord blood) and at 4 years (hair). Forty nine other potential environmental determinants (12 at pregnancy/birth/infancy, 15 at 4 years and 22 at 7 years, such as diet, demographics, quality of living/social environment, and clinical records) were registered. We used multiple models to determine microbiome associations with pollutants including multi-determinant multivariate analysis of variance and linear correlations (wUnifrac, Bray-Curtis and Aitchison ß-diversity distances), single-pollutant permutational multivariate analysis of variance adjusting for co-variates (Aitchison), and multivariable association model with single taxa (MaAsLin2; genus). Sensitivity analysis was performed including genetic data in a subset of 107 children. Results Active smoking in pregnancy was systematically associated with microbiome composition and ß-diversity (R2 2-4%, p < 0.05, Aitchison), independently of other co-determinants. However, in the adjusted single pollutant models (PERMANOVA), we did not find any significant association. An increased relative abundance of Dorea and decreased relative abundance of Akkermansia were associated with smoking during pregnancy (q < 0.05). Discussion Our findings suggest a long-term sustainable effect of prenatal tobacco exposure on the children's gut microbiota. This effect was not found for mercury exposure or tobacco exposure during childhood. Assessing the role of these exposures on the children's microbiota, considering multiple environmental factors, should be further investigated.
Collapse
Affiliation(s)
- Sonia Pérez-Castro
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Giuseppe D’Auria
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Sequencing and Bioinformatics Service, Fundació per al Foment de la Investigació Sanitària i Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Maria Llambrich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sílvia Fernández-Barrés
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Spain
| | - Benito Regueiro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Mariona Bustamante
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Àrea de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO)-Salut Pública, Valencia, Spain
| | - M. Pilar Francino
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Àrea de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO)-Salut Pública, Valencia, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Léa Maitre
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
7
|
Munday RM, Haque R, Wojcik GL, Korpe P, Nayak U, Kirkpatrick BD, Petri WA, Duggal P. Genome-Wide Association Studies of Diarrhea Frequency and Duration in the First Year of Life in Bangladeshi Infants. J Infect Dis 2023; 228:979-989. [PMID: 36967705 PMCID: PMC11007397 DOI: 10.1093/infdis/jiad068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Diarrhea is the second leading cause of death in children under 5 years old worldwide. Known diarrhea risk factors include sanitation, water sources, and pathogens but do not fully explain the heterogeneity in frequency and duration of diarrhea in young children. We evaluated the role of host genetics in diarrhea. METHODS Using 3 well-characterized birth cohorts from an impoverished area of Dhaka, Bangladesh, we compared infants with no diarrhea in the first year of life to those with an abundance, measured by either frequency or duration. We performed a genome-wide association analysis for each cohort under an additive model and then meta-analyzed across the studies. RESULTS For diarrhea frequency, we identified 2 genome-wide significant loci associated with not having any diarrhea, on chromosome 21 within the noncoding RNA AP000959 (C allele odds ratio [OR] = 0.31, P = 4.01 × 10-8), and on chromosome 8 within SAMD12 (T allele OR = 0.35, P = 4.74 × 10-7). For duration of diarrhea, we identified 2 loci associated with no diarrhea, including the same locus on chromosome 21 (C allele OR = 0.31, P = 1.59 × 10-8) and another locus on chromosome 17 near WSCD1 (C allele OR = 0.35, P = 1.09 × 10-7). CONCLUSIONS These loci are in or near genes involved in enteric nervous system development and intestinal inflammation and may be potential targets for diarrhea therapeutics.
Collapse
Affiliation(s)
- Rebecca M Munday
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Poonum Korpe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Uma Nayak
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - William A Petri
- Department of Medicine, Infectious Diseases, and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Budu-Aggrey A, Kilanowski A, Sobczyk MK, Shringarpure SS, Mitchell R, Reis K, Reigo A, Mägi R, Nelis M, Tanaka N, Brumpton BM, Thomas LF, Sole-Navais P, Flatley C, Espuela-Ortiz A, Herrera-Luis E, Lominchar JVT, Bork-Jensen J, Marenholz I, Arnau-Soler A, Jeong A, Fawcett KA, Baurecht H, Rodriguez E, Alves AC, Kumar A, Sleiman PM, Chang X, Medina-Gomez C, Hu C, Xu CJ, Qi C, El-Heis S, Titcombe P, Antoun E, Fadista J, Wang CA, Thiering E, Wu B, Kress S, Kothalawala DM, Kadalayil L, Duan J, Zhang H, Hadebe S, Hoffmann T, Jorgenson E, Choquet H, Risch N, Njølstad P, Andreassen OA, Johansson S, Almqvist C, Gong T, Ullemar V, Karlsson R, Magnusson PKE, Szwajda A, Burchard EG, Thyssen JP, Hansen T, Kårhus LL, Dantoft TM, Jeanrenaud ACSN, Ghauri A, Arnold A, Homuth G, Lau S, Nöthen MM, Hübner N, Imboden M, Visconti A, Falchi M, Bataille V, Hysi P, Ballardini N, Boomsma DI, Hottenga JJ, Müller-Nurasyid M, Ahluwalia TS, Stokholm J, Chawes B, Schoos AMM, Esplugues A, Bustamante M, Raby B, Arshad S, German C, Esko T, Milani LA, Metspalu A, Terao C, Abuabara K, Løset M, Hveem K, Jacobsson B, Pino-Yanes M, Strachan DP, Grarup N, Linneberg A, et alBudu-Aggrey A, Kilanowski A, Sobczyk MK, Shringarpure SS, Mitchell R, Reis K, Reigo A, Mägi R, Nelis M, Tanaka N, Brumpton BM, Thomas LF, Sole-Navais P, Flatley C, Espuela-Ortiz A, Herrera-Luis E, Lominchar JVT, Bork-Jensen J, Marenholz I, Arnau-Soler A, Jeong A, Fawcett KA, Baurecht H, Rodriguez E, Alves AC, Kumar A, Sleiman PM, Chang X, Medina-Gomez C, Hu C, Xu CJ, Qi C, El-Heis S, Titcombe P, Antoun E, Fadista J, Wang CA, Thiering E, Wu B, Kress S, Kothalawala DM, Kadalayil L, Duan J, Zhang H, Hadebe S, Hoffmann T, Jorgenson E, Choquet H, Risch N, Njølstad P, Andreassen OA, Johansson S, Almqvist C, Gong T, Ullemar V, Karlsson R, Magnusson PKE, Szwajda A, Burchard EG, Thyssen JP, Hansen T, Kårhus LL, Dantoft TM, Jeanrenaud ACSN, Ghauri A, Arnold A, Homuth G, Lau S, Nöthen MM, Hübner N, Imboden M, Visconti A, Falchi M, Bataille V, Hysi P, Ballardini N, Boomsma DI, Hottenga JJ, Müller-Nurasyid M, Ahluwalia TS, Stokholm J, Chawes B, Schoos AMM, Esplugues A, Bustamante M, Raby B, Arshad S, German C, Esko T, Milani LA, Metspalu A, Terao C, Abuabara K, Løset M, Hveem K, Jacobsson B, Pino-Yanes M, Strachan DP, Grarup N, Linneberg A, Lee YA, Probst-Hensch N, Weidinger S, Jarvelin MR, Melén E, Hakonarson H, Irvine AD, Jarvis D, Nijsten T, Duijts L, Vonk JM, Koppelmann GH, Godfrey KM, Barton SJ, Feenstra B, Pennell CE, Sly PD, Holt PG, Williams LK, Bisgaard H, Bønnelykke K, Curtin J, Simpson A, Murray C, Schikowski T, Bunyavanich S, Weiss ST, Holloway JW, Min JL, Brown SJ, Standl M, Paternoster L. European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation. Nat Commun 2023; 14:6172. [PMID: 37794016 PMCID: PMC10550990 DOI: 10.1038/s41467-023-41180-2] [Show More Authors] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/24/2023] [Indexed: 10/06/2023] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities.
Collapse
Affiliation(s)
- Ashley Budu-Aggrey
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | - Anna Kilanowski
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
- Pettenkofer School of Public Health, Ludwig-Maximilians University Munich, Munich, Germany
| | - Maria K Sobczyk
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | | | - Ruth Mitchell
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | - Kadri Reis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Reigo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mari Nelis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Core Facility of Genomics, University of Tartu, Tartu, Estonia
| | - Nao Tanaka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, 7600, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| | - Laurent F Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Pol Sole-Navais
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Flatley
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Jesus V T Lominchar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Ingo Marenholz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Aleix Arnau-Soler
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, CH-4123, Basel, Switzerland
- University of Basel, CH-4001, Basel, Switzerland
| | - Katherine A Fawcett
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Hansjorg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Elke Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Ashish Kumar
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Solna, Sweden
| | - Patrick M Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Rhythm Pharmaceuticals, 222 Berkley Street, Boston, 02116, USA
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chen Hu
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Cancan Qi
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Sarah El-Heis
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Elie Antoun
- Faculty of Medicine, University of Southampton, Southampton, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - João Fadista
- Department of Bioinformatics & Data Mining, Måløv, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Medicine, Henry Ford Health, Detroit, MI, 48104, USA
| | - Sara Kress
- Environmental Epidemiology of Lung, Brain and Skin Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Dilini M Kothalawala
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jiasong Duan
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thomas Hoffmann
- Institute for Human Genetics, UCSF, San Francisco, CA, 94143, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, 94158, USA
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Neil Risch
- Institute for Human Genetics, UCSF, San Francisco, CA, 94143, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, 94158, USA
| | - Pål Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, 0450, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, 0450, Oslo, Norway
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Lung and Allergy Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Agnieszka Szwajda
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Thomas M Dantoft
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Alexander C S N Jeanrenaud
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahla Ghauri
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Arnold
- Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Susanne Lau
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Norbert Hübner
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, CH-4123, Basel, Switzerland
- University of Basel, CH-4001, Basel, Switzerland
| | - Alessia Visconti
- Department of Twin Research & Genetics Epidemiology, Kings College London, London, UK
| | - Mario Falchi
- Department of Twin Research & Genetics Epidemiology, Kings College London, London, UK
| | - Veronique Bataille
- Department of Twin Research & Genetics Epidemiology, Kings College London, London, UK
- Dermatology Department, West Herts NHS Trust, Watford, UK
| | - Pirro Hysi
- Department of Twin Research & Genetics Epidemiology, Kings College London, London, UK
| | - Natalia Ballardini
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Solna, Sweden
| | - Dorret I Boomsma
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
- Institute for Health and Care Research (EMGO), VU University, Amsterdam, the Netherlands
| | - Jouke J Hottenga
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie M Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Ana Esplugues
- Nursing School, University of Valencia, FISABIO-University Jaume I-University of Valencia, Valencia, Spain
- Joint Research Unit of Epidemiology and Environmental Health, CIBERESP, Valencia, Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Benjamin Raby
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Syed Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | | | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili A Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway
- Department of Dermatology, Clinic of Orthopaedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Young-Ae Lee
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, CH-4123, Basel, Switzerland
- University of Basel, CH-4001, Basel, Switzerland
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health,Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Solna, Sweden
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Divisions of Human Genetics and Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Faculty of Medicine, University of Iceland, 101, Reykjavík, Iceland
| | - Alan D Irvine
- Department of Clinical Medicine, Trinity College, Dublin, Ireland
| | - Deborah Jarvis
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Medical Research Council and Public Health England Centre for Environment and Health, London, United Kingdom
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Gerard H Koppelmann
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sheila J Barton
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, 4101, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Medicine, Henry Ford Health, Detroit, MI, 48104, USA
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - John Curtin
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, England
| | - Angela Simpson
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, England
| | - Clare Murray
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, England
| | - Tamara Schikowski
- Environmental Epidemiology of Lung, Brain and Skin Aging, Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Josine L Min
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | - Sara J Brown
- Centre for Genomics and Experimental Medicine, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, UK EH4 2XU, Scotland
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Lung Research (DZL), Munich, Germany
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England.
| |
Collapse
|
9
|
Schlosser P, Scherer N, Grundner-Culemann F, Monteiro-Martins S, Haug S, Steinbrenner I, Uluvar B, Wuttke M, Cheng Y, Ekici AB, Gyimesi G, Karoly ED, Kotsis F, Mielke J, Gomez MF, Yu B, Grams ME, Coresh J, Boerwinkle E, Köttgen M, Kronenberg F, Meiselbach H, Mohney RP, Akilesh S, Schmidts M, Hediger MA, Schultheiss UT, Eckardt KU, Oefner PJ, Sekula P, Li Y, Köttgen A. Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine. Nat Genet 2023:10.1038/s41588-023-01409-8. [PMID: 37277652 DOI: 10.1038/s41588-023-01409-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
The kidneys operate at the interface of plasma and urine by clearing molecular waste products while retaining valuable solutes. Genetic studies of paired plasma and urine metabolomes may identify underlying processes. We conducted genome-wide studies of 1,916 plasma and urine metabolites and detected 1,299 significant associations. Associations with 40% of implicated metabolites would have been missed by studying plasma alone. We detected urine-specific findings that provide information about metabolite reabsorption in the kidney, such as aquaporin (AQP)-7-mediated glycerol transport, and different metabolomic footprints of kidney-expressed proteins in plasma and urine that are consistent with their localization and function, including the transporters NaDC3 (SLC13A3) and ASBT (SLC10A2). Shared genetic determinants of 7,073 metabolite-disease combinations represent a resource to better understand metabolic diseases and revealed connections of dipeptidase 1 with circulating digestive enzymes and with hypertension. Extending genetic studies of the metabolome beyond plasma yields unique insights into processes at the interface of body compartments.
Collapse
Affiliation(s)
- Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Sara Monteiro-Martins
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Burulça Uluvar
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna Mielke
- Research and Early Development, Pharmaceuticals Division, Bayer AG, Wuppertal, Germany
| | - Maria F Gomez
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Bing Yu
- Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Morgan E Grams
- New York University Grossman School of Medicine, New York, NY, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Boerwinkle
- Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael Köttgen
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Miriam Schmidts
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Freiburg University Faculty of Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Chopra A, Song J, Weiner J, Keceli HG, Dincer PR, Cruz R, Carracedo A, Blanco J, Dommisch H, Schaefer AS. RSPO4 is a potential risk gene of stages III-IV, grade C periodontitis through effects on innate immune response and oral barrier integrity. J Clin Periodontol 2023; 50:476-486. [PMID: 36507580 DOI: 10.1111/jcpe.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
AIM R-spondin 4 (RSPO4) is a suggestive risk gene of stage III-IV, grade C periodontitis and upregulated in gingiva of mice resistant to bacteria-induced alveolar bone loss. We aimed to replicate the association, identify and characterize the putative causal variant(s) and molecular effects, and understand the downstream effects of RSPO4 upregulation. MATERIALS AND METHODS We performed a two-step association study for RSPO4 with imputed genotypes of a German-Dutch (896 stage III-IV, grade C periodontitis cases, 7104 controls) and Spanish sample (441 cases and 1141 controls). We analysed the allelic effects on transcription factor binding sites with reporter gene and antibody electrophoretic mobility shift assays. We used CRISPR/dCas9 activation and RNA sequencing to pinpoint RSPO4 as the target gene and to analyse downstream effects. RESULTS RSPO4 was associated with periodontitis (rs6056178, pmeta = 4.6 × 10-5 ). rs6056178 contains a GATA-binding motif. The rs6056178 T-allele abolished reporter activity (p = .004) and reduced GATA binding (-14.5%). CRISPRa of the associated region increased RSPO4 expression (25.8 ± 6.5-fold, p = .003). RSPO4 activation showed strongest induction of Gliomedin (439-fold) and Mucin 21 (178-fold) and of the gene set "response to interferon-alpha" (area under the curve [AUC] = 0.8, p < 5 × 10-6 ). The most repressed gene set was "extracellular matrix interactions" (AUC = 0.8, padj = .00016). CONCLUSION RSPO4 is a potential periodontitis risk gene and modifies host defence and barrier integrity.
Collapse
Affiliation(s)
- Avneesh Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Jiahui Song
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - January Weiner
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Huseyin G Keceli
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Pervin R Dincer
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Raquel Cruz
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- CIBERER-Instituto de Salud Carlos III, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Carracedo
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- CIBERER-Instituto de Salud Carlos III, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Blanco
- Grupo de Investigación en Odontología Médico-Quirúrgica (OMEQUI), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Henrik Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
11
|
Horner D, Hjelmsø MH, Thorsen J, Rasmussen M, Eliasen A, Vinding RK, Schoos AMM, Brustad N, Sunde RB, Bønnelykke K, Chawes BL, Stokholm J, Bisgaard H. Supplementation With Fish Oil in Pregnancy Reduces Gastroenteritis in Early Childhood. J Infect Dis 2023; 227:448-456. [PMID: 34927195 DOI: 10.1093/infdis/jiab607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/17/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We hypothesized that insufficient intake of fish oil-derived omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) during pregnancy is a contributing factor to gastroenteritis in early childhood. We examined the effect of n-3 LCPUFA supplementation on gastroenteritis symptoms in the offspring's first 3 years of life. METHODS This was a double-blinded, randomized controlled trial whereby 736 mothers were administered n-3 LCPUFA or control from pregnancy week 24 until 1 week after birth. We measured the number of days with gastroenteritis, number of episodes with gastroenteritis, and the risk of having a gastroenteritis episode in the first 3 years of life. RESULTS A median reduction of 2.5 days with gastroenteritis (P = .018) was shown, corresponding to a 14% reduction in the n-3 LCPUFA group compared with controls in the first 3 years of life (P = .037). A reduction in the number of gastroenteritis episodes (P = .027) and a reduced risk of having an episode (hazard ratio, 0.80 [95% confidence interval, .66-.97]; P = .023) were also shown. CONCLUSIONS Fish oil supplementation from the 24th week of pregnancy led to a reduction in the number of days and episodes with gastroenteritis symptoms in the first 3 years of life. The findings suggest n-3 LCPUFA supplementation as a preventive measure against gastrointestinal infections in early childhood. CLINICAL TRIALS REGISTRATION NCT00798226.
Collapse
Affiliation(s)
- David Horner
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mathis Hjort Hjelmsø
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Section of Chemometrics and Analytical Technologies, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Eliasen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Rebecca Kofod Vinding
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Bjersand Sunde
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo L Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark.,Section of Food, Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Jajosky RP, Wu SC, Zheng L, Jajosky AN, Jajosky PG, Josephson CD, Hollenhorst MA, Sackstein R, Cummings RD, Arthur CM, Stowell SR. ABO blood group antigens and differential glycan expression: Perspective on the evolution of common human enzyme deficiencies. iScience 2023; 26:105798. [PMID: 36691627 PMCID: PMC9860303 DOI: 10.1016/j.isci.2022.105798] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyze biochemical reactions and play critical roles in human health and disease. Enzyme variants and deficiencies can lead to variable expression of glycans, which can affect physiology, influence predilection for disease, and/or directly contribute to disease pathogenesis. Although certain well-characterized enzyme deficiencies result in overt disease, some of the most common enzyme deficiencies in humans form the basis of blood groups. These carbohydrate blood groups impact fundamental areas of clinical medicine, including the risk of infection and severity of infectious disease, bleeding risk, transfusion medicine, and tissue/organ transplantation. In this review, we examine the enzymes responsible for carbohydrate-based blood group antigen biosynthesis and their expression within the human population. We also consider the evolutionary selective pressures, e.g. malaria, that may account for the variation in carbohydrate structures and the implications of this biology for human disease.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Biconcavity Inc, Lilburn, GA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Leon Zheng
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Audrey N. Jajosky
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, West Henrietta, NY, USA
| | | | - Cassandra D. Josephson
- Cancer and Blood Disorders Institute and Blood Bank/Transfusion Medicine Division, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie A. Hollenhorst
- Department of Pathology and Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert Sackstein
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
13
|
Hong X, Xue L, Liao Y, Wu A, Jiang Y, Kou X. Association of fucosyltransferase 2 gene with norovirus infection: A systematic review and meta-analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105091. [PMID: 34610432 DOI: 10.1016/j.meegid.2021.105091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Norovirus is a leading cause of viral gastroenteritis outbreaks worldwide. Histo-blood group antigens (HBGAs) are important host attachment factors in susceptibility to norovirus. In this study, the association of FUT2 gene, which participates in the biosynthesis of HBGAs, with norovirus infection has been investigated. METHODS All relevant studies on the associations of FUT2 gene with norovirus were retrieved from PubMed, Web of Science, Embase, and Cochrane Library databases. Odds ratios (ORs) and 95% confidence interval (CI) were used to analyze the extracted data. I2 statistic, sensitivity analysis and publication bias analysis were used to confirm the findings. Subgroup analyses were performed for races, genotypes, development degree of the countries, publication years, age and setting when heterogeneity was recorded. RESULTS Twenty studies including 4066 participants were included for the meta-analysis. This analysis showed that there is a significant association between FUT2 gene and norovirus infection (OR = 3.02, 95%CI = 2.00-4.55, P < 0.001). Additionally, the ORs of norovirus infection among Chinese (OR = 4.49, 95%CI = 2.37-8.50, P < 0.001) were higher than those among Caucasian (OR = 3.23, 95%CI = 2.20-4.74, P < 0.001). CONCLUSIONS The meta-analysis suggested that FUT2 gene is associated with susceptibility to norovirus infection.
Collapse
Affiliation(s)
- Xiaojing Hong
- KingMed school of Laboratory Medicine of Guangzhou Medical University, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, China.
| | - Yingyin Liao
- KingMed school of Laboratory Medicine of Guangzhou Medical University, Guangzhou, China
| | - Aiwu Wu
- KingMed school of Laboratory Medicine of Guangzhou Medical University, Guangzhou, China
| | - Yueting Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoxia Kou
- KingMed school of Laboratory Medicine of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Hill DR, Chow JM, Buck RH. Multifunctional Benefits of Prevalent HMOs: Implications for Infant Health. Nutrients 2021; 13:3364. [PMID: 34684364 PMCID: PMC8539508 DOI: 10.3390/nu13103364] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Breastfeeding is the best source of nutrition during infancy and is associated with a broad range of health benefits. However, there remains a significant and persistent need for innovations in infant formula that will allow infants to access a wider spectrum of benefits available to breastfed infants. The addition of human milk oligosaccharides (HMOs) to infant formulas represents the most significant innovation in infant nutrition in recent years. Although not a direct source of calories in milk, HMOs serve as potent prebiotics, versatile anti-infective agents, and key support for neurocognitive development. Continuing improvements in food science will facilitate production of a wide range of HMO structures in the years to come. In this review, we evaluate the relationship between HMO structure and functional benefits. We propose that infant formula fortification strategies should aim to recapitulate a broad range of benefits to support digestive health, immunity, and cognitive development associated with HMOs in breastmilk. We conclude that acetylated, fucosylated, and sialylated HMOs likely confer important health benefits through multiple complementary mechanisms of action.
Collapse
Affiliation(s)
| | | | - Rachael H. Buck
- Abbott Nutrition, 3300 Stelzer Road, Columbus, OH 43219, USA; (D.R.H.); (J.M.C.)
| |
Collapse
|
15
|
Maurya R, Kanakan A, Vasudevan JS, Chattopadhyay P, Pandey R. Infection outcome needs two to tango: human host and the pathogen. Brief Funct Genomics 2021; 21:90-102. [PMID: 34402498 PMCID: PMC8385967 DOI: 10.1093/bfgp/elab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are potential drivers for human evolution, through a complex, continuous and dynamic interaction between the host and the pathogen/s. It is this dynamic interaction that contributes toward the clinical outcome of a pathogenic disease. These are modulated by contributions from the human genetic variants, transcriptional response (including noncoding RNA) and the pathogen’s genome architecture. Modern genomic tools and techniques have been crucial for the detection and genomic characterization of pathogens with respect to the emerging infectious diseases. Aided by next-generation sequencing (NGS), risk stratification of host population/s allows for the identification of susceptible subgroups and better disease management. Nevertheless, many challenges to a general understanding of host–pathogen interactions remain. In this review, we elucidate how a better understanding of the human host-pathogen interplay can substantially enhance, and in turn benefit from, current and future applications of multi-omics based approaches in infectious and rare diseases. This includes the RNA-level response, which modulates the disease severity and outcome. The need to understand the role of human genetic variants in disease severity and clinical outcome has been further highlighted during the Coronavirus disease 2019 (COVID-19) pandemic. This would enhance and contribute toward our future pandemic preparedness.
Collapse
Affiliation(s)
- Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
16
|
Julvez J, Fernández-Barrés S, Gignac F, López-Vicente M, Bustamante M, Garcia-Esteban R, Vioque J, Llop S, Ballester F, Fernández-Somoano A, Tardón A, Vrijheid M, Tonne C, Ibarluzea J, Irazabal A, Sebastian-Galles N, Burgaleta M, Romaguera D, Sunyer J. Maternal seafood consumption during pregnancy and child attention outcomes: a cohort study with gene effect modification by PUFA-related genes. Int J Epidemiol 2021; 49:559-571. [PMID: 31578044 DOI: 10.1093/ije/dyz197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is a need to test the fetal programming theoretical framework in nutritional epidemiology. We evaluated whether maternal seafood intake during pregnancy was associated with 8-year-old attention outcomes after adjusting for previous child seafood intake and cognitive function. We also explored effect modification by several single nucleotide polymorphisms (SNPs) related with polyunsaturated fatty acid (PUFA) metabolism. METHODS Our final analyses included 1644 mother-child pairs from the prospective INMA (INfancia y Medio Ambiente) cohort study (Spain, recruitment between 2003 and 2008). We used food frequency questionnaires to assess prenatal and postnatal seafood consumption of the mother-child pairs. We evaluated attention function of the children through the computer-based Attention Network Test (ANT) and we used the number of omission errors and the hit reaction time standard error (HRT-SE). Parents reported child attention deficit hyperactivity disorder (ADHD) symptoms using the Revised Conners' Parent Rating Scale Short Form (CPRS-R: S). We measured seven candidate SNPs in a subsample of 845 children. We estimated associations using regression models, adjusting for family characteristics, child seafood intake and cognitive functions at early ages, and to explore SNP effect modifications. RESULTS Higher total seafood intake during early pregnancy was associated with a reduction of child ANT omission errors, 5th quintile (median = 854 g/week) vs 1st quintile (median = 195 g/week), incidence risk ratio (IRR) 0.76; 95% CI = 0.61, 0.94. Similar results were observed after adjusting the models for child seafood intake and previous cognitive status. Lean, large and small fatty fish showed similar results, and generally similar but less robust associations were observed with the other attention outcomes. Shellfish and canned tuna showed weaker associations. The association patterns were weaker in late pregnancy and null in child seafood consumption. Child rs1260326 (glucokinase regulator, GCKR) and child/maternal rs2281591 (fatty acid elongase 2, ELOVL2) polymorphisms showed nominal P-value for interactions <0.10 between total seafood intake and ANT outcomes. CONCLUSIONS After adjusting for previous child cognitive functions and child seafood intake, high pregnancy consumption (total, lean, small and large fatty fish) was independently associated with improvements of some 8-year-old attention outcomes. Genetic effect modification analyses suggest PUFA intake from seafood as a potential biological mechanism of such association.
Collapse
Affiliation(s)
- Jordi Julvez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain.,CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain.,Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Florence Gignac
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
| | - Mónica López-Vicente
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain.,CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
| | - Raquel Garcia-Esteban
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain.,CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Jesús Vioque
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Nutritional Epidemiology Unit, Universidad Miguel Hernández, ISABIAL-FISABIO, Alicante, Spain
| | - Sabrina Llop
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Ferran Ballester
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain.,Department of Nursing, University of Valencia, València, Spain
| | - Ana Fernández-Somoano
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,IUOPA-Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Adonina Tardón
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,IUOPA-Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain.,CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
| | - Jesus Ibarluzea
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Public Health Department, Basque Government, San Sebastian, Spain.,University of the Basque Country (UPV/EHU), School of Psychology, San Sebastian, Spain.,BIODONOSTIA Health Research Institute, San Sebastian, Spain
| | - Amaia Irazabal
- BIODONOSTIA Health Research Institute, San Sebastian, Spain
| | - Nuria Sebastian-Galles
- Center for Brain and Cognition, Department of Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel Burgaleta
- Center for Brain and Cognition, Department of Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Dora Romaguera
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain.,CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain.,CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Muthumuni D, Miliku K, Wade KH, Timpson NJ, Azad MB. Enhanced Protection Against Diarrhea Among Breastfed Infants of Nonsecretor Mothers. Pediatr Infect Dis J 2021; 40:260-263. [PMID: 33315747 DOI: 10.1097/inf.0000000000003014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diarrhea is a major cause of infant mortality. Being a "nonsecretor" (having an inactive fucosyltransferase-2 gene) protects against diarrhea by inhibiting enteric infections. Breastfeeding also protects against diarrhea; however, the impact of maternal secretor status is unknown. In the ALSPAC cohort (N = 4971), we found that breastfeeding by nonsecretor mothers was especially protective against diarrhea, which could inform new prevention strategies.
Collapse
Affiliation(s)
- Dhasni Muthumuni
- From the Department of Pediatrics and Child Health, University of Manitoba and Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Kozeta Miliku
- From the Department of Pediatrics and Child Health, University of Manitoba and Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Kaitlin H Wade
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Nicholas J Timpson
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol, United Kingdom
| | - Meghan B Azad
- From the Department of Pediatrics and Child Health, University of Manitoba and Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Ahluwalia TS, Eliasen AU, Sevelsted A, Pedersen CET, Stokholm J, Chawes B, Bork-Jensen J, Grarup N, Pedersen O, Hansen T, Linneberg A, Sharma A, Weiss ST, Evans MD, Jackson DJ, Morin A, Krogfelt KA, Schjørring S, Mortensen PB, Hougaard DM, Bybjerg-Grauholm J, Bækvad-Hansen M, Mors O, Nordentoft M, Børglum AD, Werge T, Agerbo E, Gern JE, Lemanske RF, Ober C, Pedersen AG, Bisgaard H, Bønnelykke K. FUT2-ABO epistasis increases the risk of early childhood asthma and Streptococcus pneumoniae respiratory illnesses. Nat Commun 2020; 11:6398. [PMID: 33328473 PMCID: PMC7744576 DOI: 10.1038/s41467-020-19814-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Asthma with severe exacerbation is the most common cause of hospitalization among young children. We aim to increase the understanding of this clinically important disease entity through a genome-wide association study. The discovery analysis comprises 2866 children experiencing severe asthma exacerbation between ages 2 and 6 years, and 65,415 non-asthmatic controls, and we replicate findings in 918 children from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) birth cohorts. We identify rs281379 near FUT2/MAMSTR on chromosome 19 as a novel risk locus (OR = 1.18 (95% CI = 1.11-1.25), Pdiscovery = 2.6 × 10-9) as well as a biologically plausible interaction between functional variants in FUT2 and ABO. We further discover and replicate a potential causal mechanism behind this interaction related to S. pneumoniae respiratory illnesses. These results suggest a novel mechanism of early childhood asthma and demonstrates the importance of phenotype-specificity for discovery of asthma genes and epistasis.
Collapse
Affiliation(s)
- Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biology, The Bioinformatics Center, University of Copenhagen, Copenhagen, Denmark
| | - Anders U Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Astrid Sevelsted
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Casper-Emil T Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Amitabh Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D Evans
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Andreanne Morin
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Preben B Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Copenhagen, Denmark
- NCRR, The National Center for Register-based research, Business and Social Sciences, Aarhus University, Aarhus C, Denmark
- CIRRAU-Center for Integrated Register-Based Research at Aarhus University, Aarhus C, Denmark
| | - David M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Den Neonatale Screenings Biobank, SSI, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Den Neonatale Screenings Biobank, SSI, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Den Neonatale Screenings Biobank, SSI, Copenhagen, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Risskov, Denmark
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Copenhagen, Denmark
- Mental Health Center Copenhagen, Capital Region of Denmark, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine and iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus C, Denmark
- Center for Genomics and Personalized Medicine, Central Region Denmark, Aarhus C, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Copenhagen, Denmark
- Mental Health Center Copenhagen, Capital Region of Denmark, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark
- Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Esben Agerbo
- iPSYCH, The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Copenhagen, Denmark
- NCRR, The National Center for Register-based research, Business and Social Sciences, Aarhus University, Aarhus C, Denmark
- CIRRAU-Center for Integrated Register-Based Research at Aarhus University, Aarhus C, Denmark
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | | | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Anders G Pedersen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Pimentel G, Burnand D, Münger LH, Pralong FP, Vionnet N, Portmann R, Vergères G. Identification of Milk and Cheese Intake Biomarkers in Healthy Adults Reveals High Interindividual Variability of Lewis System-Related Oligosaccharides. J Nutr 2020; 150:1058-1067. [PMID: 32133503 PMCID: PMC7198293 DOI: 10.1093/jn/nxaa029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The use of biomarkers of food intake (BFIs) in blood and urine has shown great promise for assessing dietary intake and complementing traditional dietary assessment tools whose use is prone to misreporting. OBJECTIVE Untargeted LC-MS metabolomics was applied to identify candidate BFIs for assessing the intake of milk and cheese and to explore the metabolic response to the ingestion of these foods. METHODS A randomized controlled crossover study was conducted in healthy adults [5 women, 6 men; age: 23.6 ± 5.0 y; BMI (kg/m2): 22.1 ± 1.7]. After a single isocaloric intake of milk (600 mL), cheese (100 g), or soy-based drink (600 mL), serum and urine samples were collected postprandially up to 6 h and after fasting after 24 h. Untargeted metabolomics was conducted using LC-MS. Discriminant metabolites were selected in serum by multivariate statistical analysis, and their mass distribution and postprandial kinetics were compared. RESULTS Serum metabolites discriminant for cheese intake had a significantly lower mass distribution than metabolites characterizing milk intake (P = 4.1 × 10-4). Candidate BFIs for milk or cheese included saccharides, a hydroxy acid, amino acids, amino acid derivatives, and dipeptides. Two serum oligosaccharides, blood group H disaccharide (BGH) and Lewis A trisaccharide (LeA), specifically reflected milk intake but with high interindividual variability. The 2 oligosaccharides showed related but opposing trends: subjects showing an increase in either oligosaccharide did not show any increase in the other oligosaccharide. This result was confirmed in urine. CONCLUSIONS New candidate BFIs for milk or cheese could be identified in healthy adults, most of which were related to protein metabolism. The increase in serum of LeA and BGH after cow-milk intake in adults calls for further investigations considering the beneficial health effects on newborns of such oligosaccharides in maternal milk. The trial is registered at clinicaltrials.gov as NCT02705560.
Collapse
Affiliation(s)
- Grégory Pimentel
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| | - David Burnand
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| | - Linda H Münger
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| | - François P Pralong
- Service of Endocrinology, Diabetes, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nathalie Vionnet
- Service of Endocrinology, Diabetes, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Reto Portmann
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| | - Guy Vergères
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| |
Collapse
|
20
|
Influence of histo blood group antigen expression on susceptibility to enteric viruses and vaccines. Curr Opin Infect Dis 2019; 32:445-452. [DOI: 10.1097/qco.0000000000000571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Pipek OA, Medgyes-Horváth A, Dobos L, Stéger J, Szalai-Gindl J, Visontai D, Kaas RS, Koopmans M, Hendriksen RS, Aarestrup FM, Csabai I. Worldwide human mitochondrial haplogroup distribution from urban sewage. Sci Rep 2019; 9:11624. [PMID: 31406241 PMCID: PMC6690936 DOI: 10.1038/s41598-019-48093-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/17/2019] [Indexed: 01/23/2023] Open
Abstract
Community level genetic information can be essential to direct health measures and study demographic tendencies but is subject to considerable ethical and legal challenges. These concerns become less pronounced when analyzing urban sewage samples, which are ab ovo anonymous by their pooled nature. We were able to detect traces of the human mitochondrial DNA (mtDNA) in urban sewage samples and to estimate the distribution of human mtDNA haplogroups. An expectation maximization approach was used to determine mtDNA haplogroup mixture proportions for samples collected at each different geographic location. Our results show reasonable agreement with both previous studies of ancient evolution or migration and current US census data; and are also readily reproducible and highly robust. Our approach presents a promising alternative for sample collection in studies focusing on the ethnic and genetic composition of populations or diseases associated with different mtDNA haplogroups and genotypes.
Collapse
Affiliation(s)
- Orsolya Anna Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány P. s. 1A, Budapest, 1117, Hungary
| | - Anna Medgyes-Horváth
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány P. s. 1A, Budapest, 1117, Hungary
| | - László Dobos
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány P. s. 1A, Budapest, 1117, Hungary.,Department of Computational Sciences, Wigner Research Centre for Physics of the HAS, Konkoly-Thege Miklós út 29-33., Budapest, 1121, Hungary
| | - József Stéger
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány P. s. 1A, Budapest, 1117, Hungary.,Department of Computational Sciences, Wigner Research Centre for Physics of the HAS, Konkoly-Thege Miklós út 29-33., Budapest, 1121, Hungary
| | - János Szalai-Gindl
- Department of Information Systems, ELTE Eötvös Loránd University, Pázmány P. s. 1C, Budapest, 1117, Hungary.,Department of Computational Sciences, Wigner Research Centre for Physics of the HAS, Konkoly-Thege Miklós út 29-33., Budapest, 1121, Hungary
| | - Dávid Visontai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány P. s. 1A, Budapest, 1117, Hungary.,Department of Computational Sciences, Wigner Research Centre for Physics of the HAS, Konkoly-Thege Miklós út 29-33., Budapest, 1121, Hungary
| | - Rolf S Kaas
- National Food Institute, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Marion Koopmans
- Viroscience department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány P. s. 1A, Budapest, 1117, Hungary. .,Department of Computational Sciences, Wigner Research Centre for Physics of the HAS, Konkoly-Thege Miklós út 29-33., Budapest, 1121, Hungary.
| |
Collapse
|
22
|
Frew JW. The Hygiene Hypothesis, Old Friends, and New Genes. Front Immunol 2019; 10:388. [PMID: 30894862 PMCID: PMC6414441 DOI: 10.3389/fimmu.2019.00388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
23
|
Middeldorp CM, Felix JF, Mahajan A, McCarthy MI. The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: design, results and future prospects. Eur J Epidemiol 2019; 34:279-300. [PMID: 30887376 PMCID: PMC6447695 DOI: 10.1007/s10654-019-00502-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/25/2019] [Indexed: 11/14/2022]
Abstract
The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
Collapse
Affiliation(s)
- Christel M Middeldorp
- Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia.
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia.
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
| |
Collapse
|
24
|
Barton SJ, Murray R, Lillycrop KA, Inskip HM, Harvey NC, Cooper C, Karnani N, Zolezzi IS, Sprenger N, Godfrey KM, Binia A. FUT2 Genetic Variants and Reported Respiratory and Gastrointestinal Illnesses During Infancy. J Infect Dis 2019; 219:836-843. [PMID: 30376117 PMCID: PMC6687504 DOI: 10.1093/infdis/jiy582] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fucosyltransferase 2 (FUT2) controls the production of digestive and respiratory epithelia of histo-blood group antigens involved in the attachment of pathogens. The aim of our study was to relate FUT2 variants to reported gastrointestinal and respiratory illnesses in infancy. METHODS In the Southampton Women's Survey, FUT2 genetic variants (single-nucleotide polymorphisms [SNPs] rs601338 and rs602662) were genotyped in 1831 infants and related to infant illnesses, after adjustment for sex, breastfeeding duration, and potential confounders. RESULTS For FUT2 SNP rs601338, the risk ratios for ≥1 bout of diarrhea during ages 6-12 months and ages 12-24 months per additional risk (G) allele were 1.23 (95% confidence interval [CI], 1.08-1.4; P = .002) and 1.41 (95% CI, 1.24-1.61; P = 1.7 × 10-7), respectively; the risk ratio for ≥1 diagnosis of a lower respiratory illness (ie, pneumonia or bronchiolitis) during ages 12-24 months per additional G allele was 2.66 (95% CI, 1.64-4.3; P = .00007). Similar associations were found between rs602662 and gastrointestinal and respiratory illnesses, owing to the high linkage disequilibrium with rs601338 (R2 = 0.92). Longer breastfeeding duration predicted a lower risk of diarrhea, independent of infant FUT2 genotype. CONCLUSIONS We confirmed that FUT2 G alleles are associated with a higher risk of infant gastrointestinal illnesses and identified novel associations with respiratory illnesses. FUT2 locus variants need consideration in future studies of gastrointestinal and respiratory illnesses among infants.
Collapse
Affiliation(s)
| | - Robert Murray
- Human Development and Health Academic Unit, University of Southampton, UK
| | - Karen A. Lillycrop
- Human Development and Health Academic Unit, University of Southampton, UK
- School of Biological Sciences, University of Southampton, Southampton General Hospital, UK SO16 6YD
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, UK
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
| | | | | | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- Human Development and Health Academic Unit, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, UK
| | - Aristea Binia
- Nestlé Research Center, Lausanne, Nestec S.A., Switzerland
| |
Collapse
|
25
|
Sanchez-Roige S, Palmer AA, Fontanillas P, Elson SL, The 23andMe Research Team, Substance Use Disorder Working Group of the Psychiatric Genomics
Consortium, Adams MJ, Howard DM, Edenberg HJ, Davies G, Crist RC, Deary IJ, McIntosh AM, Clarke TK. Genome-Wide Association Study Meta-Analysis of the Alcohol Use Disorders Identification Test (AUDIT) in Two Population-Based Cohorts. Am J Psychiatry 2019; 176:107-118. [PMID: 30336701 PMCID: PMC6365681 DOI: 10.1176/appi.ajp.2018.18040369] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Alcohol use disorders are common conditions that have enormous social and economic consequences. Genome-wide association analyses were performed to identify genetic variants associated with a proxy measure of alcohol consumption and alcohol misuse and to explore the shared genetic basis between these measures and other substance use, psychiatric, and behavioral traits. METHOD This study used quantitative measures from the Alcohol Use Disorders Identification Test (AUDIT) from two population-based cohorts of European ancestry (UK Biobank [N=121,604] and 23andMe [N=20,328]) and performed a genome-wide association study (GWAS) meta-analysis. Two additional GWAS analyses were performed, a GWAS for AUDIT scores on items 1-3, which focus on consumption (AUDIT-C), and for scores on items 4-10, which focus on the problematic consequences of drinking (AUDIT-P). RESULTS The GWAS meta-analysis of AUDIT total score identified 10 associated risk loci. Novel associations localized to genes including JCAD and SLC39A13; this study also replicated previously identified signals in the genes ADH1B, ADH1C, KLB, and GCKR. The dimensions of AUDIT showed positive genetic correlations with alcohol consumption (rg=0.76-0.92) and DSM-IV alcohol dependence (rg=0.33-0.63). AUDIT-P and AUDIT-C scores showed significantly different patterns of association across a number of traits, including psychiatric disorders. AUDIT-P score was significantly positively genetically correlated with schizophrenia (rg=0.22), major depressive disorder (rg=0.26), and attention deficit hyperactivity disorder (rg=0.23), whereas AUDIT-C score was significantly negatively genetically correlated with major depressive disorder (rg=-0.24) and ADHD (rg=-0.10). This study also used the AUDIT data in the UK Biobank to identify thresholds for dichotomizing AUDIT total score that optimize genetic correlations with DSM-IV alcohol dependence. Coding individuals with AUDIT total scores ≤4 as control subjects and those with scores ≥12 as case subjects produced a significant high genetic correlation with DSM-IV alcohol dependence (rg=0.82) while retaining most subjects. CONCLUSIONS AUDIT scores ascertained in population-based cohorts can be used to explore the genetic basis of both alcohol consumption and alcohol use disorders.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, 92093, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California
San Diego, La Jolla, CA, USA
| | - Pierre Fontanillas
- Collaborator List for the 23andMe Research Team: Michelle
Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson,
Pierre Fontanillas, Nicholas A. Furlotte, David A. Hinds, Karen E. Huber, Aaron
Kleinman, Nadia K. Litterman, Jennifer C. McCreight, Matthew H. McIntyre, Joanna L.
Mountain, Elizabeth S. Noblin, Carrie A.M. Northover, Steven J. Pitts, J. Fah
Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao
Tian, Joyce Y. Tung, Vladimir Vacic, and Catherine H. Wilson
| | - Sarah L. Elson
- Collaborator List for the 23andMe Research Team: Michelle
Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson,
Pierre Fontanillas, Nicholas A. Furlotte, David A. Hinds, Karen E. Huber, Aaron
Kleinman, Nadia K. Litterman, Jennifer C. McCreight, Matthew H. McIntyre, Joanna L.
Mountain, Elizabeth S. Noblin, Carrie A.M. Northover, Steven J. Pitts, J. Fah
Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao
Tian, Joyce Y. Tung, Vladimir Vacic, and Catherine H. Wilson
| | - The 23andMe Research Team
- Collaborator List for the 23andMe Research Team: Michelle
Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson,
Pierre Fontanillas, Nicholas A. Furlotte, David A. Hinds, Karen E. Huber, Aaron
Kleinman, Nadia K. Litterman, Jennifer C. McCreight, Matthew H. McIntyre, Joanna L.
Mountain, Elizabeth S. Noblin, Carrie A.M. Northover, Steven J. Pitts, J. Fah
Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao
Tian, Joyce Y. Tung, Vladimir Vacic, and Catherine H. Wilson
| | | | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh,
UK
| | - David M. Howard
- Division of Psychiatry, University of Edinburgh, Edinburgh,
UK
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, IN, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh,
Edinburgh, UK
| | - Richard C. Crist
- Translational Research Laboratories, Center for
Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania
Perelman School of Medicine, Philadelphia, PA, USA
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh,
Edinburgh, UK
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh,
UK
- Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh,
UK
| |
Collapse
|
26
|
Gómez-Rial J, Sánchez-Batán S, Rivero-Calle I, Pardo-Seco J, Martinón-Martínez JM, Salas A, Martinón-Torres F. Rotavirus infection beyond the gut. Infect Drug Resist 2018; 12:55-64. [PMID: 30636886 PMCID: PMC6307677 DOI: 10.2147/idr.s186404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The landscape of rotavirus (RV) infection has changed substantially in recent years. Autoimmune triggering has been added to clinical spectrum of this pathology, which is now known to be much broader than diarrhea. The impact of RV vaccines in these other conditions is becoming a growing field of research. The importance of host genetic background in RV susceptibility has been revealed, therefore increasing our understanding of vaccine effectiveness and giving some clues about the limited efficacy of RV vaccines in low-income settings. Also, interaction of RV with intestinal microbiota seems to play a key role in the process of infection vaccine effect. This article reviews current findings on the extraintestinal impact of RV infection and their widening clinical picture, and the recently described mechanisms of host susceptibility to infection and vaccine effectiveness. RV infection is a systemic disease with clinical and pathophysiological implications beyond the gut. We propose an “iceberg” model for this pathology with almost hidden clinical implications away from the gastrointestinal tract and eventually triggering the development of autoimmune diseases. Impact of current vaccines is being influenced by host genetics and gut microbiota interactions and these factors must be taken into account in the development of public health programs.
Collapse
Affiliation(s)
- José Gómez-Rial
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Laboratorio de Inmunología, Servicio de Análisis Clínicos, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
| | - Sonia Sánchez-Batán
- Laboratorio de Inmunología, Servicio de Análisis Clínicos, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
| | - Irene Rivero-Calle
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| | - Jacobo Pardo-Seco
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| | - José María Martinón-Martínez
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| | - Antonio Salas
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forense, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| |
Collapse
|
27
|
Azad MB, Wade KH, Timpson NJ. FUT2 secretor genotype and susceptibility to infections and chronic conditions in the ALSPAC cohort. Wellcome Open Res 2018; 3:65. [PMID: 30345375 PMCID: PMC6171556 DOI: 10.12688/wellcomeopenres.14636.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background: The FUT2 (fucosyltransferase-2) gene determines blood group secretor status. Being homozygous for the inactive "non-secretor" rs601338(A) allele confers resistance to certain infections (e.g. Norovirus, Rotavirus) and susceptibility to others (e.g. Haemophilus influenza, Streptococcus pneumonia). Non-secretors also have an increased risk of type 1 diabetes and inflammatory bowel disease. We examined FUT2 genotype, infections and chronic conditions in a population-based cohort. Methods: We studied 7,582 pregnant women from the ALSPAC pregnancy cohort. Infections (measles, mumps, chicken pox, whooping cough, meningitis, herpes, gonorrhea and urinary infections) and chronic conditions (kidney disease, hypertension, diabetes, rheumatism, arthritis, psoriasis, hay fever, asthma, eczema and allergies) were self-reported. FUT2 secretor status was determined from the rs601338 genotype. ABO blood type was obtained from clinical records. Results: Overall, 1920 women (25.3%) were homozygous for the non-secretor allele (AA). Secretor status was associated with mumps, with 68% of non-secretors experiencing this infection, compared to 48% of secretors (RR, 1.40; 95% CI, 1.34-1.46). A weaker association was observed for measles infection (76% vs. 72%; RR, 1.05; 95% CI, 1.02-1.09). Non-secretors also experienced an increased risk of kidney disease (5.4% vs. 3.9%; RR, 1.39; 95% CI, 1.11-1.75). Independent of secretor status, AB blood type was a risk factor for mumps (RR 1.15; 95%CI, 1.03, 1.28 compared to type O). We found no evidence of interaction between secretor status and blood type. For some conditions, including asthma and arthritis, FUT2 heterozygosity (GA) appeared to confer an intermediate phenotype. There was no strong evidence of association between secretor status and other infections or chronic conditions, although statistical power was limited for rare outcomes. Conclusion: Our results identify an association between FUT2 secretor status and self-reported kidney disease, and confirm a recently reported association with susceptibility to mumps infection. The clinical implications of these associations warrant further investigation.
Collapse
Affiliation(s)
- Meghan B. Azad
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children’s Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, R3E 3P4, Canada
| | - Kaitlin H. Wade
- Medical Research Council Integrative Epidemiology Unit, Avon Longitudinal Study of Parents and Children, Population Health Science, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Nicholas J. Timpson
- Medical Research Council Integrative Epidemiology Unit, Avon Longitudinal Study of Parents and Children, Population Health Science, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
28
|
Abstract
Norovirus is the commonest cause of gastrointestinal disease worldwide in. Infections with norovirus occur in all age groups, however, the highest incidence is in children aged less than five years. Surveillance of norovirus is complicated because most people do not contact medical services when they are ill. Nevertheless, Public health laboratory surveillance worldwide has demonstrated the dominance of GII.4 viruses in the population. Better epidemiological surveillance and outbreak investigations, coupled with wider implementation of molecular-based laboratory diagnostics are leading to better estimates of the burden of norovirus infections as well as improved outbreak control. Recent advances in cell culture systems for norovirus and current research investigating the distribution of norovirus-associated disease in the population, for whom the disease burden is greatest, understanding host susceptibility factors, and methodologies for ascertaining cases, are important in increasing our understanding of norovirus. The key to surveillance of norovirus is allying the epidemiology with surveillance of virology. With recent advances in laboratory culture systems for norovirus, next generation sequencing technologies, improved diagnostics and measuring phenotypic characteristics of noroviruses, there are new opportunities to advance understanding of this common and important human pathogen that will help design strategies for vaccine and antiviral development, and how these might be best deployed to control norovirus infection.
Collapse
Affiliation(s)
- David J Allen
- a Department of Pathogen Molecular Biology , Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine , London , UK.,c NIHR Heath Protection Research Unit in Gastrointestinal Infections , Liverpool , UK
| | - John P Harris
- b Institute of Psychology Health and Society, Faculty of Health and Life Science, University of Liverpool , Liverpool , UK.,c NIHR Heath Protection Research Unit in Gastrointestinal Infections , Liverpool , UK
| |
Collapse
|
29
|
Abstract
Malnutrition is a complex disorder, defined by an imbalance, excess, or deficiency of nutrient intake. The visible signs of malnutrition are stunted growth and wasting, but malnourished children are also more likely to have delays in neurocognitive development, vaccine failure, and susceptibility to infection. Despite malnutrition being a major global health problem, we do not yet understand the pathogenesis of this complex disorder. Although lack of food is a major contributor to childhood malnutrition, it is not the sole cause. The mother's prenatal nutritional status, enteric infections, and intestinal inflammation also contribute to the risk of childhood malnutrition and recovery. Here, we discuss another potential risk factor, host and maternal genetics, that may play a role in the risk of malnutrition via several biological pathways. Understanding the genetic risks of malnutrition may help to identify ideal targets for intervention and treatment of malnutrition.
Collapse
Affiliation(s)
- Priya Duggal
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 20215, USA;
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
30
|
Azad MB, Wade KH, Timpson NJ. FUT2 secretor genotype and susceptibility to infections and chronic conditions in the ALSPAC cohort. Wellcome Open Res 2018; 3:65. [PMID: 30345375 PMCID: PMC6171556 DOI: 10.12688/wellcomeopenres.14636.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 04/03/2024] Open
Abstract
Background: The FUT2 (fucosyltransferase 2) gene encodes alpha (1,2) fucosyltransferase, which determines blood group secretor status. Being homozygous for the inactive "non-secretor" rs601338(A) allele appears to confer resistance to certain infections (e.g. Norovirus, Rotavirus and Helicobacter pylori) and susceptibility to others (e.g. Haemophilus influenza and Streptococcus pneumonia). Non-secretors also have an increased risk of type 1 diabetes and inflammatory bowel disease. We aimed to determine the association of the FUT2 secretor genotype with infections and chronic conditions in the population-based Avon Longitudinal Study of Parents and Children (ALSPAC). Methods: This study included 7,582 pregnant women from the ALSPAC pregnancy cohort. Personal history of infections (measles, mumps, chicken pox, whooping cough, cold sores, meningitis, genital herpes, gonorrhea and urinary infections) and chronic conditions (kidney disease, hypertension, diabetes, rheumatism, arthritis, psoriasis, hay fever, asthma, eczema and various allergies) were self-reported by standardized questionnaire. FUT2 secretor status was determined from the rs601338 genotype. Results: Overall, 1920 women (25.3%) were homozygous for the FUT2 non-secretor allele (AA). Secretor status was associated with mumps, with 68% of non-secretors experiencing this infection, compared to 48% of secretors (RR, 1.40; 95% CI, 1.34-1.46; p<0.0001). A weaker association was observed for measles infection (76% vs. 72%; RR, 1.05; 95% CI, 1.02-1.09; p=0.0008). Non-secretors also experienced a 39% increased risk of kidney disease (5.4% vs. 3.9%; RR, 1.39; 95% CI, 1.11-1.75; p=0.004). For some conditions, including gonorrhea and arthritis, FUT2 heterozygosity (GA) appeared to confer an intermediate phenotype. There was no strong evidence of association between FUT2 secretor status and other infections or chronic conditions, although statistical power was limited for rare outcomes. Conclusion: Our results identify an association between FUT2 secretor status and kidney disease, and confirm a recently reported association with susceptibility to mumps infection. The clinical implications of these associations warrant further investigation.
Collapse
Affiliation(s)
- Meghan B. Azad
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children’s Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, R3E 3P4, Canada
| | - Kaitlin H. Wade
- Medical Research Council Integrative Epidemiology Unit, Avon Longitudinal Study of Parents and Children, Population Health Science, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Nicholas J. Timpson
- Medical Research Council Integrative Epidemiology Unit, Avon Longitudinal Study of Parents and Children, Population Health Science, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
31
|
Wegener H, Mallagaray Á, Schöne T, Peters T, Lockhauserbäumer J, Yan H, Uetrecht C, Hansman GS, Taube S. Human norovirus GII.4(MI001) P dimer binds fucosylated and sialylated carbohydrates. Glycobiology 2018; 27:1027-1037. [PMID: 28973640 DOI: 10.1093/glycob/cwx078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022] Open
Abstract
Human noroviruses (HuNoV), members of the family Caliciviridae, are the major cause of acute viral gastroenteritis worldwide. Successful infection is linked to the ability of the protruding (P) domain of the viral capsid to bind histo-blood group antigens (HBGA). Binding to gangliosides plays a major role for many nonhuman calici- and noroviruses. Increasing evidence points to a broader role of sialylated carbohydrates such as gangliosides in norovirus infection. Here, we compare HBGA and ganglioside binding of a GII.4 HuNoV variant (MI001), previously shown to be infectious in a HuNoV mouse model. Saturation transfer difference nuclear magnetic resonance spectroscopy, native mass spectrometry (MS) and surface plasmon resonance spectroscopy were used to characterize binding epitopes, affinities, stoichiometry and dynamics, focusing on 3'-sialyllactose, the GM3 ganglioside saccharide and B antigen. Binding was observed for 3'-sialyllactose and various HBGAs following a multistep binding process. Intrinsic affinities (Kd) of fucose, 3'-sialyllactose and B antigen were determined for the individual binding steps. Stronger affinities were observed for B antigen over 3'-sialyllactose and fucose, which bound in the mM range. Binding stoichiometry was analyzed by native MS showing the presence of four B antigens or two 3'-sialyllactose in the complex. Epitope mapping of 3'-sialyllactose revealed direct interaction of α2,3-linked sialic acid with the P domain. The ability of HuNoV to engage multiple carbohydrates emphasizes the multivalent nature of norovirus glycan-specificity. Our findings reveal direct binding of a GII.4 HuNoV P dimer to α2,3-linked sialic acid and support a broader role of ganglioside binding in norovirus infection.
Collapse
Affiliation(s)
- Henrik Wegener
- University of Lübeck, Institute of Virology and Cell Biology,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Álvaro Mallagaray
- University of Lübeck, Institute of Chemistry,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Schöne
- University of Lübeck, Institute of Chemistry,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Thomas Peters
- University of Lübeck, Institute of Chemistry,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Julia Lockhauserbäumer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology,Martinistrasse 52, 20251 Hamburg, Germany
| | - Hao Yan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology,Martinistrasse 52, 20251 Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Grant S Hansman
- German Cancer Research Center (DKFZ), CHS Foundation at the University of Heidelberg, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Stefan Taube
- University of Lübeck, Institute of Virology and Cell Biology,Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
32
|
Dolley S. Big Data's Role in Precision Public Health. Front Public Health 2018; 6:68. [PMID: 29594091 PMCID: PMC5859342 DOI: 10.3389/fpubh.2018.00068] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/20/2018] [Indexed: 01/01/2023] Open
Abstract
Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous subpopulations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts.
Collapse
|
33
|
Mozzi A, Pontremoli C, Sironi M. Genetic susceptibility to infectious diseases: Current status and future perspectives from genome-wide approaches. INFECTION GENETICS AND EVOLUTION 2017; 66:286-307. [PMID: 28951201 PMCID: PMC7106304 DOI: 10.1016/j.meegid.2017.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied to identify genetic factors that affect complex diseases or traits. Presently, the GWAS Catalog includes > 2800 human studies. Of these, only a minority have investigated the susceptibility to infectious diseases or the response to therapies for the treatment or prevention of infections. Despite their limited application in the field, GWASs have provided valuable insights by pinpointing associations to both innate and adaptive immune response loci, as well as novel unexpected risk factors for infection susceptibility. Herein, we discuss some issues and caveats of GWASs for infectious diseases, we review the most recent findings ensuing from these studies, and we provide a brief summary of selected GWASs for infections in non-human mammals. We conclude that, although the general trend in the field of complex traits is to shift from GWAS to next-generation sequencing, important knowledge on infectious disease-related traits can be still gained by GWASs, especially for those conditions that have never been investigated using this approach. We suggest that future studies will benefit from the leveraging of information from the host's and pathogen's genomes, as well as from the exploration of models that incorporate heterogeneity across populations and phenotypes. Interactions within HLA genes or among HLA variants and polymorphisms located outside the major histocompatibility complex may also play an important role in shaping the susceptibility and response to invading pathogens. Relatively few GWASs for infectious diseases were performed. Phenotype heterogeneity and case/control misclassification can affect GWAS power. Adaptive and innate immunity loci were identified in several infectious disease GWASs. Unexpected loci (e.g., lncRNAs) were also associated with infection susceptibility. GWASs should integrate host and pathogen diversity and use complex association models.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy.
| |
Collapse
|
34
|
Abstract
Noroviruses are the leading cause of acute gastroenteritis around the world. An individual living in the United States is estimated to develop norovirus infection five times in his or her lifetime. Despite this, there is currently no antiviral or vaccine to combat the infection, in large part because of the historical lack of cell culture and small animal models. However, the last few years of norovirus research were marked by a number of ground-breaking advances that have overcome technical barriers and uncovered novel aspects of norovirus biology. Foremost among them was the development of two different
in vitro culture systems for human noroviruses. Underappreciated was the notion that noroviruses infect cells of the immune system as well as epithelial cells within the gastrointestinal tract and that human norovirus infection of enterocytes requires or is promoted by the presence of bile acids. Furthermore, two proteinaceous receptors are now recognized for murine norovirus, marking the first discovery of a functional receptor for any norovirus. Recent work further points to a role for certain bacteria, including those found in the gut microbiome, as potential modulators of norovirus infection in the host, emphasizing the importance of interactions with organisms from other kingdoms of life for viral pathogenesis. Lastly, we will highlight the adaptation of drop-based microfluidics to norovirus research, as this technology has the potential to reveal novel insights into virus evolution. This review aims to summarize these new findings while also including possible future directions.
Collapse
Affiliation(s)
- Eric Bartnicki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Juliana Bragazzi Cunha
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|