1
|
Zhou X, Sun Y, Feng W, Wan W, Cui L. Long-term effects of IVF on offspring kidneys in mice: observations from adolescence to adulthood. Reprod Biomed Online 2024; 51:104501. [PMID: 40367636 DOI: 10.1016/j.rbmo.2024.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 05/16/2025]
Abstract
RESEARCH QUESTION What is the effect of IVF on the long-term health of offspring kidneys? DESIGN An IVF mouse model was established and renal structure, renal function and cortical oxidative stress were observed from the age of 2 months to ascertain any disparities compared with naturally conceived offspring. Observation continued until the mice reached 5 months of age. RESULTS No significant difference was found in the body weight of IVF and naturally conceived offspring mice aged 2-5 months. The renal-to-body weight ratio of the IVF offspring was higher than that of the naturally conceived offspring at 2 months (P = 0.02) and 3 months (P = 0.01), but this difference disappeared in offspring aged 4-5 months. At 5 months of age IVF offspring had lower urine creatinine concentrations than naturally conceived offspring (P = 0.03). Moreover, the expression of Ace2 was observed to decrease in the kidneys of 4- to 5-month-old IVF mice (4 months, P = 0.003; 5 months, P = 0.04), and the expression of Agtr1a was higher in 5-month-old IVF mice compared with naturally conceived mice (P = 0.002). The malondialdehyde concentration in 5-month-old IVF offspring was higher than in naturally conceived offspring (P = 0.03). CONCLUSIONS This study indicated that the microvascular thickness in the kidneys of IVF offspring remains unchanged, but minor alterations in kidney function, renin-angiotensin system gene expression and renal cortical oxidative stress were evident by 5 months of age.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yifei Sun
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Wanbing Feng
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Wenjing Wan
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Linlin Cui
- Center for Reproductive Medicine, the Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Moradi A, Ghaffari Novin M, Bayat M. A Comprehensive Systematic Review of the Effects of Photobiomodulation Therapy in Different Light Wavelength Ranges (Blue, Green, Red, and Near-Infrared) on Sperm Cell Characteristics in Vitro and in Vivo. Reprod Sci 2024; 31:3275-3302. [PMID: 39095677 DOI: 10.1007/s43032-024-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Around 7% of the male population in the world are entangle with considerable situation which is known as male infertility. Photobiomodulation therapy (PBMT) is the application of low-level laser radiation, that recently used to increase or promote the various cell functions including, proliferation, differentiation, ATP production, gene expressions, regulation of reactive oxygen spices (ROS), and also boost the tissue healing and reduction of inflammation. This systematic review's main idea is a comprehensive appraisal of the literatures on subjects of PBMT consequences in four light ranges wavelength (blue, green, red, near-infrared (NIR)) on sperm cell characteristics, in vitro and in vivo. In this study, PubMed, Google Scholar, and Scopus databases were used for abstracts and full-text scientific papers published from 2003-2023 that reported the application of PBM on sperm cells. Criteria's for inclusion and exclusion to review were applied. Finally, the studies that matched with our goals were included, classified, and reported in detail. Also, searched studies were subdivided into the effects of four ranges of light irradiation, including the blue light range (400-500 nm), green light range (500-600 nm), red light range (600-780 nm), and NIR light range (780-3000 nm) of laser irradiation on human or animal sperm cells, in situations of in vitro or in vivo. Searches with our keywords results in 137 papers. After primary analysis, some articles were excluded because they were review articles or incomplete and unrelated studies. Finally, we use the 63 articles for this systematic review. Our category tables were based on the light range of irradiation, source of sperm cells (human or animal cells) and being in vitro or in vivo. Six% of publications reported the effects of blue, 10% green, 53% red and 31% NIR, light on sperm cell. In general, most of these studies showed that PBMT exerted a positive effect on the sperm cell motility. The various effects of PBMT in different wavelength ranges, as mentioned in this review, provide more insights for its potential applications in improving sperm characteristics. PBMT as a treatment method has significant effectiveness for treatment of different medical problems. Due to the lack of reporting data in this field, there is a need for future studies to assessment the biochemical and molecular effects of PBMT on sperm cells for the possible application of this treatment to the human sperm cells before the ART process.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, USA.
- Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
3
|
Moshfeghi E, Yilmazer Y, Dogan S, Aydin T, Findikli N, Ozbek T. Investigation of the effect of serotonin-activated semen washing medium on sperm motility at the molecular level: a pilot study. ZYGOTE 2024; 32:396-404. [PMID: 39523888 DOI: 10.1017/s0967199424000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In Assisted Reproductive Technologies (ART), efficient sperm preparation is vital for successful fertilization, with washing media enhancing the process. This pilot study examines the molecular-level impact of a new serotonin-containing sperm-washing medium (Prototype) on sperm motility and ROS metabolism, comparing it with commercially available media (Origio and Irvine). Semen samples from thirty-one individuals underwent preparation using the swim-up method post-semen analysis. Each sample was separately washed with the Prototype, Origio and Irvine mediums. ROS formation was determined through flow cytometric, and AT2R and PRDX2 protein levels, associated with sperm motility, were assessed via Western blot. Statistical evaluation compared the findings among the three outlined media. Significant differences were found among three washing media in terms of total and progressive motility. The Prototype medium showed the highest increase in both total (66%) and progressive motility (59%), while the control group exhibited the lowest increases (41% and 27.7%, respectively). Regarding ROS levels, the prototype (11.5%) and Origio (10.7%) groups demonstrated a notable decrease, contrasting with Irvine (25.8%). Molecular assessment revealed a significant elevation in AT2R protein levels in the prototype medium (59%), compared to other media. Additionally, an increase in PRDX2 protein levels was observed in the prototype medium, although this didn't reach statistical significance. Serotonin-activated washing media for sperm preparation can be a suitable choice for selecting high-quality sperm in ART. A broader molecular analysis with a larger sample size is required to explore the mechanisms and effectiveness of using a serotonin-containing sperm-washing medium in routine ART.
Collapse
Affiliation(s)
- Elnaz Moshfeghi
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Yasemin Yilmazer
- Department of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Sinem Dogan
- Department of Gynecology, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Turgut Aydin
- Department of Gynecology, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | | | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Raspa M, Paoletti R, Scavizzi F. Ascorbic acid 2-glucoside improves survival, quality, and fertility of frozen-thawed C57Bl/6J and C57Bl/6N mouse spermatozoa. Andrology 2024. [PMID: 39330618 DOI: 10.1111/andr.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Ascorbic acid 2-glucoside (AA2G) is a stabilized form of ascorbic acid and a potent antioxidant. Ascorbic acid is present in the testes and epididymis and helps maintain the physiological integrity of reproductive organs. Its properties have been utilized to protect spermatozoa of different species from oxidative stress. MATERIALS AND METHODS Spermatozoa of C57Bl/6J and C57Bl/6N strains were frozen and analyzed, after thawing, by supplementing the capacitation medium with AA2G, both in the presence and absence of methyl-β-cyclodextrin (MBCD). The effect of treatment was evaluated by SCA System (Microptic) analyzing the velocity, vitality, morphology, and the DNA fragmentation. We also examined sperm capacitation (CTC), acrosome reaction (Coomassie Brillant Blue), and fertility (in vitro fertilization) of treated spermatozoa. RESULTS AA2G improved sperm quality and fertility particularly in association with MBCD. We observed a significant increase of sperm motility, velocity, and vitality associated with an enhanced capacitation and acrosome reaction. These improvements resulted in a marked increase in in vitro fertilization success. Embryos obtained were cultured and reached normally the blastocyst stage. DISCUSSION This study aimed to determine if AA2G could safeguard mouse spermatozoa during cryopreservation. We found a protective effect of AA2G that increased sperm survivability resulting in higher fertilization rate. CONCLUSION This newly improved protocol shows potential for reanimating cryopreserved GEMMs stored in mouse biobanks and international repositories, such as the European Mouse Mutant Archive (EMMA). This can serve as a pivotal tool in fulfilling the 3Rs mission (replacement, reduction, and refinement), promoting ethical and humane research practices.
Collapse
Affiliation(s)
- Marcello Raspa
- National Research Council (IBBC), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Scalo, Monterotondo, Italy
| | | | - Ferdinando Scavizzi
- National Research Council (IBBC), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Scalo, Monterotondo, Italy
| |
Collapse
|
5
|
Vahedi Raad M, Firouzabadi AM, Tofighi Niaki M, Henkel R, Fesahat F. The impact of mitochondrial impairments on sperm function and male fertility: a systematic review. Reprod Biol Endocrinol 2024; 22:83. [PMID: 39020374 PMCID: PMC11253428 DOI: 10.1186/s12958-024-01252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.
Collapse
Affiliation(s)
- Minoo Vahedi Raad
- Department of Biology & Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology, School of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Tofighi Niaki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ralf Henkel
- LogixX Pharma, Theale, Berkshire, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Ahmed R, Hamdy O, Elattar S, Soliman AA. Improving human sperm motility via red and near-infrared laser irradiation: in-vitro study. Photochem Photobiol Sci 2024; 23:377-385. [PMID: 38280133 DOI: 10.1007/s43630-023-00525-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/16/2023] [Indexed: 01/29/2024]
Abstract
Improved sperm motility is necessary for successful sperm passage through the female genital system, efficacious fertilization, and a greater probability of pregnancy. By stimulating the mitochondrial respiratory chain, low-level laser photobiomodulation has been shown to increase sperm motility and velocity. The respiratory chain in mitochondria is the primary site of action for cytochrome c oxidase because it can absorb light in the visible and infrared ranges. The present study aimed to investigate the effects of red laser 650 nm, near infrared laser (NIR) 980 nm, and combination of both on human spermatozoa motility and DNA integrity at different doses. An in-vitro controlled trial was performed in Al Zahraa university hospital laboratory using thirty fresh human semen specimens. Samples were exposed to red laser 650 nm, near infrared laser (NIR) 980 nm, and combination of both for various irradiation times. Sperm motility for the test and control aliquots was assessed as recommended in the manual of WHO-2021. Sperm chromatin integrity was evaluated using the Sperm Chromatin Structure Assay. Results revealed almost 70%, 80% and 100% increase in the total motility after 3 min of the 650-nm, 980-nm and the combined laser irradiation, respectively. Additionally, the Sperm Chromatin Dispersion assay was carried out on sperm heads utilizing human sperm DNA fragmentation, demonstrating that none of the three laser types had any discernible effects.
Collapse
Affiliation(s)
- Rasha Ahmed
- Urology Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Omnia Hamdy
- Engineering Applications of Lasers Department, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt.
| | - Shaimaa Elattar
- Clinical Pathology Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Amany Ahmed Soliman
- Urology Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Xue Y, Xiong Y, Cheng X, Li K. Applications of laser technology in the manipulation of human spermatozoa. Reprod Biol Endocrinol 2023; 21:93. [PMID: 37865766 PMCID: PMC10589983 DOI: 10.1186/s12958-023-01148-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
The application of laser technology in the field of assisted reproductive technology (ART) has experienced rapid growth over the past decades owing to revolutionary techniques such as intracytoplasmic sperm injection (ICSI), preimplantation genetic testing (PGT), and in vitro manipulation of gametes and embryos. For male gametes, in vitro manipulation techniques include spermatozoa selection, sorting, immobilization, and quality assessment. A number of studies have been conducted to investigate the application of different laser technologies in the manipulation of human spermatozoa. However, there is a lack of a unified understanding of laser application in the in vitro manipulation of sperm and safety considerations in ART and, subsequently, the inability to make clear and accurate decisions on the clinical value of these laser technologies. This review summarizes the advancements and improvements of laser technologies in the manipulation of human spermatozoa, such as photobiomodulation therapy, laser trap systems for sperm analysis and sorting, laser-assisted selection of immotile sperm and laser-assisted immobilization of sperm prior to ICSI. The safety of those technologies used in ART is also discussed. This review will provide helpful and comprehensive insight into the applications of laser technology in the manipulation of human spermatozoa.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaohong Cheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
8
|
Nir U, Grinshtain E, Breitbart H. Fer and FerT: A New Regulatory Link between Sperm and Cancer Cells. Int J Mol Sci 2023; 24:ijms24065256. [PMID: 36982326 PMCID: PMC10049441 DOI: 10.3390/ijms24065256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Fer and its sperm and cancer specific variant, FerT, are non-receptor tyrosine kinases which play roles in cancer progression and metastasis. Recent studies have shed light on the regulatory role of these kinases in ensuring proper sperm function. Comparison of the regulatory cascades in which Fer and FerT are engaged in sperm and cancer cells presents an interesting picture, in which similar regulatory interactions of these enzymes are integrated in a similar or different regulatory context in the two cell types. These diverse compositions extend from the involvement of Fer in modulation of actin cytoskeleton integrity and function, to the unique regulatory interactions of Fer with PARP-1 and the PP1 phosphatase. Furthermore, recent findings link the metabolic regulatory roles of Fer and FerT in sperm and cancer cells. In the current review, we discuss the above detailed aspects, which portray Fer and FerT as new regulatory links between sperm and malignant cells. This perspective view can endow us with new analytical and research tools that will deepen our understanding of the regulatory trajectories and networks that govern these two multi-layered systems.
Collapse
|
9
|
Liang J, Wu T, Wang T, Ma Y, Li Y, Zhao S, Guo Y, Liu B. Moringa oleifera leaf ethanolic extract benefits cashmere goat semen quality via improving rumen microbiota and metabolome. Front Vet Sci 2023; 10:1049093. [PMID: 36777668 PMCID: PMC9911920 DOI: 10.3389/fvets.2023.1049093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Background Artificial insemination (AI) is an effective reproductive technique to improve the performance of cashmere goats and prevent the spread of diseases, and the quality of the semen determines the success of AI. The potential of Moringa oleifera leaf powder (MOLP) and Moringa oleifera leaf ethanolic extract (MOLE) to improve semen quality has been reported, but the underlying mechanisms remain unclear. For the purpose, 18 mature male cashmere goats were randomly assigned into three groups: the control (CON), MOLP, and MOLE groups. The CON group received distilled water orally; the MOLP group was orally treated with 200 mg/kg body weight (BW) MOLP; and the MOLE group was orally treated with 40 mg/kg BW MOLE. Results Results showed that MOLE contained long-chain fatty acids and flavonoids. Treatment with MOLP and MOLE increased the activities of the serum catalase, superoxide dismutase, and glutathione peroxidase (P < 0.05), enhanced the total antioxidant capacity (P < 0.05), and reduced the serum malondialdehyde level (P < 0.05). At the same time, MOLE increased the contents of serum gonadotropin releasing hormone and testosterone (P < 0.05). Moreover, MOLE significantly increased sperm concentration, motility, and viability (P < 0.05). Meanwhile, MOLE raised the Chao1 index (P < 0.05) and altered the composition of the rumen microbiota; it also raised the relative abundance of Treponema (P < 0.05) and Fibrobacter (P < 0.05) and reduced the relative abundance of Prevotella (P < 0.1). Correlation analysis revealed the genus Prevotella was significantly negatively correlated with sperm concentration, as well as sperm motility and viability. Furthermore, MOLE significantly increased the rumen levels of the steroid hormones testosterone and dehydroepiandrosterone (P < 0.05), as well as the polyunsaturated fatty acids (PUFAs) alpha-Linolenic acid, gamma-Linolenic acid, docosapentaenoic acid, and 9-S-Hydroperoxylinoleicacid (P < 0.05). Conclusions Oral MOLE supplementation can improve semen quality by increasing the antioxidant capacity and altering the rumen microbiota and metabolites of cashmere goats. Moreover, the MOLP supplementation could enhance the antioxidant capacity of cashmere goats.
Collapse
Affiliation(s)
- Jianyong Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Tiecheng Wu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China,Engineering Laboratory of Genetic Resources Evaluation and Breeding Technology of Mutton Sheep in Inner Mongolia Autonomous Region, Hohhot, China
| | - Tao Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China,Alxa White Cashmere Goat Breeding Farm, Alxa League, China
| | - Yuejun Ma
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yurong Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,*Correspondence: Yanli Guo ✉
| | - Bin Liu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China,Bin Liu ✉
| |
Collapse
|
10
|
Poorhassan M, Gholaminejhad M, Ahmadi H, Mehboudi L, Chahar Kameh M, Pirani M, Hassanzadeh G. Preclinical and Clinical Applications of Photobiomodulation Therapy in Sperm Motility: A Narrative Review. J Lasers Med Sci 2022; 13:e75. [PMID: 37041786 PMCID: PMC10082901 DOI: 10.34172/jlms.2022.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/20/2022] [Indexed: 01/27/2023]
Abstract
About 50% of infertility problems are related to male factors and reduced sperm motility. The important factor that affects the structure and function of sperm is reactive oxygen species (ROS), and over-concentration of ROS reduces the quality and motility of sperm. Photobiomodulation therapy (PBMT) using red to near-infrared (NIR) light is useful in oxidative stress restoration. It plays a therapeutic role in disorders such as asthenospermia, oligospermia cases, and cryopreserved sperm. It also enhances the metabolic capacity of sperm and increases the low-level and non-harmful intracellular content of Ca2+, nitric oxide (NO), and ROS in the stressed cells. Likewise, it modulates survival intracellular pathways and maintains the motility, viability, DNA, and acrosome integrity of sperm. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of semen PBMT.
Collapse
Affiliation(s)
- Mahnaz Poorhassan
- Artificial Intelligence Department, Smart University of Medical Sciences, Tehran, Iran
| | - Morteza Gholaminejhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mehboudi
- Department of Anesthesia, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mahdis Chahar Kameh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Pirani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Aitken RJ, Bromfield EG, Gibb Z. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The impact of oxidative stress on reproduction: a focus on gametogenesis and fertilization. Reproduction 2022; 164:F79-F94. [PMID: 35929832 DOI: 10.1530/rep-22-0126] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
In brief Many aspects of the reproductive process are impacted by oxidative stress. This article summarizes the chemical nature of reactive oxygen species and their role in both the physiological regulation of reproductive processes and the pathophysiology of infertility. Abstract This article lays out the fundamental principles of oxidative stress. It describes the nature of reactive oxygen species (ROS), the way in which these potentially toxic metabolites interact with cells and how they impact both cellular function and genetic integrity. The mechanisms by which ROS generation is enhanced to the point that the cells' antioxidant defence mechanisms are overwhelmed are also reviewed taking examples from both the male and female reproductive system, with a focus on gametogenesis and fertilization. The important role of external factors in exacerbating oxidative stress and impairing reproductive competence is also examined in terms of their ability to disrupt the physiological redox regulation of reproductive processes. Developing diagnostic and therapeutic strategies to cope with oxidative stress within the reproductive system will depend on the development of a deeper understanding of the nature, source, magnitude, and location of such stress in order to fashion personalized treatments that meet a given patient's clinical needs.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
12
|
Bicarbonate-Triggered In Vitro Capacitation of Boar Spermatozoa Conveys an Increased Relative Abundance of the Canonical Transient Receptor Potential Cation (TRPC) Channels 3, 4, 6 and 7 and of CatSper-γ Subunit mRNA Transcripts. Animals (Basel) 2022; 12:ani12081012. [PMID: 35454259 PMCID: PMC9031844 DOI: 10.3390/ani12081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The detection of sub-fertile boars has been a difficult task, and despite their prevalence being low, its impact is very significant because it implies economic drawbacks for artificial insemination (AI) centers and farms. Unfortunately, some crucial reproductive processes fall beyond the routine analysis performed in the porcine model, such as sperm capacitation, which is a necessary event for fertilization. A synergistic action of bicarbonate (HCO3−) with calcium (Ca2+) is needed to achieve capacitation. The transport of Ca2+ is mediated by CatSper channels and Canonical Transient Potential Channels (TRPC). We quantified mRNA transcripts of different subunits of CatSper (β, γ and δ) and TRPC (1, 3, 4, 6 and 7) before and after in vitro capacitation by HCO3− ions. Our results showed that in vitro capacitation using HCO3− increases the relative abundance of mRNA transcripts of almost all subunits of Ca2+ channels, except CatSper-δ and TRPC1, which were significantly reduced. More studies are needed to elucidate the specific roles of the TRPC channels at a physiological and functional level. Abstract Sperm capacitation is a stepwise complex biochemical process towards fertilization. It includes a crucial early calcium (Ca2+) transport mediated by CatSper channels and Canonical Transient Potential Channels (TRPC). We studied the relative abundance of mRNA transcripts changes of the CatSper β, γ and δ subunits and TRPC-channels 1, 3, 4, 6 and 7 in pig spermatozoa, after triggering in vitro capacitation by bicarbonate ions at levels present in vivo at the fertilization site. For this purpose, we analyzedfive5 ejaculate pools (from three fertile adult boars) before (control-fresh samples) and after in vitro exposure to capacitation conditions (37 mM NaHCO3, 2.25 mM CaCl2, 2 mM caffeine, 0.5% bovine serum albumin and 310 mM lactose) at 38 °C, 5% CO2 for 30 min. In vitro capacitation using bicarbonate elicits an increase in the relative abundance of mRNA transcripts of almost all studied Ca2+ channels, except CatSper-δ and TRPC1 (significantly reduced). These findings open new avenues of research to identify the specific role of each channel in boar sperm capacitation and elucidate the physiological meaning of the changes on sperm mRNA cargo.
Collapse
|
13
|
Aitken RJ, Drevet JR, Moazamian A, Gharagozloo P. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms. Antioxidants (Basel) 2022; 11:antiox11020306. [PMID: 35204189 PMCID: PMC8868102 DOI: 10.3390/antiox11020306] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS) play a critical role in defining the functional competence of human spermatozoa. When generated in moderate amounts, ROS promote sperm capacitation by facilitating cholesterol efflux from the plasma membrane, enhancing cAMP generation, inducing cytoplasmic alkalinization, increasing intracellular calcium levels, and stimulating the protein phosphorylation events that drive the attainment of a capacitated state. However, when ROS generation is excessive and/or the antioxidant defences of the reproductive system are compromised, a state of oxidative stress may be induced that disrupts the fertilizing capacity of the spermatozoa and the structural integrity of their DNA. This article focusses on the sources of ROS within this system and examines the circumstances under which the adequacy of antioxidant protection might become a limiting factor. Seminal leukocyte contamination can contribute to oxidative stress in the ejaculate while, in the germ line, the dysregulation of electron transport in the sperm mitochondria, elevated NADPH oxidase activity, or the excessive stimulation of amino acid oxidase action are all potential contributors to oxidative stress. A knowledge of the mechanisms responsible for creating such stress within the human ejaculate is essential in order to develop better antioxidant strategies that avoid the unintentional creation of its reductive counterpart.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: ; Tel.: +61-2-4921-6851
| | - Joël R. Drevet
- GReD Institute, INSERM U1103-CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC Building, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (J.R.D.); (A.M.)
| | - Aron Moazamian
- GReD Institute, INSERM U1103-CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC Building, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (J.R.D.); (A.M.)
- CellOxess LLC, Ewing, NJ 08628, USA;
| | | |
Collapse
|
14
|
|
15
|
Raad G, Bakos HW, Bazzi M, Mourad Y, Fakih F, Shayya S, Mchantaf L, Fakih C. Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress, and mitochondrial activity: A prospective study. Andrology 2021; 9:1549-1559. [PMID: 33999521 DOI: 10.1111/andr.13038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Suboptimal human semen handling in vitro may induce sperm damage. However, the effects of semen swim-up, pellet swim-up, density gradient, and density gradient followed by SU on sperm motility, morphology, DNA fragmentation, acrosome reaction, intracellular reactive oxygen species, and mitochondrial activity were not fully understood. OBJECTIVES To study the impact of four sperm preparation techniques on sperm functional parameters. MATERIALS AND METHODS This study was conducted on 60 infertile men with a minimum sperm concentration of 20 × 106 /ml and total sperm motility of ≥30%. Each raw semen sample was divided into four aliquots. Each aliquot was prepared by one of the tested techniques. Various sperm characteristics were assessed before and after sperm preparation. RESULTS Density gradient and density gradient followed by SU resulted in significantly higher DNA fragmentation percentages compared with semen swim-up (p < 0.001 and p < 0.001, respectively) and pellet swim-up (p < 0.001 and p < 0.001, respectively). Significantly higher percentages of spermatozoa with intact acrosome were detected in semen swim-up (p < 0.001) and pellet swim-up (p < 0.001) compared with raw semen. The percentage of reactive oxygen species-positive spermatozoa was significantly higher after pellet swim-up (p < 0.001), density gradient (p < 0.001), and density gradient followed by SU (p < 0.001) than raw semen. In addition, the percentages of 100% stained midpiece (active mitochondria) were significantly higher in semen swim-up (p < 0.001) and pellet swim-up (p < 0.001) compared with raw semen. DISCUSSION AND CONCLUSION To the best of our knowledge, this is the first report comparing the impact of these techniques on various sperm functional parameters. Semen swim-up was more effective than density gradient in selecting better spermatozoa in terms of DNA integrity, reactive oxygen species levels, acrosome status, and mitochondrial activity. Randomized clinical trials comparing these four techniques are required to test their impact on embryo development and pregnancy outcomes.
Collapse
Affiliation(s)
- Georges Raad
- Al Hadi Laboratory and Medical Centre, Beirut, Lebanon.,Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
| | - Hassan W Bakos
- Monash IVF Group, Sydney, NSW, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Marwa Bazzi
- Al Hadi Laboratory and Medical Centre, Beirut, Lebanon
| | - Youmna Mourad
- Al Hadi Laboratory and Medical Centre, Beirut, Lebanon
| | - Fadi Fakih
- Al Hadi Laboratory and Medical Centre, Beirut, Lebanon
| | - Salman Shayya
- American University of Science and Technology, Ashrafieh, Lebanon
| | | | - Chadi Fakih
- Al Hadi Laboratory and Medical Centre, Beirut, Lebanon.,Lebanese University, Hadath, Lebanon
| |
Collapse
|
16
|
Protective Effect of Chlorogenic Acid on Human Sperm: In Vitro Studies and Frozen-Thawed Protocol. Antioxidants (Basel) 2021; 10:antiox10050744. [PMID: 34067222 PMCID: PMC8150895 DOI: 10.3390/antiox10050744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/31/2023] Open
Abstract
The study evaluated the chlorogenic acid (CGA) antioxidant potential on oxidative stress (OS) induced in vitro in human spermatozoa and during cryopreservation procedure. Swim-up selected spermatozoa were treated with 100 µM CGA, 100 µM H2O2 to induce lipid peroxidation (LPO), and with both compounds and the effects on mitochondrial membrane potential (MMP) by JC-1, DNA integrity by acridine orange (AO), and sperm ultrastructure by transmission electron microscopy (TEM), were evaluated. CGA antioxidant activity was assessed by measuring malondialdehyde (MDA) and F2-isoprostanes (F2-IsoPs) in the media. The CGA protective activity and the immunolocalization of Phospho-AMPKα (Thr172) were explored in frozen-thawed sperm. CGA was not toxic for sperm motility, DNA integrity and MMP. The increase in MDA (p < 0.05) and F2-IsoPs (p < 0.001), DNA damage (p < 0.01) and low MMP (p < 0.01) levels after H2O2 treatment were reduced in presence of CGA as well as the percentage of broken plasma membranes (p < 0.01) and altered acrosomes (p < 0.01) detected by TEM. Treated frozen-thawed spermatozoa showed increased sperm motility (p < 0.01), DNA integrity (p < 0.01), MMP (p < 0.01), reduced MDA (p < 0.01) and increased sperm percentage with Phospho-AMPKα labelling in the head (p < 0.001). CGA can be used to supplement culture media during semen handling and cryopreservation where OS is exacerbated.
Collapse
|
17
|
Zadubenko D, Sultanova D, Pak M, Kim I, Kilina E, Lokshin V, Golichenkov V. REVIEW OF THE INFLUENCE OF ELECTROMAGNETIC RADIATIONS OF DIFFERENT RANGE ON THE PHYSIOLOGICAL PROCESSES OF HUMAN AND ANIMAL SPERMATOZOA. REPRODUCTIVE MEDICINE 2021. [DOI: 10.37800/rm2021-1-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review presents 40 experimental studies of the effect of electromagnetic radiation of various ranges on the male reproductive function of humans and other vertebrates. The review includes works performed in the period from 2010 to 2020. Currently, not only the negative effect of radio waves, X-rays and gamma radiation has been shown, but many experiments have been carried out, where with the help of electromagnetic radiation it is possible to favorably influence spermatogenesis in general and physiological, biochemical processes in spermatozoa in particular. The purpose of this bibliographic study was to search for options for exposure to electromagnetic radiation to modulate the biological processes of spermatogenesis and sperm motility in vitro.
Collapse
|
18
|
Plavskii VY, Barulin NV, Mikulich AV, Tretyakova AI, Ananich TS, Plavskaya LG, Leusenka IA, Sobchuk AN, Sysov VA, Dudinova ON, Vodchits AI, Khodasevich IA, Orlovich VA. Effect of continuous wave, quasi-continuous wave and pulsed laser radiation on functional characteristics of fish spermatozoa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112112. [PMID: 33524930 DOI: 10.1016/j.jphotobiol.2020.112112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/11/2020] [Accepted: 12/19/2020] [Indexed: 11/17/2022]
Abstract
For the first time, using sturgeon sperm as a model system, sensitive to optical radiation, the comparative studies of biological effect of continuous wave, quasi-continuous wave, nano- and picosecond laser radiation under conditions with equal average irradiance (3 mW/cm2) and wavelength (532 nm) have been carried out. Analyzing the parameters of spermatozoa motion it has been shown that, depending on the energy dose and mode of laser operation, the radiation may have both stimulatory and inhibitory effect on the velocity of motion and spermatozoa motility duration as well as on sustaining of functional characteristics of cold-stored sperm. The possibility of increasing the fertilization rate due to use of the sperm preliminary treated with laser radiation is demonstrated. For the first time, the possibility of enhancement of biological effect going from continuous wave to quasi-continuous wave laser radiation at equal irradiance and wavelength has experimentally been proven. It is shown that the difference in biological effect of continuous wave, quasi-continuous wave, nano- and picosecond laser radiation is due to amplitude (peak) values of intensity. Using fluorescence analysis and luminol-dependent chemiluminescence assay, evidence for the participation of endogenous flavins and metal-free porphyrins in sensitized ROS formation (singlet oxygen, hydrogen peroxide, and hydroxyl radicals) in sturgeon sperm was obtained. Mechanisms of photochemical and photothermal reactions explaining the difference in efficacy of action of laser radiation in above modes are discussed.
Collapse
Affiliation(s)
- V Yu Plavskii
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus.
| | - N V Barulin
- Belarusian State Agricultural Academy, 213407, Mogilev region, Gorki, Michurin st. 5, Belarus
| | - A V Mikulich
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - A I Tretyakova
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - T S Ananich
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - L G Plavskaya
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - I A Leusenka
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - A N Sobchuk
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - V A Sysov
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - O N Dudinova
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - A I Vodchits
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - I A Khodasevich
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - V A Orlovich
- The State Scientific Institution "В.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| |
Collapse
|
19
|
The Role of Zinc in Male Fertility. Int J Mol Sci 2020; 21:ijms21207796. [PMID: 33096823 PMCID: PMC7589359 DOI: 10.3390/ijms21207796] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3−, activates the soluble adenylyl-cyclase (sAC). The increase in [cAMP]i activates protein kinase A (PKA), followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates phospholipase D1 (PLD1), leading to F-actin formation during capacitation. Prior to the acrosomal exocytosis, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and the occurrence of acrosomal exocytosis.
Collapse
|
20
|
Plavskii V, Mikulich A, Barulin N, Ananich T, Plavskaya L, Tretyakova A, Leusenka I. Comparative Effect of Low‐intensity Laser Radiation in Green and Red Spectral Regions on Functional Characteristics of Sturgeon Sperm. Photochem Photobiol 2020; 96:1294-1313. [DOI: 10.1111/php.13315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Vitaly Plavskii
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Aliaksandr Mikulich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | | | - Tatsiana Ananich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ludmila Plavskaya
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Antonina Tretyakova
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ihar Leusenka
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| |
Collapse
|
21
|
Yang H, Kuhn C, Kolben T, Ma Z, Lin P, Mahner S, Jeschke U, von Schönfeldt V. Early Life Oxidative Stress and Long-Lasting Cardiovascular Effects on Offspring Conceived by Assisted Reproductive Technologies: A Review. Int J Mol Sci 2020; 21:ijms21155175. [PMID: 32707756 PMCID: PMC7432066 DOI: 10.3390/ijms21155175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Assisted reproductive technology (ART) has rapidly developed and is now widely practised worldwide. Both the characteristics of ART (handling gametes/embryos in vitro) and the infertility backgrounds of ART parents (such as infertility diseases and unfavourable lifestyles or diets) could cause increased oxidative stress (OS) that may exert adverse influences on gametogenesis, fertilisation, and foetation, even causing a long-lasting influence on the offspring. For these reasons, the safety of ART needs to be closely examined. In this review, from an ART safety standpoint, the origins of OS are reviewed, and the long-lasting cardiovascular effects and potential mechanisms of OS on the offspring are discussed.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Zhi Ma
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Peng Lin
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
- Correspondence: ; Tel.: +49-(0)821-400-165505
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| |
Collapse
|
22
|
Achikanu C, Correia J, Guidobaldi HA, Giojalas LC, Barratt CLR, Da Silva SM, Publicover S. Continuous behavioural 'switching' in human spermatozoa and its regulation by Ca2+-mobilising stimuli. Mol Hum Reprod 2020; 25:423-432. [PMID: 31194869 PMCID: PMC6736438 DOI: 10.1093/molehr/gaz034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Human sperm show a variety of different behaviours (types of motility) that have different functional roles. Previous reports suggest that sperm may reversibly switch between these behaviours. We have recorded and analysed the behaviour of individual human sperm (180 cells in total), each cell monitored continuously for 3–3.5 min either under control conditions or in the presence of Ca2+-mobilising stimuli. Switching between different behaviours was assessed visually (1 s bins using four behaviour categories), and was verified by fractal dimension analysis of sperm head tracks. In the absence of stimuli, ~90% of cells showed at least one behavioural transition (mean rate under control conditions = 6.4 ± 0.8 transitions.min−1). Type 1 behaviour (progressive, activated-like motility) was most common, but the majority of cells (>70%) displayed at least three behaviour types. Treatment of sperm with Ca2+-mobilising agonists had negligible effects on the rate of switching but increased the time spent in type 2 and type 3 (hyperactivation-like) behaviours (P < 2*10−8; chi-square). Treatment with 4-aminopyridine under alkaline conditions (pHo = 8.5), a highly-potent Ca2+-mobilising stimulus, was the most effective in increasing the proportion of type 3 behaviour, biasing switching away from type 1 (P < 0.005) and dramatically extending the duration of type 3 events (P < 10−16). Other stimuli, including 300 nM progesterone and 1% human follicular fluid, had qualitatively similar effects but were less potent. We conclude that human sperm observed in vitro constitutively display a range of behaviours and regulation of motility by [Ca2+]i, at the level of the single cell, is achieved not by causing cells to adopt a ‘new’ behaviour but by changing the relative contributions of those behaviours.
Collapse
Affiliation(s)
- Cosmas Achikanu
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Joao Correia
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Héctor A Guidobaldi
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Biología Celular y Molecular, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas, UNC, CONICET, FCEFyN, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina
| | - Laura C Giojalas
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Biología Celular y Molecular, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas, UNC, CONICET, FCEFyN, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina
| | - Christopher L R Barratt
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, Dundee DD19SY, UK.,University of Dundee, Dundee DD19SY, UK 4Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| | - Sarah Martins Da Silva
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, Dundee DD19SY, UK.,University of Dundee, Dundee DD19SY, UK 4Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| | - Stephen Publicover
- School of Biosciences, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, University of Birmingham, UK
| |
Collapse
|
23
|
Zupin L, Pascolo L, Luppi S, Ottaviani G, Crovella S, Ricci G. Photobiomodulation therapy for male infertility. Lasers Med Sci 2020; 35:1671-1680. [PMID: 32483749 DOI: 10.1007/s10103-020-03042-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
Male infertility is a worldwide critical condition that affects about the 7.5% of males in Europe leading to an increment of the couples referring to reproductive medicine units to achieve pregnancy. Moreover, in the recent years, an increased number of patients have required to freeze their gametes in order to preserve their fertility. Photobiomodulation (PBM) therapy is a potential treatment that has been used for different clinical application basically aimed at biostimulating cells and tissues. Here, we report a deep overview of the published studies, focusing on PBM mechanism of action, with the aim of expanding the knowledge in the field of laser light for a rational utilization of irradiation in the clinical practice. In the field of reproductive science, PBM was employed to increment spermatozoa's metabolism, motility, and viability, due to its beneficial action on mitochondria, leading to an activation of the mitochondrial respiratory chain and to the ATP production. This treatment can be particularly useful to avoid the use of chemicals in the spermatozoa culture medium as well as to promote the spermatozoa survival and movement especially after thawing or in largely immotile sperm samples.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, 34137, Trieste, Italy.
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, 34137, Trieste, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, 34137, Trieste, Italy
| | - Giulia Ottaviani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Sergio Crovella
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, 34137, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, 34137, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy
| |
Collapse
|
24
|
Itzhakov D, Nitzan Y, Breitbart H. Protein kinase A inhibition induces EPAC-dependent acrosomal exocytosis in human sperm. Asian J Androl 2020; 21:337-344. [PMID: 30632486 PMCID: PMC6628745 DOI: 10.4103/aja.aja_99_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To interact with the egg, the spermatozoon must undergo several biochemical and motility modifications in the female reproductive tract, collectively called capacitation. Only capacitated sperm can undergo acrosomal exocytosis, near or on the egg, a process that allows the sperm to penetrate and fertilize the egg. In the present study, we investigated the involvement of cyclic adenosine monophosphate (cAMP)-dependent processes on acrosomal exocytosis. Inhibition of protein kinase A (PKA) at the end of capacitation induced acrosomal exocytosis. This process is cAMP-dependent; however, the addition of relatively high concentration of the membrane-permeable 8-bromo-cAMP (8Br-cAMP, 0.1 mmol l−1) analog induced significant inhibition of the acrosomal exocytosis. The induction of acrosomal exocytosis by PKA inhibition was significantly inhibited by an exchange protein directly activated by cAMP (EPAC) ESI09 inhibitor. The EPAC selective substrate activated AE at relatively low concentrations (0.02–0.1 μmol l−1), whereas higher concentrations (>5 μmol l−1) were inhibitory to the AE induced by PKA inhibition. Inhibition of PKA revealed about 50% increase in intracellular cAMP levels, conditions under which EPAC can be activated to induce the AE. Induction of AE by activating the actin severing-protein, gelsolin, which causes F-actin dispersion, was inhibited by the EPAC inhibitor. The AE induced by PKA inhibition was mediated by phospholipase C activity but not by the Ca2+-channel, CatSper. Thus, inhibition of PKA at the end of the capacitation process induced EPAC/phospholipase C-dependent acrosomal exocytosis. EPAC mediates F-actin depolymerization and/or activation of effectors downstream to F-actin breakdown that lead to acrosomal exocytosis.
Collapse
Affiliation(s)
- Diana Itzhakov
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yeshayahu Nitzan
- Department of Clinical Laboratory Science, Zefat Academic College, Zefat 1320611, Israel
| | - Haim Breitbart
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
25
|
Safian F, Ghaffari Novin M, Karimi M, Kazemi M, Zare F, Ghoreishi SK, Bayat M. Photobiomodulation with 810 nm Wavelengths Improves Human Sperms' Motility and Viability In Vitro. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:222-231. [DOI: 10.1089/photob.2019.4773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fereshteh Safian
- Student Research Committee, Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Karimi
- IVF Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
26
|
Ríos-Ramírez M, Espinoza JH, Ruiz-Suárez JC, Mercado-Uribe H. The effect of green light on the motility of mouse sperm at two different temperatures. Photochem Photobiol Sci 2019; 18:2893-2900. [PMID: 31681924 DOI: 10.1039/c9pp00258h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-modulation with visible light has been used to induce gains in the motility of the sperms of rabbits, boars, buffalo, bulls, fish, and humans. Although different hypotheses have been proposed to explain such an effect, the origin and mechanisms by which visible light affects sperm motility are still far from being completely understood. Several groups have observed changes in the intracellular Ca2+ concentration and significant differences in the production of ROS, which are attributed to specific photosensitizers. Also, it has been reported that blue light induces nitric oxide production in sperm cells, which plays a vital role in acrosome reaction and capacitation leading to an augmentation in the fertilisation probability. In the present work, we study the effects of green light (490-540 nm) on the sperm motility of mice. Firstly, we carried out experiments at 37 °C to confirm what previous researchers have observed before using red and blue light: that the overall sperm motility increases. Secondly, we studied the effects of green light at 10 °C and found that the motility drastically diminishes. In order to understand this opposing outcome, we carried out fluorescence measurements to evaluate reactive oxygen species production induced by green light at both temperatures. Our results suggest that the balance between the use and generation of ROS at 37 °C is favorable to the cells, while at 10 °C it is harmful.
Collapse
Affiliation(s)
- M Ríos-Ramírez
- CINVESTAV-Monterrey, PIIT, Autopista al Aeropuerto km. 9.5, CP 66600, Apodaca, NL, Mexico.
| | - J Horacio Espinoza
- CINVESTAV-Monterrey, PIIT, Autopista al Aeropuerto km. 9.5, CP 66600, Apodaca, NL, Mexico. and Departamento de Computación, Electrónica y Mecatrónica, UDLA, Sta. Catarina Mártir S/N, CP 72810, Cholula, Puebla, Mexico
| | - J C Ruiz-Suárez
- CINVESTAV-Monterrey, PIIT, Autopista al Aeropuerto km. 9.5, CP 66600, Apodaca, NL, Mexico.
| | - H Mercado-Uribe
- CINVESTAV-Monterrey, PIIT, Autopista al Aeropuerto km. 9.5, CP 66600, Apodaca, NL, Mexico.
| |
Collapse
|
27
|
Wang Q, Zhang Y, Le F, Wang N, Zhang F, Luo Y, Lou Y, Hu M, Wang L, Thurston LM, Xu X, Jin F. Alteration in the expression of the renin-angiotensin system in the myocardium of mice conceived by in vitro fertilization. Biol Reprod 2019; 99:1276-1288. [PMID: 30010728 PMCID: PMC6299247 DOI: 10.1093/biolre/ioy158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies have revealed that offspring conceived by in vitro fertilization (IVF) have an elevated risk of cardiovascular malformations at birth, and are more predisposed to cardiovascular diseases. The renin-angiotensin system (RAS) plays an essential role in both the pathogenesis of congenital heart disease in fetuses and cardiovascular dysfunction in adults. This study aimed to assess the relative expression levels of genes in the RAS pathway in mice conceived using IVF, compared to natural mating with superovulation. Results demonstrated that expression of the angiotensin II receptor type 1 (AGTR1), connective tissue growth factor (CTGF), and collagen 3 (COL3), in the myocardial tissue of IVF-conceived mice, was elevated at 3 weeks, 10 weeks, and 1.5 years of age, when compared to their non-IVF counterparts. These data were supported by microRNA microarray analysis of the myocardial tissue of aged IVF-conceived mice, where miR-100, miR-297, and miR-758, which interact with COL3, AGTR1, and COL1 respectively, were upregulated when compared to naturally mated mice of the same age. Interestingly, bisulfite sequencing data indicated that IVF-conceived mice exhibited decreased methylation of CpG sites in Col1. In support of our in vivo investigations, miR-297 overexpression was shown to upregulate AGTR1 and CTGF, and increased cell proliferation in cultured H9c2 cardiomyocytes. These findings indicate that the altered expression of RAS in myocardial tissue might contribute to cardiovascular malformation and/or dysfunction in IVF-conceived offspring. Furthermore, these cardiovascular abnormalities might be the result of altered DNA methylation and abnormal regulation of microRNAs.
Collapse
Affiliation(s)
- Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fang Le
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fan Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lisa M Thurston
- Department of Comparative Biomedical Science, Royal Veterinary College, University of London, London NW1 0TU, UK.,Academic Unit of Reproduction and Development, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2SF, UK
| | - Xiangrong Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
28
|
Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Sci Rep 2019; 9:7492. [PMID: 31097741 PMCID: PMC6522556 DOI: 10.1038/s41598-019-43981-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/25/2019] [Indexed: 01/12/2023] Open
Abstract
Subjects increasing sperm DNA fragmentation (sDF) during Density Gradient Centrifugation (DGC), a common sperm selection procedure in Assisted Reproduction Techniques (ARTs), experience a 50% lower probability of pregnancy. Hence, identification of these subjects is of clinical importance. Here, we investigated whether such subjects are identified with higher accuracy detecting DNA fragmentation in viable (viable sDF) instead of total spermatozoa (total sDF) and whether swim up, an alternative procedure to DGC, does not increase sDF. With DGC, we identified 10/20 subjects increasing total sDF, and 2 more subjects using viable sDF. With swim up, we identified 8/40 subjects increasing total sDF, and 8 more subjects using viable sDF. In addition, viable sDF reveals more accurately the increase of the damage when it occurs. Finally, a multivariate analysis demonstrated that the proportional increase of sDF was higher after DGC respect to swim up. In conclusion, viable sDF is a more accurate parameter to reveal the increase of the damage by selection both with swim up and DGC. Swim up increases sDF in some samples, although at a lesser extent than DGC, suggesting that it should be used to select spermatozoa for ARTs when possible.
Collapse
|
29
|
Tsirulnikov E, Huta Y, Breitbart H. PKA and PI3K activities during capacitation protect sperm from undergoing spontaneous acrosome reaction. Theriogenology 2019; 128:54-61. [DOI: 10.1016/j.theriogenology.2019.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/24/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
|
30
|
What are the effects of vitamin C on sperm functional properties during direct swim-up procedure? ZYGOTE 2019; 27:69-77. [DOI: 10.1017/s0967199419000030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryDirect swim-up procedure is widely used to separate the motile competent spermatozoa from the antioxidant-rich semen. Subsequently, spermatozoa become more vulnerable to reactive oxygen species (ROS) due to their cytological characteristics. The effect of vitamin C, a highly concentrated antioxidant in the semen, on direct swim-up-enriched sperm population is not fully investigated. Therefore, the aim of the present study was to assess the effect of vitamin C on sperm functional properties during direct swim-up procedure. Semen samples were collected from 22 participants. Each semen sample was divided into several aliquots. The first portion was overlaid with sperm medium without ascorbic acid (0 µM AA). The second and third fractions were overlaid with sperm medium supplemented with 300 µM and 600 µM AA; respectively. After 1 h of incubation, basic sperm parameters, intracellular ROS levels, acrosome reaction, chromatin integrity, and glucose uptake were assessed. Swim-up without AA significantly increased the percentage of ROS(+) spermatozoa compared with the raw semen (P<0.01). Interestingly, swim-up with 300 µM AA did not increase the percentage of ROS(+) sperm compared with the raw semen. In parallel, the percentage of sperm with altered chromatin integrity was significantly lower in the 300 µM AA group compared with that in the raw semen (P<0.05). These findings suggest that supplementation of vitamin C to sperm medium could be beneficial for direct swim-up-derived spermatozoa.
Collapse
|
31
|
Nguyen TMD. Main signaling pathways involved in the control of fowl sperm motility. Poult Sci 2019; 98:1528-1538. [DOI: 10.3382/ps/pey465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022] Open
|
32
|
Allouche-Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn 2. Mol Reprod Dev 2019; 86:502-515. [PMID: 30746812 DOI: 10.1002/mrd.23128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/14/2018] [Accepted: 03/15/2018] [Indexed: 11/11/2022]
Abstract
To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyperactivated motility (HAM). The semen contains Zn2+ in millimolar concentrations, whereas in the female reproductive tract the concentration is around 1 µM. In this study, we characterize the role of Zn 2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of G protein-coupled receptor 39 (GPR39) type Zn-receptor localized mainly in the sperm tail. Zn 2+ at micromolar concentration stimulates HAM, which is mediated by a cascade involving GPR39-AC-cAMP-PKA-Src-EGFR and phospholipase C. Both the transmembrane adenylyl cyclase (AC) and the soluble-AC are involved in the stimulation of HAM by Zn 2+ . The development of HAM is precisely regulated by cyclic adenosine monophosphate, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn 2+ were added to the cells; low Zn 2+ stimulated HAM, whereas at relatively high Zn 2+ , no effect was seen. We further demonstrate that the Ca 2+ -channel CatSper involved in Zn 2+ -stimulated HAM. These data support a role for extracellular Zn 2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction.
Collapse
Affiliation(s)
| | - Danit Bakhshi
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Breitbart
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
33
|
Wei C, Zhang Y, Li R, Wang S, Wang T, Liu J, Liu Z, Wang K, Liu J, Liu X. Terahertz irradiation-induced motility enhancement and intracellular calcium elevation in human sperm in vitro. BIOMEDICAL OPTICS EXPRESS 2018; 9:3998-4008. [PMID: 30615720 PMCID: PMC6157776 DOI: 10.1364/boe.9.003998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 06/09/2023]
Abstract
To date, there has been limited evidence to reveal the effect of terahertz radiation on sperm. In this study, semen samples were collected from males who had just finished a prepregnancy computer-assisted semen analysis (CASA). The motility, intracellular concentration of free Ca2+ and DNA integrity of sperm with or without terahertz (0.1 to 3 THz) irradiation at 60 µW/cm2 were assessed. We found that terahertz irradiation for more than 5 minutes significantly increased the progressive motility percentage of sperm, and the DNA integrity was not changed. We also found that the effect of terahertz irradiation on spermatozoa was weakened by reducing the concentration of extracellular calcium ions or by blocking calcium channels.
Collapse
Affiliation(s)
- Chao Wei
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, Hubei 430030, China
- These authors contributed equally to this work
| | - Yucong Zhang
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, Hubei 430030, China
- These authors contributed equally to this work
| | - Rui Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, Hubei 430030, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, Hubei 430030, China
| | - Tao Wang
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, Hubei 430030, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, Hubei 430030, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, Hubei 430030, China
| | - Kejia Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinsong Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, Hubei 430030, China
| |
Collapse
|
34
|
Vladimirovich Moskvin S, Ivanovich Apolikhin O. Effectiveness of low level laser therapy for treating male infertility. Biomedicine (Taipei) 2018; 8:7. [PMID: 29806585 PMCID: PMC5992952 DOI: 10.1051/bmdcn/2018080207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
In half of the cases, the infertility of the couple is due to the disorder of the male fertility. The leading factors that cause male infertility are urogenital infections, disorders of the immune system, testicular and prostate pathology, as well as endocrine disorders. Low level laser therapy (LLLT) is a very effective physical therapy method, used in many areas of medicine, including obstetrics and gynaecology, andrology and urology; and it is recommended as an integral part of the complex treatment of infertility. The literature review showed that LLLT is beneficial in treating male infertility. Laser can significantly improve the survival, motility and speed of movement of spermatozoa. Laser therapy of patients with prostatitis and vesiculitis can eliminate infiltrative-exudative changes, improve reproductive and copulatory functions. Local illumination of red (635 nm) and infrared (904 nm) spectra should be combined with intravenous laser blood illumination (ILBI) of red (635 nm) and ultraviolet (UV) (365 nm) spectra.
Collapse
Affiliation(s)
- Sergey Vladimirovich Moskvin
-
O.K. Skobelkin State Scientific Center of Laser Medicine under the Federal Medical Biological Agency Moscow 121165 Russia
| | | |
Collapse
|
35
|
Allouche-Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn 2. Mol Reprod Dev 2018; 85:543-556. [PMID: 29750435 DOI: 10.1002/mrd.22996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/15/2018] [Indexed: 11/08/2022]
Abstract
To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyperactivated motility (HAM). The semen contains Zn2+ in millimolar concentrations, whereas in the female reproductive tract, the concentration is around 1 µM. In this study, we characterize the role of Zn2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of GPR39-type Zn-receptor localized mainly in the sperm tail. Zn2+ at micromolar concentration stimulates HAM, which is mediated by a cascade involving GPR39-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A-tyrosine kinase Src (Src)-epidermal growth factor receptor and phospholipase C. Both the transmembrane AC and the soluble-AC are involved in the stimulation of HAM by Zn2+ . The development of HAM is precisely regulated by cAMP, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn2+ were added to the cells; low Zn2+ stimulated HAM, whereas at relatively high Zn2+ , no effect was seen. We further demonstrate that the Ca2+ -channel CatSper involved in Zn2+ -stimulated HAM. These data support a role for extracellular Zn2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction.
Collapse
Affiliation(s)
| | - Danit Bakhshi
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
36
|
Wiggins SV, Steegborn C, Levin LR, Buck J. Pharmacological modulation of the CO 2/HCO 3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 2018; 190:173-186. [PMID: 29807057 DOI: 10.1016/j.pharmthera.2018.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic AMP (cAMP), the prototypical second messenger, has been implicated in a wide variety of (often opposing) physiological processes. It simultaneously mediates multiple, diverse processes, often within a single cell, by acting locally within independently-regulated and spatially-restricted microdomains. Within each microdomain, the level of cAMP will be dependent upon the balance between its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). In mammalian cells, there are many PDE isoforms and two types of adenylyl cyclases; the G protein regulated transmembrane adenylyl cyclases (tmACs) and the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase (sAC). Discriminating the roles of individual cyclic nucleotide microdomains requires pharmacological modulators selective for the various PDEs and/or adenylyl cyclases. Such tools present an opportunity to develop therapeutics specifically targeted to individual cAMP dependent pathways. The pharmacological modulators of tmACs have recently been reviewed, and in this review, we describe the current status of pharmacological tools available for studying sAC.
Collapse
Affiliation(s)
- Shakarr V Wiggins
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
37
|
Pérez-Marín CC, Requena FD, Arando A, Requena L, Requena F, Agüera EI. Short-term tolerance of equine spermatozoa to various abiotic factors. Reprod Domest Anim 2018; 53:534-544. [PMID: 29399898 DOI: 10.1111/rda.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
The aim of this study was to determine the effects of various abiotic factors, such as light, physical stress (pipetting) and thermal shock, on the quality of fresh and cooled equine sperm. In experiment I, four sperm aliquots were subjected to different light exposures: (i) protected control samples (CTRL), (ii) exposed to UV light at 10 cm (UV10), (iii) exposed to UV light at 20 cm (UV20) and (iv) exposed to laboratory lighting (LAB). In experiment II, four semen aliquots were subjected to repeated pipetting for 0, 10, 20 and 30 times (CTRL, P10, P20 and P30, respectively). In experiment III, four semen aliquots at 15°C were subjected to thermal oscillations: (i) cooled control sperm at 15°C (CTRL), (ii) oscillations of 1.9°C/min to a temperature of 30°C (T30), (iii) oscillations of 1.4°C/min, with the temperature rapidly falling until reaching 1.3°C (T0R) and (iv) oscillations of 1.1°C/min, with the temperature slowly falling until reaching 4.2°C (T0S). The results revealed that after 30 min, UV10 and UV20 sperm samples showed significantly (p < .05) lower total and progressive motility values, sperm kinematic parameters and mitochondrial potential. After 45 min of exposure, differences were highly significant (p < .001). No significant differences (p > .05) were found for pipetting or thermal oscillations. The results suggest that, even if equine sperm samples are not handled in the laboratory under optimal conditions, fresh and cooled equine spermatozoa are able to resist the impact of various abiotic stimuli without any reduction in their quality. This study analyses the effect on normospermic samples, but future research could look at the tolerance that asthenozoospermic equine samples have to these abiotic influences.
Collapse
Affiliation(s)
- C C Pérez-Marín
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - F D Requena
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - A Arando
- Department of Genetics, University of Cordoba, Cordoba, Spain
| | - L Requena
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - F Requena
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - E I Agüera
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
38
|
Breitbart H, Finkelstein M. Actin cytoskeleton and sperm function. Biochem Biophys Res Commun 2017; 506:372-377. [PMID: 29102633 DOI: 10.1016/j.bbrc.2017.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022]
Abstract
For the acquisition of the ability to fertilize the egg, mammalian spermatozoa should undergo a series of biochemical transformations in the female reproductive tract, collectively called capacitation. The capacitated sperm can undergo the acrosomal exocytosis process near or on the oocyte, which allows the spermatozoon to penetrate and fertilize it. One of the main processes in capacitation involves dynamic cytoskeletal remodeling particularly of actin. Actin polymerization occurs during sperm capacitation and the produced F-actin should be depolymerized prior to the acrosomal exocytosis. In the present review, we describe the mechanisms that regulate F-actin formation during sperm capacitation and the F-actin dispersion prior to the acrosomal exocytosis. During sperm capacitation, the actin severing proteins gelsolin and cofilin are inactive and they undergo activation prior to the acrosomal exocytosis.
Collapse
Affiliation(s)
- Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | | |
Collapse
|
39
|
Preece D, Chow KW, Gomez-Godinez V, Gustafson K, Esener S, Ravida N, Durrant B, Berns MW. Red light improves spermatozoa motility and does not induce oxidative DNA damage. Sci Rep 2017; 7:46480. [PMID: 28425485 PMCID: PMC5397839 DOI: 10.1038/srep46480] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
The ability to successfully fertilize ova relies upon the swimming ability of spermatozoa. Both in humans and in animals, sperm motility has been used as a metric for the viability of semen samples. Recently, several studies have examined the efficacy of low dosage red light exposure for cellular repair and increasing sperm motility. Of prime importance to the practical application of this technique is the absence of DNA damage caused by radiation exposure. In this study, we examine the effect of 633 nm coherent, red laser light on sperm motility using a novel wavelet-based algorithm that allows for direct measurement of curvilinear velocity under red light illumination. This new algorithm gives results comparable to the standard computer-assisted sperm analysis (CASA) system. We then assess the safety of red light treatment of sperm by analyzing, (1) the levels of double-strand breaks in the DNA, and (2) oxidative damage in the sperm DNA. The results demonstrate that for the parameters used there are insignificant differences in oxidative DNA damage as a result of irradiation.
Collapse
Affiliation(s)
- Daryl Preece
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kay W. Chow
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Veronica Gomez-Godinez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyle Gustafson
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Selin Esener
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Ravida
- Center for the Reproduction of Endangered Species, Zoological Society of San Diego, San Diego, CA 92112, USA
| | - Barbara Durrant
- Center for the Reproduction of Endangered Species, Zoological Society of San Diego, San Diego, CA 92112, USA
| | - Michael W. Berns
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
40
|
Singh DK, Deshmukh RK, Narayanan PK, Shivaji S, Siva AB. SRC family kinases in hamster spermatozoa: evidence for the presence of LCK. Reproduction 2017; 153:655-669. [PMID: 28250239 DOI: 10.1530/rep-16-0591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
Sperm capacitation is a prerequisite for successful fertilization. Increase in tyrosine phosphorylation is considered the hallmark of capacitation and attempts to understand its regulation are ongoing. In this regard, we attempted to study the role of SRC family kinases (SFKs) in the hamster sperm functions. Interestingly, we found the presence of the lymphocyte-specific protein tyrosine kinase, LCK, in mammalian spermatozoa and further characterized it in terms of its localization and function. LCK was found in spermatozoa of several species, and its transcript was identified in the hamster testis. Autophosphorylation of LCK at the Y394 residue increased as capacitation progressed, indicating an upregulation of LCK activity during capacitation. Inhibition of LCK (and perhaps the other SFKs) with the use of a specific inhibitor showed a significant decrease in protein tyrosine phosphorylation of several proteins, implying LCK/SFKs as key tyrosine kinase(s) regulating tyrosine phosphorylation during hamster sperm capacitation. Dihydrolipoamide dehydrogenase was identified as a substrate for LCK/SFK. LCK/SFKs inhibition significantly reduced the percentage fertilization (in vitro) but had no effect on sperm motility, hyperactivation and acrosome reaction. In summary, this is the first report on the presence of LCK, an SFK of hematopoietic lineage in spermatozoa besides being the first study on the role of SFKs in the spermatozoa of Syrian hamsters.
Collapse
Affiliation(s)
| | | | | | - Sisinthy Shivaji
- CSIR-Centre for Cellular and Molecular BiologyHyderabad 500007, India
| | | |
Collapse
|
41
|
Tavalaee M, Parivar K, Shahverdi AH, Ghaedi K, Nasr-Esfahani MH. Status of sperm-born oocyte activating factors (PAWP, PLCζ) and sperm chromatin in uncapacitated, capacitated and acrosome-reacted conditions. HUM FERTIL 2017; 20:96-103. [DOI: 10.1080/14647273.2016.1264011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marziyeh Tavalaee
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abdol-Hossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
42
|
Amaroli A, Gambardella C, Ferrando S, Hanna R, Benedicenti A, Gallus L, Faimali M, Benedicenti S. The Effect of Photobiomodulation on the Sea Urchin Paracentrotus lividus (Echinodermata) Using Higher-Fluence on Fertilization, Embryogenesis, and Larval Development: An In Vitro Study. Photomed Laser Surg 2016; 35:127-135. [PMID: 28056208 DOI: 10.1089/pho.2016.4136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the photobiomodulation (PBM) effect of the 808 nm diode laser irradiation on spermatozoa, eggs, fertilized eggs, embryos, and larvae of Paracentrotus lividus, using two different power settings. BACKGROUND DATA Studies have shown the possible use of PBM in artificial insemination. These have shown the potential effect of low-power laser irradiation on spermatozoa, while there are few studies on the effect of laser photonic energy on oocytes and almost no reports on the influence of lasers in embryogenesis. METHODS P. lividus gametes, zygotes, embryos, and larvae were irradiated using the 808 nm diode laser (fluence 64 J/cm2 using 1 W or 192 J/cm2 with 3 W) with a flat-top hand-piece delivery, compared to a control without laser irradiation (0 J/cm2-0 W). The fertilization rate and the early developmental stages were investigated. RESULTS The fertilization ability was not affected by the sperm/egg irradiation. At the gastrula stage, no significant differences were observed compared with the control samples. In the late pluteus stage, there were no differences in the developmental percentage observed between the control and the treated samples (1 W), with the exception of larvae from gastrulae and larvae, which were irradiated at 3 W. CONCLUSIONS This study has demonstrated that both the 64 J/cm2-1 W and the 192 J/cm2-3 W do not induce morphological damage on the irradiated P. lividus gametes whose zygotes generate normal embryos and larvae. Our data therefore support the assumption to use higher fluence in preliminary studies on in vitro fertilization.
Collapse
Affiliation(s)
- Andrea Amaroli
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy .,2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| | - Chiara Gambardella
- 3 Institute of Marine Sciences , National Research Council (ISMAR-CNR), Genoa, Italy
| | - Sara Ferrando
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy
| | - Reem Hanna
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy .,4 Department of Oral Surgery, Dental Institute , King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberico Benedicenti
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| | - Lorenzo Gallus
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy
| | - Marco Faimali
- 3 Institute of Marine Sciences , National Research Council (ISMAR-CNR), Genoa, Italy
| | - Stefano Benedicenti
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| |
Collapse
|
43
|
Antoniassi MP, Intasqui P, Camargo M, Zylbersztejn DS, Carvalho VM, Cardozo KHM, Bertolla RP. Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers. BJU Int 2016; 118:814-822. [DOI: 10.1111/bju.13539] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mariana Pereira Antoniassi
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
| | - Paula Intasqui
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
| | - Mariana Camargo
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
| | - Daniel Suslik Zylbersztejn
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
| | | | | | - Ricardo Pimenta Bertolla
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
- Hospital Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
44
|
Effects of photobiomodulation therapy (PBMT) on bovine sperm function. Lasers Med Sci 2016; 31:1245-50. [PMID: 27272676 DOI: 10.1007/s10103-016-1966-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Fertilization rates and subsequent embryo development rely on sperm factors related to semen quality and viability. Photobiomodulation therapy (PBMT) is based on emission of electromagnetic waves of a laser optical system that interact with cells and tissues resulting in biological effects. This interaction is mediated by photoacceptors that absorb the electromagnetic energy. Effects are dependent of irradiation parameters, target cell type, and species. In sperm, PBMT improves several features like motility and viability, affecting sperm aerobic metabolism and energy production. The aim of this study was to investigate, under same conditions, how different output powers (5, 7.5, and 10 mW) and time of irradiation (5 and 10 min) of laser (He-Ne laser, 633 nm) may affect frozen/thawed bovine sperm functions. Results showed significant effects depending on power while using 10 min of irradiation on motility parameters and mitochondrial potential. However, no effect was observed using 5 min of irradiation, regardless of power applied. In conclusion, PBMT is effective to modulate bovine sperm function. The effectiveness is dependent on the interaction between power applied and duration of irradiation, showing that these two parameters simultaneously influence sperm function. In this context, when using the same fluency and energy with different combinations of power and time of exposure, we observed distinct effects, revealing that biological effects should be also based on simple parameters rather than only composite parameters such as fluency, irradiance and energy. Laser irradiation of frozen/thawed bovine semen led to an increase on mitochondrial function and motility parameters that could potentially improve fertility rates.
Collapse
|
45
|
Specific LED-based red light photo-stimulation procedures improve overall sperm function and reproductive performance of boar ejaculates. Sci Rep 2016; 6:22569. [PMID: 26931070 PMCID: PMC4773850 DOI: 10.1038/srep22569] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/18/2016] [Indexed: 01/18/2023] Open
Abstract
The present study evaluated the effects of exposing liquid-stored boar semen to different red light LED regimens on sperm quality and reproductive performance. Of all of the tested photo-stimulation procedures, the best pattern consisted of 10 min light, 10 min rest and 10 min of further light (10-10-10 pattern). This pattern induced an intense and transient increase in the majority of motility parameters, without modifying sperm viability and acrosome integrity. While incubating non-photo-stimulated sperm at 37 °C for 90 min decreased all sperm quality parameters, this reduction was prevented when the previously-described light procedure was applied. This effect was concomitant with an increase in the percentage of sperm with high mitochondrial membrane potential. When sperm were subjected to ‘in vitro’ capacitation, photo-stimulation also increased the percentage of sperm with capacitation-like changes in membrane structure. On the other hand, treating commercial semen doses intended for artificial insemination with the 10-10-10 photo-stimulation pattern significantly increased farrowing rates and the number of both total and live-born piglets for parturition. Therefore, our results indicate that a precise photo-stimulation procedure is able to increase the fertilising ability of boar sperm via a mechanism that could be related to mitochondrial function.
Collapse
|
46
|
Evdokimov VV, Barinova KV, Turovetskii VB, Muronetz VI, Schmalhausen EV. Low concentrations of hydrogen peroxide activate the antioxidant defense system in human sperm cells. BIOCHEMISTRY (MOSCOW) 2015; 80:1178-85. [DOI: 10.1134/s0006297915090084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Astaxanthin Improves Human Sperm Capacitation by Inducing Lyn Displacement and Activation. Mar Drugs 2015; 13:5533-51. [PMID: 26308013 PMCID: PMC4584338 DOI: 10.3390/md13095533] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
Astaxanthin (Asta), a photo-protective red pigment of the carotenoid family, is known for its multiple beneficial properties. In this study, the effects of Asta on isolated human sperm were evaluated. Capacitation involves a series of transformations to let sperm acquire the correct features for potential oocyte fertilization, including the generation of a controlled amount of reactive oxygen species (ROS), cholesterol depletion of the sperm outer membrane, and protein tyrosine phosphorylation (Tyr-P) process in the head region. Volunteers, with normal spermiogram values, were divided in two separate groups on the basis of their ability to generate the correct content of endogenous ROS. Both patient group (PG) and control group (CG) were analysed for Tyr-phosphorylation (Tyr-P) pattern and percentages of acrosome-reacted cells (ARC) and non-viable cells (NVC), in the presence or absence of Asta. In addition, the involvement of ROS on membrane reorganization and the presence of Lyn, a Src family kinase associated with lipid rafts, were investigated. Results show that Lyn is present in the membranes of human sperm, mainly confined in midpiece in resting conditions. Following capacitation, Lyn translocated to the head concomitantly with raft relocation, thus allowing the Tyr-P of head proteins. Asta succeeded to trigger Lyn translocation in PG sperm thus bypassing the impaired ROS-related mechanism for rafts and Lyn translocation. In this study, we showed an interdependence between ROS generation and lipid rafts and Lyn relocation leading the cells to undergo the successive acrosome reaction (AR). Asta, by ameliorating PG sperm functioning, may be utilised to decrease male idiopathic infertility.
Collapse
|
48
|
The role and importance of cofilin in human sperm capacitation and the acrosome reaction. Cell Tissue Res 2015; 362:665-75. [DOI: 10.1007/s00441-015-2229-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
49
|
Vizel R, Hillman P, Ickowicz D, Breitbart H. AKAP3 degradation in sperm capacitation is regulated by its tyrosine phosphorylation. Biochim Biophys Acta Gen Subj 2015; 1850:1912-20. [PMID: 26093290 DOI: 10.1016/j.bbagen.2015.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The A-kinase anchoring protein (AKAP) family is essential for sperm motility, capacitation and the acrosome reaction. PKA-dependent protein tyrosine phosphorylation occurs in mammalian sperm capacitation including AKAP3. In a recent study, we showed that AKAP3 undergoes degradation under capacitation conditions. Thus, we tested here whether AKAP3 degradation might be regulated by its tyrosine phosphorylation. METHODS The intracellular levels of AKAP3 were determined by western blot (WB) analysis using specific anti-AKAP3 antibodies. Tyrosine phosphorylation of AKAP3 was tested by immunoprecipitation and WB analysis. Acrosome reaction was examined using FITC-pisum sativum agglutinin. RESULTS AKAP3 is degraded and undergoes tyrosine-dephosphorylation during sperm capacitation and the degradation was reduced by inhibition of tyrosine phosphatase and enhanced by inhibition of tyrosine kinase. Sperm starvation or inhibition of mitochondrial respiration, which reduce cellular ATP levels, significantly accelerated AKAP3 degradation. Treatment with vanadate, or Na(+) or bicarbonate depletion, reduced AKAP3-degradation and the AR rate, while antimycin A or NH4Cl elevated both AKAP3-degradation and the AR degree. Treatment of sperm with NH4Cl enhanced PKA-dependent phosphorylation of four proteins, further supporting the involvement of AKAP3-degradation in capacitation. To demonstrate more specifically that sperm capacitation requires AKAP3-degradation, we inhibited AKAP3-degradation using anti-AKAP3 antibody in permeabilized cells. The anti-AKAP3-antibody induced significant inhibition of AKAP3-degradation and of the AR rate. CONCLUSION Sperm capacitation process requires AKAP3-degradation, and the degradation degree is regulated by the level of AKAP3 tyrosine phosphorylation. GENERAL SIGNIFICANCE Better understanding of the molecular mechanisms that mediate sperm capacitation can be used for infertility diagnosis, treatment and the developing of male contraceptives.
Collapse
Affiliation(s)
- Ruth Vizel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Pnina Hillman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Debby Ickowicz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Breitbart
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
50
|
Abdel-Salam Z, Harith MA. Laser researches on livestock semen and oocytes: A brief review. J Adv Res 2014; 6:311-7. [PMID: 26257928 PMCID: PMC4522585 DOI: 10.1016/j.jare.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/04/2022] Open
Abstract
This article presents a brief review of the past and present literature pertinent to laser effects on sperm motility parameters, improvement of oocyte maturation and characterization of semen in livestock. The aim was, on one hand, to make the readers aware of such knowledge and on the other hand to trigger the interest of the animal reproduction scientific community in attempting some laser techniques that have not yet been fully exploited in the field of artificial insemination. With respect to the conventional methods, laser is a more sensitive and less costly technology that can be used for improving artificial insemination and embryo production system. Since 1980s, laser treatment came on the biological samples scene; its applications have continuously been developed thereafter. Exploitation of laser light by various researchers for improving the reproductive efficiency of sperm cells and the maturation rate in different livestock is demonstrated herein. Laser irradiation, in principal, can increase the production of adenosine triphosphate (ATP) and consequently increases the energy provided to the cell. Since sperm motility and oocyte maturation depend on the energy consumption, an increase in the energy supply to the cells will be of great importance. In addition, the authors also discuss the use of laser spectrochemical analytical techniques, such as laser induced breakdown spectroscopy (LIBS) and laser induced fluorescence (LIF), in characterization of semen samples.
Collapse
Affiliation(s)
- Z Abdel-Salam
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - M A Harith
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| |
Collapse
|