1
|
Zielen AC, Peters KA, Shetty G, Gross DA, Hanna CB, Dovey SL, Wecht A, Cannon GM, Meistrich ML, Hsieh M, Hwang K, Orwig KE. Ultrasound-Guided Rete Testis Approach to Sperm Aspiration and Spermatogonial Stem Cell Transplantation in Patients with Azoospermia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.25.25324518. [PMID: 40365444 PMCID: PMC12071507 DOI: 10.1101/2025.03.25.25324518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Background Azoospermia, characterized by the absence of sperm in the ejaculate, impacts 1% of men globally. Surgical approaches to retrieve sperm from the testis are effective in some cases but can be invasive and expensive. Here we described a noninvasive ultrasound-guided rete testis (UGRT) approach to retrieve sperm from the testes or infuse stem cells into the testes of men with azoospermia. Methods Ultrasound was used to guide insertion of a 25-gauge hypodermic needle through the base of the scrotum and into the rete testis space that is contiguous with all seminiferous tubules. Medium was infused into the rete testis and aspirated to retrieve sperm from monkeys and men (NCT03291522) with azoospermia. A peripubertal patient with osteosarcoma of the femur cryopreserved a testicular cell suspension to safeguard his future fertility (NCT02972801). He returned as a young adult (21-25 yo) survivor for autologous transplantation of his cryopreserved testicular cells, including spermatogonial stem cells, using the UGRT approach (NCT04452305). Findings Sperm were successfully aspirated from four of six monkeys with radiation-induced azoospermia and three of three patients with obstructive azoospermia, demonstrating proficiency with the UGRT approach. Sperm were not recovered from the testes of seven patients with nonobstructive azoospermia. Semen analysis confirmed that the adult survivor of childhood cancer was azoospermic. His cryopreserved testis cells were transplanted back into one testis, with no adverse effects. After transplantation, the testicular parenchyma had a normal homogeneous appearance. Testosterone, Follicle Stimulating Hormone, and Luteinizing Hormone levels were normal. Inhibin B levels were low. The patient remains azoospermic one year after transplantation. Interpretation We describe a platform for proficiency training in UGRT flushing, aspiration, or injection. This provides a noninvasive option for sperm retrieval and infusing stem cells or other therapeutics into the testis. Funding The Eunice Kennedy Shriver National Institute for Child Health and Human Development HD100197 and the UPMC Magee Center for Reproduction and Transplantation.
Collapse
Affiliation(s)
- Amanda Colvin Zielen
- UPMC Magee Center for Reproduction and Transplantation, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Karen A. Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Deborah A. Gross
- UPMC Magee Center for Reproduction and Transplantation, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carol B. Hanna
- Assisted Reproductive Technology Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Serena L. Dovey
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anna Wecht
- Department of Urology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Glenn M. Cannon
- Department of Urology, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Marvin L. Meistrich
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Michael Hsieh
- Children’s National Hospital, George Washington University, Washington, DC, USA
| | - Kathleen Hwang
- Department of Urology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Kyle E. Orwig
- UPMC Magee Center for Reproduction and Transplantation, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Jung H, Yoon M. Transplantation of spermatogonial stem cells in stallions. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:635-644. [PMID: 39165739 PMCID: PMC11331362 DOI: 10.5187/jast.2024.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 08/22/2024]
Abstract
Spermatogonial stem cells originate from gonocytes and undergo self-renewal and differentiation to generate mature spermatozoa via spermatogenesis in the seminiferous tubules of the testis in male mammals. Owing to the unique capacity of these cells, the spermatogonial stem cell transplantation technique, which enables the restoration of male fertility by transfer of germlines between donor and recipient males, has been developed. Thus, spermatogonial stem cell transplantation can be used as an important next-generation reproductive and breeding tool in livestock production. However, in large animals, this approach is associated with many technical limitations and inefficiency. Furthermore, research regrading spermatogonial stem cell transplantation in stallions is limited. Therefore, this review article describes the history and current knowledge regarding spermatogonial stem cell transplantation in animals and challenges in establishing an experimental protocol for successful spermatogonial stem cell transplantation in stallions, which have been presented under the following heads: spermatogonial stem cell isolation, recipient preparation, and spermatogonial stem cell transplantation. Additionally, we suggest that further investigation based on previous unequivocal evidence regarding donor-derived spermatogenesis in large animals must be conducted. A detailed and better understanding of the physical and physiological aspects is required to discuss the current status of this technique field and develop future directions for the establishment of spermatogonial stem cell transplantation in stallions.
Collapse
Affiliation(s)
- Heejun Jung
- Research Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
| | - Minjung Yoon
- Research Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
4
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
5
|
Abstract
Patient survival following childhood cancer has increased with contemporary radiation and chemotherapy techniques. However, gonadotoxicity associated with treatments means that infertility is a common consequence in survivors. Novel fertility preservation options are emerging, but knowledge about these options amongst urologists and other medical professionals is lacking. Pre-pubertal boys generally do not produce haploid germ cells. Thus, strategies for fertility preservation require cryopreservation of tissue containing spermatogonial stem cells (SSCs). Few centres worldwide routinely offer this option and fertility restoration (including testicular tissue engraftment, autotransplantation of SSCs and in vitro maturation of SSCs to spermatozoa) post-thaw is experimental. In pubertal boys, the main option for fertility preservation is masturbation and cryopreservation of the ejaculate. Assisted ejaculation using penile vibratory stimulation or electroejaculation and surgical sperm retrieval can be used in a sequential manner after failed masturbation. Physicians should inform boys and parents about the gonadotoxic effects of cancer treatment and offer fertility preservation. Preclinical experience has identified challenges in pre-pubertal fertility preservation, but available options are expected to be successful when today's pre-pubertal boys with cancer become adults. By contrast, fertility preservation in pubertal boys is clinically proven and should be offered to all patients undergoing cancer treatment.
Collapse
|
6
|
Eugeni E, Arato I, Del Sordo R, Sidoni A, Garolla A, Ferlin A, Calafiore R, Brancorsini S, Mancuso F, Luca G. Fertility Preservation and Restoration Options for Pre-Pubertal Male Cancer Patients: Current Approaches. Front Endocrinol (Lausanne) 2022; 13:877537. [PMID: 35784573 PMCID: PMC9244702 DOI: 10.3389/fendo.2022.877537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Fertility preservation for prepubertal male patients undergoing gonadotoxic therapies, potentially depleting spermatogonial cells, is an expanding necessity, yet most of the feasible options are still in the experimental phase. We present our experience and a summary of current and novel possibilities regarding the different strategies to protect or restore fertility in young male patients, before proceeding with chemotherapy or radiotherapy for malignances or other diseases. Adult oncological patients should always be counselled to cryopreserve the semen before starting treatment, however this approach is not suitable for prepubertal boys, who aren't capable to produce sperm yet. Fortunately, since the survival rate of pediatric cancer patients has skyrocketed in the last decade and it's over 84%, safeguarding their future fertility is becoming a major concern for reproductive medicine. Surgical and medical approaches to personalize treatment or protect the gonads could be a valid first step to take. Testicular tissue autologous grafting or xenografting, and spermatogonial stem cells (SSCs) transplantation, are the main experimental options available, but spermatogenesis in vitro is becoming an intriguing alternative. All of these methods feature both strong and weak prospects. There is also relevant controversy regarding the type of testicular material to preserve and the cryopreservation methods. Since transplanted cells are bound to survive based on SSCs number, many ways to enrich their population in cultures have been proposed, as well as different sites of injection inside the testis. Testicular tissue graft has been experimented on mice, rabbits, rhesus macaques and porcine, allowing the birth of live offspring after performing intracytoplasmic sperm injection (ICSI), however it has never been performed on human males yet. In vitro spermatogenesis remains a mirage, although many steps in the right direction have been performed. The manufacturing of 3D scaffolds and artificial spermatogenetic niche, providing support to stem cells in cultures, seems like the best way to further advance in this field.
Collapse
Affiliation(s)
- Elena Eugeni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Department of Medicine and Medical Specialties, Division of Medical Andrology and Endocrinology of Reproduction, University of Terni, Terni, Italy
- *Correspondence: Elena Eugeni,
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Del Sordo
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, School of Medicine and Surgery, University of Padua, Padua, Italy
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, School of Medicine and Surgery, University of Padua, Padua, Italy
| | - Riccardo Calafiore
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Brancorsini
- Section of Pathology (Terni), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Department of Medicine and Medical Specialties, Division of Medical Andrology and Endocrinology of Reproduction, University of Terni, Terni, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Jung H, Yoon M. Germ Cell Transplantation in Stallion Testes. J Equine Vet Sci 2021; 106:103748. [PMID: 34670702 DOI: 10.1016/j.jevs.2021.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The production of donor-derived sperm using spermatogonial stem cell transplantation has been studied in various animals including mice, rats, goats, boar, dogs, sheep, and monkeys. However, germ cell transplantation has not been applied in stallions. The objective of this study was to produce donor germ cell-derived sperm using germ cell transplantation in stallions. Donor germ cells were transplanted into the parenchyma of 3 recipient stallions that had been treated with busulfan IV injections of 15 mg/kg body weight. For the preparation of donor single germ cells, tissue (20 g) from each testis was subjected to a 2-enzyme digestion procedure. Donor testicular germ cells in minimum essential medium α supplemented with 10% fetal bovine serum were transplanted in the testis of recipient stallions at a rate of 2 ml/min. The semen of each recipient stallion was collected using an artificial vagina at 8 weeks after germ cell transplantation. General sperm evaluation and libido tests were performed. Microsatellite fingerprinting with 17 markers was performed to identify the presence of donor-derived sperm in the semen of the recipient stallions. Sperm were observed to have total and progressive motility exceeding 50% throughout the experimental period. The libido of the recipient stallions was unchanged. No donor-derived sperm could be detected in the semen of the recipient stallions by genotyping. In conclusion, the transplantation of donor germ cells into the testicular parenchyma of stallions was not an optimal transplantation technique for producing donor-derived sperm.
Collapse
Affiliation(s)
- Heejun Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea; Department of Horse, Companion and Wild Animal Science, Kyungpook National University, Sangju, Republic of Korea.
| |
Collapse
|
8
|
Jundziłł A, Klimczak A, Sonmez E, Brzezicki G, Siemionow M. The Positive Impact of Donor Bone Marrow Cells Transplantation into Immunoprivileged Compartments on the Survival of Vascularized Skin Allografts. Arch Immunol Ther Exp (Warsz) 2021; 69:28. [PMID: 34633538 PMCID: PMC8505373 DOI: 10.1007/s00005-021-00631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Using the vascularized skin allograft (VSA) model, we compared the tolerogenic effects of different allogeneic bone marrow transplantation (BMT) delivery routes into immunoprivileged compartments under a 7-day protocol immunosuppressive therapy. Twenty-eight fully MHC mismatched VSA transplants were performed between ACI (RT1a) donors and Lewis (RT11) recipients in four groups of seven animals each, under a 7-day protocol of alfa/beta TCRmAb/CsA (alpha/beta-TCR monoclonal antibodies/Cyclosporine A therapy). Donor bone marrow cells (BMC) (100 × 106 cells) were injected into three different immunoprivileged compartments: Group 1: Control, without cellular supportive therapy, Group 2: Intracapsular BMT, Group 3: Intragonadal BMT, Group 4: Intrathecal BMT. In Group 2, BMC were transplanted under the kidney capsule. In Group 3, BMC were transplanted into the right testis between tunica albuginea and seminiferous tubules, and in Group 4, cells were injected intrathecally. The assessment included: skin evaluation for signs and grade of rejection and immunohistochemistry for donor cells engraftment into host lymphoid compartments. Donor-specific chimerism for MHC class I (RT1a) antigens and the presence of CD4+/CD25+ T cells were assessed in the peripheral blood of recipients. The most extended allograft survival, 50–78 days, was observed in Group 4 after intrathecal BMT. The T cells CD4+/CD25+ in the peripheral blood were higher after intrathecal BMC injection than other experimental groups at each post-transplant time point. Transplantation of BMC into immunoprivileged compartments delayed rejection of fully mismatched VSA and induction of robust, donor-specific chimerism.
Collapse
Affiliation(s)
- Arkadiusz Jundziłł
- Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier Medical College, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.,Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Erhan Sonmez
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA.,Katip Çelebi Üniversity, Atatürk Training Hospital, Plastic and Reconstructive Surgery Clinic, İzmir, Turkey
| | - Grzegorz Brzezicki
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Maria Siemionow
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA. .,Department of Orthopaedics, The University of Illinois at Chicago, Chicago, IL, USA. .,Department of Surgery, University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
9
|
de Oliveira SA, Cerri PS, Sasso-Cerri E. Impaired macrophages and failure of steroidogenesis and spermatogenesis in rat testes with cytokines deficiency induced by diacerein. Histochem Cell Biol 2021; 156:561-581. [PMID: 34515835 PMCID: PMC8436873 DOI: 10.1007/s00418-021-02023-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/13/2022]
Abstract
The role of cytokines in testicular function under normal conditions has not been completely understood. Here, we evaluated testicular macrophages (TM), steroidogenesis by Leydig cells (LC) and seminiferous tubules integrity in cytokines-deficient rat testes induced by diacerein, an anti-inflammatory drug that inhibits interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-α). Male rats received daily 100 mg/kg of diacerein (DIAG; n = 8) or saline (CG; n = 8) for 30 days. Serum testosterone (T) levels were measured and the seminiferous tubule (ST) area, epithelial area (EA), frequency of damaged ST and number of Sertoli cells (SC) were evaluated. TUNEL method and immunoreactions for detection of pro-IL-1β, TNF-α, steroidogenic acute regulatory protein (StAR), 17β-hydroxysteroid dehydrogenase (17β-HSD), androgen receptor (AR) and scavenger receptor for hemoglobin-haptoglobin complexes (CD163), a TM marker, were performed. Testicular AR, 17β-HSD and IL-1β levels were detected by Western blot. Data were submitted to Student t test (p ≤ 0.05). In DIAG, T and testicular AR, 17β-HSD and IL-1β levels decreased significantly (p < 0.05). The number of TUNEL-positive interstitial cells increased and LC showed weak StAR, 17β-HSD and AR immunoexpression in association with reduced IL-1β immunoexpression and number of CD163-positive TM in the interstitial tissue from diacerein-treated rats. Numerous damaged ST were found in DIAG, and reduction in the EA were associated with germ cells death. Moreover, the number of SC reduced and weak AR and TNF-α immunoexpression was observed in SC and germ cells, respectively. The cytokines deficiency induced by diacerein impairs TM, LC and spermatogenesis, and points to a role of IL-1β in steroidogenesis under normal conditions. In the ST, the weak AR and TNF-α immunoexpression in SC and germ cells, respectively, reinforces the idea that TNF-α plays a role in the SC androgenic control.
Collapse
Affiliation(s)
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School - São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP, CEP: 14801-903, Brazil
| | - Estela Sasso-Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School - São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP, CEP: 14801-903, Brazil.
| |
Collapse
|
10
|
Spermatogonial Stem Cell Transplantation in Large Animals. Animals (Basel) 2021; 11:ani11040918. [PMID: 33805058 PMCID: PMC8064064 DOI: 10.3390/ani11040918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The spermatogonial stem cell (SSC) is the only adult stem cell in males to transmit genetic information to offspring. SSC transplantation (SSCT) is a laboratory technique to regenerate spermatogenesis in recipient males, thus can be used as a novel breeding tool to benefit animal production. Although successful SSCT in rodent models has been established, progress in realizing SSCT in large animals has been limited. Here we discuss what we learned in this area from past experiments and highlight possible directions in developing effective SSCT protocol in large animals. Abstract Spermatogonial stem cell transplantation (SSCT) can restore male fertility through transfer of germline between donor and recipient males. From an agricultural perspective, SSCT could be an important next-generation reproductive and breeding tool in livestock production. Current SSCT approaches in large animals remain inefficient and many technical details need further investigation. This paper reviews the current knowledge on SSCT in large animals, addressing (1) donor spermatogonial stem cell (SSC) preparation, (2) recipient male treatment, and (3) SSC injection, homing, and detection. The major studies showing unequivocal evidence of donor SSC-derived spermatogenesis in large animals (mainly in livestock for breeding purpose) are summarized to discuss the current status of the field and future directions.
Collapse
|
11
|
Intratesticular injection of busulfan for producing recipient male pigs for spermatogonial stem cell transplantation. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Wyns C, Kanbar M, Giudice MG, Poels J. Fertility preservation for prepubertal boys: lessons learned from the past and update on remaining challenges towards clinical translation. Hum Reprod Update 2020; 27:433-459. [PMID: 33326572 DOI: 10.1093/humupd/dmaa050] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Childhood cancer incidence and survivorship are both on the rise. However, many lifesaving treatments threaten the prepubertal testis. Cryopreservation of immature testicular tissue (ITT), containing spermatogonial stem cells (SSCs), as a fertility preservation (FP) option for this population is increasingly proposed worldwide. Recent achievements notably the birth of non-human primate (NHP) progeny using sperm developed in frozen-thawed ITT autografts has given proof of principle of the reproductive potential of banked ITT. Outlining the current state of the art on FP for prepubertal boys is crucial as some of the boys who have cryopreserved ITT since the early 2000s are now in their reproductive age and are already seeking answers with regards to their fertility. OBJECTIVE AND RATIONALE In the light of past decade achievements and observations, this review aims to provide insight into relevant questions for clinicians involved in FP programmes. Have the indications for FP for prepubertal boys changed over time? What is key for patient counselling and ITT sampling based on the latest achievements in animals and research performed with human ITT? How far are we from clinical application of methods to restore reproductive capacity with cryostored ITT? SEARCH METHODS An extensive search for articles published in English or French since January 2010 to June 2020 using keywords relevant to the topic of FP for prepubertal boys was made in the MEDLINE database through PubMed. Original articles on fertility preservation with emphasis on those involving prepubertal testicular tissue, as well as comprehensive and systematic reviews were included. Papers with redundancy of information or with an absence of a relevant link for future clinical application were excluded. Papers on alternative sources of stem cells besides SSCs were excluded. OUTCOMES Preliminary follow-up data indicate that around 27% of boys who have undergone testicular sampling as an FP measure have proved azoospermic and must therefore solely rely on their cryostored ITT to ensure biologic parenthood. Auto-transplantation of ITT appears to be the first technique that could enter pilot clinical trials but should be restricted to tissue free of malignant cells. While in vitro spermatogenesis circumvents the risk linked to cancer cell contamination and has led to offspring in mice, complete spermatogenesis has not been achieved with human ITT. However, generation of haploid germ cells paves the way to further studies aimed at completing the final maturation of germ cells and increasing the efficiency of the processes. WIDER IMPLICATIONS Despite all the research done to date, FP for prepubertal boys remains a relatively young field and is often challenging to healthcare providers, patients and parents. As cryopreservation of ITT is now likely to expand further, it is important not only to acknowledge some of the research questions raised on the topic, e.g. the epigenetic and genetic integrity of gametes derived from strategies to restore fertility with banked ITT but also to provide healthcare professionals worldwide with updated knowledge to launch proper multicollaborative care pathways in the field and address clinical issues that will come-up when aiming for the child's best interest.
Collapse
Affiliation(s)
- Christine Wyns
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Maria Grazia Giudice
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jonathan Poels
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
13
|
Gul M, Hildorf S, Dong L, Thorup J, Hoffmann ER, Jensen CFS, Sønksen J, Cortes D, Fedder J, Andersen CY, Goossens E. Review of injection techniques for spermatogonial stem cell transplantation. Hum Reprod Update 2020; 26:368-391. [PMID: 32163572 DOI: 10.1093/humupd/dmaa003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the prognosis of childhood cancer survivors has increased dramatically during recent years, chemotherapy and radiation treatments for cancer and other conditions may lead to permanent infertility in prepubertal boys. Recent developments have shown that spermatogonial stem cell (SSC) transplantation may be a hope for restoring fertility in adult survivors of childhood cancers. For this reason, several centres around the world are collecting and cryopreserving testicular tissue or cells anticipating that, in the near future, some patients will return for SSC transplantation. This review summarizes the current knowledge and utility of SSC transplantation techniques. OBJECTIVE AND RATIONALE The aim of this narrative review is to provide an overview of the currently used experimental injection techniques for SSC transplantation in animal and human testes. This is crucial in understanding and determining the role of the different techniques necessary for successful transplantation. SEARCH METHODS A comprehensive review of peer-reviewed publications on this topic was performed using the PubMed and Google Scholar databases. The search was limited to English language work and studies between 1994 (from the first study on SSC transplantation) and April 2019. Key search terms included mouse, rat, boar, ram, dog, sheep, goat, cattle, monkey, human, cadaver, testes, SSC transplantation, injection and technique. OUTCOMES This review provides an extensive clinical overview of the current research in the field of human SSC transplantation. Rete testis injection with ultrasonography guidance currently seems the most promising injection technique thus far; however, the ability to draw clear conclusions is limited due to long ischemia time of cadaver testis, the relatively decreased volume of the testis, the diminishing size of seminiferous tubules, a lack of intratesticular pressure and leakage into the interstitium during the injection on human cadaver testis. Current evidence does not support improved outcomes from multiple infusions through the rete testes. Overall, further optimization is required to increase the efficiency and safety of the infusion method. WIDER IMPLICATIONS Identifying a favourable injection method for SSC transplantation will provide insight into the mechanisms of successful assisted human reproduction. Future research could focus on reducing leakage and establishing the optimal infusion cell concentrations and pressure.
Collapse
Affiliation(s)
- Murat Gul
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Urology, Selcuk University School of Medicine, 42250 Konya, Turkey
| | - Simone Hildorf
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jorgen Thorup
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens Sønksen
- Department of Urology, Herlev and Gentofte University Hospital, 2930 Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Pediatrics, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, 5000 Odense, Denmark.,Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
14
|
Goossens E, Jahnukainen K, Mitchell RT, van Pelt A, Pennings G, Rives N, Poels J, Wyns C, Lane S, Rodriguez-Wallberg KA, Rives A, Valli-Pulaski H, Steimer S, Kliesch S, Braye A, Andres MM, Medrano J, Ramos L, Kristensen SG, Andersen CY, Bjarnason R, Orwig KE, Neuhaus N, Stukenborg JB. Fertility preservation in boys: recent developments and new insights †. Hum Reprod Open 2020; 2020:hoaa016. [PMID: 32529047 PMCID: PMC7275639 DOI: 10.1093/hropen/hoaa016] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Infertility is an important side effect of treatments used for cancer and other non-malignant conditions in males. This may be due to the loss of spermatogonial stem cells (SSCs) and/or altered functionality of testicular somatic cells (e.g. Sertoli cells, Leydig cells). Whereas sperm cryopreservation is the first-line procedure to preserve fertility in post-pubertal males, this option does not exist for prepubertal boys. For patients unable to produce sperm and at high risk of losing their fertility, testicular tissue freezing is now proposed as an alternative experimental option to safeguard their fertility. OBJECTIVE AND RATIONALE With this review, we aim to provide an update on clinical practices and experimental methods, as well as to describe patient management inclusion strategies used to preserve and restore the fertility of prepubertal boys at high risk of fertility loss. SEARCH METHODS Based on the expertise of the participating centres and a literature search of the progress in clinical practices, patient management strategies and experimental methods used to preserve and restore the fertility of prepubertal boys at high risk of fertility loss were identified. In addition, a survey was conducted amongst European and North American centres/networks that have published papers on their testicular tissue banking activity. OUTCOMES Since the first publication on murine SSC transplantation in 1994, remarkable progress has been made towards clinical application: cryopreservation protocols for testicular tissue have been developed in animal models and are now offered to patients in clinics as a still experimental procedure. Transplantation methods have been adapted for human testis, and the efficiency and safety of the technique are being evaluated in mouse and primate models. However, important practical, medical and ethical issues must be resolved before fertility restoration can be applied in the clinic.Since the previous survey conducted in 2012, the implementation of testicular tissue cryopreservation as a means to preserve the fertility of prepubertal boys has increased. Data have been collected from 24 co-ordinating centres worldwide, which are actively offering testis tissue cryobanking to safeguard the future fertility of boys. More than 1033 young patients (age range 3 months to 18 years) have already undergone testicular tissue retrieval and storage for fertility preservation. LIMITATIONS REASONS FOR CAUTION The review does not include the data of all reproductive centres worldwide. Other centres might be offering testicular tissue cryopreservation. Therefore, the numbers might be not representative for the entire field in reproductive medicine and biology worldwide. The key ethical issue regarding fertility preservation in prepubertal boys remains the experimental nature of the intervention. WIDER IMPLICATIONS The revised procedures can be implemented by the multi-disciplinary teams offering and/or developing treatment strategies to preserve the fertility of prepubertal boys who have a high risk of fertility loss. STUDY FUNDING/COMPETING INTERESTS The work was funded by ESHRE. None of the authors has a conflict of interest.
Collapse
Affiliation(s)
- E Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - K Jahnukainen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden.,Division of Haematology-Oncology and Stem Cell Transplantation, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - R T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh; and the Edinburgh Royal Hospital for Sick Children, Edinburgh, UK
| | - Amm van Pelt
- Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction and Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - G Pennings
- Bioethics Institute Ghent, Ghent University, 9000 Ghent, Belgium
| | - N Rives
- Normandie Univ, UNIROUEN, EA 4308 "Gametogenesis and Gamete Quality", Rouen University Hospital, Biology of Reproduction-CECOS Laboratory, F 76000, Rouen, France
| | - J Poels
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - C Wyns
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - S Lane
- Department of Paediatric Oncology and Haematology, Children's Hospital Oxford, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - K A Rodriguez-Wallberg
- Department of Oncology Pathology, Karolinska Institutet, Solna, Sweden.,Section of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| | - A Rives
- Normandie Univ, UNIROUEN, EA 4308 "Gametogenesis and Gamete Quality", Rouen University Hospital, Biology of Reproduction-CECOS Laboratory, F 76000, Rouen, France
| | - H Valli-Pulaski
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - S Steimer
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - S Kliesch
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - A Braye
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - M M Andres
- Reproductive Medicine Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - J Medrano
- Reproductive Medicine Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - L Ramos
- Departement of Obstetrics and Gynacology, Division Reproductive Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S G Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Denmark
| | - C Y Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Denmark
| | - R Bjarnason
- Children's Medical Center, Landspítali University Hospital, Reykjavik, Iceland and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - K E Orwig
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - N Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - J B Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
15
|
Abstract
Infertility caused by chemotherapy or radiation treatments negatively impacts patient-survivor quality of life. The only fertility preservation option available to prepubertal boys who are not making sperm is cryopreservation of testicular tissues that contain spermatogonial stem cells (SSCs) with potential to produce sperm and/or restore fertility. SSC transplantation to regenerate spermatogenesis in infertile adult survivors of childhood cancers is a mature technology. However, the number of SSCs obtained in a biopsy of a prepubertal testis may be small. Therefore, methods to expand SSC numbers in culture before transplantation are needed. Here we review progress with human SSC culture.
Collapse
Affiliation(s)
- Sherin David
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
16
|
Kim BJ, Kim YH, Oh MG, Kim KJ, Jung SE, Jin JH, Kim SU, Min KS, Ryu BY. Direct modification of spermatogonial stem cells using lentivirus vectors in vivo leads to efficient generation of transgenic rats. Asian J Androl 2020; 21:190-195. [PMID: 30319135 PMCID: PMC6413556 DOI: 10.4103/aja.aja_80_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) transmit genetic information to the next progeny in males. Thus, SSCs are a potential target for germline modifications to generate transgenic animals. In this study, we report a technique for the generation of transgenic rats by in vivo manipulation of SSCs with a high success rate. SSCs in juvenile rats were transduced in vivo with high titers of lentivirus harboring enhanced green fluorescent protein and mated with wild-type females to create founder rats. These founder rats expressed the transgene and passed on the transgene with an overall success rate of 50.0%. Subsequent generations of progeny from the founder rats both expressed and passed on the transgene. Thus, direct modification of SSCs in juvenile rats is an effective means of generating transgenic rats through the male germline. This technology could be adapted to larger animals, in which existing methods for gene modification are inadequate or inapplicable, resulting in the generation of transgenic animals in a variety of species.
Collapse
Affiliation(s)
- Bang-Jin Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do 17546, Korea
| | - Yong-Hee Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do 17546, Korea
| | - Myeong-Geun Oh
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do 17546, Korea
| | - Ki-Jung Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do 17546, Korea
| | - Sang-Eun Jung
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do 17546, Korea
| | - Ju-Hee Jin
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do 17546, Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk-do 28116, Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk-do 28116, Korea
| | - Kwan-Sik Min
- Animal Biotechnology, Graduate School of Future Convergence Technology, Department of Animal Life Science, Institute of Genetic Engineering, Hankyong National University, Anseong, Gyeonggi-do 17579, Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do 17546, Korea
| |
Collapse
|
17
|
Struijk RB, Dorssers LCJ, Henneman P, Rijlaarsdam MA, Venema A, Jongejan A, Mannens MMAM, Looijenga LHJ, Repping S, van Pelt AMM. Comparing genome-scale DNA methylation and CNV marks between adult human cultured ITGA6+ testicular cells and seminomas to assess in vitro genomic stability. PLoS One 2020; 15:e0230253. [PMID: 32176716 PMCID: PMC7075560 DOI: 10.1371/journal.pone.0230253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Autologous transplantation of spermatogonial stem cells is a promising new avenue to restore fertility in infertile recipients. Expansion of the initial spermatogonial stem cell pool through cell culturing is a necessary step to obtain enough cells for effective repopulation of the testis after transplantation. Since in vitro propagation can lead to (epi-)genetic mutations and possibly malignant transformation of the starting cell population, we set out to investigate genome-wide DNA methylation status in uncultured and cultured primary testicular ITGA6+ sorted cells and compare them with germ cell tumor samples of the seminoma subtype. Seminomas displayed a severely global hypomethylated profile, including loss of genomic imprinting, which we did not detect in cultured primary testicular ITGA6+ cells. Differential methylation analysis revealed altered regulation of gamete formation and meiotic processes in cultured primary testicular ITGA6+ cells but not in seminomas. The pivotal POU5F1 marker was hypomethylated in seminomas but not in uncultured or cultured primary testicular ITGA6+ cells, which is reflected in the POU5F1 mRNA expression levels. Lastly, seminomas displayed a number of characteristic copy number variations that were not detectable in primary testicular ITGA6+ cells, either before or after culture. Together, the data show a distinct DNA methylation patterns in cultured primary testicular ITGA6+ cells that does not resemble the pattern found in seminomas, but also highlight the need for more sensitive methods to fully exclude the presence of malignant cells after culture and to further study the epigenetic events that take place during in vitro culture.
Collapse
Affiliation(s)
- Robert B. Struijk
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, and Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin A. Rijlaarsdam
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, and Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel M. A. M. Mannens
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, and Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ans M. M. van Pelt
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Stukenborg JB, Wyns C. Fertility sparing strategies for pre- and peripubertal male cancer patients. Ecancermedicalscience 2020; 14:1016. [PMID: 32256699 PMCID: PMC7105342 DOI: 10.3332/ecancer.2020.1016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
Genetic parenthood following cancer therapy is considered to be a major factor of quality of life. Given the rising proportion of patients surviving cancer due to improved therapeutic protocols, it is an issue of growing importance. Hence, the efforts to preserve fertility have motivated researchers to develop options for the paediatric population facing fertility-threatening cancer therapies. In prepubertal boys who do not yet produce sperm, cryo-banking of testicular tissue containing spermatogonial stem cells (SSCs) is the only viable option for future fertility preservation. While proposed in a number of clinics worldwide, however, this strategy remains still experimental. Transplanting the SSCs, or testicular tissue containing SSCs, back to the cured patient appears the most promising strategy. However, experiments performed with human testicular tissue in mice models reveal spermatogonial loss after transplantation, indicating the need for further optimisation of the transplantation procedure. The approach further poses the risk of reintroducing tumour cells back to the patient. In cases of haematological and blood-metastasising malignancies, in vitro generation of sperm combined with assisted reproductive technologies (ART), is the only possibility, avoiding reintroducing cancer cells. Although xenotransplantation would allow to recover sperm cells for ART being thus on the safe side with regard to cancer cells, the risk of infections with xeno-microbiological agents makes this option incompatible with clinical application. So far, offspring from in vitro matured sperm has only been achieved in mice. While human haploid germ cells, showing specific morphological features, expression of post-meiotic markers, as well as DNA and chromosome content, as well as fertilisation and development capacity, have been obtained by culturing spermatogonia or immature testicular tissue, the functionality of these cells still needs to be demonstrated. Despite the promising results obtained in recent years, further research is urgently warranted to establish a clinical tool offering these boys a fertility restoration option in the future. This mini-review will focus on current achievements and future challenges of fertility preservation in young boys and underscore the next steps required to translate experimental strategies into clinical practice.
Collapse
Affiliation(s)
- Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - Christine Wyns
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Pelzman DL, Orwig KE, Hwang K. Progress in translational reproductive science: testicular tissue transplantation and in vitro spermatogenesis. Fertil Steril 2020; 113:500-509. [PMID: 32111477 DOI: 10.1016/j.fertnstert.2020.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Since the birth of the first child conceived via in vitro fertilization 40 years ago, fertility treatments and assisted reproductive technology have allowed many couples to reach their reproductive goals. As of yet, no fertility options are available for men who cannot produce functional sperm, but many experimental therapies have demonstrated promising results in animal models. Both autologous (stem cell transplantation, de novo morphogenesis, and testicular tissue grafting) and outside-the-body (xenografting and in vitro spermatogenesis) approaches exist for restoring sperm production in infertile animals with varying degrees of success. Once safety profiles are established and an ideal patient population is chosen, some of these techniques may be ready for human experimentation in the near future, with likely clinical implementation within the next decade.
Collapse
Affiliation(s)
- Daniel L Pelzman
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathleen Hwang
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Kadam P, Ntemou E, Onofre J, Van Saen D, Goossens E. Does co-transplantation of mesenchymal and spermatogonial stem cells improve reproductive efficiency and safety in mice? Stem Cell Res Ther 2019; 10:310. [PMID: 31640769 PMCID: PMC6805426 DOI: 10.1186/s13287-019-1420-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Spermatogonial stem cell transplantation (SSCT) is a promising therapy in restoring the fertility of childhood cancer survivors. However, the low efficiency of SSCT is a significant concern. SSCT could be improved by co-transplanting transforming growth factor beta 1 (TGFβ1)-induced mesenchymal stem cells (MSCs). In this study, we investigated the reproductive efficiency and safety of co-transplanting spermatogonial stem cells (SSCs) and TGFβ1-induced MSCs. Methods A mouse model for long-term infertility was used to transplant SSCs (SSCT, n = 10) and a combination of SSCs and TGFβ1-treated MSCs (MSi-SSCT, n = 10). Both transplanted groups and a fertile control group (n = 7) were allowed to mate naturally to check the reproductive efficiency after transplantation. Furthermore, the testes from transplanted males and donor-derived male offspring were analyzed for the epigenetic markers DNA methyltransferase 3A (DNMT3A) and histone 4 lysine 5 acetylation (H4K5ac). Results The overall tubular fertility index (TFI) after SSCT (76 ± 12) was similar to that after MSi-SSCT (73 ± 14). However, the donor-derived TFI after MSi-SSCT (26 ± 14) was higher compared to the one after SSCT (9 ± 5; P = 0.002), even after injecting half of the number of SSCs in MSi-SSCT. The litter sizes after SSCT (3.7 ± 3.7) and MSi-SSCT (3.7 ± 3.6) were similar but differed significantly with the control group (7.6 ± 1.0; P < 0.001). The number of GFP+ offspring per litter obtained after SSCT (1.6 ± 0.5) and MSi-SSCT (2.0 ± 1.0) was also similar. The expression of DNMT3A and H4K5ac in germ cells of transplanted males was found to be significantly reduced compared to the control group. However, in donor-derived offspring, DNMT3A and H4K5ac followed the normal pattern. Conclusion Co-transplanting SSCs and TGFβ1-treated MSCs results in reproductive efficiency as good as SSCT, even after transplanting half the number of SSCs. Although transplanted males showed lower expression of DNMT3A and H4K5ac in donor-derived germ cells, the expression was restored to normal levels in germ cells of donor-derived offspring. This procedure could become an efficient method to restore fertility in a clinical setup, but more studies are needed to ensure safety in the long term.
Collapse
Affiliation(s)
- Prashant Kadam
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Elissavet Ntemou
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Jaime Onofre
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Dorien Van Saen
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Ellen Goossens
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
21
|
Vermeulen M, Giudice MG, Del Vento F, Wyns C. Role of stem cells in fertility preservation: current insights. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:27-48. [PMID: 31496751 PMCID: PMC6689135 DOI: 10.2147/sccaa.s178490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
While improvements made in the field of cancer therapy allow high survival rates, gonadotoxicity of chemo- and radiotherapy can lead to infertility in male and female pre- and postpubertal patients. Clinical options to preserve fertility before starting gonadotoxic therapies by cryopreserving sperm or oocytes for future use with assisted reproductive technology (ART) are now applied worldwide. Cryopreservation of pre- and postpubertal ovarian tissue containing primordial follicles, though still considered experimental, has already led to the birth of healthy babies after autotransplantation and is performed in an increasing number of centers. For prepubertal boys who do not produce gametes ready for fertilization, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells may be proposed as an experimental strategy with the aim of restoring fertility. Based on achievements in nonhuman primates, autotransplantation of ITT or testicular cell suspensions appears promising to restore fertility of young cancer survivors. So far, whether in two- or three-dimensional culture systems, in vitro maturation of immature male and female gonadal cells or tissue has not demonstrated a capacity to produce safe gametes for ART. Recently, primordial germ cells have been generated from embryonic and induced pluripotent stem cells, but further investigations regarding efficiency and safety are needed. Transplantation of mesenchymal stem cells to improve the vascularization of gonadal tissue grafts, increase the colonization of transplanted cells, and restore the damaged somatic compartment could overcome the current limitations encountered with transplantation.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Maria-Grazia Giudice
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Federico Del Vento
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| |
Collapse
|
22
|
Kubota H, Brinster RL. Spermatogonial stem cells. Biol Reprod 2019; 99:52-74. [PMID: 29617903 DOI: 10.1093/biolre/ioy077] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the most primitive spermatogonia in the testis and have an essential role to maintain highly productive spermatogenesis by self-renewal and continuous generation of daughter spermatogonia that differentiate into spermatozoa, transmitting genetic information to the next generation. Since the 1950s, many experimental methods, including histology, immunostaining, whole-mount analyses, and pulse-chase labeling, had been used in attempts to identify SSCs, but without success. In 1994, a spermatogonial transplantation method was reported that established a quantitative functional assay to identify SSCs by evaluating their ability to both self-renew and differentiate to spermatozoa. The system was originally developed using mice and subsequently extended to nonrodents, including domestic animals and humans. Availability of the functional assay for SSCs has made it possible to develop culture systems for their ex vivo expansion, which dramatically advanced germ cell biology and allowed medical and agricultural applications. In coming years, SSCs will be increasingly used to understand their regulation, as well as in germline modification, including gene correction, enhancement of male fertility, and conversion of somatic cells to biologically competent male germline cells.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Ralph L Brinster
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Newton HL, Friend AJ, Feltbower R, Hayden CJ, Picton HM, Glaser AW. Survival from cancer in young people: An overview of late effects focusing on reproductive health. Acta Obstet Gynecol Scand 2019; 98:573-582. [DOI: 10.1111/aogs.13584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Hannah L. Newton
- Reproduction and Early Development Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine and Health, University of Leeds Leeds UK
- Leeds Institute of Health Research School of Medicine and Health University of Leeds Leeds UK
- Leeds Teaching Hospitals NHS Trust Leeds UK
| | - Amanda J. Friend
- Leeds Institute of Health Research School of Medicine and Health University of Leeds Leeds UK
- Leeds Teaching Hospitals NHS Trust Leeds UK
| | - Richard Feltbower
- Department of Clinical and Population Sciences, School of Medicine and Health University of Leeds Leeds UK
- Leeds Institute for Data Analytics University of Leeds Leeds UK
| | | | - Helen M. Picton
- Reproduction and Early Development Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine and Health, University of Leeds Leeds UK
- Leeds Teaching Hospitals NHS Trust Leeds UK
| | - Adam W. Glaser
- Leeds Institute of Health Research School of Medicine and Health University of Leeds Leeds UK
- Leeds Teaching Hospitals NHS Trust Leeds UK
- Leeds Institute for Data Analytics University of Leeds Leeds UK
| |
Collapse
|
24
|
Sharma S, Wistuba J, Pock T, Schlatt S, Neuhaus N. Spermatogonial stem cells: updates from specification to clinical relevance. Hum Reprod Update 2019; 25:275-297. [DOI: 10.1093/humupd/dmz006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/23/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Swati Sharma
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Tim Pock
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| |
Collapse
|
25
|
Kanbar M, de Michele F, Wyns C. Cryostorage of testicular tissue and retransplantation of spermatogonial stem cells in the infertile male. Best Pract Res Clin Endocrinol Metab 2019; 33:103-115. [PMID: 30448111 DOI: 10.1016/j.beem.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transplantation of own cryostored spermatogonial stem cells (SSCs) is a promising technique for fertility restoration when the SSC pool has been depleted. In this regard, cryopreservation of pre-pubertal testicular tissue or SSCs suspensions before gonadotoxic therapies is ethically accepted and increasingly proposed. SSC transplantation has also been considered to treat other causes of infertility relying on the possibility of propagating SSCs retrieved in the testes of infertile men before autologous re-transplantation. Although encouraging results were achieved in animals and in preclinical experiments, clinical perspectives are still limited by a number of unresolved technical and safety issues, such as the risk of cancer cell contamination of cells intended for transplantation and the genetic and epigenetic stability of SCCs when cultured before re-transplantation. Moreover, while genome editing techniques raise the hope of modifying the SSCs genome before re-transplantation, their application for reproductive purposes might be a step too far for the moment.
Collapse
Affiliation(s)
- Marc Kanbar
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Francesca de Michele
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium
| | - Christine Wyns
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium.
| |
Collapse
|
26
|
Tharmalingam MD, Jorgensen A, Mitchell RT. Experimental models of testicular development and function using human tissue and cells. Mol Cell Endocrinol 2018; 468:95-110. [PMID: 29309804 DOI: 10.1016/j.mce.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
The mammalian testis has two main roles, production of gametes for reproduction and synthesis of steroid- and peptide hormones for masculinization. These processes are tightly regulated and involve complex interactions between a number of germ and somatic cell-types that comprise a unique microenvironment known as the germ stem cell niche. In humans, failure of normal testicular development or function is associated with susceptibility to a variety of male reproductive disorders including disorders of sex development, infertility and testicular cancer. Whilst studies in rodent models have provided detailed insight into the signaling pathways and molecular mechanisms that regulate the testis, there are important species differences in testicular development, function and reproductive disorders that highlight the need for suitable experimental models utilising human testicular tissues or cells. In this review, we outline experimental approaches used to sustain cells and tissue from human testis at different developmental time-points and discuss relevant end-points. These include survival, proliferation and differentiation of cell lineages within the testis as well as autocrine, paracrine and endocrine function. We also highlight the utility of these experimental approaches for modelling the effects of environmental exposures on testicular development and function.
Collapse
Affiliation(s)
- Melissa D Tharmalingam
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Anne Jorgensen
- Department of Growth and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK; Department of Endocrinology and Diabetes, Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK.
| |
Collapse
|
27
|
Mulder CL, Serrano JB, Catsburg LAE, Roseboom TJ, Repping S, van Pelt AMM. A practical blueprint to systematically study life-long health consequences of novel medically assisted reproductive treatments. Hum Reprod 2018; 33:784-792. [PMID: 29635479 PMCID: PMC5925779 DOI: 10.1093/humrep/dey070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/27/2018] [Indexed: 01/27/2023] Open
Abstract
In medicine, safety and efficacy are the two pillars on which the implementation of novel treatments rest. To protect the patient from unnecessary or unsafe treatments, usually, a stringent path of (pre) clinical testing is followed before a treatment is introduced into routine patient care. However, in reproductive medicine several techniques have been clinically introduced without elaborate preclinical studies. Moreover, novel reproductive techniques may harbor safety risks not only for the patients undergoing treatment, but also for the offspring conceived through these techniques. If preclinical (animal) studies were performed, efficacy and functionality the upper hand. When a new medically assisted reproduction (MAR) treatment was proven effective (i.e. if it resulted in live birth) the treatment was often rapidly implemented in the clinic. For IVF, the first study on the long-term health of IVF children was published a decade after its clinical implementation. In more recent years, prospective follow-up studies have been conducted that provided the opportunity to study the health of large groups of children derived from different reproductive techniques. Although such studies have indicated differences between children conceived through MAR and children conceived naturally, results are often difficult to interpret due to the observational nature of these studies (and the associated risk of confounding factors, e.g. subfertility of the parents), differences in definitions of clinical outcome measures, lack of uniformity in assessment protocols and heterogeneity of the underlying reasons for fertility treatment. With more novel MARs waiting at the horizon, there is a need for a framework on how to assess safety of novel reproductive techniques in a preclinical (animal) setting before they are clinically implemented. In this article, we provide a blueprint for preclinical testing of safety and health of offspring generated by novel MARs using a mouse model involving an array of tests that comprise the entire lifespan. We urge scientists to perform the proposed extensive preclinical tests for novel reproductive techniques with the goal to acquire knowledge on efficacy and the possible health effects of to-be implemented reproductive techniques to safeguard quality of novel MARs.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joana B Serrano
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lisa A E Catsburg
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction and Development Research Institute, Academic Medical Centre, Meibergdeef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Academic Medical Centre, Meibergdeef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
28
|
Del Vento F, Vermeulen M, de Michele F, Giudice MG, Poels J, des Rieux A, Wyns C. Tissue Engineering to Improve Immature Testicular Tissue and Cell Transplantation Outcomes: One Step Closer to Fertility Restoration for Prepubertal Boys Exposed to Gonadotoxic Treatments. Int J Mol Sci 2018; 19:ijms19010286. [PMID: 29346308 PMCID: PMC5796232 DOI: 10.3390/ijms19010286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Despite their important contribution to the cure of both oncological and benign diseases, gonadotoxic therapies present the risk of a severe impairment of fertility. Sperm cryopreservation is not an option to preserve prepubertal boys’ reproductive potential, as their seminiferous tubules only contain spermatogonial stem cells (as diploid precursors of spermatozoa). Cryobanking of human immature testicular tissue (ITT) prior to gonadotoxic therapies is an accepted practice. Evaluation of cryopreserved ITT using xenotransplantation in nude mice showed the survival of a limited proportion of spermatogonia and their ability to proliferate and initiate differentiation. However, complete spermatogenesis could not be achieved in the mouse model. Loss of germ cells after ITT grafting points to the need to optimize the transplantation technique. Tissue engineering, a new branch of science that aims at improving cellular environment using scaffolds and molecules administration, might be an approach for further progress. In this review, after summarizing the lessons learned from human prepubertal testicular germ cells or tissue xenotransplantation experiments, we will focus on the benefits that might be gathered using bioengineering techniques to enhance transplantation outcomes by optimizing early tissue graft revascularization, protecting cells from toxic insults linked to ischemic injury and exploring strategies to promote cellular differentiation.
Collapse
Affiliation(s)
- Federico Del Vento
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Maxime Vermeulen
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Francesca de Michele
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Maria Grazia Giudice
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Jonathan Poels
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials Unit, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Christine Wyns
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
- Correspondence: ; Tel.: +32-2-764-95-01
| |
Collapse
|
29
|
Mulder CL, Catsburg LAE, Zheng Y, de Winter-Korver CM, van Daalen SKM, van Wely M, Pals S, Repping S, van Pelt AMM. Long-term health in recipients of transplanted in vitro propagated spermatogonial stem cells. Hum Reprod 2018; 33:81-90. [PMID: 29165614 PMCID: PMC5850721 DOI: 10.1093/humrep/dex348] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Is testicular transplantation of in vitro propagated spermatogonial stem cells associated with increased cancer incidence and decreased survival rates in recipient mice? SUMMARY ANSWER Cancer incidence was not increased and long-term survival rate was not altered after transplantation of in vitro propagated murine spermatogonial stem cells (SSCs) in busulfan-treated recipients as compared to non-transplanted busulfan-treated controls. WHAT IS KNOWN ALREADY Spermatogonial stem cell autotransplantation (SSCT) is a promising experimental reproductive technique currently under development to restore fertility in male childhood cancer survivors. Most preclinical studies have focused on the proof-of-principle of the functionality and efficiency of this technique. The long-term health of recipients of SSCT has not been studied systematically. STUDY DESIGN, SIZE, DURATION This study was designed as a murine equivalent of a clinical prospective study design. Long-term follow-up was performed for mice who received a busulfan treatment followed by either an intratesticular transplantation of in vitro propagated enhanced green fluorescent protein (eGFP) positive SSCs (cases, n = 34) or no transplantation (control, n = 37). Using a power calculation, we estimated that 36 animals per group would be sufficient to provide an 80% power and with a 5% level of significance to demonstrate a 25% increase in cancer incidence in the transplanted group. The survival rate and cancer incidence was investigated until the age of 18 months. PARTICIPANTS/MATERIALS, SETTING, METHODS Neonatal male B6D2F1 actin-eGFP transgenic mouse testis were used to initiate eGFP positive germline stem (GS) cell culture, which harbor SSCs. Six-week old male C57BL/6 J mice received a single dose busulfan treatment to deplete the testis from endogenous spermatogenesis. Half of these mice received a testicular transplantation of cultured eGFP positive GS cells, while the remainder of mice served as a control group. Mice were followed up until the age of 18 months (497-517 days post-busulfan) or sacrificed earlier due to severe discomfort or illness. Survival data were collected. To evaluate cancer incidence a necropsy was performed and tissues were collected. eGFP signal in transplanted testis and in benign and malignant lesions was assessed by standard PCR. MAIN RESULTS AND THE ROLE OF CHANCE We found 9% (95% CI: 2-25%) malignancies in the transplanted busulfan-treated animals compared to 26% (95% CI: 14-45%) in the busulfan-treated control group, indicating no statistically significant difference in incidence of malignant lesions in transplanted and control mice (OR: 0.3, 95% CI: 0.1-1.1). Furthermore, none of the malignancies that arose in the transplanted animals contained eGFP signal, suggesting that they are not derived from the in vitro propagated transplanted SSCs. Mean survival time after busulfan treatment was found to be equal, with a mean survival time for transplanted animals of 478 days and 437 days for control animals (P = 0.076). LARGE SCALE DATA NA. LIMITATIONS, REASONS FOR CAUTION Although we attempted to mimic the future clinical application of SSCT in humans as close as possible, the mouse model that we used might not reflect all aspects of the future clinical setting. WIDER IMPLICATIONS OF THE FINDINGS The absence of an increase in cancer incidence and a decrease in survival of mice that received a testicular transplantation of in vitro propagated SSCs is reassuring in light of the future clinical application of SSCT in humans. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by KiKa (Kika86) and ZonMw (TAS 116003002). The authors report no financial or other conflict of interest relevant to the subject of this article.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lisa A E Catsburg
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Yi Zheng
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Cindy M de Winter-Korver
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Madelon van Wely
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Steven Pals
- Department of Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
30
|
Spermatogonial stem cell transplantation and male infertility: Current status and future directions. Arab J Urol 2017; 16:171-180. [PMID: 29713548 PMCID: PMC5922182 DOI: 10.1016/j.aju.2017.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/25/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
Objective To summarise the current state of research into spermatogonial stem cell (SSC) therapies with a focus on future directions, as SSCs show promise as a source for preserving or initiating fertility in otherwise infertile men. Materials and methods We performed a search for publications addressing spermatogonial stem cell transplantation in the treatment of male infertility. The search engines PubMed and Google Scholar were used from 1990 to 2017. Search terms were relevant for spermatogonial stem cell therapies. Titles of publications were screened for relevance; abstracts were read, if related and full papers were reviewed for directly pertinent original research. Results In all, 58 papers were found to be relevant to this review, and were included in appropriate subheadings. This review discusses the various techniques that SSCs are being investigated to treat forms of male infertility. Conclusions Evidence does not yet support clinical application of SSCs in humans. However, significant progress in the in vitro and in vivo development of SSCs, including differentiation into functional germ cells, gives reason for cautious optimism for future research.
Collapse
Key Words
- ART, assisted reproductive technologies
- Allograft
- BMP4, bone morphogenetic protein 4
- Bcl6b, B-Cell CLL/Lymphoma 6B
- CD(24)(34), cluster of differentiation (24)(34)
- FGF2, Fibroblast growth factor 2
- FISH, fluorescence in situ hybridisation
- Fertility preservation
- GDNF, glial cell line-derived neurotrophic factor
- ICSI, intracytoplasmic sperm injection
- ID4, inhibitor of differentiation 4
- KS, Klinefelter syndrome
- Male infertility
- Non-obstructive azoospermia
- Onco-fertility
- PGC, primordial germ cells
- PLZF, promyelocytic leukaemia zinc finger
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- RA(R), retinoic acid (receptor)
- SPG, spermatogonia
- SSC, spermatogonial stem cell
- Stem cell therapy
- Stra8, stimulated by RA 8
- ZBTB, zinc finger and broad complex/Tramtrack/bric-a-brac
- c-Kit, KIT Proto-oncogene receptor tyrosine kinase
Collapse
|
31
|
Heat and chemical treatments in adult Cyprinus carpio (Pisces cypriniformes) rapidly produce sterile gonads. Anim Reprod Sci 2017; 183:77-85. [DOI: 10.1016/j.anireprosci.2017.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/15/2023]
|
32
|
Abstract
BACKGROUND Fertility protection is essential for men undergoing potentially gonadotoxic treatment. It is usually offered to adolescents and men in reproductive age by semen cryopreservation. In case of azoospermia, testicular sperm cryopreservation is an additional option. In prepubertal boys no sperm cryopreservation is possible. A purely experimental option is cryopreservation of spermatogonial stem cells in immature testis tissue. METHOD Transplantation of either immature testis tissue or testicular stem cells or spermatogonia generated in vitro from stem cells are possible options for fertility preservation in boys. OBJECTIVES In this article, the rationale for cryopreservation of gonadal stem cells and the experimental methods for refertilization are summarized. The current research, national and international clinical and research activities and possible perspectives of further development of fertility preservation are explained.
Collapse
Affiliation(s)
- S Kliesch
- Abteilung für Klinische Andrologie, Centrum für Reproduktionsmedizin und Andrologie, WHO Kooperationszentrum zur Erforschung der männlichen Reproduktion, EAA Ausbildungszentrum, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Geb. D11, 48149, Münster, Deutschland.
| |
Collapse
|
33
|
Update on fertility restoration from prepubertal spermatogonial stem cells: How far are we from clinical practice? Stem Cell Res 2017; 21:171-177. [DOI: 10.1016/j.scr.2017.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
|
34
|
In search of an improved injection technique for the clinical application of spermatogonial stem cell transplantation. Reprod Biomed Online 2016; 34:291-297. [PMID: 28040413 DOI: 10.1016/j.rbmo.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
When fertility is impaired by anticancer treatment, spermatogonial stem cell transplantation (SSCT) could be used as a fertility restoration technique later on in life. Previously, we have demonstrated that a testicular cell suspension could be injected into a human cadaver testis, however, leakage to the interstitium was observed. In this study, injection of mouse testicular cells at an injection height of 50 cm (hydrostatic pressure) or via an automated injection pump (1400 µl, 2600 µl and 3000 µl) was evaluated. Significant difference in the filled radioactive volume was reached between the group in which 1400 µl was injected with an infusion pump and the groups in which 2600 µl (P = 0.019) or 3000 µl (P = 0.010) was injected. In all experimental groups green fluorescent protein positive (GFP+) cells were observed in the seminiferous tubules. In conclusion, a lower injection height did not resolve the leakage of the injected cells to the interstitium. Using the infusion pump resulted in more efficient filling of the seminiferous tubules with lower interexperimental variability. Although leakage to the interstitium was still observed, with further optimisation, the use of an infusion pump for clinical application is advantageous.
Collapse
|
35
|
Tada N, Kanai F, Nakamura E, Lu H, Sato M. Syngenic grafting of a whole juvenile male gonadal tissue into the adult testes confers successful spermatogenesis in mice. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, van Pelt AMM. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update 2016; 22:561-73. [PMID: 27240817 PMCID: PMC5001497 DOI: 10.1093/humupd/dmw017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples. While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been associated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oligozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, are likely to enable genomic rectification of human SSCs in the near future. OBJECTIVE AND RATIONALE The objective of this review is to provide insights into the prospects of the potential clinical application of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases. SEARCH METHODS We performed a narrative review using the literature available on PubMed not restricted to any publishing year on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We included papers written in English only. OUTCOMES Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer treatment. Similarly, SSCT could be used to restore fertility in sterile adult cancer survivors. In vitro propagation of SSCs might also be employed to enhance spermatogenesis in oligozoospermic men and in azoospermic men who still have functional SSCs albeit in insufficient numbers. The combination of SSCT with genomic editing techniques could potentially rectify defects in spermatogenesis caused by genomic mutations or, more broadly, prevent transmission of genomic diseases to the offspring. In spite of the promising prospects, SSCT and germline genomic editing are not yet clinically applicable and both techniques require optimization at various levels. WIDER IMPLICATIONS SSCT with or without genomic editing could potentially be used to restore fertility in cancer survivors to treat couples with a severe male factor and to prevent the paternal transmission of diseases. This will potentially allow these couples to have their own biological children. Technical development is progressing rapidly, and ethical reflection and societal debate on the use of SSCT with or without genomic editing is pressing.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Yi Zheng
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sabrina Z Jan
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Robert B Struijk
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
37
|
González R, Dobrinski I. Beyond the mouse monopoly: studying the male germ line in domestic animal models. ILAR J 2016; 56:83-98. [PMID: 25991701 DOI: 10.1093/ilar/ilv004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals.
Collapse
Affiliation(s)
- Raquel González
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| |
Collapse
|
38
|
Hussein AA, Tran ND, Smith JF. Fertility preservation for boys and adolescents facing sterilizing medical therapy. Transl Androl Urol 2016; 3:382-90. [PMID: 26816794 PMCID: PMC4708141 DOI: 10.3978/j.issn.2223-4683.2014.11.06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Improvements in childhood cancer survival have allowed boys and their families to increasingly focus on quality of life after therapy, particularly their future ability to father children. Treatments should maintain comprehensive cancer care goals and consider the long-term quality of life of these children. While semen cryopreservation is a well-established method of fertility preservation for post-pubertal children, the use of cryopreserved pre-treatment testicular tissue represents a promising, yet experimental method of fertility preservation for prepubertal males facing sterilizing therapy. Healthcare providers should counsel families about the fertility risks of therapy, discuss or refer patients for standard fertility preservation options, and consider experimental approaches to fertility preservation while being mindful of the ethical questions these treatments raise.
Collapse
Affiliation(s)
- Ahmed A Hussein
- 1 Department of Urology, University of California, San Francisco, CA, USA ; 2 Department of Urology, Cairo University, Egypt ; 3 Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA, USA ; 4 Philip R. Lee Institute for Health Policy Studies, San Francisco, CA, USA
| | - Nam D Tran
- 1 Department of Urology, University of California, San Francisco, CA, USA ; 2 Department of Urology, Cairo University, Egypt ; 3 Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA, USA ; 4 Philip R. Lee Institute for Health Policy Studies, San Francisco, CA, USA
| | - James F Smith
- 1 Department of Urology, University of California, San Francisco, CA, USA ; 2 Department of Urology, Cairo University, Egypt ; 3 Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA, USA ; 4 Philip R. Lee Institute for Health Policy Studies, San Francisco, CA, USA
| |
Collapse
|
39
|
Picton HM, Wyns C, Anderson RA, Goossens E, Jahnukainen K, Kliesch S, Mitchell RT, Pennings G, Rives N, Tournaye H, van Pelt AMM, Eichenlaub-Ritter U, Schlatt S. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum Reprod 2015; 30:2463-75. [PMID: 26358785 DOI: 10.1093/humrep/dev190] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION What clinical practices, patient management strategies and experimental methods are currently being used to preserve and restore the fertility of prepubertal boys and adolescent males? SUMMARY ANSWER Based on a review of the clinical literature and research evidence for sperm freezing and testicular tissue cryopreservation, and after consideration of the relevant ethical and legal challenges, an algorithm for the cryopreservation of sperm and testicular tissue is proposed for prepubertal boys and adolescent males at high risk of fertility loss. WHAT IS KNOWN ALREADY A known late effect of the chemotherapy agents and radiation exposure regimes used to treat childhood cancers and other non-malignant conditions in males is the damage and/or loss of the proliferating spermatogonial stem cells in the testis. Cryopreservation of spermatozoa is the first line treatment for fertility preservation in adolescent males. Where sperm retrieval is impossible, such as in prepubertal boys, or it is unfeasible in adolescents prior to the onset of ablative therapies, alternative experimental treatments such as testicular tissue cryopreservation and the harvesting and banking of isolated spermatogonial stem cells can now be proposed as viable means of preserving fertility. STUDY DESIGN, SIZE, DURATION Advances in clinical treatments, patient management strategies and the research methods used to preserve sperm and testicular tissue for prepubertal boys and adolescents were reviewed. A snapshot of the up-take of testis cryopreservation as a means to preserve the fertility of young males prior to December 2012 was provided using a questionnaire. PARTICIPANTS/MATERIALS, SETTING, METHODS A comprehensive literature review was conducted. In addition, survey results of testis freezing practices in young patients were collated from 24 European centres and Israeli University Hospitals. MAIN RESULTS AND THE ROLE OF CHANCE There is increasing evidence of the use of testicular tissue cryopreservation as a means to preserve the fertility of pre- and peri-pubertal boys of up to 16 year-old. The survey results indicate that of the 14 respondents, half of the centres were actively offering testis tissue cryobanking as a means of safeguarding the future fertility of boys and adolescents as more than 260 young patients (age range less than 1 year old to 16 years of age), had already undergone testicular tissue retrieval and storage for fertility preservation. The remaining centres were considering the implementation of a tissue-based fertility preservation programme for boys undergoing oncological treatments. LIMITATIONS, REASONS FOR CAUTION The data collected were limited by the scope of the questionnaire, the geographical range of the survey area, and the small number of respondents. WIDER IMPLICATIONS OF THE FINDINGS The clinical and research questions identified and the ethical and legal issues raised are highly relevant to the multi-disciplinary teams developing treatment strategies to preserve the fertility of prepubertal and adolescent boys who have a high risk of fertility loss due to ablative interventions, trauma or genetic pre-disposition.
Collapse
Affiliation(s)
- Helen M Picton
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Christine Wyns
- Université Catholique de Louvain (UCL), Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique (IREC), 1200 Brussels, Belgium Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ellen Goossens
- Research Group Biology of the Testis (BITE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Kirsi Jahnukainen
- Children's Hospital, Helsinki University Central Hospital, Helsinki, Finland Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Münster, Domagkstraße 11, 48149 Münster, Germany
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - G Pennings
- Bioethics Institute Ghent (BIG), Faculty of Philosophy and Moral Science, Ghent University, Ghent, Belgium
| | - Natalie Rives
- Laboratoire de Biologie de la Reproduction - CECOS, Research Team EA 4308 'Gametogenesis and gamete quality', IRIB, Rouen University Hospital, University of Rouen, 76031 Rouen Cedex, France
| | - Herman Tournaye
- Centre for Reproductive Medicine, University Hospital of the Brussels Free University, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ursula Eichenlaub-Ritter
- Faculty of Biology, Gene Technology/Microbiology, University of Bielefeld, Bielefeld 33501, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University Münster, Domagkstraße 11, 48149 Münster, Germany
| | | |
Collapse
|
40
|
Yokonishi T, Ogawa T. Cryopreservation of testis tissues and in vitro spermatogenesis. Reprod Med Biol 2015; 15:21-28. [PMID: 26709347 PMCID: PMC4686543 DOI: 10.1007/s12522-015-0218-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/06/2015] [Indexed: 01/15/2023] Open
Abstract
Cancer treatments, either chemo‐ or radiotherapy, may cause severe damage to gonads which could lead to the infertility of patients. In post‐pubertal male patients, semen cryopreservation is recommended to preserve the potential to have their own biological children in the future; however, it is not applicable to prepubertals. The preservation of testis tissue which contains spermatogonial stem cells (SSCs) but not sperm would be an alternative measure. The tissues or SSCs have to be transplanted back into patients to obtain sperm; however, this procedure remains experimental, invasive, and is accompanied with the potential risk of re‐implantation of cancer cells. Recently, we developed an organ culture system which supports the spermatogenesis of mice up to sperm formation from SSCs. It was also shown that the tissues could be frozen for later sperm production, which resulted in the generation of offspring. Thus, it could be useful as a clinical application for preserving the reproductive potential of male pediatric cancer patients. The establishment of an optimized cryopreservation method and the development of a culture system for human testis tissue are expected in the future.
Collapse
Affiliation(s)
- Tetsuhiro Yokonishi
- Department of UrologyYokohama City University Graduate School of Medicine236‐0004YokohamaJapan
| | - Takehiko Ogawa
- Department of UrologyYokohama City University Graduate School of Medicine236‐0004YokohamaJapan
- Laboratory of Proteomics, Institute of Molecular Medicine and Life ScienceYokohama City University Association of Medical Science236‐0004YokohamaJapan
| |
Collapse
|
41
|
Gies I, De Schepper J, Tournaye H. Progress and prospects for fertility preservation in prepubertal boys with cancer. Curr Opin Endocrinol Diabetes Obes 2015; 22:203-8. [PMID: 25871958 DOI: 10.1097/med.0000000000000162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW In the past few years, options for fertility preservation in prepubescent boys have enlarged tremendously. RECENT FINDINGS After a long period of studies on spermatogonial stem cell (SSC) transplantation in mice, recently successful use of rhesus monkey SSCs for autologous and allogeneic transplantation was demonstrated. Furthermore, newer protocols on transplantation of SSCs back into the testes and on how to mimic the niche environment have been described. Very importantly, a new multiparametric sorting strategy to eliminate cancer contamination from human testis cell suspension has been clarified. SUMMARY While awaiting for more data on safety issues, retrieval and cryopreservation of testicular tissue prior to cancer therapy should be offered, within an experimental context, to prepubertal boys with cancer who are at high risk of fertility loss.
Collapse
Affiliation(s)
- Inge Gies
- aDivision of Pediatric Endocrinology, Department of Pediatrics bCentre for Reproductive Medicine, UZ Brussel cResearch Group Biology of the Testis, Department of Embryology and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|
42
|
|
43
|
Benesova B, Mucksova J, Kalina J, Trefil P. Restoration of spermatogenesis in infertile male chickens after transplantation of cryopreserved testicular cells. Br Poult Sci 2014; 55:837-45. [DOI: 10.1080/00071668.2014.974506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Production of transgenic spermatozoa by lentiviral transduction and transplantation of porcine spermatogonial stem cells. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0078-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
45
|
Mirzapour T, Movahedin M, Koruji M, Nowroozi MR. Xenotransplantation assessment: morphometric study of human spermatogonial stem cells in recipient mouse testes. Andrologia 2014; 47:626-33. [PMID: 25209022 DOI: 10.1111/and.12310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was (i) To establish in vitro propagation of human spermatogonial stem cells (hSSCs) from small testicular biopsies to obtain a high number of cells; (ii) to evaluate the presence of functional hSSCs in culture system by RT-PCR using DAZL, α6-Integrin, β1-Integrin genes; and (iii) to evaluate the effects of cell concentration on successful xenotransplantation of hSSCs in mice testis. Donor hSSCs were obtained from men with maturation arrest of spermatogenesis duration 1 year ago. These cells were propagated in DMEM containing 1 ng ml(-1) bFGF (basic fibroblast grow factor) and 1500 U ml LIF (leucaemia inhibitory factor) for 5 weeks. Different concentrations of hSSCs transplanted into seminiferous tubules of busulfan-treated immunodeficient mice and analysed up to 8 weeks after transplantation. The results showed that expression of DAZL and α6-Integrin mRNA was increased as well as the colony formation of SSCs in vtro culture during 5 weeks. Proliferation occurred about 4 weeks after transplantation, but meiotic differentiation was not observed in recipient testis after 8 weeks. The difference in donor cells concentration had effect on homing spermatogenesis in recipient testis. Homologous transplantation of proliferated SSCs to seminiferous tubules of that patient individually may allow successful differentiation of transplanted cells.
Collapse
Affiliation(s)
- T Mirzapour
- Department of Biology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - M Movahedin
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Koruji
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - M R Nowroozi
- Uro-Oncology Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
46
|
Smith JF, Yango P, Altman E, Choudhry S, Poelzl A, Zamah AM, Rosen M, Klatsky PC, Tran ND. Testicular niche required for human spermatogonial stem cell expansion. Stem Cells Transl Med 2014; 3:1043-54. [PMID: 25038247 DOI: 10.5966/sctm.2014-0045] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prepubertal boys treated with high-dose chemotherapy do not have an established means of fertility preservation because no established in vitro technique exists to expand and mature purified spermatogonial stem cells (SSCs) to functional sperm in humans. In this study, we define and characterize the unique testicular cellular niche required for SSC expansion using testicular tissues from men with normal spermatogenesis. Highly purified SSCs and testicular somatic cells were isolated by fluorescence-activated cell sorting using SSEA-4 and THY1 as markers of SSCs and somatic cells. Cells were cultured on various established niches to assess their role in SSC expansion in a defined somatic cellular niche. Of all the niches examined, cells in the SSEA-4 population exclusively bound to adult testicular stromal cells, established colonies, and expanded. Further characterization of these testicular stromal cells revealed distinct mesenchymal markers and the ability to undergo differentiation along the mesenchymal lineage, supporting a testicular multipotent stromal cell origin. In vitro human SSC expansion requires a unique niche provided exclusively by testicular multipotent stromal cells with mesenchymal properties. These findings provide an important foundation for developing methods of inducing SSC growth and maturation in prepubertal testicular tissue, essential to enabling fertility preservation for these boys.
Collapse
Affiliation(s)
- James F Smith
- Departments of Urology and Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA; Helen Schneider Hospital for Women, Rabin Medical Center, Petah-Tiqva, Israel; Department of Obstetrics and Gynecology, Albert Einstein University, Bronx, New York, USA
| | - Pamela Yango
- Departments of Urology and Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA; Helen Schneider Hospital for Women, Rabin Medical Center, Petah-Tiqva, Israel; Department of Obstetrics and Gynecology, Albert Einstein University, Bronx, New York, USA
| | - Eran Altman
- Departments of Urology and Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA; Helen Schneider Hospital for Women, Rabin Medical Center, Petah-Tiqva, Israel; Department of Obstetrics and Gynecology, Albert Einstein University, Bronx, New York, USA
| | - Shweta Choudhry
- Departments of Urology and Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA; Helen Schneider Hospital for Women, Rabin Medical Center, Petah-Tiqva, Israel; Department of Obstetrics and Gynecology, Albert Einstein University, Bronx, New York, USA
| | - Andrea Poelzl
- Departments of Urology and Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA; Helen Schneider Hospital for Women, Rabin Medical Center, Petah-Tiqva, Israel; Department of Obstetrics and Gynecology, Albert Einstein University, Bronx, New York, USA
| | - Alberuni M Zamah
- Departments of Urology and Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA; Helen Schneider Hospital for Women, Rabin Medical Center, Petah-Tiqva, Israel; Department of Obstetrics and Gynecology, Albert Einstein University, Bronx, New York, USA
| | - Mitchell Rosen
- Departments of Urology and Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA; Helen Schneider Hospital for Women, Rabin Medical Center, Petah-Tiqva, Israel; Department of Obstetrics and Gynecology, Albert Einstein University, Bronx, New York, USA
| | - Peter C Klatsky
- Departments of Urology and Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA; Helen Schneider Hospital for Women, Rabin Medical Center, Petah-Tiqva, Israel; Department of Obstetrics and Gynecology, Albert Einstein University, Bronx, New York, USA
| | - Nam D Tran
- Departments of Urology and Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA; Helen Schneider Hospital for Women, Rabin Medical Center, Petah-Tiqva, Israel; Department of Obstetrics and Gynecology, Albert Einstein University, Bronx, New York, USA
| |
Collapse
|
47
|
Sadri-Ardekani H, Atala A. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside. Stem Cell Res Ther 2014; 5:68. [PMID: 25157677 PMCID: PMC4056749 DOI: 10.1186/scrt457] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Male infertility management has made significant progress during the past three decades, especially after the introduction of intracytoplasmic sperm injection in 1992. However, many boys and men still suffer from primary testicular failure due to acquired or genetic causes. New and novel treatments are needed to address these issues. Spermatogenesis originates from spermatogonial stem cells (SSCs) that reside in the testis. Many of these men lack SSCs or have lost SSCs over time as a result of specific medical conditions or toxic exposures. Loss of SSCs is critical in prepubertal boys who suffer from cancer and are going through gonadotoxic cancer treatments, as there is no option of sperm cryopresrvation due to sexual immaturity. The development of SSC transplantation in a mouse model to repopulate spermatozoa in depleted testes has opened new avenues of research in other animal models, including non-human primates. Recent advances in cryopreservation and in vitro propagation of human SSCs offer promise for human SSC autotransplantation in the near future. Ongoing research is focusing on safety and technical issues of human SSC autotransplantation. This is the time to counsel parents and boys at risk of infertility on the possibility of cryopreserving and banking a small amount of testis tissue for potential future use in SSC transplantation.
Collapse
|
48
|
Hayashi K, Saitou M. Perspectives of germ cell development in vitro in mammals. Anim Sci J 2014; 85:617-26. [PMID: 24725251 PMCID: PMC4271675 DOI: 10.1111/asj.12199] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 01/15/2023]
Abstract
Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are able to differentiate into all cell lineages of the embryo proper, including germ cells. This pluripotent property has a huge impact on the fields of regenerative medicine, developmental biology and reproductive engineering. Establishing the germ cell lineage from ESCs/iPSCs is the key biological subject, since it would contribute not only to dissection of the biological processes of germ cell development but also to production of unlimited numbers of functional gametes in vitro. Toward this goal, we recently established a culture system that induces functional mouse primordial germ cells (PGCs), precursors of all germ cells, from mouse ESCs/iPSCs. The successful in vitro production of PGCs arose from the study of pluripotent cell state, the signals inducing PGCs and the technology of transplantation. However, there are many obstacles to be overcome for the robust generation of mature gametes or for application of the culture system to other species, including humans and livestock. In this review, we discuss the requirements for a culture system to generate the germ cell lineage from ESCs/iPSCs.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Graduate School of Medicine, Kyoto University, Kyoto, Japan; CiRA, Graduate School of Medicine, Kyoto University, Kyoto, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | | |
Collapse
|
49
|
Easley CA, Latov DR, Simerly CR, Schatten G. Adult somatic cells to the rescue: nuclear reprogramming and the dispensability of gonadal germ cells. Fertil Steril 2014; 101:14-9. [PMID: 24382340 DOI: 10.1016/j.fertnstert.2013.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 01/04/2023]
Abstract
With advances in cancer therapies, survival rates in prepubescent patients have steadily increased. However, a number of these surviving patients have been rendered sterile owing to their rigorous oncologic treatment regimens. In addition to cancer treatments, men and women, who are genetically fertile, can become infertile owing to immune suppression treatments, exposure to environmental and industrial toxicants, and injury. Notwithstanding the great emotional burden from an inability to conceive a child with their partner, the financial burdens for testing and treatment are high, and successful treatment of these patients' sterility is rare. Recent advances in pluripotent stem cell differentiation and the generation of patient-specific, induced pluripotent stem cells indicate that stem cell replacement therapies or in vitro differentiation followed by IVF may be on the horizon. Here we discuss these recent advances, their relevance to treating male-factor and female-factor infertility, and what experimental procedures must be carried out in animal models before these exciting new treatments can be used in a clinical setting. The goal of this research is to generate functional gametes from no greater starting material than a mere skin biopsy.
Collapse
Affiliation(s)
- Charles A Easley
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - David R Latov
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Calvin R Simerly
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee Womens Research Institute, Pittsburgh Development Center, Pittsburgh, Pennsylvania
| | - Gerald Schatten
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee Womens Research Institute, Pittsburgh Development Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
50
|
Mitwally MFM. Fertility preservation and minimizing reproductive damage in cancer survivors. Expert Rev Anticancer Ther 2014; 7:989-1001. [PMID: 17627459 DOI: 10.1586/14737140.7.7.989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent advances in oncology have helped in the survival and cure of increasing numbers of childhood cancer patients and those during their reproductive age period. This has increased the need to improve existing technology, and prompted the search for new technologies, to minimize the gonadotoxic effects of cancer treatment and preserve human fertility. Conservative surgical approaches for cancer treatment have been widely accepted following progress in early detection of cancer and accumulating long-term outcome safety data. Gonadal suppression to increase resistance to cancer treatment by gonadotropin analogues and sex hormones has been suggested. However, while this is unlikely to be effective in males, there is no general consensus on its success in the female. Fertility preservation options for both male and female patients include cryopreservation of embryos, gametes and gonads. While embryo cryopreservation is a well-established and successful technique, there are several obvious limitations. Gamete cryopreservation is very successful in males (sperm freezing) while still experimental in females (oocyte freezing), with growing evidence suggesting its potential success. Gonadal cryopreservation is still in its early stages of experimental development, both in males (testicular tissue cryopreservation and in vitro spermatogenesis) and female (ovarian tissue cryopreservation and in vitro follicular maturation).
Collapse
|