1
|
Mackay DJG, Gazdagh G, Monk D, Brioude F, Giabicani E, Krzyzewska IM, Kalish JM, Maas SM, Kagami M, Beygo J, Kahre T, Tenorio-Castano J, Ambrozaitytė L, Burnytė B, Cerrato F, Davies JH, Ferrero GB, Fjodorova O, Manero-Azua A, Pereda A, Russo S, Tannorella P, Temple KI, Õunap K, Riccio A, de Nanclares GP, Maher ER, Lapunzina P, Netchine I, Eggermann T, Bliek J, Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics 2024; 16:99. [PMID: 39090763 PMCID: PMC11295890 DOI: 10.1186/s13148-024-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.
Collapse
Affiliation(s)
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Frederic Brioude
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Eloise Giabicani
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Izabela M Krzyzewska
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jasmin Beygo
- Institut Für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Justin H Davies
- Faculty of Medicine, University of Southampton, Southampton, UK
- Regional Centre for Paediatric Endocrinology, Faculty of Medicine, Southampton Children's Hospital, University of Southampton, Southampton, UK
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Science, School of Medicine, Centre for Hemoglobinopathies, AOU San Luigi Gonzaga, University of Turin, Turin, Italy
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Africa Manero-Azua
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Silvia Russo
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Pierpaola Tannorella
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Karen I Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB),"Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Eamonn R Maher
- Aston Medical School, Aston University, Birmingham, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Irène Netchine
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine. Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jet Bliek
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Kim HY, Shin CH, Lee YA, Shin CH, Kim GH, Ko JM. Deciphering Epigenetic Backgrounds in a Korean Cohort with Beckwith-Wiedemann Syndrome. Ann Lab Med 2022; 42:668-677. [PMID: 35765875 PMCID: PMC9277041 DOI: 10.3343/alm.2022.42.6.668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is a congenital overgrowth disorder caused by genetic or epigenetic alterations at two imprinting centers (ICs) in the 11p15.5 region. Delineation of the molecular defects is important for prognosis and predicting familial recurrence. We evaluated epigenetic alterations and potential epigenotype–phenotype correlations in Korean children with BWS. Methods Forty children with BWS with proven genetic or epigenetic defects in the 11p15.5 region were included. The phenotype was scored using the BWS consensus scoring system. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), bisulfite pyrosequencing, a single-nucleotide polymorphism microarray, and CDKN1C sequencing were used for confirmative diagnosis. Results Patients met the criteria for genetic testing, with a mean clinical score of 5.4±2.0. Methylation alterations were consistent between MS-MLPA and bisulfite pyrosequencing in all patients. Twenty-six patients (65.0%) had IC2 loss of methylation (IC2-LoM), 11 (27.5%) had paternal uniparental disomy (patUPD), and one (2.5%) had IC1 gain of methylation. Macroglossia and external ear anomalies were more common in IC2-LoM than in patUPD, and lateralized overgrowth was more common in patUPD than in IC2-LoM (all P<0.05). Methylation levels at IC2 were inversely correlated with birth weight standard deviation score (r=–0.476, P=0.014) and clinical score (r=–0.520, P=0.006) in the IC2-LoM group. Conclusions Comprehensive molecular analysis of the 11p15.5 region revealed epigenotype–phenotype correlations in our BWS cohort. Bisulfite pyrosequencing can help clarify epigenotypes. Methylation levels were correlated with fetal growth and clinical severity in patients with BWS.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Rare Disease Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
DNA Methylation in Offspring Conceived after Assisted Reproductive Techniques: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11175056. [PMID: 36078985 PMCID: PMC9457481 DOI: 10.3390/jcm11175056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background: In the last 40 years, assisted reproductive techniques (ARTs) have emerged as potentially resolving procedures for couple infertility. This study aims to evaluate whether ART is associated with epigenetic dysregulation in the offspring. Methods. To accomplish this, we collected all available data on methylation patterns in offspring conceived after ART and in spontaneously conceived (SC) offspring. Results. We extracted 949 records. Of these, 50 were considered eligible; 12 were included in the quantitative synthesis. Methylation levels of H19 CCCTC-binding factor 3 (CTCF3) were significantly lower in the ART group compared to controls (SMD −0.81 (−1.53; −0.09), I2 = 89%, p = 0.03). In contrast, H19 CCCTC-binding factor 6 (CTCF6), Potassium Voltage-Gated Channel Subfamily Q Member 1 (KCNQ1OT1), Paternally-expressed gene 3 (PEG3), and Small Nuclear Ribonucleoprotein Polypeptide N (SNRPN) were not differently methylated in ART vs. SC offspring. Conclusion: The methylation pattern of the offspring conceived after ART may be different compared to spontaneous conception. Due to the lack of studies and the heterogeneity of the data, further prospective and well-sized population studies are needed to evaluate the impact of ART on the epigenome of the offspring.
Collapse
|
4
|
Carli D, Operti M, Russo S, Cocchi G, Milani D, Leoni C, Prada E, Melis D, Falco M, Spina J, Uliana V, Sara O, Sirchia F, Tarani L, Macchiaiolo M, Cerrato F, Sparago A, Pignata L, Tannorella P, Cardaropoli S, Bartuli A, Riccio A, Ferrero GB, Mussa A. Clinical and molecular characterization of patients affected by Beckwith-Wiedemann spectrum conceived through assisted reproduction techniques. Clin Genet 2022; 102:314-323. [PMID: 35842840 PMCID: PMC9545072 DOI: 10.1111/cge.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022]
Abstract
The prevalence of Beckwith–Wiedemann spectrum (BWSp) is tenfold increased in children conceived through assisted reproductive techniques (ART). More than 90% of ART‐BWSp patients reported so far display imprinting center 2 loss‐of‐methylations (IC2‐LoM), versus 50% of naturally conceived BWSp patients. We describe a cohort of 74 ART‐BWSp patients comparing their features with a cohort of naturally conceived BWSp patients, with the ART‐BWSp patients previously described in literature, and with the general population of children born from ART. We found that the distribution of UPD(11)pat was not significantly different in ART and naturally conceived patients. We observed 68.9% of IC2‐LoM and 16.2% of mosaic UPD(11)pat in our ART cohort, that strongly differ from the figure reported in other cohorts so far. Since UPD(11)pat likely results from post‐fertilization recombination events, our findings allows to hypothesize that more complex molecular mechanisms, besides methylation disturbances, may underlie BWSp increased risk in ART pregnancies. Moreover, comparing the clinical features of ART and non‐ART BWSp patients, we found that ART‐BWSp patients might have a milder phenotype. Finally, our data show a progressive increase in the prevalence of BWSp over time, paralleling that of ART usage in the last decades.
Collapse
Affiliation(s)
- Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Matteo Operti
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, Bologna, BO, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Elisabetta Prada
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Mariateresa Falco
- Pediatric Unit, San Giovanni di Dio e Ruggi D'Aragona University Hospital, Salerno, Italy
| | - Jennifer Spina
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Vera Uliana
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Osimani Sara
- Department of Pediatrics, Scientific Institute San Raffaele, Milano, Italy
| | - Fabio Sirchia
- Unit of Medical Genetics, Department of Diagnostic Medicine, Fondazione IRCCS Policlinico San Matteo, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, "Sapienza" University of Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCCS
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Pierpaola Tannorella
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCCS
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.,Institute of Genetics and Biophysics A. Buzzati-Traverso, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | | | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,Pediatric Clinical Genetics Unit, Regina Margherita Childrens Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
5
|
Detection of hypermethylation at H19DMR at amniocentesis in a fetus with overgrowth, distended abdomen and Beckwith-Wiedemann syndrome. Taiwan J Obstet Gynecol 2021; 60:1103-1106. [PMID: 34794746 DOI: 10.1016/j.tjog.2021.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE We present detection of hypermethylation at H19 differentially methylated region (DMR) at amniocentesis in a fetus with overgrowth, distended abdomen and Beckwith-Wiedemann syndrome (BWS). CASE REPORT A 31-year-old, gravida 2, para 1, woman was referred for genetic counseling at 22 weeks of gestation because of fetal overgrowth with fetal biometry equivalent to 24 weeks of gestation and a distended abdomen with an abdominal circumference equivalent to 26 weeks of gestation. She did not undergo any assisted reproductive technology during this pregnancy. Amniocentesis was performed at 23 weeks of gestation. Conventional cytogenetic analysis revealed a karyotype of 46,XX. Array comparative genomic hybridization analysis on the DNA extracted from uncultured amniocytes revealed no genomic imbalance. Methylation analysis on the DNA extracted from amniocytes revealed hypermethylation at H19DMR [imprinting center 1 (IC1)] and normal methylation at KvDMR1 (IC2). The methylation test confirmed the diagnosis of BWS in the fetus. The parents decided to continue the pregnancy. At 36 weeks of gestation, a 4000-g female baby was delivered with macroglossia, ear tags and creases, and an enlarged liver, consistent with the phenotype of BWS. CONCLUSION Prenatal diagnosis of fetal overgrowth should include a differential diagnosis of BWS, and methylation analysis of H19DMR (IC1) and KvDMR1 (IC2) is useful under such a circumstance.
Collapse
|
6
|
Quantitative DNA Methylation Analysis and Epigenotype-Phenotype Correlations in Taiwanese Patients with Beckwith-Wiedemann Syndrome. J Pers Med 2021; 11:jpm11111066. [PMID: 34834418 PMCID: PMC8622080 DOI: 10.3390/jpm11111066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Beckwith-Wiedemann syndrome (BWS; OMIM 130650) is a rare overgrowth syndrome with tumor predisposition resulting from the abnormal expression or function of imprinted genes of the chromosome 11p15.5 imprinting gene cluster. The aim of this study was to identify the epigenotype-phenotype correlations of these patients using quantitative DNA methylation analysis. Methods: One hundred and four subjects with clinically suspected BWS were enrolled in this study. All of the subjects had been referred for diagnostic testing which was conducted using methylation profiling of H19-associated imprinting center (IC) 1 and KCNQ1OT1-associated IC2 in high-resolution melting analysis and methylation quantification with the MassARRAY assay. Correlations between the quantitative DNA methylation status and clinical manifestations of the enrolled subjects were analyzed. Results: Among the 104 subjects, 19 had IC2 hypomethylation, 2 had IC1 hypermethylation, and 10 had paternal uniparental disomy (pUPD). The subjects with IC2 hypomethylation were characterized by significantly more macroglossia but less hemihypertrophy compared to the subjects with pUPD (p < 0.05). For 19 subjects with IC2 hypomethylation, the IC2 methylation level was significantly different (p < 0.05) between the subjects with and without features including macroglossia (IC2 methylation level: 11.1% vs. 30.0%) and prenatal or postnatal overgrowth (8.5% vs. 16.9%). The IC2 methylation level was negatively correlated with birth weight z score (p < 0.01, n = 19) and birth height z score (p < 0.05, n = 13). For 36 subjects with clinically diagnosed BWS, the IC2 methylation level was negatively correlated with the BWS score (r = −0.592, p < 0.01). The IC1 methylation level showed the tendency of positive correlation with the BWS score without statistical significance (r = 0.137, p > 0.05). Conclusions: Lower IC2 methylation and higher IC1 methylation levels were associated with greater disease severity in the subjects with clinically diagnosed BWS. Quantitative DNA methylation analysis using the MassARRAY assay could improve the detection of epigenotype-phenotype correlations, which could further promote better genetic counseling and medical care for these patients.
Collapse
|
7
|
Cai S, Quan S, Yang G, Chen M, Ye Q, Wang G, Yu H, Wang Y, Qiao S, Zeng X. Nutritional Status Impacts Epigenetic Regulation in Early Embryo Development: A Scoping Review. Adv Nutr 2021; 12:1877-1892. [PMID: 33873200 PMCID: PMC8483970 DOI: 10.1093/advances/nmab038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Dias AJB, Rios ÁFL. Multi-locus imprinting disturbances of Beckwith-Wiedemann and Large offspring syndrome/Abnormal offspring syndrome: A brief review. Theriogenology 2021; 173:193-201. [PMID: 34399383 DOI: 10.1016/j.theriogenology.2021.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
In vitro fertilization and somatic cell nuclear transfer are assisted reproduction technologies commonly used in humans and cattle, respectively. Despite advances in these technologies, molecular failures can occur, increasing the chance of the onset of imprinting disorders in the offspring. Large offspring syndrome/abnormal offspring syndrome (LOS/AOS) has been described in cattle and has features such as hypergrowth, malformation of organs, and skeletal and placental defects. In humans, Beckwith-Wiedemann syndrome (BWS) has phenotypic characteristics similar to those found in LOS/AOS. In both syndromes, disruption of genomic imprinting associated with loss of parental-specific expression and parental-specific epigenetic marks is involved in the molecular etiology. Changes in the imprinting pattern of these genes lead to loss of imprinting (LOI) due to gain or loss of methylation, inducing the emergence of these syndromes. Several studies have reported locus-specific alterations in these syndromes, such as hypomethylation in imprinting control region 2 (KvDMR1) in BWS and LOS/AOS. These LOI events can occur at multiple imprinted loci in the same affected individual, which are called multi-locus methylation defect (MLMD) events. Although the bovine species has been proposed as a developmental model for human imprinting disorders, there is little information on bovine imprinted genes in the literature, even the correlation of epimutation data with clinical characteristics. In this study, we performed a systematic review of all the multi-locus LOI events described in human BWS and LOS/AOS, in order to determine in which imprinted genes the largest changes in the pattern of DNA methylation and expression occur, helping to fill gaps for a better understanding of the etiology of both syndromes.
Collapse
Affiliation(s)
- Paula Magnelli Mangiavacchi
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Maria Clara Caldas-Bussiere
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Mariana da Silva Mendonça
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Angelo José Burla Dias
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Álvaro Fabrício Lopes Rios
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
9
|
Ochoa E. Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health. Life (Basel) 2021; 11:728. [PMID: 34440472 PMCID: PMC8398258 DOI: 10.3390/life11080728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Assisted reproductive technologies (ART) are the treatment of choice for some infertile couples and even though these procedures are generally considered safe, children conceived by ART have shown higher reported risks of some perinatal and postnatal complications such as low birth weight, preterm birth, and childhood cancer. In addition, the frequency of some congenital imprinting disorders, like Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome, is higher than expected in the general population after ART. Experimental evidence from animal studies suggests that ART can induce stress in the embryo and influence gene expression and DNA methylation. Human epigenome studies have generally revealed an enrichment of alterations in imprinted regions in children conceived by ART, but no global methylation alterations. ART procedures occur simultaneously with the establishment and maintenance of imprinting during embryonic development, so this may underlie the apparent sensitivity of imprinted regions to ART. The impact in adulthood of imprinting alterations that occurred during early embryonic development is still unclear, but some experimental evidence in mice showed higher risk to obesity and cardiovascular disease after the restriction of some imprinted genes in early embryonic development. This supports the hypothesis that imprinting alterations in early development might induce epigenetic programming of metabolism and affect long-term health. Given the growing use of ART, it is important to determine the impact of ART in genomic imprinting and long-term health.
Collapse
Affiliation(s)
- Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
10
|
Clinical and Molecular Diagnosis of Beckwith-Wiedemann Syndrome with Single- or Multi-Locus Imprinting Disturbance. Int J Mol Sci 2021; 22:ijms22073445. [PMID: 33810554 PMCID: PMC8036922 DOI: 10.3390/ijms22073445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinically and genetically heterogeneous overgrowth disease. BWS is caused by (epi)genetic defects at the 11p15 chromosomal region, which harbors two clusters of imprinted genes, IGF2/H19 and CDKN1C/KCNQ1OT1, regulated by differential methylation of imprinting control regions, H19/IGF2:IG DMR and KCNQ1OT1:TSS DMR, respectively. A subset of BWS patients show multi-locus imprinting disturbances (MLID), with methylation defects extended to other imprinted genes in addition to the disease-specific locus. Specific (epi)genotype-phenotype correlations have been defined in order to help clinicians in the classification of patients and referring them to a timely diagnosis and a tailored follow-up. However, specific phenotypic correlations have not been identified among MLID patients, thus causing a debate on the usefulness of multi-locus testing in clinical diagnosis. Finally, the high incidence of BWS monozygotic twins with discordant phenotypes, the high frequency of BWS among babies conceived by assisted reproductive technologies, and the female prevalence among BWS-MLID cases provide new insights into the timing of imprint establishment during embryo development. In this review, we provide an overview on the clinical and molecular diagnosis of single- and multi-locus BWS in pre- and post-natal settings, and a comprehensive analysis of the literature in order to define possible (epi)genotype-phenotype correlations in MLID patients.
Collapse
|
11
|
Kopca T, Tulay P. Association of Assisted Reproductive Technology Treatments with Imprinting Disorders. Glob Med Genet 2021; 8:1-6. [PMID: 33748817 PMCID: PMC7964251 DOI: 10.1055/s-0041-1723085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Assisted reproductive technology (ART) is a broad field in infertility that encompasses different types of treatments. These revolutionary treatment methods aimed to aid infertile or subfertile couples. Treatment was expanded exponentially, as 1 to 3% of the births worldwide takes place with ART procedures. However, treatment is not flawless. Gametes and embryos are exposed to different chemicals and stress through treatment, which leads to disturbance in proper embryo development and results in prenatal and congenital anomalies. When compared with in-vivo development of gametes and preimplantation embryos in mice, in-vitro conditions during ART treatments have been suggested to disturb the gene expression levels, especially imprinted genes. Therefore, ART has been suggested to be associated with increased incidences of different imprinting disorders such as Beckwith–Wiedemann syndrome, Angelman syndrome, and Silver–Russell syndrome, as proved by different case reports and studies. This literature review aims to explain the association of imprinting disorders with this revolutionary treatment procedure.
Collapse
Affiliation(s)
- T Kopca
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Pinar Tulay
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus.,Near East University, DESAM Institute, Nicosia, Cyprus
| |
Collapse
|
12
|
Carli D, Bertola C, Cardaropoli S, Ciuffreda VP, Pieretto M, Ferrero GB, Mussa A. Prenatal features in Beckwith-Wiedemann syndrome and indications for prenatal testing. J Med Genet 2020; 58:842-849. [PMID: 33115931 DOI: 10.1136/jmedgenet-2020-107311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Most cases of Beckwith-Wiedemann spectrum (BWSp) are diagnosed after birth and few studies evaluated the prenatal phenotype; here, we investigate these aspects in a large series of patients with BWSp. METHODS Eighty-nine patients with BWSp recruited through the BWSp Internal Registry of the Pediatric Genetics Unit of the Regina Margherita Children's Hospital of Torino and through the Italian Association of Patients with BWSp. Data collection was conducted through administration of a personalised questionnaire, interview to patients' parents, review of the clinical records, including prenatal ultrasound (US) and biochemical screening tests, physical examination and review of clinical and molecular data of the patients. RESULTS Seventeen patients (19.1%) were conceived through assisted reproductive techniques (ART). Twinning occurred in nine pregnancies (three from ART). Pregnancy biochemical screening tests showed increased alpha-fetoprotein (1.52±0.79 multiples of median (MoM), p=0.001), uEstriol (1.37±0.38 MoM, p<0.001) and total human chorionic gonadotrophin (2.14±2.12 MoM, p=0.008) at 15-18 weeks (n=28). Morphology US scan revealed abdominal and head circumferences higher than normal (1.42±1.10 SD scores, p<0.001 and 0.54±0.88, p<0.001, respectively) with normal femur lengths. Sixty-four cases (71.9%%) had a various combination of US findings, including macrosomia (n=32), omphalocele (n=15), enlargement of abdominal organs (n=6), macroglossia (n=11), adrenal cysts/masses (n=2), nephroureteral anomalies (n=11), polyhydramnios (n=28), placental enlargement (n=2) or mesenchymal dysplasia (n=4). CONCLUSION We propose a clinical scoring system for prenatal molecular investigations defining major, minor and supportive criteria among the several features often observed prenatally in BWSp.
Collapse
Affiliation(s)
- Diana Carli
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Chiara Bertola
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | | | - Marta Pieretto
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Giovanni Battista Ferrero
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.,Department of Clinical and Biological Sciences, University of Torino, Torino, Piemonte, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
13
|
Huo P, Deng K, Wang L, Li M, Yao J, Le J, Lei X, Zhang S. The effect of laser-assisted hatching on the methylation and expression pattern of imprinted gene IGF2/H19 in mouse blastocysts and offspring. J Assist Reprod Genet 2020; 37:3057-3067. [PMID: 33089439 DOI: 10.1007/s10815-020-01975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study aimed to determine the effects of drilling and thinning treatment of laser-assisted hatching on the expression and methylation of imprinted gene IGF2/H19 in embryos and offspring. METHODS The prehatching blastocysts with treatment of drilling or thinning, or control prehatching blastocysts, were transplanted in surrogate uteri. The DNA methylation of IGF2/H19 imprinting control region (ICR) and the expression of IGF2 and H19 were respectively evaluated using bisulfite conversion-mediated sequencing and real-time PCR. RESULTS The drilling group showed a significant increase in the development rate of hatched blastocysts in comparison with the control and thinning group. DNA methylation level of IGF2/H19 ICR of hatched blastocysts in the thinning group was 27.33% in comparison with the 38.67% and 36% observed in the control and drilling group. The thinning treatment increased the DNA methylation level of IGF2/H19 ICR in the placenta in comparison with the control and drilling group. The drilling and thinning treatment decreased the expression level of H19 mRNA in prehatching and hatched blastocysts as well as placenta, while a significant increase in the expression level of H19 mRNA of offspring was observed in the thinning group. The thinning treatment increased the expression level of IGF2 mRNA of prehatching blastocysts and offspring and a significant decrease in placenta, while the drilling treatment resulted in a significant increase in the expression level of IGF2 mRNA of hatched blastocysts and placenta. CONCLUSION These observations suggested that drilling used for hatching of in vitro cultured mouse blastocysts may improve the production of offspring.
Collapse
Affiliation(s)
- Peng Huo
- School of Public and Health, Guilin Medical University, Guilin, 541004, China
| | - Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Lulu Wang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Man Li
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Jun Yao
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, 421001, China.
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
14
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
15
|
Siqueira LG, Silva MVG, Panetto JC, Viana JH. Consequences of assisted reproductive technologies for offspring function in cattle. Reprod Fertil Dev 2020; 32:82-97. [PMID: 32188560 DOI: 10.1071/rd19278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abnormal fetuses, neonates and adult offspring derived by assisted reproductive technologies (ART) have been reported in humans, rodents and domestic animals. The use of ART has also been associated with an increased likelihood of certain adult diseases. These abnormalities may arise as a result of an excess of or missing maternally derived molecules during invitro culture, because the invitro environment is artificial and suboptimal for embryo development. Nonetheless, the success of ART in overcoming infertility or improving livestock genetics is undeniable. Limitations of invitro embryo production (IVEP) in cattle include lower rates of the establishment and maintenance of pregnancy and an increased incidence of neonatal morbidity and mortality. Moreover, recent studies demonstrated long-term effects of IVEP in cattle, including increased postnatal mortality, altered growth and a slight reduction in the performance of adult dairy cows. This review addresses the effects of an altered preimplantation environment on embryo and fetal programming and offspring development. We discuss cellular and molecular responses of the embryo to the maternal environment, how ART may disturb programming, the possible role of epigenetic effects as a mechanism for altered phenotypes and long-term effects of ART that manifest in postnatal life.
Collapse
Affiliation(s)
- Luiz G Siqueira
- Embrapa Gado de Leite, Juiz de Fora, MG, Brazil 36038-330; and Corresponding author.
| | | | - João C Panetto
- Embrapa Gado de Leite, Juiz de Fora, MG, Brazil 36038-330
| | - João H Viana
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil 70770-917
| |
Collapse
|
16
|
Prats-Puig A, García-Retortillo S, Puig-Parnau M, Vasileva F, Font-Lladó R, Xargay-Torrent S, Carreras-Badosa G, Mas-Parés B, Bassols J, López-Bermejo A. DNA Methylation Reorganization of Skeletal Muscle-Specific Genes in Response to Gestational Obesity. Front Physiol 2020; 11:938. [PMID: 32848869 PMCID: PMC7412435 DOI: 10.3389/fphys.2020.00938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
The goals were to investigate in umbilical cord tissue if gestational obesity: (1) was associated with changes in DNA methylation of skeletal muscle-specific genes; (2) could modulate the co-methylation interactions among these genes. Additionally, we assessed the associations between DNA methylation levels and infant's variables at birth and at age 6. DNA methylation was measured in sixteen pregnant women [8-gestational obesity group; 8-control group] in umbilical cord using the Infinium Methylation EPIC Bead Chip microarray. Differentially methylated CpGs were identified with Beta Regression Models [false discovery rate (FDR) < 0.05 and an Odds Ratio > 1.5 or < 0.67]. DNA methylation interactions between CpGs of skeletal muscle-specific genes were studied using data from Pearson correlation matrices. In order to quantify the interactions within each network, the number of links was computed. This identification analysis reported 38 differential methylated CpGs within skeletal muscle-specific genes (comprising 4 categories: contractibility, structure, myokines, and myogenesis). Compared to control group, gestational obesity (1) promotes hypermethylation in highly methylated genes and hypomethylation in low methylated genes; (2) CpGs in regions close to transcription sites and with high CpG density are hypomethylated while regions distant to transcriptions sites and with low CpG density are hypermethylated; (3) diminishes the number of total interactions in the co-methylation network. Interestingly, the associations between infant's fasting glucose at age 6 and MYL6, MYH11, TNNT3, TPM2, CXCL2, and NCAM1 were still relevant after correcting for multiple testing. In conclusion, our study showed a complex interaction between gestational obesity and the epigenetic status of muscle-specific genes in umbilical cord tissue. Additionally, gestational obesity may alter the functional co-methylation connectivity of CpG within skeletal muscle-specific genes interactions, our results revealing an extensive reorganization of methylation in response to maternal overweight. Finally, changes in methylation levels of skeletal muscle specific genes may have persistent effects on the offspring of mothers with gestational obesity.
Collapse
Affiliation(s)
- Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sergi García-Retortillo
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
- Complex Systems in Sport, National Institute of Physical Education and Sport of Catalonia (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel Puig-Parnau
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Fidanka Vasileva
- Faculty of Physical Education, Sport and Health, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Raquel Font-Lladó
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Berta Mas-Parés
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Judit Bassols
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| |
Collapse
|
17
|
Fontana L, Bedeschi MF, Cagnoli GA, Costanza J, Persico N, Gangi S, Porro M, Ajmone PF, Colapietro P, Santaniello C, Crippa M, Sirchia SM, Miozzo M, Tabano S. (Epi)genetic profiling of extraembryonic and postnatal tissues from female monozygotic twins discordant for Beckwith-Wiedemann syndrome. Mol Genet Genomic Med 2020; 8:e1386. [PMID: 32627967 PMCID: PMC7507324 DOI: 10.1002/mgg3.1386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is an overgrowth disorder caused by defects at the 11p15.5 imprinted region. Many cases of female monozygotic (MZ) twins discordant for BWS have been reported, but no definitive conclusions have been drawn regarding the link between epigenetic defects, twinning process, and gender. Here, we report a comprehensive characterization and follow‐up of female MZ twins discordant for BWS. Methods Methylation pattern at 11p15.5 and multilocus methylation disturbance (MLID) profiling were performed by pyrosequencing and MassARRAY in placental/umbilical cord samples and postnatal tissues. Whole‐exome sequencing was carried out to identify MLID causative mutations. X‐chromosome inactivation (XCI) was determined by HUMARA test. Results Both twins share KCNQ1OT1:TSS‐DMR loss of methylation (LOM) and MLID in blood and the epigenetic defect remained stable in the healthy twin over time. KCNQ1OT1:TSS‐DMRLOM was nonhomogeneously distributed in placental samples and the twins showed the same severely skewed XCI pattern. No MLID‐causative mutations were identified. Conclusion This is the first report on BWS‐discordant twins with methylation analyses extended to extraembryonic tissues. The results suggest that caution is required when attempting prenatal diagnosis in similar cases. Although the causative mechanism underlying LOM remains undiscovered, the XCI pattern and mosaic LOM suggest that both twinning and LOM/MLID occurred after XCI commitment.
Collapse
Affiliation(s)
- Laura Fontana
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria F Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giulia A Cagnoli
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Jole Costanza
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Persico
- Obstetrics and Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of ClinicalSciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvana Gangi
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Matteo Porro
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paola F Ajmone
- Child and AdolescentNeuropsychiatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Carlo Santaniello
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Milena Crippa
- Medical Cytogenetics& Human Molecular Genetics, Istituto Auxologico Italiano-IRCCS, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvia Tabano
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Laboratory of Medical Genetics, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
18
|
Chi F, Zhao M, Li K, Lin AQ, Li Y, Teng X. DNA methylation status of imprinted H19 and KvDMR1 genes in human placentas after conception using assisted reproductive technology. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:854. [PMID: 32793698 PMCID: PMC7396748 DOI: 10.21037/atm-20-3364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Assisted reproductive technologies (ARTs), such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), are thought to destabilize genomic imprints. Previous studies examining the association between ART and aberrant DNA methylation have been inconclusive. METHOD The DNA methylation status of H19 and KvDMR1was compared between newborns conceived through ART and those conceived naturally to evaluate the safety of ART. Placental tissues from 6 full-term, naturally conceived pregnancies (no gestational comorbidities) and six full-term ART pregnancies (no gestational complication) were collected. Genomic DNA (gDNA) and RNA were extracted from both groups. Real-time PCR was used to analyze the mRNA expression levels of H19 and KvDMR1 in the placenta for both groups. A whole-genome DNA methylation microarray was used to examine three placentas from full-term, naturally conceived pregnancies and three placentas from full-term IVF pregnancies. RESULT The expression level of H19 in the IVF group was significantly higher than that in the natural pregnancy group, whereas the expression level of KvDMR1 was significantly lower in the ART group than in the natural pregnancy group. Also, human ART manipulation resulted in placental gDNA methylation modifications. Conclusion: Abnormal methylation patterns were detected in phenotypically normal phenotype conceived by ART, which may occur due to imprinting errors in sperm/oocyte cells or side effects of in vitro embryo culture procedures. Further investigation is necessary to determine whether imprinted gene expression and DNA methylation can be regulated through other mechanisms. KEYWORDS Assisted reproductive technology (ART); placenta; methylation; H19; KvDMR1.
Collapse
Affiliation(s)
- Fengli Chi
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mei Zhao
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kunming Li
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - An-Qi Lin
- Geno Biotech Co. Ltd., Shanghai, China
| | - Yingya Li
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoming Teng
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|
20
|
Henningsen AA, Gissler M, Rasmussen S, Opdahl S, Wennerholm UB, Spangmose AL, Tiitinen A, Bergh C, Romundstad LB, Laivuori H, Forman JL, Pinborg A, Lidegaard Ø. Imprinting disorders in children born after ART: a Nordic study from the CoNARTaS group. Hum Reprod 2020; 35:1178-1184. [DOI: 10.1093/humrep/deaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract
STUDY QUESTION:
Is the risk of imprinting disorders increased in children conceived after
SUMMARY ANSWER:
We found an adjusted odds ratio (AOR) of 2.84 [95% CI: 1.34–6.01] for Beckwith–Wiedemann syndrome in ART children, while the risk of Prader–Willi syndrome, Silver–Russell syndrome or Angelman syndrome was not increased in children conceived after ART.
WHAT IS KNOWN ALREADY:
Earlier studies, most of them small, have suggested an association between ART and imprinting disorders.
STUDY DESIGN, SIZE, DURATION:
This was a binational register-based cohort study. All children conceived by ART in Denmark (n = 45 393, born between 1994 and 2014) and in Finland (n = 29 244, born between 1990 and 2014) were identified. The full background populations born during the same time periods in the two countries were included as controls. Odds ratios of imprinting disorders in ART children compared with naturally conceived (NC) children were calculated. The median follow-up time was 8 years and 9 months for ART children and 11 years and 9 months for NC children.
PARTICIPANTS/MATERIALS, SETTING, METHODS:
From the national health registries in Denmark and Finland, we identified all children diagnosed with Prader–Willi syndrome (n = 143), Silver–Russell syndrome (n = 69), Beckwith–Wiedemann syndrome (n = 105) and Angelman syndrome (n = 72) born between 1994/1990 and 2014, respectively.
MAIN RESULTS AND THE ROLE OF CHANCE:
We identified a total of 388 children diagnosed with imprinting disorders; 16 of these were conceived after ART. The overall AOR for the four imprinting disorders in ART children compared with NC children was 1.35 [95% CI: 0.80–2.29], but since eight ART children were diagnosed with Beckwith–Wiedemann syndrome, the AOR for this specific imprinting disorder was 2.84 [95% CI: 1.34–6.01]. The absolute risk of Beckwith–Wiedemann syndrome in children conceived after ART was still low: 10.7 out of 100 000 newborns. The risks of Prader–Willi syndrome, Silver–Russell syndrome and Angelman syndrome were not increased in children conceived after ART.
LIMITATIONS, REASONS FOR CAUTION:
Imprinting disorders are rare events and our results are based on few ART children with imprinting disorders. The aetiology is complex and only partly clarified, and the clinical diagnoses are challenged by a broad phenotypic spectrum.
WIDER IMPLICATIONS OF THE FINDINGS:
In the existing studies, results on the risk of imprinting disorders in children conceived after ART are ambiguous. This study adds that the risk of imprinting disorders in ART children is very small and perhaps restricted to Beckwith–Wiedemann syndrome.
STUDY FUNDING/COMPETING INTEREST(S):
This work was supported by the Nordic Trial Alliance: a pilot project jointly funded by the Nordic Council of Ministers and NordForsk (grant number: 71450), the Nordic Federation of Obstetrics and Gynecology (grant numbers: NF13041, NF15058, NF16026 and NF17043) and the Interreg Öresund-Kattegat-Skagerak European Regional Development Fund (ReproUnion project). The authors have no conflicts of interest related to this work.
TRIAL REGISTRATION NUMBER:
N/A
Collapse
Affiliation(s)
- A A Henningsen
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - M Gissler
- Information Services Department, THL Finnish Institute for Health and Welfare, 00270 Helsinki, Finland
- Department of Neurobiology, Care Sciences and Society, Division of Family Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| | - S Rasmussen
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - S Opdahl
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - U B Wennerholm
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - A L Spangmose
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - A Tiitinen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - C Bergh
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - L B Romundstad
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Spiren Fertility Clinic, 7491 Trondheim, Norway
| | - H Laivuori
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and University of Tampere, Faculty of Medicine and Health Technology, 33520 Tampere, Finland
| | - J L Forman
- Department of Biostatistics, University of Copenhagen, 1014 Copenhagen, Denmark
| | - A Pinborg
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Ø Lidegaard
- Gynecological Clinic, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
21
|
Zandstra H, van Montfoort APA, Dumoulin JCM, Zimmermann LJI, Touwslager RNH. Increased blood pressure and impaired endothelial function after accelerated growth in IVF/ICSI children. Hum Reprod Open 2020; 2020:hoz037. [PMID: 31922033 PMCID: PMC6946007 DOI: 10.1093/hropen/hoz037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 09/05/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION What is the effect of growth velocity (height and weight) in early infancy on metabolic end-points and endothelial function in children born after ART? SUMMARY ANSWER Neonatal, infant and childhood growth is positively related to blood pressure in 9-year-old IVF/ICSI offspring, while growth in childhood was negatively associated with endothelial function. WHAT IS KNOWN ALREADY Offspring of pregnancies conceived after ART are at risk for later cardiometabolic risk factors. It is well established that early growth is related to numerous later cardiometabolic risk factors such as high blood pressure. This concept is known as the Developmental Origin of Health and Disease theory. STUDY DESIGN SIZE DURATION The relation between early growth and later cardiometabolic risk profile was studied in the MEDIUM-KIDS study, a prospective observational cohort study in children born after an IVF/ICSI treatment. In 131 children (48.1% males) at the average age of 9.4 years, cardiometabolic outcomes were assessed and growth data from birth until age 9 years were collected from child welfare centers. PARTICIPANTS/MATERIALS SETTINGS METHODS The following cardiometabolic outcomes were assessed: blood pressure, skinfolds, lipid spectrum, hair cortisone and glucose and insulin levels. Data on maximum skin perfusion after transdermal delivery of acetylcholine as a measure of endothelial function were collected.Growth charts were obtained electronically from child welfare centers, which offer free consultations and vaccinations to all Dutch children. At these centers, height and weight are recorded at predefined ages. Growth was defined as z-score difference in weight between two time points. Multivariable linear regression analysis was used to model the relation between growth and cardiometabolic outcomes. The following growth windows were -studied simultaneously in each model: 0-1 month, 1-3 months, 3-6 months, 6-11 months, 11-24 months and 2-6 years. The model was adjusted for height growth in all intervals except for 0-1 month. MAIN RESULTS AND THE ROLE OF CHANCE In multivariable linear regression analyses, multiple growth windows were positively associated with blood pressure, for example growth from 2-6 years was significantly related to systolic blood pressure: B = 4.13, P = 0.005. Maximum skin perfusion after acetylcholine was negatively associated with height-adjusted weight gain from 2 to 6 years: B = -0.09 (log scale), P = 0.03. Several growth windows (weight 1-3 months, 3-6 months, 6-11 months, 11-24 months, 2-6 years) were positively linked with total adiposity. Lipids, glucose tolerance indices and cortisone were not related to growth. LIMITATIONS REASONS FOR CAUTION This study is of modest size and of observational nature, and we did not include a control group. Therefore, we cannot assess whether the observed associations are causal. It is also not possible to analyze if our observations are specific for, or exacerbated in, the ART population. Ideally, a control group of naturally conceived siblings of IVF/ICSI children should simultaneously be studied to address this limitation and to assess the impact of the ART procedure without the influence of parental (subfertility) characteristics. WIDER IMPLICATIONS OF THE FINDINGS The results of this study contribute to our understanding of the reported increased risk for hypertension in ART offspring. We speculate that early, accelerated growth may be involved in the reported increased risk for hypertension in ART offspring, with endothelial dysfunction as a possible underlying mechanism. However, additional research into the mechanisms involved is required. STUDY FUNDING/COMPETING INTERESTS The study was financially supported by the March of Dimes, grant number #6-FY13-153. The sponsor of the study had no role in study design, data collection, data analysis, data interpretation or writing of the paper. The authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER NTR4220.
Collapse
Affiliation(s)
- H Zandstra
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A P A van Montfoort
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J C M Dumoulin
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L J I Zimmermann
- Department of Pediatrics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - R N H Touwslager
- Department of Pediatrics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
22
|
Eltan M, Arslan Ates E, Cerit K, Menevse TS, Kaygusuz SB, Eker N, Bagci P, Ergelen R, Turan S, Bereket A, Guran T. Adrenocortical carcinoma in atypical Beckwith-Wiedemann syndrome due to loss of methylation at imprinting control region 2. Pediatr Blood Cancer 2020; 67:e28042. [PMID: 31612591 DOI: 10.1002/pbc.28042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Mehmet Eltan
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Esra Arslan Ates
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Kivilcim Cerit
- Department of Paediatric Surgery, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tuba Seven Menevse
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sare Betul Kaygusuz
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nursah Eker
- Department of Paediatric Oncology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Pelin Bagci
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Rabia Ergelen
- Department of Radiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Serap Turan
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tulay Guran
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
23
|
Kindsfather AJ, Czekalski MA, Pressimone CA, Erisman MP, Mann MRW. Perturbations in imprinted methylation from assisted reproductive technologies but not advanced maternal age in mouse preimplantation embryos. Clin Epigenetics 2019; 11:162. [PMID: 31767035 PMCID: PMC6878706 DOI: 10.1186/s13148-019-0751-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Over the last several decades, the average age of first-time mothers has risen steadily. With increasing maternal age comes a decrease in fertility, which in turn has led to an increase in the use of assisted reproductive technologies by these women. Assisted reproductive technologies (ARTs), including superovulation and embryo culture, have been shown separately to alter imprinted DNA methylation maintenance in blastocysts. However, there has been little investigation on the effects of advanced maternal age, with or without ARTs, on genomic imprinting. We hypothesized that ARTs and advanced maternal age, separately and together, alter imprinted methylation in mouse preimplantation embryos. For this study, we examined imprinted methylation at three genes, Snrpn, Kcnq1ot1, and H19, which in humans are linked to ART-associated methylation errors that lead to imprinting disorders. Results Our data showed that imprinted methylation acquisition in oocytes was unaffected by increasing maternal age. Furthermore, imprinted methylation was normally acquired when advanced maternal age was combined with superovulation. Analysis of blastocyst-stage embryos revealed that imprinted methylation maintenance was also not affected by increasing maternal age. In a comparison of ARTs, we observed that the frequency of blastocysts with imprinted methylation loss was similar between the superovulation only and the embryo culture only groups, while the combination of superovulation and embryo culture resulted in a higher frequency of mouse blastocysts with maternal imprinted methylation perturbations than superovulation alone. Finally, the combination of increasing maternal age with ARTs had no additional effect on the frequency of imprinted methylation errors. Conclusion Collectively, increasing maternal age with or without superovulation had no effect of imprinted methylation acquisition at Snrpn, Kcnq1ot1, and H19 in oocytes. Furthermore, during preimplantation development, while ARTs generated perturbations in imprinted methylation maintenance in blastocysts, advanced maternal age did not increase the burden of imprinted methylation errors at Snrpn, Kcnq1ot1, and H19 when combined with ARTs. These results provide cautious optimism that advanced maternal age is not a contributing factor to imprinted methylation errors in embryos produced in the clinic. Furthermore, our data on the effects of ARTs strengthen the need to advance clinical methods to reduce imprinted methylation errors in in vitro-produced embryos.
Collapse
Affiliation(s)
- Audrey J Kindsfather
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Megan A Czekalski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Catherine A Pressimone
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Margaret P Erisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Mellissa R W Mann
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA. .,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
24
|
Miranda Furtado CL, Salomão KB, Verruma CG, Paulino Leite SB, Lopes Rios ÁF, Bialecka M, Moustakas I, Mei H, de Paz CCP, Duarte G, Chuva de Sousa Lopes SM, Ramos ES. Variation in DNA methylation in the KvDMR1 (ICR2) region in first-trimester human pregnancies. Fertil Steril 2019; 111:1186-1193. [PMID: 30922639 DOI: 10.1016/j.fertnstert.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the levels of DNA methylation in the KvDMR1 (KvLQT1 differentially methylated region 1) in embryonic and extra-embryonic tissues. DESIGN Cross-sectional study. SETTING University medical center and clinical hospital. PATIENT(S) Embryonic and/or extraembryonic tissues (umbilical cord, chorionic villus, chorion, decidua, and/or amnion) collected from 27 first-trimester pregnancies (up to 12 weeks of gestation, single embryos) from elective abortions, extravillous trophoblasts (EVTs) from the top of individual chorionic villi, and chorionic villi from 10 normal full-term placentas collected after birth. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) DNA methylation of the KvDMR1 region evaluated using quantitative analysis of DNA methylation followed by real-time polymerase chain reaction (qAMP) and bisulfite sequencing (bis-seq) analysis. RESULT(S) The results showed variability in KvDMR1 DNA methylation in different tissues from the same pregnancy. The average of DNA methylation was not different between the embryo, umbilical cord, amnion, and chorionic villi, despite the relatively low level of methylation observed in the amnion (33.50% ± 14.48%). Chorionic villi from term placentas showed a normal methylation pattern at KvDMR1 (42.60% ± 6.08%). The normal methylation pattern at KvDMR1 in chorionic villi (as well as in EVTs) from first-trimester placentas was confirmed by bis-seq. CONCLUSION(S) Our results highlight an existing heterogeneity in DNA methylation of the KvDMR1 region during first trimester and a consistent hypomethylation in the amnion in this period of gestation.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Karina Bezerra Salomão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carolina Gennari Verruma
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Álvaro Fabrício Lopes Rios
- Biotechnology Laboratory, Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro, Campos dos Goitacazes, Rio de Janeiro, Brazil
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands; Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Claudia Cristina Paro de Paz
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; Instituto de Zootecnia, Centro APTA de Bovinos de Corte, São Paulo, Brazil
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ester Silveira Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
25
|
Hattori H, Hiura H, Kitamura A, Miyauchi N, Kobayashi N, Takahashi S, Okae H, Kyono K, Kagami M, Ogata T, Arima T. Association of four imprinting disorders and ART. Clin Epigenetics 2019; 11:21. [PMID: 30732658 PMCID: PMC6367766 DOI: 10.1186/s13148-019-0623-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Human-assisted reproductive technologies (ART) are a widely accepted treatment for infertile couples. At the same time, many studies have suggested the correlation between ART and increased incidences of normally rare imprinting disorders such as Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Silver-Russell syndrome (SRS). Major methylation dynamics take place during cell development and the preimplantation stages of embryonic development. ART may prevent the proper erasure, establishment, and maintenance of DNA methylation. However, the causes and ART risk factors for these disorders are not well understood. Results A nationwide epidemiological study in Japan in 2015 in which 2777 pediatrics departments were contacted and a total of 931 patients with imprinting disorders including 117 BWS, 227 AS, 520 PWS, and 67 SRS patients, were recruited. We found 4.46- and 8.91-fold increased frequencies of BWS and SRS associated with ART, respectively. Most of these patients were conceived via in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), and showed aberrant imprinted DNA methylation. We also found that ART-conceived SRS (ART-SRS) patients had incomplete and more widespread DNA methylation variations than spontaneously conceived SRS patients, especially in sperm-specific methylated regions using reduced representation bisulfite sequencing to compare DNA methylomes. In addition, we found that the ART patients with one of three imprinting disorders, PWS, AS, and SRS, displayed additional minor phenotypes and lack of the phenotypes. The frequency of ART-conceived Prader-Willi syndrome (ART-PWS) was 3.44-fold higher than anticipated. When maternal age was 37 years or less, the rate of DNA methylation errors in ART-PWS patients was significantly increased compared with spontaneously conceived PWS patients. Conclusions We reconfirmed the association between ART and imprinting disorders. In addition, we found unique methylation patterns in ART-SRS patients, therefore, concluded that the imprinting disorders related to ART might tend to take place just after fertilization at a time when the epigenome is most vulnerable and might be affected by the techniques of manipulation used for IVF or ICSI and the culture medium of the fertilized egg. Electronic supplementary material The online version of this article (10.1186/s13148-019-0623-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiromitsu Hattori
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.,Kyono ART Clinic, 1-1-1, Honcho, Aoba-ku, Sendai, 980-0014, Japan
| | - Hitoshi Hiura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Akane Kitamura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Naoko Miyauchi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Souta Takahashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Koichi Kyono
- Kyono ART Clinic, 1-1-1, Honcho, Aoba-ku, Sendai, 980-0014, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
26
|
Diken E, Linke M, Baumgart J, Eshkind L, Strand D, Strand S, Zechner U. Superovulation Influences Methylation Reprogramming and Delays Onset of DNA Replication in Both Pronuclei of Mouse Zygotes. Cytogenet Genome Res 2018; 156:95-105. [DOI: 10.1159/000493779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 01/13/2023] Open
Abstract
Although an essential component of assisted reproductive technologies, ovarian stimulation, or superovulation, may interfere with the epigenetic reprogramming machinery during early embryogenesis and gametogenesis. To investigate the possible impact of superovulation particularly on the methylation reprogramming process directly after fertilization, we performed immunofluorescence staining of pronuclear (PN) stage embryos with antibodies against 5mC and 5hmC. PN stage embryos obtained by superovulation displayed an increased incidence of abnormal methylation and hydroxymethylation patterns in both maternal and paternal pronuclear DNA. Subsequent single-cell RT-qPCR analyses of the Tet1, Tet2, and Tet3 genes revealed no significant expression differences between PN stage embryos from spontaneously and superovulated matings that could be causative for the abnormal methylation and hydroxymethylation patterns. To analyze the possible contribution of TET-independent replication-associated demethylation mechanisms, we then determined the 5mC and 5hmC levels of PN stage mouse embryos using immunofluorescence analyses after inhibition of DNA replication with aphidicolin. Inhibition of DNA replication had no effect on abnormal methylation and hydroxymethylation patterns that still persisted in the superovulated group. Interestingly, the onset of DNA replication, which was also analyzed in these experiments, was remarkably delayed in the superovulated group. Our findings imply an impact of superovulation on both replication-dependent and -independent or yet unknown demethylation mechanisms in PN stage mouse embryos. In addition, they reveal for the first time a negative effect of superovulation on the initiation of DNA replication in PN stage mouse embryos.
Collapse
|
27
|
Fontana L, Bedeschi MF, Maitz S, Cereda A, Faré C, Motta S, Seresini A, D'Ursi P, Orro A, Pecile V, Calvello M, Selicorni A, Lalatta F, Milani D, Sirchia SM, Miozzo M, Tabano S. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics 2018; 13:897-909. [PMID: 30221575 PMCID: PMC6284780 DOI: 10.1080/15592294.2018.1514230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The identification of multilocus imprinting disturbances (MLID) appears fundamental to uncover molecular pathways underlying imprinting disorders (IDs) and to complete clinical diagnosis of patients. However, MLID genetic associated mechanisms remain largely unknown. To characterize MLID in Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, we profiled by MassARRAY the methylation of 12 imprinted differentially methylated regions (iDMRs) in 21 BWS and 7 SRS patients with chromosome 11p15.5 epimutations. MLID was identified in 50% of BWS and 29% of SRS patients as a maternal hypomethylation syndrome. By next-generation sequencing, we searched for putative MLID-causative mutations in genes involved in methylation establishment/maintenance and found two novel missense mutations possibly causative of MLID: one in NLRP2, affecting ADP binding and protein activity, and one in ZFP42, likely leading to loss of DNA binding specificity. Both variants were paternally inherited. In silico protein modelling allowed to define the functional effect of these mutations. We found that MLID is very frequent in BWS/SRS. In addition, since MLID-BWS patients in our cohort show a peculiar pattern of BWS-associated clinical signs, MLID test could be important for a comprehensive clinical assessment. Finally, we highlighted the possible involvement of ZFP42 variants in MLID development and confirmed NLRP2 as causative locus in BWS-MLID.
Collapse
Affiliation(s)
- L Fontana
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| | - M F Bedeschi
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Maitz
- c Clinical Pediatric, Genetics Unit , MBBM Foundation, San Gerardo Monza , Monza , Italy
| | - A Cereda
- d Medical Genetics Unit , Papa Giovanni XXIII Hospital , Bergamo , Italy
| | - C Faré
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Motta
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - A Seresini
- f Medical Genetics Laboratory , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milano , Italy.,g Fondazione Grigioni per il Morbo di Parkinson , Milano , Italy
| | - P D'Ursi
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - A Orro
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - V Pecile
- i Medical Genetics Division , Institute for maternal and child health IRCCS Burlo Garofolo , Trieste , Italy
| | - M Calvello
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy.,j Division of Cancer Prevention and Genetics, IEO , European Institute of Oncology IRCCS , Milano , Italy
| | - A Selicorni
- k UOC Pediatria , ASST Lariana , Como , Italy
| | - F Lalatta
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - D Milani
- l Pediatric Highly Intensive Care Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S M Sirchia
- m Medical Genetics, Department of Health Sciences , Università degli Studi di Milano , Milano , Italy
| | - M Miozzo
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy.,e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Tabano
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
28
|
Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J Assist Reprod Genet 2018; 35:943-952. [PMID: 29696471 DOI: 10.1007/s10815-018-1173-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/23/2018] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To determine whether a history of conception by assisted reproductive technology (ART) is associated with occurrence of one or more imprinting disorders of either maternal or paternal origin. METHODS We implemented a systematic review of scholarly literature followed by comprehensive meta-analysis to quantitatively synthesize data from reports relating to use of ART to occurrence of any imprinting disorder of humans, including Beckwith-Wiedemann (BWS), Angelman (AS), Prader-Willi (PWS), and Silver-Russell (SRS) syndromes, as well as transient neonatal diabetes mellitus (TNDB) and sporadic retinoblasoma (RB). RESULTS The systematic review identified 13 reports presenting unique data from 23 studies that related conception following ART to occurrence of imprinting disorders. Multiple studies of four disorder were identified, for which meta-analysis yielded the following summary estimates of associations with a history of ART: AS, summary odds ratio (sOR) = 4.7 (95% confidence interval (CI) 2.6-8.5, 4 studies); BWS, sOR = 5.8 (95% CI 3.1-11.1, 8 studies); PWS, sOR = 2.2 (95% CI 1.6-3.0, 6 studies); SRS, sOR = 11.3 (95% CI 4.5-28.5, 3 studies). Only one study reported on each of TNDB and RB. CONCLUSION Published data reveal positive associations between history of ART conception and each of four imprinting disorders. Reasons for these associations warrant further investigation.
Collapse
|
29
|
Anav M, Ferrières-Hoa A, Gala A, Fournier A, Zaragoza S, Vintejoux E, Vincens C, Hamamah S. [Birth weight and frozen embryo transfer: State of the art]. ACTA ACUST UNITED AC 2018; 46:489-496. [PMID: 29680508 DOI: 10.1016/j.gofs.2018.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 11/26/2022]
Abstract
The aim of this study was to update our acknowledgment if there is a link between assisted embryo cryopreservation and epigenetics in human? Animal studies have demonstrated epigenetics consequence and especially imprinting disorders due to in vitro culture. In human, it is important to note that after frozen embryo transfer birth weight is significantly increased by 81 to 250g. But these studies cannot identify the reasons of such difference. This review strongly suggests that embryo cryopreservation is responsible for birth weight variations but mechanisms not yet elucidated. Epigenetics is probably one of these but to date, none study is able to prove it. We have to be attentive on a possible link between assisted reproductive technology (ART) and epigenetics reprogrammation.
Collapse
Affiliation(s)
- M Anav
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - A Ferrières-Hoa
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - A Gala
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - A Fournier
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - S Zaragoza
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - E Vintejoux
- Service de gynécologie obstétrique, CHU Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - C Vincens
- Service de gynécologie obstétrique, CHU Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - S Hamamah
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France.
| |
Collapse
|
30
|
Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, Boonen SE, Cole T, Baker R, Bertoletti M, Cocchi G, Coze C, De Pellegrin M, Hussain K, Ibrahim A, Kilby MD, Krajewska-Walasek M, Kratz CP, Ladusans EJ, Lapunzina P, Le Bouc Y, Maas SM, Macdonald F, Õunap K, Peruzzi L, Rossignol S, Russo S, Shipster C, Skórka A, Tatton-Brown K, Tenorio J, Tortora C, Grønskov K, Netchine I, Hennekam RC, Prawitt D, Tümer Z, Eggermann T, Mackay DJG, Riccio A, Maher ER. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol 2018; 14:229-249. [PMID: 29377879 PMCID: PMC6022848 DOI: 10.1038/nrendo.2017.166] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia and the Department of Pediatrics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Neonatal Intensive Care Unit, Department of Gynaecology and Obstetrics, Sant'Anna Hospital, Città della Salute e della Scienza di Torino, Corso Spezia 60, 10126 Torino, Italy
| | - Alison C Foster
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jet Bliek
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Giovanni Battista Ferrero
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Susanne E Boonen
- Clinical Genetic Unit, Department of Pediatrics, Zealand University Hospital, Sygehusvej 10 4000 Roskilde, Denmark
| | - Trevor Cole
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
| | - Robert Baker
- Beckwith-Wiedemann Support Group UK, The Drum and Monkey, Wonston, Hazelbury Bryan, Sturminster Newton, Dorset DT10 2EE, UK
| | - Monica Bertoletti
- Italian Association of Beckwith-Wiedemann syndrome (AIBWS) Piazza Turati, 3, 21029, Vergiate (VA), Italy
| | - Guido Cocchi
- Alma Mater Studiorum, Bologna University, Paediatric Department, Neonatology Unit, Via Massarenti 11, 40138 Bologna BO, Italy
| | - Carole Coze
- Aix-Marseille Univ et Assistance Publique Hôpitaux de Marseille (APHM), Hôpital d'Enfants de La Timone, Service d'Hématologie-Oncologie Pédiatrique, 264 Rue Saint Pierre, 13385 Marseille, France
| | - Maurizio De Pellegrin
- Pediatric Orthopaedic Unit IRCCS Ospedale San Raffaele, Milan, Via Olgettina Milano, 60, 20132 Milano MI, Italy
| | - Khalid Hussain
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medical and Research Center, Al Gharrafa Street, Ar-Rayyan, Doha, Qatar
| | - Abdulla Ibrahim
- Department of Plastic and Reconstructive Surgery, North Bristol National Health Service (NHS) Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark D Kilby
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Fetal Medicine Centre, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Edgbaston, Birmingham, B15 2TG, UK
| | | | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1 30625, Hannover, Germany
| | - Edmund J Ladusans
- Department of Paediatric Cardiology, Royal Manchester Children's Hospital, Manchester, M13 8WL UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Yves Le Bouc
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Fiona Macdonald
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, B15 2TG UK
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, L. Puusepa 2, 51014, Tartu, Estonia
| | - Licia Peruzzi
- European Society for Paediatric Nephrology (ESPN), Inherited Kidney Disorders Working Group
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital, Turin, Italy
| | - Sylvie Rossignol
- Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Laboratoire de Génétique Médicale, INSERM U1112 Avenue Molière 67098 STRASBOURG Cedex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 4 Rue Kirschleger, 67000 Strasbourg, France
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano, Milan, Italy
| | - Caroleen Shipster
- Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, WC1N 3JH, UK
| | - Agata Skórka
- Department of Medical Genetics, The Children's Memorial Health Institute, 20, 04-730, Warsaw, Poland
- Department of Pediatrics, The Medical University of Warsaw, Zwirki i Wigury 63a, 02-091 Warszawa, Poland
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service and St George's University of London and Institute of Cancer Research, London, SW17 0RE, UK
| | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Chiara Tortora
- Regional Center for CLP, Smile House, San Paolo University Hospital, Via Antonio di Rudinì, 8, 20142, Milan, Italy
| | - Karen Grønskov
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Irène Netchine
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, Amsterdam, The Netherlands
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, D-55101, Mainz, Germany
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University of Aachen, Templergraben 55, 52062, Aachen, Germany
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrea Riccio
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Via Pietro Castellino, 111,80131, Naples, Italy
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
31
|
Kubota T. Preemptive Epigenetic Medicine Based on Fetal Programming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:85-95. [PMID: 29956197 DOI: 10.1007/978-981-10-5526-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The developmental origins of health and disease (DOHaD) refers to the concept that environmental stress during pregnancy alters the programmed fetal development and subsequently causes disorders, such as cardiovascular and metabolic diseases, in adulthood. Epigenetics is a gene regulation mechanism that does not depend on DNA sequence but on chemical modifications of DNA. Several lines of evidence suggest that environmental stress in the fetal period alters the epigenetic state of genes, leading to permanent gene dysregulation, which may be associated with disorders that emerge after birth. Such stresses include malnutrition, which may be associated with type 2 diabetes, and mental stress, which may be associated with neurodevelopmental disorders. It has also been demonstrated that environmental stress-induced epigenetic alterations can be transmitted to the next generation via disease phenotypes. However, since epigenetic modification is an internal system based on attachment and detachment of chemical residues on a DNA sequence, it is reversible and potentially treatable. In fact, recent studies demonstrated that some drugs and early interventions are effective at preventing epigenetic disorders. Therefore, preventive and preemptive medicine is possible for disorders caused by alterations in programming during fetal and early periods.
Collapse
Affiliation(s)
- Takeo Kubota
- Faculty of Child Studies, Seitoku University, Matsudo, Chiba, Japan.
| |
Collapse
|
32
|
Jahangiri M, Shahhoseini M, Movaghar B. The Effect of Vitrification on Expression and Histone Marks of Igf2 and Oct4 in Blastocysts Cultured from Two-Cell Mouse Embryos. CELL JOURNAL 2017; 19:607-613. [PMID: 29105395 PMCID: PMC5672099 DOI: 10.22074/cellj.2018.3959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/16/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Vitrification is increasingly used in assisted reproductive technology (ART) laboratories worldwide. In this study the effect of vitrification on the expression and modifications of H3 histones of Igf2 and Oct4 was investigated in blastocysts cultured from vitrified and non-vitrified two-cell embryos. MATERIALS AND METHODS In this experimental study, two-cell embryos were cultured in KSOM medium to reach the blastocyst stage. Expression of Igf2 and Oct4 and modifications of H3 histones in regulatory regions of both genes were compared with in vivo blastocysts, which comprise the control group. To gene expression evaluation, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the ChIP assay method were carried out to assess expression and histone modifications of the two genes. RESULTS The expression level of Igf2 was significantly higher in both experimental groups than the control group. In the regulatory region of Igf2, H3K9 methylation decreased whereas H3K9 acetylation increased in the experimental group compared with the control group. In contrast, the expression level of Oct4 was significantly lower in experimental groups. The Oct4 gene promoter showed a significant increase in H3K9 methylation and decrease in H3K9 acetylation (P<0.05). CONCLUSIONS According to our results, both vitrification and cultivation conditions may lead to changes in expression level and modification of histones in Igf2 and Oct4. However, these effects were the same in vitrified and non-vitrified groups. Indeed, the embryo is most affected by culture environment and in vitro culture. Therefore, vitrification may be used as a low-risk technique for embryo cryopreservation in ART.
Collapse
Affiliation(s)
- Maryam Jahangiri
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
33
|
Prats-Puig A, Carreras-Badosa G, Bassols J, Cavelier P, Magret A, Sabench C, de Zegher F, Ibáñez L, Feil R, López-Bermejo A. The placental imprinted DLK1-DIO3 domain: a new link to prenatal and postnatal growth in humans. Am J Obstet Gynecol 2017; 217:350.e1-350.e13. [PMID: 28502757 DOI: 10.1016/j.ajog.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/22/2017] [Accepted: 05/04/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND The developmentally important DLK1-DIO3 imprinted domain on human chromosome 14 is regulated by 2 differentially methylated regions, the intergenic differentially methylated region and the MEG3 differentially methylated region. OBJECTIVE The aim was to determine the natural variation in DNA methylation at these differentially methylated regions in human placentas, and to determine its link to gene expression levels at the domain. The second goal was to explore whether the domain's methylation and gene expression correlate with prenatal and early postnatal growth of the conceptus. STUDY DESIGN Using pyrosequencing, we determined methylation levels at CpG dinucleotides across the 2 regulatory differentially methylated regions in placentas from 91 healthy mothers. At birth, placentas and infants were weighed (gestational age 39 ± 1 weeks; birthweight SD score 0.1 ± 0.8) and placental biopsies were collected. RNA expression was quantitated by real-time polymerase chain reaction. Infants' weights and lengths were followed up monthly during the first year. RESULTS Methylation levels at the 2 regulatory differentially methylated regions were linked and varied considerably between placentas. MEG3 promoter differentially methylated region methylation correlated negatively with weight increase (β = -0.406, P = .001, R2 = 0.206) and length increase (β = -0.363, P = .002, R2 = 0.230) during the first postnatal year. The methylation level of the intergenic differentially methylated region correlated with DIO3 expression (β = 0.313, P = .032, R2 = 0.152). Furthermore, the expression of both DIO3 and RTL1 (both imprinted genes within the DLK1-DIO3 domain) was negatively associated with birthweight (β = -0.331, P = .002, R2 = 0.165; and β = -0.307, P = .005, R2 = 0.159, respectively). RTL1 expression, in addition, was negatively linked to birth length (β = -0.306, P = .007, R2 = 0.162). CONCLUSION Our combined findings strongly suggest that placental DNA methylation at the DLK1-DIO3 domain's intergenic differentially methylated region and MEG3 promoter differentially methylated region relates to measures of early human growth, and may thus contribute to its control.
Collapse
|
34
|
Jiang Z, Wang Y, Lin J, Xu J, Ding G, Huang H. Genetic and epigenetic risks of assisted reproduction. Best Pract Res Clin Obstet Gynaecol 2017; 44:90-104. [PMID: 28844405 DOI: 10.1016/j.bpobgyn.2017.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Abstract
Assisted reproductive technology (ART) is used primarily for infertility treatments to achieve pregnancy and involves procedures such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and cryopreservation. Moreover, preimplantation genetic diagnosis (PGD) of ART is used in couples for genetic reasons. In ART treatments, gametes and zygotes are exposed to a series of non-physiological processes and culture media. Although the majority of children born with this treatment are healthy, some concerns remain regarding the safety of this technology. Animal studies and follow-up studies of ART-borne children suggested that ART was associated with an increased incidence of genetic, physical, or developmental abnormalities, although there are also observations that contradict these findings. As IVF, ICSI, frozen-thawed embryo transfer, and PGD manipulate gametes and embryo at a time that is important for reprogramming, they may affect epigenetic stability, leading to gamete/embryo origins of adult diseases. In fact, ART offspring have been reported to have an increased risk of gamete/embryo origins of adult diseases, such as early-onset diabetes, cardiovascular disease, and so on. In this review, we will discuss evidence related to genetic, especially epigenetic, risks of assisted reproduction.
Collapse
Affiliation(s)
- Ziru Jiang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinyu Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guolian Ding
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Mussa A, Molinatto C, Cerrato F, Palumbo O, Carella M, Baldassarre G, Carli D, Peris C, Riccio A, Ferrero GB. Assisted Reproductive Techniques and Risk of Beckwith-Wiedemann Syndrome. Pediatrics 2017. [PMID: 28634246 DOI: 10.1542/peds.2016-4311] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The emerging association of assisted reproductive techniques (ART) with imprinting disorders represents a major issue in the scientific debate on infertility treatment and human procreation. We studied the prevalence of Beckwith-Wiedemann syndrome (BWS) in children conceived through ART to define the specific associated relative risk. METHODS Patients with BWS born in Piemonte, Italy, were identified and matched with the general demographic data and corresponding regional ART registry. RESULTS Between 2005 and 2014, live births in Piemonte were 379 872, including 7884 from ART. Thirty-eight patients with BWS were born, 7 from ART and 31 naturally conceived. BWS birth prevalence in the ART group was significantly higher than that of the naturally conceived group (1:1126 vs 1:12 254, P < .001). The absolute live birth risk in the ART group was 887.9 per 1 000 000 vs 83.3 per 1 000 000 in the naturally conceived group, providing a relative risk of 10.7 (95% confidence interval 4.7-24.2). During the 1997-2014 period, 67 patients were diagnosed with BWS out of 663 834 newborns (1:9908 live births). Nine out of the 67 BWS patients were conceived through ART (13.4%), and 8 were molecularly tested, with 4 having an imprinting center 2 loss of methylation, 2 with 11p15.5 paternal uniparental disomy, and 2 negative results. CONCLUSIONS ART entails a 10-fold increased risk of BWS and could be implicated in the pathogenesis of genomic events besides methylation anomalies. These data highlight the need for awareness of ART-associated health risk.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,NICU and Neonatology, Department of Gynecology and Obstetrics, S. Anna Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Cristina Molinatto
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Flavia Cerrato
- DiSTABiF, Second University of Naples and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy; and
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy; and
| | | | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | | | - Andrea Riccio
- DiSTABiF, Second University of Naples and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | | |
Collapse
|
36
|
Albuquerque EVA, Scalco RC, Jorge AAL. MANAGEMENT OF ENDOCRINE DISEASE: Diagnostic and therapeutic approach of tall stature. Eur J Endocrinol 2017; 176:R339-R353. [PMID: 28274950 DOI: 10.1530/eje-16-1054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Tall stature is defined as a height of more than 2 standard deviations (s.d.) above average for same sex and age. Tall individuals are usually referred to endocrinologists so that hormonal disorders leading to abnormal growth are excluded. However, the majority of these patients have familial tall stature or constitutional advance of growth (generally associated with obesity), both of which are diagnoses of exclusion. It is necessary to have familiarity with a large number of rarer overgrowth syndromes, especially because some of them may have severe complications such as aortic aneurysm, thromboembolism and tumor predisposition and demand-specific follow-up approaches. Additionally, endocrine disorders associated with tall stature have specific treatments and for this reason their recognition is mandatory. With this review, we intend to provide an up-to-date summary of the genetic conditions associated with overgrowth to emphasize a practical diagnostic approach of patients with tall stature and to discuss the limitations of current growth interruption treatment options.
Collapse
Affiliation(s)
- Edoarda V A Albuquerque
- Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular (LIM/25), Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Renata C Scalco
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular (LIM/42) do Hospital das Clinicas, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Disciplina de Endocrinologia da Faculdade de Ciências Médicas da Santa Casa de São PauloSão Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular (LIM/25), Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Bertoldo MJ, Locatelli Y, O'Neill C, Mermillod P. Impacts of and interactions between environmental stress and epigenetic programming during early embryo development. Reprod Fertil Dev 2017; 27:1125-36. [PMID: 24965854 DOI: 10.1071/rd14049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 01/24/2023] Open
Abstract
The processes of assisted reproductive technologies (ART) involve a variety of interventions that impact on the oocyte and embryo. Critically, these interventions cause considerable stress and coincide with important imprinting events throughout gametogenesis, fertilisation and early embryonic development. It is now accepted that the IVM and in vitro development of gametes and embryos can perturb the natural course of development to varying degrees of severity. Altered gene expression and, more recently, imprinting disorders relating to ART have become a focused area of research. Although various hypotheses have been put forward, most research has been observational, with little attempt to discover the mechanisms and periods of sensitivity during embryo development that are influenced by the culture conditions following fertilisation. The embryo possesses innate survival factor signalling pathways, yet when an embryo is placed in culture, this signalling in response to in vitro stress becomes critically important in mitigating the effects of stresses caused by the in vitro environment. It is apparent that not all embryos possess this ability to adequately adapt to the stresses experienced in vitro, most probably due to an inadequate oocyte. It is speculated that it is important that embryos use their survival signalling mechanisms to maintain normal epigenetic programming. The seeming redundancy in the function of various survival signalling pathways would support this notion. Any invasion into the natural, highly orchestrated and dynamic process of sexual reproduction could perturb the normal progression of epigenetic programming. Therefore the source of gametes and the subsequent culture conditions of gametes and embryos are critically important and require careful attention. It is the aim of this review to highlight avenues of research to elucidate the effects of stress and the relationship with epigenetic programming. The short- and long-term health and viability of human and animal embryos derived in vitro will also be discussed.
Collapse
Affiliation(s)
- Michael J Bertoldo
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Yann Locatelli
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Christopher O'Neill
- Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - Pascal Mermillod
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
38
|
Schenkel LC, Rodenhiser D, Siu V, McCready E, Ainsworth P, Sadikovic B. Constitutional Epi/Genetic Conditions: Genetic, Epigenetic, and Environmental Factors. J Pediatr Genet 2017; 6:30-41. [PMID: 28180025 PMCID: PMC5288004 DOI: 10.1055/s-0036-1593849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
There are more than 4,000 phenotypes for which the molecular basis is at least partly known. Though defects in primary DNA structure constitute a major cause of these disorders, epigenetic disruption is emerging as an important alternative mechanism in the etiology of a broad range of congenital and developmental conditions. These include epigenetic defects caused by either localized (in cis) genetic alterations or more distant (in trans) genetic events but can also include environmental effects. Emerging evidence suggests interplay between genetic and environmental factors in the epigenetic etiology of several constitutional "epi/genetic" conditions. This review summarizes our broadening understanding of how epigenetics contributes to pediatric disease by exploring different classes of epigenomic disorders. It further challenges the simplistic dogma of "DNA encodes RNA encodes protein" to best understand the spectrum of factors that can influence genetic traits in a pediatric population.
Collapse
Affiliation(s)
- Laila C. Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| | - David Rodenhiser
- Children's Health Research Institute, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
- Department of Pediatrics, Western University, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Victoria Siu
- Children's Health Research Institute, London, Ontario, Canada
- Department of Pediatrics, Western University, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
- Department of Pediatrics, Western University, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
39
|
Novel embryo selection techniques to increase embryo implantation in IVF attempts. Arch Gynecol Obstet 2016; 294:1117-1124. [PMID: 27628754 DOI: 10.1007/s00404-016-4196-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE The final success of an IVF attempt depends on several steps and decisions taken during the ovarian stimulation, the oocyte retrieval, the embryo culture and the embryo transfer. The final selection of the embryos most likely to implant is the final step in this process and the responsibility of the lab. Apart from strict morphologic criteria that historically have been used in embryo selection, additional information on genetic, metabolomic and morphokinetic characteristics of the embryo is recently combined to morphology to select the embryo most likely to produce a pregnancy. In this manuscript, we review the most recent information on the current methods used for embryo selection presenting the predictive capability of each one. METHODS A literature search was performed on Pubmed, Medline and Cochrane Database of Systematic Reviews for published studies using appropriate key words and phrases with no limits placed on time. RESULTS It seems that the combination of morphologic criteria in conjunction to embryo kinetics as documented by time-lapse technology provides the most reliable information on embryo quality. Blastocyst biopsy with subsequent comprehensive chromosome analysis allows the selection of the euploid embryos with the higher implantation potential. CONCLUSION Embryo time-lapse imaging and blastocyst biopsy combined to comprehensive chromosome analysis are the most promising technologies to increase pregnancy rates and reduce the possibility of multiple pregnancies. However, further studies will demonstrate the capability of routinely using these technologies to significantly improve IVF outcomes.
Collapse
|
40
|
Lin HY, Chuang CK, Tu RY, Fang YY, Su YN, Chen CP, Chang CY, Liu HC, Chu TH, Niu DM, Lin SP. Epigenotype, genotype, and phenotype analysis of patients in Taiwan with Beckwith-Wiedemann syndrome. Mol Genet Metab 2016; 119:8-13. [PMID: 27436784 DOI: 10.1016/j.ymgme.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/10/2016] [Accepted: 07/10/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth disorder predisposing to tumorigenesis that results from abnormal expression or function of imprinted genes of chromosome 11p15.5. METHODS Forty-seven patients in Taiwan with clinical suspicion of BWS were referred for diagnostic testing based on methylation profiling of H19-associated imprinting center (IC) 1 and KCNQ1OT1-associated IC2 using high-resolution melting analysis, multiplex ligation-dependent probe amplification, or high-resolution quantitative methylation profiling. RESULTS Twenty-eight patients received a clinical diagnosis of BWS (the presence of 3 major features or 2 major features and at least 1 minor feature), 18 had suspected BWS (the presence of at least 1 major feature), and 1 had isolated Wilms' tumor. Nineteen patients were identified with IC2 hypomethylation (including 1 with isolated Wilms' tumor), 1 with IC1 hypermethylation, 2 with paternal uniparental disomy, and 1 with CDKN1C mutation. Several clinical features were found to be statistically different (P<0.05) between the 2 groups-clinical diagnosis of BWS (n=28) or suspected BWS (n=18)-including macroglossia, pre- or postnatal gigantism, abdominal wall defect, ear creases, facial nevus flammeus, BWS score, and the molecular diagnosis rate. Molecular lesion was detected in 81% of patients with the presence of three major features, compared with 33% and 28% of those with two or one major feature, respectively. The mean BWS score was 5.6 for 19 subjects with "IC2 hypomethylation", compared with 3.8 for 2 subjects with pUPD. The BWS score of one subject with CDKN1C mutation and one with IC1 hypermethylation was 6 and 7, respectively. CONCLUSIONS The BWS score was positively correlated with the molecular diagnosis rate (P<0.01). The BWS database of epigenotype, genotype, and phenotype is expected to promote better genetic counseling and medical care of these patients.
Collapse
Affiliation(s)
- Hsiang-Yu Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Medical College, Fu-Jen Catholic University, Taipei, Taiwan; Institute of Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Ru-Yi Tu
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Ya Fang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Ning Su
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ping Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chia-Ying Chang
- Department of Pediatrics, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Hsi-Che Liu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Hung Chu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.
| |
Collapse
|
41
|
Tenorio J, Romanelli V, Martin-Trujillo A, Fernández GM, Segovia M, Perandones C, Pérez Jurado LA, Esteller M, Fraga M, Arias P, Gordo G, Dapía I, Mena R, Palomares M, Pérez de Nanclares G, Nevado J, García-Miñaur S, Santos-Simarro F, Martinez-Glez V, Vallespín E, Monk D, Lapunzina P. Clinical and molecular analyses of Beckwith-Wiedemann syndrome: Comparison between spontaneous conception and assisted reproduction techniques. Am J Med Genet A 2016; 170:2740-9. [PMID: 27480579 DOI: 10.1002/ajmg.a.37852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by an excessive prenatal and postnatal growth, macrosomia, macroglossia, and hemihyperplasia. The molecular basis of this syndrome is complex and heterogeneous, involving genes located at 11p15.5. BWS is correlated with assisted reproductive techniques. BWS in individuals born following assisted reproductive techniques has been found to occur four to nine times higher compared to children with to BWS born after spontaneous conception. Here, we report a series of 187 patients with to BWS born either after assisted reproductive techniques or conceived naturally. Eighty-eight percent of BWS patients born via assisted reproductive techniques had hypomethylation of KCNQ1OT1:TSS-DMR in comparison with 49% for patients with BWS conceived naturally. None of the patients with BWS born via assisted reproductive techniques had hypermethylation of H19/IGF2:IG-DMR, neither CDKN1 C mutations nor patUPD11. We did not find differences in the frequency of multi-locus imprinting disturbances between groups. Patients with BWS born via assisted reproductive techniques had an increased frequency of advanced bone age, congenital heart disease, and decreased frequency of earlobe anomalies but these differences may be explained by the different molecular background compared to those with BWS and spontaneous fertilization. We conclude there is a correlation of the molecular etiology of BWS with the type of conception. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Valeria Romanelli
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Alex Martin-Trujillo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - García-Moya Fernández
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Mabel Segovia
- Centro Nacional de Genética Médica, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Claudia Perandones
- Centro Nacional de Genética Médica, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Luis A Pérez Jurado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Unitat de Genética, Universitat Pompeu Fabra, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Mario Fraga
- Unidad de Epigenética del Cáncer, Instituto Universitario de Oncología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pedro Arias
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Gema Gordo
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Irene Dapía
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Rocío Mena
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - María Palomares
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | | | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Sixto García-Miñaur
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Víctor Martinez-Glez
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Elena Vallespín
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | | | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain. .,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
42
|
Kubota T. Epigenetic alterations induced by environmental stress associated with metabolic and neurodevelopmental disorders. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw017. [PMID: 29492297 PMCID: PMC5804531 DOI: 10.1093/eep/dvw017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 06/08/2023]
Abstract
Epigenetics is a gene regulation mechanism that does not depend on genomic DNA sequences but depends on chemical modification of genomic DNA and histone proteins around which DNA is wrapped. The failure of epigenetic mechanisms is known to cause various congenital disorders. It is also known that the failures of epigenetic mechanisms causes various acquired disorders since epigenetic modifications of the genome (i.e., "epigenome") are more vulnerable to environmental stress, such as malnutrition, environmental chemicals, and mental stress, than the "genome," especially during the early period of life. However, the epigenome has a reversible property since it is based on removable residues on genomic DNA. Thus, environmentally induced epigenomic alterations can be potentially restored. In fact, some medicines, especially for psychiatric diseases, are known to restore an altered epigenome, resulting in the correction of gene expression. Several lines of evidence suggest that environmentally induced epigenomic alterations are not erased completely during gametogenesis, but are transmitted to subsequent generations with disease phenotypes. In accordance with these understandings, I would like to propose the development of epigenomic-based preemptive medicine that consists of the early detection of the developmental origins of diseases using epigenomic signatures and the early intervention that take advantages of the use of epigenomic reversibility.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| |
Collapse
|
43
|
Koustas G, Sjoblom C. Minute changes to the culture environment of mouse pre-implantation embryos affect the health of the conceptus. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D, Monk D. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. Trends Genet 2016; 32:444-455. [PMID: 27235113 DOI: 10.1016/j.tig.2016.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).
Collapse
Affiliation(s)
- Marta Sanchez-Delgado
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain
| | - Andrea Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta; Institute of Genetics and Biophysics - ABT, CNR, Napoli, Italy
| | - Thomas Eggermann
- Institute of Human Genetics University Hospital Aachen, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; CIBERER, Centro deInvestigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK
| | - David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain.
| |
Collapse
|
45
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 15. Macrorchidism as the Expression of Several Congenital and Acquired Pathologies. Pediatr Dev Pathol 2016; 19:202-18. [PMID: 25105801 DOI: 10.2350/14-05-1494-pb.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | | | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
46
|
Prader-Willi Syndrome: The Disease that Opened up Epigenomic-Based Preemptive Medicine. Diseases 2016; 4:diseases4010015. [PMID: 28933395 PMCID: PMC5456307 DOI: 10.3390/diseases4010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/20/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a congenital neurodevelopmental disorder caused by loss of function of paternally expressed genes on chromosome 15 due to paternal deletion of 15q11–q13, maternal uniparental disomy for chromosome 15, or an imprinting mutation. We previously developed a DNA methylation-based PCR assay to identify each of these three genetic causes of PWS. The assay enables straightforward and rapid diagnosis during infancy and therefore allows early intervention such as nutritional management, physical therapy, or growth hormone treatment to prevent PWS patients from complications such as obesity and type 2 diabetes. It is known that various environmental factors induce epigenomic changes during the perinatal period, which increase the risk of adult diseases such as type 2 diabetes and intellectual disabilities. Therefore, a similar preemptive approach as used in PWS would also be applicable to acquired disorders and would make use of environmentally-introduced “epigenomic signatures” to aid development of early intervention strategies that take advantage of “epigenomic reversibility”.
Collapse
|
47
|
Schenkel LC, Rodenhiser DI, Ainsworth PJ, Paré G, Sadikovic B. DNA methylation analysis in constitutional disorders: Clinical implications of the epigenome. Crit Rev Clin Lab Sci 2016; 53:147-65. [PMID: 26758403 DOI: 10.3109/10408363.2015.1113496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genomic, chromosomal, and gene-specific changes in the DNA sequence underpin both phenotypic variations in populations as well as disease associations, and the application of genomic technologies for the identification of constitutional (inherited) or somatic (acquired) alterations in DNA sequence forms a cornerstone of clinical and molecular genetics. In addition to the disruption of primary DNA sequence, the modulation of DNA function by epigenetic phenomena, in particular by DNA methylation, has long been known to play a role in the regulation of gene expression and consequent pathogenesis. However, these epigenetic factors have been identified only in a handful of pediatric conditions, including imprinting disorders. Technological advances in the past decade that have revolutionized clinical genomics are now rapidly being applied to the emerging discipline of clinical epigenomics. Here, we present an overview of epigenetic mechanisms with a focus on DNA modifications, including the molecular mechanisms of DNA methylation and subtypes of DNA modifications, and we describe the classic and emerging genomic technologies that are being applied to this study. This review focuses primarily on constitutional epigenomic conditions associated with a spectrum of developmental and intellectual disabilities. Epigenomic disorders are discussed in the context of global genomic disorders, imprinting disorders, and single gene disorders. We include a section focused on integration of genetic and epigenetic mechanisms together with their effect on clinical phenotypes. Finally, we summarize emerging epigenomic technologies and their impact on diagnostic aspects of constitutional genetic and epigenetic disorders.
Collapse
Affiliation(s)
| | - David I Rodenhiser
- b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Peter J Ainsworth
- a Departments of Pathology and Laboratory Medicine .,b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Guillaume Paré
- f Department of Pathology and Molecular Medicine , and.,g Department of Clinical Epidemiology and Biostatistics , McMaster University , Hamilton , ON , Canada
| | - Bekim Sadikovic
- a Departments of Pathology and Laboratory Medicine .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| |
Collapse
|
48
|
Hoeijmakers L, Kempe H, Verschure PJ. Epigenetic imprinting during assisted reproductive technologies: The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state. Mol Reprod Dev 2016; 83:94-107. [PMID: 26660493 DOI: 10.1002/mrd.22605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| | - Hermannus Kempe
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| | - Pernette J. Verschure
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
49
|
White CR, Denomme MM, Tekpetey FR, Feyles V, Power SGA, Mann MRW. High Frequency of Imprinted Methylation Errors in Human Preimplantation Embryos. Sci Rep 2015; 5:17311. [PMID: 26626153 PMCID: PMC4667293 DOI: 10.1038/srep17311] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
Assisted reproductive technologies (ARTs) represent the best chance for infertile couples to conceive, although increased risks for morbidities exist, including imprinting disorders. This increased risk could arise from ARTs disrupting genomic imprints during gametogenesis or preimplantation. The few studies examining ART effects on genomic imprinting primarily assessed poor quality human embryos. Here, we examined day 3 and blastocyst stage, good to high quality, donated human embryos for imprinted SNRPN, KCNQ1OT1 and H19 methylation. Seventy-six percent day 3 embryos and 50% blastocysts exhibited perturbed imprinted methylation, demonstrating that extended culture did not pose greater risk for imprinting errors than short culture. Comparison of embryos with normal and abnormal methylation didn’t reveal any confounding factors. Notably, two embryos from male factor infertility patients using donor sperm harboured aberrant methylation, suggesting errors in these embryos cannot be explained by infertility alone. Overall, these results indicate that ART human preimplantation embryos possess a high frequency of imprinted methylation errors.
Collapse
Affiliation(s)
- Carlee R White
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| | - Michelle M Denomme
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| | - Francis R Tekpetey
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,The Fertility Clinic, London Health Sciences Centre, London, Ontario, Canada
| | - Valter Feyles
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,The Fertility Clinic, London Health Sciences Centre, London, Ontario, Canada
| | - Stephen G A Power
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,The Fertility Clinic, London Health Sciences Centre, London, Ontario, Canada
| | - Mellissa R W Mann
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
50
|
Kitamura A, Miyauchi N, Hamada H, Hiura H, Chiba H, Okae H, Sato A, John RM, Arima T. Epigenetic alterations in sperm associated with male infertility. Congenit Anom (Kyoto) 2015. [PMID: 26212350 DOI: 10.1111/cga.12113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The most common form of male infertility is a low sperm count, known as oligozoospermia. Studies suggest that oligozoospermia is associated with epigenetic alterations. Epigenetic alterations in sperm, which may arise due to the exposure of gametes to environmental factors or those that pre-exist in the sperm of infertile individuals, may contribute to the increased incidence of normally rare imprinting disorders in babies conceived after assisted reproductive technology using the sperm of infertile men. Genomic imprinting is an important developmental process whereby the allelic activity of certain genes is regulated by DNA methylation established during gametogenesis. The aberrant expression of several imprinted genes has been linked to various diseases, malignant tumors, lifestyle and mental disorders in humans. Understanding how infertility and environmental factors such as reproductive toxicants, certain foods, and drug exposures during gametogenesis contribute to the origins of these disorders via defects in sperm is of paramount importance. In this review, we discuss the association of epigenetic alterations with abnormal spermatogenesis and the evidence that epigenetic processes, including those required for genomic imprinting, may be sensitive to environmental exposures during gametogenesis, fertilization and early embryonic development. In addition, we review imprinting diseases and their relationships with environmental factors. While the plasticity of epigenetic marks may make these more susceptible to modification by the environment, this also suggests that aberrant epigenetic marks may be reversible. A greater understanding of this process and the function of epidrugs may lead to the development of new treatment methods for many adult diseases in the future.
Collapse
Affiliation(s)
- Akane Kitamura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoko Miyauchi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirotaka Hamada
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Hiura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hatsune Chiba
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Sato
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|