1
|
Ismaili M'hamdi H, Rivron NC, Asscher EC. Going high and low: on pluralism and neutrality in human embryology policy-making. JOURNAL OF MEDICAL ETHICS 2024; 50:846-854. [PMID: 36600611 DOI: 10.1136/jme-2022-108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Formulating sound and acceptable embryo research policy remains challenging especially in a pluralistic world. This challenge has acquired a new dimension of complexity with the advent of so-called embryo models, which are derived from stem cells. In this article, we present a normative strategy to facilitate the process of sound policy-making in the field of human embryology. This strategy involves seeking neutral agreements on higher level theories and doctrines as well as seeking agreements on the level of concrete policy proposals. We call this strategy: going high and low. By going high and low, the plurality of reasonable moral and epistemic convictions of stakeholders involved in the domain of human embryology is respected while the process of policy-making in this area is improved.
Collapse
Affiliation(s)
- Hafez Ismaili M'hamdi
- Department of Medical Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nicolas C Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Wien, Austria
| | - Eva Ca Asscher
- Medical ethics/General Practice, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Rufo J, Qiu C, Han D, Baxter N, Daley G, Wilson MZ. An explainable map of human gastruloid morphospace reveals gastrulation failure modes and predicts teratogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614192. [PMID: 39386623 PMCID: PMC11463602 DOI: 10.1101/2024.09.20.614192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Human gastrulation is a critical stage of development where many pregnancies fail due to poorly understood mechanisms. Using the 2D gastruloid, a stem cell model of human gastrulation, we combined high-throughput drug perturbations and mathematical modelling to create an explainable map of gastruloid morphospace. This map outlines patterning outcomes in response to diverse perturbations and identifies variations in canonical patterning and failure modes. We modeled morphogen dynamics to embed simulated gastruloids into experimentally-determined morphospace to explain how developmental parameters drive patterning. Our model predicted and validated the two greatest sources of patterning variance: cell density-based modulations in Wnt signaling and SOX2 stability. Assigning these parameters as axes of morphospace imparted interpretability. To demonstrate its utility, we predicted novel teratogens that we validated in zebrafish. Overall, we show how stem cell models of development can be used to build a comprehensive and interpretable understanding of the set of developmental outcomes.
Collapse
Affiliation(s)
- Joseph Rufo
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Chongxu Qiu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Dasol Han
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Naomi Baxter
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gabrielle Daley
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z. Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Pereira Daoud AM, Dondorp WJ, Bredenoord AL, de Wert GMWR. The Ethics of Stem Cell-Based Embryo-Like Structures : A Focus Group Study on the Perspectives of Dutch Professionals and Lay Citizens. JOURNAL OF BIOETHICAL INQUIRY 2024; 21:513-542. [PMID: 38478325 PMCID: PMC11652579 DOI: 10.1007/s11673-023-10325-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2023] [Indexed: 12/18/2024]
Abstract
In order to study early human development while avoiding the burdens associated with human embryo research, scientists are redirecting their efforts towards so-called human embryo-like structures (hELS). hELS are created from clusters of human pluripotent stem cells and seem capable of mimicking early human development with increasing accuracy. Notwithstanding, hELS research finds itself at the intersection of historically controversial fields, and the expectation that it might be received as similarly sensitive is prompting proactive law reform in many jurisdictions, including the Netherlands. However, studies on the public perception of hELS research remain scarce. To help guide policymakers and fill this gap in the literature, we conducted an explorative qualitative study aimed at mapping the range of perspectives in the Netherlands on the creation and research use of hELS. This article reports on a subset of our findings, namely those pertaining to (the degrees of and requirements for) confidence in research with hELS and its regulation. Despite commonly found disparities in confidence on emerging biotechnologies, we also found wide consensus regarding the requirements for having (more) confidence in hELS research. We conclude by reflecting on how these findings could be relevant to researchers and (Dutch) policymakers when interpreted within the context of their limitations.
Collapse
Affiliation(s)
- A M Pereira Daoud
- Department of Health, Ethics and Society (HES), the Research School for Oncology and Developmental Biology (GROW), Department of Medical Humanities, Maastricht University, and University Medical Centre Utrecht, P. Debyeplein 1, Maastricht, Limburg, 6229 HA, The Netherlands.
| | - W J Dondorp
- Department of Health, Ethics and Society (HES), the Research School for Oncology and Developmental Biology (GROW), Department of Medical Humanities, Maastricht University, and University Medical Centre Utrecht, P. Debyeplein 1, Maastricht, Limburg, 6229 HA, The Netherlands
| | - A L Bredenoord
- Erasmus University Rotterdam, School of Philosophy, Burgemeester Oudlaan 50, Rotterdam, South Holland, 3062 PA, The Netherlands
| | - G M W R de Wert
- Department of Health, Ethics and Society (HES), the Research School for Oncology and Developmental Biology (GROW), Department of Medical Humanities, Maastricht University, and University Medical Centre Utrecht, P. Debyeplein 1, Maastricht, Limburg, 6229 HA, The Netherlands
| |
Collapse
|
4
|
Rosner M, Hengstschläger M. Oct4 controls basement membrane development during human embryogenesis. Dev Cell 2024; 59:1439-1456.e7. [PMID: 38579716 DOI: 10.1016/j.devcel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Basement membranes (BMs) are sheet-like structures of extracellular matrix (ECM) that provide structural support for many tissues and play a central role in signaling. They are key regulators of cell behavior and tissue functions, and defects in their assembly or composition are involved in numerous human diseases. Due to the differences between human and animal embryogenesis, ethical concerns, legal constraints, the scarcity of human tissue material, and the inaccessibility of the in vivo condition, BM regulation during human embryo development has remained elusive. Using the post-implantation amniotic sac embryoid (PASE), we delineate BM assembly upon post-implantation development and BM disassembly during primitive streak (PS) cell dissemination. Further, we show that the transcription factor Oct4 regulates the expression of BM structural components and receptors and controls BM development by regulating Akt signaling and the small GTPase Rac1. These results represent a relevant step toward a more comprehensive understanding of early human development.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
5
|
Que H, Mai E, Hu Y, Li H, Zheng W, Jiang Y, Han F, Li X, Gong P, Gu J. Multilineage-differentiating stress-enduring cells: a powerful tool for tissue damage repair. Front Cell Dev Biol 2024; 12:1380785. [PMID: 38872932 PMCID: PMC11169632 DOI: 10.3389/fcell.2024.1380785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
6
|
Pennarossa G, Arcuri S, Gandolfi F, Brevini TAL. Generation of Artificial Blastoids Combining miR-200-Mediated Reprogramming and Mechanical Cues. Cells 2024; 13:628. [PMID: 38607067 PMCID: PMC11011911 DOI: 10.3390/cells13070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently, transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200's ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of the donor's cell age. Overall, the approach here described represents a novel strategy for the creation of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri- and early post-implantation mechanisms.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
7
|
Zhang J, Suo M, Wang J, Liu X, Huang H, Wang K, Liu X, Sun T, Li Z, Liu J. Standardisation is the key to the sustained, rapid and healthy development of stem cell-based therapy. Clin Transl Med 2024; 14:e1646. [PMID: 38572666 PMCID: PMC10993161 DOI: 10.1002/ctm2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Stem cell-based therapy (SCT) is an important component of regenerative therapy that brings hope to many patients. After decades of development, SCT has made significant progress in the research of various diseases, and the market size has also expanded significantly. The transition of SCT from small-scale, customized experiments to routine clinical practice requires the assistance of standards. Many countries and international organizations around the world have developed corresponding SCT standards, which have effectively promoted the further development of the SCT industry. METHODS We conducted a comprehensive literature review to introduce the clinical application progress of SCT and focus on the development status of SCT standardization. RESULTS We first briefly introduced the types and characteristics of stem cells, and summarized the current clinical application and market development of SCT. Subsequently, we focused on the development status of SCT-related standards as of now from three levels: the International Organization for Standardization (ISO), important international organizations, and national organizations. Finally, we provided perspectives and conclusions on the significance and challenges of SCT standardization. CONCLUSIONS Standardization plays an important role in the sustained, rapid and healthy development of SCT.
Collapse
Affiliation(s)
- Jing Zhang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Moran Suo
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Jinzuo Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xin Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Huagui Huang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Kaizhong Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xiangyan Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Tianze Sun
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Zhonghai Li
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| | - Jing Liu
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| |
Collapse
|
8
|
Gyngell C, Lynch F, Sawai T, Savulescu J. Stem cell-derived embryo models: moral advance or moral obfuscation? JOURNAL OF MEDICAL ETHICS 2024:jme-2023-109605. [PMID: 38429089 DOI: 10.1136/jme-2023-109605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/09/2024] [Indexed: 03/03/2024]
Abstract
Stem cell-derived embryo models (SCEMs) are model embryos used in scientific research to gain a better understanding of early embryonic development. The way humans develop from a single-cell zygote to a complex multicellular organism remains poorly understood. However, research looking at embryo development is difficult because of restrictions on the use of human embryos in research. Stem cell embryo models could reduce the need for human embryos, allowing us to both understand early development and improve assisted reproductive technologies. There have been several rapid advances in creating SCEMs in recent years. These advances potentially provide a new avenue to study early human development. The benefits of SCEMs are predicated on the claim that they are different from embryos and should, therefore, be exempt from existing regulations that apply to embryos (such as the 14-day rule). SCEMs are proposed as offering a model that can capture the inner workings of the embryo but lack its moral sensitivities. However, the ethical basis for making this distinction has not been clearly explained. In this current controversy, we focus on the ethical justification for treating SCEMs differently to embryos, based on considerations of moral status.
Collapse
Affiliation(s)
- Christopher Gyngell
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Biomedical Ethics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne Law School, The University of Melbourne Melbourne Law School, Carlton, Victoria, Australia
| | - Fiona Lynch
- Biomedical Ethics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne Law School, The University of Melbourne Melbourne Law School, Carlton, Victoria, Australia
| | - Tsutomu Sawai
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Julian Savulescu
- Biomedical Ethics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Alexandrova M, Manchorova D, You Y, Terzieva A, Dimitrova V, Mor G, Dimova T. Validation of the Sw71-spheroid model with primary trophoblast cells. Am J Reprod Immunol 2023; 90:e13800. [PMID: 38009060 DOI: 10.1111/aji.13800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023] Open
Abstract
PROBLEM Human implantation is a limiting factor for the success of natural and IVF reproduction since about 60% of pregnancy losses occur in the peri-implantation period. The in vitro modeling of human implantation challenges the researchers in accurate recreation of the complex in vivo differentiation and function of human blastocyst in the peri-implantation period. In previous studies, we constructed Sw71-spheroid models, which like human blastocyst undergo compactization, attaches to the endometrial epithelium, invade, and migrate. The aim of this study was to validate the trophoblast Sw71-spheroid model with primary trophoblast cells, derived from healthy women in early pregnancy. METHOD OF STUDY We performed a direct comparison of Sw71-spheroid model with placenta-derived primary trophoblasts regarding their hybrid phenotype and HLA status, as well as the ability to generate spheroids able to migrate and invade. From the primary trophoblast cells, isolated by mild enzymatic treatment and Percoll gradient separation, were generated long-lived clones, which phenotype was assessed by FACS and immunocytochemistry. RESULTS Our results showed that cultured primary trophoblasts have the EVT phenotype (Vim+/CK7+/HLA-C+/HLA-G+), like Sw71 cells. In both 3D culture settings, we obtained stable, round-shaped, multilayered spheroids. Although constructed from the same number of cells, the primary trophoblast spheroids were smaller. The primary trophoblast spheroids migrate successfully, and in term of invasion are equally potent but less stable as compared to Sw71 spheroids. CONCLUSIONS The Sw71 cell line and cultured native trophoblast cells are interchangeable regarding their EVT phenotype (HLA-C+/HLA-G+/Vim+/CK7+). The blastocyst-like spheroids sourced by both types of cells differentiate in the same time frame and function similarly. We strongly advise the use of Sw71 spheroids as blastocyst surrogate for observation on trophectoderm differentiation and function during early human implantation.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| | - Antonia Terzieva
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- Fetal medicine clinic, Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia, Bulgaria
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
10
|
Horer S, Feichtinger M, Rosner M, Hengstschläger M. Pluripotent Stem Cell-Derived In Vitro Gametogenesis and Synthetic Embryos-It Is Never Too Early for an Ethical Debate. Stem Cells Transl Med 2023; 12:569-575. [PMID: 37471266 PMCID: PMC10502567 DOI: 10.1093/stcltm/szad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Recently, 2 branches of the wide area of synthetic biology-in vitro gametogenesis and synthetic embryo development-have gained considerable attention. Rodent induced pluripotent stem cells derived via reprogramming of somatic cells can in vitro be differentiated into gametes to produce fertile offspring. And even synthetic embryos with organ progenitors were generated ex utero entirely from murine pluripotent stem cells. The use of these approaches in basic research, which is rightfully accompanied by an ethical discussion, will allow hitherto unattainable insights into the processes of the beginning of life. There is a broad international consensus that currently the application of these technologies in human-assisted reproduction must be considered to be unsafe and unethical. However, newspaper headlines also addressed the putatively resulting paradigm shift in human reproduction and thereby raised expectations in patients. Due to unsolved biological and technological obstacles, most scientists do not anticipate translation of any of these approaches into human reproductive medicine, if ever, for the next 10 years. Still, whereas the usage of synthetic embryos for reproductive purposes should be banned, in the context of in vitro-derived human gametes it is not too early to initiate the evaluation of the ethical implications, which could still remain assuming all technological hurdles can ever be cleared.
Collapse
Affiliation(s)
- Stefanie Horer
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Margit Rosner
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Iltis AS, Koster G, Reeves E, Matthews KRW. Ethical, legal, regulatory, and policy issues concerning embryoids: a systematic review of the literature. Stem Cell Res Ther 2023; 14:209. [PMID: 37605210 PMCID: PMC10441753 DOI: 10.1186/s13287-023-03448-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Recent advances in methods to culture pluripotent stem cells to model human development have resulted in entities that increasingly have recapitulated advanced stages of early embryo development. These entities, referred to by numerous terms such as embryoids, are becoming more sophisticated and could resemble human embryos ever more closely as research progresses. This paper reports a systematic review of the ethical, legal, regulatory, and policy questions and concerns found in the literature concerning human embryoid research published from 2016 to 2022. We identified 56 papers that use 53 distinct names or terms to refer to embryoids and four broad categories of ethical, legal, regulatory, or policy considerations in the literature: research justifications/benefits, ethical significance or moral status, permissible use, and regulatory and oversight challenges. Analyzing the full range of issues is a critical step toward fostering more robust ethical, legal, and social implications research in this emerging area and toward developing appropriate oversight.
Collapse
Affiliation(s)
- Ana S Iltis
- Center for Bioethics, Health and Society and Department of Philosophy, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Grace Koster
- Center for Bioethics, Health and Society and Department of Philosophy, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Emily Reeves
- Center for Bioethics, Health and Society and Department of Philosophy, Wake Forest University, Winston-Salem, NC, 27106, USA
| | | |
Collapse
|
12
|
Rosner M, Horer S, Feichtinger M, Hengstschläger M. Multipotent fetal stem cells in reproductive biology research. Stem Cell Res Ther 2023; 14:157. [PMID: 37287077 DOI: 10.1186/s13287-023-03379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Due to the limited accessibility of the in vivo situation, the scarcity of the human tissue, legal constraints, and ethical considerations, the underlying molecular mechanisms of disorders, such as preeclampsia, the pathological consequences of fetomaternal microchimerism, or infertility, are still not fully understood. And although substantial progress has already been made, the therapeutic strategies for reproductive system diseases are still facing limitations. In the recent years, it became more and more evident that stem cells are powerful tools for basic research in human reproduction and stem cell-based approaches moved into the center of endeavors to establish new clinical concepts. Multipotent fetal stem cells derived from the amniotic fluid, amniotic membrane, chorion leave, Wharton´s jelly, or placenta came to the fore because they are easy to acquire, are not associated with ethical concerns or covered by strict legal restrictions, and can be banked for autologous utilization later in life. Compared to adult stem cells, they exhibit a significantly higher differentiation potential and are much easier to propagate in vitro. Compared to pluripotent stem cells, they harbor less mutations, are not tumorigenic, and exhibit low immunogenicity. Studies on multipotent fetal stem cells can be invaluable to gain knowledge on the development of dysfunctional fetal cell types, to characterize the fetal stem cells migrating into the body of a pregnant woman in the context of fetomaternal microchimerism, and to obtain a more comprehensive picture of germ cell development in the course of in vitro differentiation experiments. The in vivo transplantation of fetal stem cells or their paracrine factors can mediate therapeutic effects in preeclampsia and can restore reproductive organ functions. Together with the use of fetal stem cell-derived gametes, such strategies could once help individuals, who do not develop functional gametes, to conceive genetically related children. Although there is still a long way to go, these developments regarding the usage of multipotent fetal stem cells in the clinic should continuously be accompanied by a wide and detailed ethical discussion.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Stefanie Horer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | | | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Abstract
Recent years have seen exciting progress across human embryo research, including new methods for culturing embryos, transcriptional profiling of embryogenesis and gastrulation, mapping lineage trajectories, and experimenting on stem cell-based embryo models. These advances are beginning to define the dynamical principles of development across stages, tissues and organs, enabling a better understanding of human development before birth in health and disease, and potentially leading to improved treatments for infertility and developmental disorders. However, there are still significant roadblocks en route to this goal. Here, we highlight technical challenges to studying early human development and propose ways and means to overcome some of these constraints.
Collapse
Affiliation(s)
- Peter J. Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Naomi Moris
- The Francis Crick Institute, London NW1 1AT, UK
| | - Patrick P. L. Tam
- Embryology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
14
|
Ávila-González D, Gidi-Grenat MÁ, García-López G, Martínez-Juárez A, Molina-Hernández A, Portillo W, Díaz-Martínez NE, Díaz NF. Pluripotent Stem Cells as a Model for Human Embryogenesis. Cells 2023; 12:1192. [PMID: 37190101 PMCID: PMC10136597 DOI: 10.3390/cells12081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem cells (PSCs; embryonic stem cells and induced pluripotent stem cells) can recapitulate critical aspects of the early stages of embryonic development; therefore, they became a powerful tool for the in vitro study of molecular mechanisms that underlie blastocyst formation, implantation, the spectrum of pluripotency and the beginning of gastrulation, among other processes. Traditionally, PSCs were studied in 2D cultures or monolayers, without considering the spatial organization of a developing embryo. However, recent research demonstrated that PSCs can form 3D structures that simulate the blastocyst and gastrula stages and other events, such as amniotic cavity formation or somitogenesis. This breakthrough provides an unparalleled opportunity to study human embryogenesis by examining the interactions, cytoarchitecture and spatial organization among multiple cell lineages, which have long remained a mystery due to the limitations of studying in utero human embryos. In this review, we will provide an overview of how experimental embryology currently utilizes models such as blastoids, gastruloids and other 3D aggregates derived from PSCs to advance our understanding of the intricate processes involved in human embryo development.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Mikel Ángel Gidi-Grenat
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Alejandro Martínez-Juárez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Néstor Emmanuel Díaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| |
Collapse
|
15
|
Barnhart AJ, Dierickx K. A Tale of Two Chimeras: Applying the Six Principles to Human Brain Organoid Xenotransplantation. Camb Q Healthc Ethics 2023; 32:1-17. [PMID: 36847198 DOI: 10.1017/s0963180123000051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cerebral organoid models in-of-themselves are considered as an alternative to research animal models. But their developmental and biological limitations currently inhibit the probability that organoids can fully replace animal models. Furthermore, these organoid limitations have, somewhat ironically, brought researchers back to the animal model via xenotransplantation, thus creating hybrids and chimeras. In addition to attempting to study and overcome cerebral organoid limitations, transplanting cerebral organoids into animal models brings an opportunity to observe behavioral changes in the animal itself. Traditional animal ethics frameworks, such as the well-known three Rs (reduce, refine, and replace), have previously addressed chimeras and xenotransplantation of tissue. But these frameworks have yet to completely assess the neural-chimeric possibilities. And while the three Rs framework was a historical landmark in animal ethics, there are identifiable gaps in the framework that require attention. The authors propose to utilize an expanded three Rs framework initially developed by David DeGrazia and Tom L. Beauchamp, known as the Six Principles (6Ps). This framework aims to expand upon the three Rs, fill in the gaps, and be a practical means for assessing animal ethical issues like that of neural-chimeras and cerebral organoid xenotransplantation. The scope of this 6Ps application will focus on two separate but recent studies, which were published in 2019 and 2020. First, they consider a study wherein cerebral organoids were grown from donors with Down syndrome and from neurotypical donors. After these organoids were grown and studied, they were then surgically implanted into mouse models to observe the physiological effects and any behavioral change in the chimera. Second, they consider a separate study wherein neurotypical human embryonic stem cell-derived cerebral organoids were grown and transplanted into mouse and macaque models. The aim was to observe if such a transplantation method would contribute to therapies for brain injury or stroke. The authors place both studies under the lens of the 6Ps framework, assess the relevant contexts of each case, and provide relevant normative conclusions. In this way, they demonstrate how the 6Ps could be applied in future cases of neural-chimeras and cerebral organoid xenotransplantation.
Collapse
Affiliation(s)
- Andrew J Barnhart
- Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Kris Dierickx
- Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Fabbri M, Ginoza M, Assen L, Jongsma K, Isasi R. Modeling policy development: examining national governance of stem cell-based embryo models. Regen Med 2023; 18:155-168. [PMID: 36601984 DOI: 10.2217/rme-2022-0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Researchers can now coax human pluripotent stem cells to imitate the structure and spontaneous self-organization of the developing human embryo. Although these stem cell-based embryo models present an advantageous alternative to embryo research, they also raise ethical and policy challenges. In 2021, the International Society for Stem Cell Research revised its Guidelines for Stem Cell Research and Clinical Translation, providing contemporaneous best practices for ethical conduct in the field. The Guidelines complement national governance frameworks; however, they also contain contentious and aspirational norms that might catalyze change in research practice and in the enactment of national policies. Using a sample of 11 research-intensive countries, the authors compare research policy frameworks against the International Society for Stem Cell Research Guidelines to showcase how developments in global and national policies might affect stem cell-based embryo model research governance and illustrate fertile areas for ethical reflection and policy development.
Collapse
Affiliation(s)
- Morris Fabbri
- Dr John T Macdonald Foundation Department of Human Genetics, John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Lars Assen
- University Medical Center Utrecht, Utrecht, 3584, The Netherlands
| | - Karin Jongsma
- University Medical Center Utrecht, Utrecht, 3584, The Netherlands
| | - Rosario Isasi
- Dr John T Macdonald Foundation Department of Human Genetics, John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr John T Macdonald Foundation Department of Human Genetics, John P Hussman Institute for Human Genomics, Interdisciplinary Stem Cell Institute, Miami, FL 33136, USA
| |
Collapse
|
17
|
Roelen BAJ, Chuva de Sousa Lopes SM. Stay on the road: from germ cell specification to gonadal colonization in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210259. [PMID: 36252219 PMCID: PMC9574628 DOI: 10.1098/rstb.2021.0259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The founder cells of the gametes are primordial germ cells (PGCs). In mammals, PGCs are specified early during embryonic development, at the boundary between embryonic and extraembryonic tissue, long before their later residences, the gonads, have developed. Despite the differences in form and behaviour when differentiated into oocytes or sperm cells, in the period between specification and gonadal colonization, male and female PGCs are morphologically indistinct and largely regulated by similar mechanisms. Here, we compare different modes and mechanisms that lead to the formation of PGCs, putting in context protocols that are in place to differentiate both human and mouse pluripotent stem cells into PGC-like cells. In addition, we review important aspects of the migration of PGCs to the gonadal ridges, where they undergo further sex-specific differentiation. Defects in migration need to be effectively corrected, as misplaced PGCs can become tumorigenic. Concluding, a combination of in vivo studies and the development of adequate innovative in vitro models, ensuring both robustness and standardization, are providing us with the tools for a greater understanding of the first steps of gametogenesis and to develop disease models to study the origin of germ cell tumours. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.,Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Susana M Chuva de Sousa Lopes
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
18
|
Tozzi A, Mariniello L. Unusual Mathematical Approaches Untangle Nervous Dynamics. Biomedicines 2022; 10:biomedicines10102581. [PMID: 36289843 PMCID: PMC9599563 DOI: 10.3390/biomedicines10102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The massive amount of available neurodata suggests the existence of a mathematical backbone underlying neuronal oscillatory activities. For example, geometric constraints are powerful enough to define cellular distribution and drive the embryonal development of the central nervous system. We aim to elucidate whether underrated notions from geometry, topology, group theory and category theory can assess neuronal issues and provide experimentally testable hypotheses. The Monge’s theorem might contribute to our visual ability of depth perception and the brain connectome can be tackled in terms of tunnelling nanotubes. The multisynaptic ascending fibers connecting the peripheral receptors to the neocortical areas can be assessed in terms of knot theory/braid groups. Presheaves from category theory permit the tackling of nervous phase spaces in terms of the theory of infinity categories, highlighting an approach based on equivalence rather than equality. Further, the physical concepts of soft-matter polymers and nematic colloids might shed new light on neurulation in mammalian embryos. Hidden, unexpected multidisciplinary relationships can be found when mathematics copes with neural phenomena, leading to novel answers for everlasting neuroscientific questions. For instance, our framework leads to the conjecture that the development of the nervous system might be correlated with the occurrence of local thermal changes in embryo–fetal tissues.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-5017, USA
- Correspondence:
| | - Lucio Mariniello
- Department of Pediatrics, University Federico II, 80131 Naples, Italy
| |
Collapse
|
19
|
Barnhart AJ, Dierickx K. The Many Moral Matters of Organoid Models: A systematic review of reasons. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2022; 25:545-560. [PMID: 35532849 DOI: 10.1007/s11019-022-10082-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/15/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To present the ethical issues, moral arguments, and reasons found in the ethical literature on organoid models. DESIGN In this systematic review of reasons in ethical literature, we selected sources based on predefined criteria: (1) The publication mentions moral reasons or arguments directly relating to the creation and/or use of organoid models in biomedical research; (2) These moral reasons and arguments are significantly addressed, not as mere passing mentions, or comprise a large portion of the body of work; (3) The publication is peer-reviewed and published in an academic article, book, national-level report, working paper, or Ph.D. thesis; (4) The publications collected are in English. ANALYSIS Each article was read in-depth for identifiable moral reasons, arguments, and concerns. These were then inductively classified and synthesized to create broader categories of reasons, and eventually an overarching conceptual scheme was created. RESULTS A total of twenty-three sources were included and analyzed out of an initial 266 collected sources. Five themes of ethical issues and arguments were found: Animal Experimentation; Clinical Applications and Experiments; Commercialization and Consent; Organoid Ontology and Moral Status; and Research Ethics and Research Integrity. These themes are then further broken down into sub-themes and topics. Given the extensive nature of the topics found, we will focus on describing the topics that comprised of more in-depth reasons and arguments rather than few, passing mentions or concerns. CONCLUSIONS The ethics of organoids requires further deliberation in multiple areas, as much of the discussions are not presented as in-depth arguments. Such sentiments are also echoed throughout the organoid ethics literature.
Collapse
Affiliation(s)
- Andrew J Barnhart
- Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium.
| | - Kris Dierickx
- Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
20
|
de Jongh D, Massey EK, Bunnik EM. Organoids: a systematic review of ethical issues. Stem Cell Res Ther 2022; 13:337. [PMID: 35870991 PMCID: PMC9308907 DOI: 10.1186/s13287-022-02950-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022] Open
Abstract
Organoids are 3D structures grown from pluripotent stem cells derived from human tissue and serve as in vitro miniature models of human organs. Organoids are expected to revolutionize biomedical research and clinical care. However, organoids are not seen as morally neutral. For instance, tissue donors may perceive enduring personal connections with their organoids, setting higher bars for informed consent and patient participation. Also, several organoid sub-types, e.g., brain organoids and human-animal chimeric organoids, have raised controversy. This systematic review provides an overview of ethical discussions as conducted in the scientific literature on organoids. The review covers both research and clinical applications of organoid technology and discusses the topics informed consent, commercialization, personalized medicine, transplantation, brain organoids, chimeras, and gastruloids. It shows that further ethical research is needed especially on organoid transplantation, to help ensure the responsible development and clinical implementation of this technology in this field.
Collapse
Affiliation(s)
- Dide de Jongh
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Emma K. Massey
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Eline M. Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Quan Y, Wang X, Li L. In vitro investigation of mammalian peri-implantation embryogenesis†. Biol Reprod 2022; 107:205-211. [PMID: 35294001 DOI: 10.1093/biolre/ioac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
The embryos attach and invade into the uterus and establish the connection with their mother in peri-implantation development. During this period, the pluripotent epiblast cells of embryo undergo symmetry breaking, cell lineage allocation, and morphogenetic remodeling, accompanying with the dramatic changes of transcriptome, epigenome, and signal pathways, to prepare a state for their differentiation and gastrulation. The progresses in mouse genetics and stem cell biology have largely advanced the knowledge of these transformations which are largely hindered by the hard accessibility of natural embryos. To gain insight into mammalian peri-implantation development, great efforts have been made in the field. Recently, the advances in the prolonged in vitro culture of blastocysts, the derivation of multiple pluripotent stem cells, as well as the construction of stem cell-based embryo-like models have opened novel avenues to investigate peri-implantation development in mammals, especially for the humans. Combining with other emerging new technologies, these new models will substantially promote the comprehension of mammalian peri-implantation development, accelerating the progress of reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Yujun Quan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Luijkx D, Shankar V, van Blitterswijk C, Giselbrecht S, Vrij E. From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Front Cell Dev Biol 2022; 10:838356. [PMID: 35359453 PMCID: PMC8963787 DOI: 10.3389/fcell.2022.838356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Advances in the field of stem cell-based models have in recent years lead to the development of blastocyst-like structures termed blastoids. Blastoids can be used to study key events in mammalian pre-implantation development, as they mimic the blastocyst morphologically and transcriptionally, can progress to the post-implantation stage and can be generated in large numbers. Blastoids were originally developed using mouse pluripotent stem cells, and since several groups have successfully generated blastocyst models of the human system. Here we provide a comparison of the mouse and human protocols with the aim of deriving the core requirements for blastoid formation, discuss the models’ current ability to mimic blastocysts and give an outlook on potential future applications.
Collapse
Affiliation(s)
| | | | | | | | - Erik Vrij
- *Correspondence: Erik Vrij, ; Stefan Giselbrecht,
| |
Collapse
|
23
|
Revisiting selected ethical aspects of current clinical in vitro fertilization (IVF) practice. J Assist Reprod Genet 2022; 39:591-604. [PMID: 35190959 PMCID: PMC8995227 DOI: 10.1007/s10815-022-02439-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Ethical considerations are central to all medicine though, likely, nowhere more essential than in the practice of reproductive endocrinology and infertility. Through in vitro fertilization (IVF), this is the only field in medicine involved in creating human life. IVF has, indeed, so far led to close to 10 million births worldwide. Yet, relating to substantial changes in clinical practice of IVF, the medical literature has remained surprisingly quiet over the last two decades. Major changes especially since 2010, however, call for an updated commentary. Three key changes deserve special notice: Starting out as a strictly medical service, IVF in recent years, in efforts to expand female reproductive lifespans in a process given the term “planned” oocyte cryopreservation, increasingly became more socially motivated. The IVF field also increasingly underwent industrialization and commoditization by outside financial interests. Finally, at least partially driven by industrialization and commoditization, so-called add-ons, the term describing mostly unvalidated tests and procedures added to IVF since 2010, have been held responsible for worldwide declines in fresh, non-donor live birthrates after IVF, to levels not seen since the mid-1990s. We here, therefore, do not offer a review of bioethical considerations regarding IVF as a fertility treatment, but attempt to point out ethical issues that arose because of major recent changes in clinical IVF practice.
Collapse
|
24
|
The closer the knit, the tighter the fit: conceptual and ethical issues of human embryo modelling. Reprod Biomed Online 2021; 43:1123-1125. [PMID: 34706836 DOI: 10.1016/j.rbmo.2021.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
|
25
|
Bollinger J, May E, Mathews D, Donowitz M, Sugarman J. Patients' perspectives on the derivation and use of organoids. Stem Cell Reports 2021; 16:1874-1883. [PMID: 34329595 PMCID: PMC8365094 DOI: 10.1016/j.stemcr.2021.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Organoid research is enhancing understanding of human development and diseases as well as aiding in medication development and selection, raising hopes for even more future therapeutic options. Nevertheless, this work raises important ethical issues and there is a paucity of data regarding patients' perspectives on them. We report on 60 interviews with adult patients or parents of pediatric patients from diverse disease populations who receive medical care at a major academic research institution in the United States. Interviewees expressed broad support for organoid development and use. However, patients viewed brain organoids, and sometimes gonadal organoids, as morally distinct; and some organoid research poses moral concerns. Nonetheless, patients generally understood the potential value of such research and approved of it, provided it was aimed at good intent and conducted with ethical oversight and a robust consent process. These data should help inform conceptual and policy deliberations about appropriate organoid use.
Collapse
Affiliation(s)
- Juli Bollinger
- Berman Institute of Bioethics, Johns Hopkins University, 1809 Ashland Avenue, Baltimore, MD 21205, USA
| | - Elizabeth May
- Berman Institute of Bioethics, Johns Hopkins University, 1809 Ashland Avenue, Baltimore, MD 21205, USA
| | - Debra Mathews
- Berman Institute of Bioethics, Johns Hopkins University, 1809 Ashland Avenue, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeremy Sugarman
- Berman Institute of Bioethics, Johns Hopkins University, 1809 Ashland Avenue, Baltimore, MD 21205, USA; Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
|
27
|
van den Brink SC, van Oudenaarden A. 3D gastruloids: a novel frontier in stem cell-based in vitro modeling of mammalian gastrulation. Trends Cell Biol 2021; 31:747-759. [PMID: 34304959 DOI: 10.1016/j.tcb.2021.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
3D gastruloids, aggregates of embryonic stem cells that recapitulate key aspects of gastrula-stage embryos, have emerged as a powerful tool to study the early stages of mammalian post-implantation development in vitro. Owing to their tractable nature and the relative ease by which they can be generated in large numbers, 3D gastruloids provide an unparalleled opportunity to study normal and pathological embryogenesis from a bottom-up perspective and in a high-throughput manner. Here, we review how gastruloid models can be exploited to deepen our understanding of mammalian development. In addition, we discuss current limitations, potential clinical applications, and ethical implications of this emerging model system.
Collapse
Affiliation(s)
- Susanne C van den Brink
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Hengstschläger M, Rosner M. Embryoid research calls for reassessment of legal regulations. Stem Cell Res Ther 2021; 12:356. [PMID: 34147132 PMCID: PMC8214764 DOI: 10.1186/s13287-021-02442-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
It is known that in countries, in which basic research on human embryos is in fact prohibited by law, working with imported human embryonic stem cells (hESCs) can still be permitted. As long as hESCs are not capable of development into a complete human being, it might be the case that they do not fulfill all criteria of the local definition of an embryo. Recent research demonstrates that hESCs can be developed into entities, called embryoids, which increasingly could come closer to actual human embryos in future. By discussing the Austrian situation, we want to highlight that current embryoid research could affect the prevailing opinion on the legal status of work with hESCs and therefore calls for reassessment of the regulations in all countries with comparable definitions of the embryo.
Collapse
Affiliation(s)
- Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria.
| | - Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| |
Collapse
|
29
|
Denker HW. Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications. Cells 2021; 10:1461. [PMID: 34200796 PMCID: PMC8230544 DOI: 10.3390/cells10061461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
The experimental production of complex structures resembling mammalian embryos (e.g., blastoids, gastruloids) from pluripotent stem cells in vitro has become a booming research field. Since some of these embryoid models appear to reach a degree of complexity that may come close to viability, a broad discussion has set in with the aim to arrive at a consensus on the ethical implications with regard to acceptability of the use of this technology with human cells. The present text focuses on aspects of the gain of organismic wholeness of such stem cell-derived constructs, and of autonomy of self-organization, raised by recent reports on blastocyst-like cysts spontaneously budding in mouse stem cell cultures, and by previous reports on likewise spontaneous formation of gastrulating embryonic disc-like structures in primate models. Mechanisms of pattern (axis) formation in early embryogenesis are discussed in the context of self-organization of stem cell clusters. It is concluded that ethical aspects of development of organismic wholeness in the formation of embryoids need to receive more attention in the present discussions about new legal regulations in this field.
Collapse
Affiliation(s)
- Hans-Werner Denker
- Universitätsklinikum, Institut für Anatomie, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
30
|
Clark AT, Brivanlou A, Fu J, Kato K, Mathews D, Niakan KK, Rivron N, Saitou M, Surani A, Tang F, Rossant J. Human embryo research, stem cell-derived embryo models and in vitro gametogenesis: Considerations leading to the revised ISSCR guidelines. Stem Cell Reports 2021; 16:1416-1424. [PMID: 34048690 PMCID: PMC8190666 DOI: 10.1016/j.stemcr.2021.05.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
The ISSCR Guidelines for Stem Cell Research and Clinical Translation were last revised in 2016. Since then, rapid progress has been made in research areas related to in vitro culture of human embryos, creation of stem cell-based embryo models, and in vitro gametogenesis. Therefore, a working group of international experts was convened to review the oversight process and provide an update to the guidelines. This report captures the discussion and summarizes the major recommendations made by this working group, with a specific emphasis on updating the categories of review and engagement with the specialized scientific and ethical oversight process.
Collapse
Affiliation(s)
| | | | - Jianping Fu
- The University of Michigan, An Arbor, MI, USA
| | | | | | - Kathy K Niakan
- Francis Crick Institute and The Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | | | | | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| | | |
Collapse
|
31
|
Weatherbee BAT, Cui T, Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol 2021; 474:91-99. [PMID: 33333069 PMCID: PMC8232073 DOI: 10.1016/j.ydbio.2020.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022]
Abstract
Early human post-implantation development involves extensive growth combined with a series of complex morphogenetic events. The lack of precise spatial and temporal control over these processes leads to pregnancy loss. Given the ethical and technical limitations in studying the natural human embryo, alternative approaches are needed to investigate mechanisms underlying this critical stage of human development. Here, we present an overview of the different stem cells and stem cell-derived models which serve as useful, albeit imperfect, tools in understanding human embryogenesis. Current models include stem cells that represent each of the three earliest lineages: human embryonic stem cells corresponding to the epiblast, hypoblast-like stem cells and trophoblast stem cells. We also review the use of human embryonic stem cells to model complex aspects of epiblast morphogenesis and differentiation. Additionally, we propose that the combination of both embryonic and extra-embryonic stem cells to form three-dimensional embryo models will provide valuable insights into cell-cell chemical and mechanical interactions that are essential for natural embryogenesis.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Tongtong Cui
- Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Magdalena Zernicka-Goetz
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
32
|
Segers S. The path toward ectogenesis: looking beyond the technical challenges. BMC Med Ethics 2021; 22:59. [PMID: 33985480 PMCID: PMC8120724 DOI: 10.1186/s12910-021-00630-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breakthroughs in animal studies make the topic of human application of ectogenesis for medical and non-medical purposes more relevant than ever before. While current data do not yet demonstrate a reasonable expectation of clinical benefit soon, several groups are investigating the feasibility of artificial uteri for extracorporeal human gestation. MAIN TEXT This paper offers the first comprehensive and up to date discussion of the most important pros and cons of human ectogenesis in light of clinical application, along with an examination of crucial ethical (and legal) issues that continued research into, and the clinical translation of, ectogenesis gives rise to. The expected benefits include advancing prenatal medicine, improving neonatal intensive care, and providing a novel pathway towards biological parenthood. This comes with important future challenges. Prior to human application, important questions have to be considered concerning translational research, experimental use of human fetuses and appropriate safety testing. Key questions are identified regarding risks to ectogenesis' subjects, and the physical impact on the pregnant person when transfer from the uterus to the artificial womb is required. Critical issues concerning proportionality have to be considered, also in terms of equity of access, relative to the envisaged application of ectogenesis. The advent of ectogenesis also comes with crucial issues surrounding abortion, extended fetal viability and moral status of the fetus. CONCLUSIONS The development of human ectogenesis will have numerous implications for clinical practice. Prior to human testing, close consideration should be given to whether (and how) ectogenesis can be introduced as a continuation of existing neonatal care, with due attention to both safety risks to the fetus and pressures on pregnant persons to undergo experimental and/or invasive procedures. Equally important is the societal debate about the acceptable applications of ectogenesis and how access to these usages should be prioritized. It should be anticipated that clinical availability of ectogenesis, possibly first as a way to save extremely premature fetuses, may spark demand for non-medical purposes, like avoiding physical and social burdens of pregnancy.
Collapse
Affiliation(s)
- Seppe Segers
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Blandijnberg 2, 9000, Ghent, Belgium.
| |
Collapse
|
33
|
Nicolas P, Etoc F, Brivanlou AH. The ethics of human-embryoids model: a call for consistency. J Mol Med (Berl) 2021; 99:569-579. [PMID: 33792755 PMCID: PMC8026457 DOI: 10.1007/s00109-021-02053-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/10/2022]
Abstract
In this article, we discuss the ethics of human embryoids, i.e., embryo-like structures made from pluripotent stem cells for modeling natural embryos. We argue that defining our social priorities is critical to design a consistent ethical guideline for research on those new entities. The absence of clear regulations on these emerging technologies stems from an unresolved debate surrounding natural human embryo research and one common opinion that one needs to solve the question of the moral status of the human embryo before regulating their surrogate. The recent NIH funding restrictions for research on human embryoids have made scientists even more unlikely to raise their voices. As a result, the scientific community has maintained a low profile while longing for a more favorable socio-political climate for their research. This article is a call for consistency among biomedical research on human materials, trying to position human embryoids within a spectrum of existing practice from stem cell research or IVF to research involving human subjects. We specifically note that the current practices in infertility clinics of freezing human embryos or disposing of them without any consideration for their potential benefits contradicts the assumption of special consideration for human material. Conversely, creating human embryoids for research purposes could ensure that no human material be used in vain, always serving humankind. We argue here that it is time to reconsider the full ban on embryo research (human embryos and embryoids) beyond the 14-day rule and that research on those entities should obey a sliding scale combining the completeness of the model (e.g., complete vs. partial) and the developmental stage: with more advanced completeness and developmental stage of the considered entity, being associated with more rigorous evaluation of societal benefits, statements of intention, and necessity of such research.
Collapse
Affiliation(s)
- Paola Nicolas
- Bioethics Center, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595 USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065 USA
| | - Ali H. Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
34
|
Rossant J, Tam PPL. Opportunities and challenges with stem cell-based embryo models. Stem Cell Reports 2021; 16:1031-1038. [PMID: 33667412 PMCID: PMC8185371 DOI: 10.1016/j.stemcr.2021.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based embryo models open an unprecedented avenue for modeling embryogenesis, cell lineage differentiation, tissue morphogenesis, and organogenesis in mammalian development. Experimentation on these embryo models can lead to a better understanding of the mechanisms of development and offers opportunities for functional genomic studies of disease-causing mechanisms, identification of therapeutic targets, and preclinical modeling of advanced therapeutics for precision medicine. An immediate challenge is to create embryo models of high fidelity to embryogenesis and organogenesis in vivo, to ensure that the knowledge gleaned is biologically meaningful and clinically relevant.
Collapse
Affiliation(s)
- Janet Rossant
- Hospital for Sick Children, University of Toronto, and The Gairdner Foundation, Toronto, Canada.
| | - Patrick P L Tam
- Children's Medical Research Institute, University of Sydney, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
35
|
Human Embryo Models and Drug Discovery. Int J Mol Sci 2021; 22:ijms22020637. [PMID: 33440617 PMCID: PMC7828037 DOI: 10.3390/ijms22020637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
For obvious reasons, such as, e.g., ethical concerns or sample accessibility, model systems are of highest importance to study the underlying molecular mechanisms of human maladies with the aim to develop innovative and effective therapeutic strategies. Since many years, animal models and highly proliferative transformed cell lines are successfully used for disease modelling, drug discovery, target validation, and preclinical testing. Still, species-specific differences regarding genetics and physiology and the limited suitability of immortalized cell lines to draw conclusions on normal human cells or specific cell types, are undeniable shortcomings. The progress in human pluripotent stem cell research now allows the growth of a virtually limitless supply of normal and DNA-edited human cells, which can be differentiated into various specific cell types. However, cells in the human body never fulfill their functions in mono-lineage isolation and diseases always develop in complex multicellular ecosystems. The recent advances in stem cell-based 3D organoid technologies allow a more accurate in vitro recapitulation of human pathologies. Embryoids are a specific type of such multicellular structures that do not only mimic a single organ or tissue, but the entire human conceptus or at least relevant components of it. Here we briefly describe the currently existing in vitro human embryo models and discuss their putative future relevance for disease modelling and drug discovery.
Collapse
|
36
|
Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 2020; 11:483. [PMID: 33198819 PMCID: PMC7667818 DOI: 10.1186/s13287-020-01998-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine organization, Tehran, Iran
| | - Setareh Raoufi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|