1
|
Sorrentino FS, Di Terlizzi P, De Rosa F, Salati C, Spadea L, Gagliano C, Musa M, Zeppieri M. New frontiers in retinal transplantation. World J Transplant 2024; 14:97690. [PMID: 39697450 PMCID: PMC11438945 DOI: 10.5500/wjt.v14.i4.97690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/20/2024] Open
Abstract
New frontiers about retinal cell transplantation for retinal degenerative diseases start from the idea that acting on stem cells can help regenerate retinal layers and establish new synapses among retinal cells. Deficiency or alterations of synaptic input and neurotrophic factors result in trans-neuronal degeneration of the inner retinal cells. Thus, the disruption of photoreceptors takes place. However, even in advanced forms of retinal degeneration, a good percentage of the ganglion cells and the inner nuclear layer neurons remain intact. This phenomenon provides evidence for obtaining retinal circuitry through the transplantation of photoreceptors into the subretinal region. The eye is regarded as an optimal organ for cell transplantation because of its immunological privilege and the relatively small number of cells collaborating to carry out visual activities. The eyeball's immunological privilege, characterized by the suppression of delayed-type hypersensitivity responses in ocular tissues, is responsible for the low rate of graft rejection in transplant patients. The main discoveries highlight the capacity of embryonic stem cells (ESCs) and induced pluripotent stem cells to regenerate damaged retinal regions. Recent progress has shown significant enhancements in transplant procedures and results. The research also explores the ethical ramifications linked to the utilization of stem cells, emphasizing the ongoing issue surrounding ESCs. The analysis centers on recent breakthroughs, including the fabrication of three-dimensional retinal organoids and the innovation of scaffolding for cell transportation. Moreover, researchers are currently assessing the possibility of CRISPR and other advanced gene editing technologies to enhance the outcomes of retinal transplantation. The widespread use of universally recognized safe surgical and imaging methods enables retinal transplantation and monitoring of transplanted cell growth toward the correct location. Currently, most therapy approaches are in the first phases of development and necessitate further research, including both pre-clinical and clinical trials, to attain favorable visual results for individuals suffering from retinal degenerative illnesses.
Collapse
Affiliation(s)
| | - Patrick Di Terlizzi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, Bologna 40100, Italy
| | - Francesco De Rosa
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, Meldola 47014, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Enna 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
2
|
Tian Q, Chung H, Wen D. The role of lipids in genome integrity and pluripotency. Biochem Soc Trans 2024; 52:639-650. [PMID: 38506536 PMCID: PMC11088914 DOI: 10.1042/bst20230479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Pluripotent stem cells (PSCs), comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), offer immense potential for regenerative medicine due to their ability to differentiate into all cell types of the adult body. A critical aspect of harnessing this potential is understanding their metabolic requirements during derivation, maintenance, and differentiation in vitro. Traditional culture methods using fetal bovine serum often lead to issues such as heterogeneous cell populations and diminished pluripotency. Although the chemically-defined 2i/LIF medium has provided solutions to some of these challenges, prolonged culturing of these cells, especially female ESCs, raises concerns related to genome integrity. This review discusses the pivotal role of lipids in genome stability and pluripotency of stem cells. Notably, the introduction of lipid-rich albumin, AlbuMAX, into the 2i/LIF culture medium offers a promising avenue for enhancing the genomic stability and pluripotency of cultured ESCs. We further explore the unique characteristics of lipid-induced pluripotent stem cells (LIP-ESCs), emphasizing their potential in regenerative medicine and pluripotency research.
Collapse
Affiliation(s)
- Qiyu Tian
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Hoyoung Chung
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| |
Collapse
|
3
|
Krivec N, Ghosh MS, Spits C. Gains of 20q11.21 in human pluripotent stem cells: Insights from cancer research. Stem Cell Reports 2024; 19:11-27. [PMID: 38157850 PMCID: PMC10828824 DOI: 10.1016/j.stemcr.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The genetic abnormalities observed in hPSC cultures worldwide have been suggested to pose an important hurdle in their safe use in regenerative medicine due to the possibility of oncogenic transformation by mutant cells in the patient posttransplantation. One of the best-characterized genetic lesions in hPSCs is the gain of 20q11.21, found in 20% of hPSC lines worldwide, and strikingly, also amplified in 20% of human cancers. In this review, we have curated the existing knowledge on the incidence of this mutation in hPSCs and cancer, explored the significance of chromosome 20q11.21 amplification in cancer progression, and reviewed the oncogenic role of the genes in the smallest common region of gain, to shed light on the significance of this mutation in hPSC-based cell therapy. Lastly, we discuss the state-of-the-art strategies devised to detect aneuploidies in hPSC cultures, avoid genetic changes in vitro cultures of hPSCs, and strategies to eliminate genetically abnormal cells from culture.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha S Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
4
|
Wilkinson AL, Zorzan I, Rugg-Gunn PJ. Epigenetic regulation of early human embryo development. Cell Stem Cell 2023; 30:1569-1584. [PMID: 37858333 DOI: 10.1016/j.stem.2023.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Studies of mammalian development have advanced our understanding of the genetic, epigenetic, and cellular processes that orchestrate embryogenesis and have uncovered new insights into the unique aspects of human embryogenesis. Recent studies have now produced the first epigenetic maps of early human embryogenesis, stimulating new ideas about epigenetic reprogramming, cell fate control, and the potential mechanisms underpinning developmental plasticity in human embryos. In this review, we discuss these new insights into the epigenetic regulation of early human development and the importance of these processes for safeguarding development. We also highlight unanswered questions and key challenges that remain to be addressed.
Collapse
Affiliation(s)
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
5
|
Barlak N, Kusdemir G, Gumus R, Gundogdu B, Sahin MH, Tatar A, Ittmann M, Karatas OF. Overexpression of POFUT1 promotes malignant phenotype and mediates perineural invasion in head and neck squamous cell carcinoma. Cell Biol Int 2023; 47:1950-1963. [PMID: 37641160 DOI: 10.1002/cbin.12085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive neoplasms, which requires more effective prevention and treatment modalities. Previous studies found that protein O-fucosyltransferase 1 (POFUT1) upregulation promotes carcinogenesis, although the potential roles, underlying molecular mechanisms, and biological implications of POFUT1 in HNSCC were not investigated. In this study, in silico analyses referred POFUT1 as a potential oncogene in HNSCC. Further analysis of tumor and normal tissue samples as well as HNSCC cells with quantitative real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry showed significant overexpression of POFUT1 in HNSCC clinical tumor tissue specimens and cell lines compared to corresponding controls. In vitro investigations revealed that overexpression of POFUT1 promoted phenotypes associated with cancer aggressiveness and its knockdown in HNSCC cells suppressed those phenotypes. Further xenograft experiments demonstrated that POFUT1 is an oncogene in vivo for HNSCC. Immunohistochemical analysis with human clinical samples and cancer cell-dorsal root ganglion ex-vivo coculture model showed that deregulation of POFUT1 is involved in the perineural invasion of HNSCC cells. These results suggest POFUT1 expression as a potential prognostic marker for patients with head and neck cancer and highlight its potential as a target for HNSCC therapy, although more molecular clues are needed to better define the functions of POFUT1 related to HNSCC carcinogenesis.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Gulnur Kusdemir
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Rasim Gumus
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Hakan Sahin
- Department of Brain and Nerve Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey, VAMC, Houston, Texas, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
6
|
Capik O, Gundogdu B, Tatar A, Sahin A, Chen F, Creighton CJ, Karatas OF. Oncogenic miR-1825 promotes head and neck carcinogenesis via targeting FREM1. J Cell Biochem 2023; 124:1628-1645. [PMID: 37683055 DOI: 10.1002/jcb.30473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant cancer type worldwide. Although the therapeutic modalities currently used for patients with HNSCC improved in recent decades, HNSCC prognosis is still poor. Therefore, it is an urgent necessity to understand the pathogenesis of HNSCC, to develop novel and effective treatment strategies, and to characterize and identify the oncogenes that are responsible for an aggressive HNSCC phenotype. In this study, we aimed to better understand the roles of miR-1825 in the pathogenesis of HNSCC. We examined the impacts of miR-1825 deregulation on the cancer-associated phenotypes using in vitro tests evaluating cell viability, clonogenicity, cell migration, invasion, apoptosis, and stem cell characteristics. In addition, we investigated the effects of miR-1825 overexpression on the tumor formation capacity of head and neck cancer cells in vivo using nude mice. We searched for potential targets of miR-1825 using microarray analysis and luciferase assay. We found that miR-1825 expression is upregulated in head and neck cells and clinical tumor samples in comparison to corresponding controls, where it potentially acts as an oncogene. We, then, showed that ectopic miR-1825 overexpression promotes cellular phenotypes related to head and neck cancer progression in vitro and has a stimulating potential on cancer formation in vivo. We also identified FREM1 as a direct target of miR-1825 and demonstrated its reduced expression in HNSCC samples using immunohistochemistry analysis. Collectively, we suggest that the miR-1825/FREM1 axis serves as an important mediator of HNSCC development, where miR-1825 acts as an oncogene.
Collapse
Affiliation(s)
- Ozel Capik
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulkadir Sahin
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fengju Chen
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
7
|
Capik O, Gumus R, Karatas OF. Hypoxia-induced tumor exosomes promote angiogenesis through miR-1825/TSC2/mTOR axis in oral squamous cell carcinoma. Head Neck 2023; 45:2259-2273. [PMID: 37449548 DOI: 10.1002/hed.27460] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is characterized by enhanced angiogenesis resulting in poor prognosis despite improvements in diagnostic/therapeutic techniques. Here, we aimed at investigating potential roles of miR-1825 enclosed in OSCC-derived exosomes on angiogenesis under hypoxic conditions. METHODS Effects of miR-1825 mimic/inhibitor as well as hypoxia-induced tumor derived exosomes on human umbilical vein endothelial cells (HUVECs) were evaluated using cell viability, migration/invasion, tube formation, and spheroid-based 3D angiogenesis assays. RESULTS Hypoxic conditions caused significant increase in miR-1825 levels in OSCC cells and hiTDEs. miR-1825 alone and within hiTDEs promoted endothelial cell viability, migration, invasion, and angiogenic potential, which is reversed via inhibition of miR-1825 expression. miR-1825 within hiTDEs altered the angiogenesis potential of HUVEC cells via deregulation of TSC2/mTOR axis. CONCLUSIONS We showed that hypoxia led to OSCC-derived exosome mediated transfer of miR-1825 to HUVECs and enhanced angiogenesis in OSCC in vitro.
Collapse
Affiliation(s)
- Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Rasim Gumus
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
8
|
Hassan M, Nasr SM, Amin NA, El-Ahwany E, Zoheiry M, Elzallat M. Circulating liver cancer stem cells and their stemness-associated MicroRNAs as diagnostic and prognostic biomarkers for viral hepatitis-induced liver cirrhosis and hepatocellular carcinoma. Noncoding RNA Res 2022; 8:155-163. [PMID: 36632614 PMCID: PMC9826835 DOI: 10.1016/j.ncrna.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Background Liver cancer stem cells (LCSCs) are a subpopulation of tumor cells that can drive cancer initiation and relapses. Because of their significance, researchers are looking for biomarkers that characterize or regulate LCSCs so that they can be used as targets for the diagnosis and treatment of chronic liver diseases and hepatocellular carcinoma (HCC). Methodology Six groups of patients having hepatitis C virus (HCV), HCV + cirrhosis, HCV + HCC, hepatitis B virus (HBV), HBV + cirrhosis, or HBV + HCC, in addition to a control group, were subjected to the measurement of LCSCs levels and analysis of miR-1290 and miR-1825 expression. Results The percentages of the CD133/EpCAM-expressing LCSCs were increased in viral hepatitis and cirrhosis groups, compared to the control group. HCC patients had the highest percentages of LCSCs. CD133/EpCAM-expressing cells showed significant correlations with stemness-associated miRNAs; miR-1290 and miR-1825. Also, the miR-1290 and miR-1825 were significantly up-regulated in viral hepatitis-associated cirrhosis and HCC groups. Moreover, in HCV + HCC, miR-1290 and miR-1825 expression was significantly positively correlated with tumor size and number. However, only miR-1825 could distinguish between HCV- and HBV-associated HCC groups. MiR-1290 exhibited the highest sensitivity and specificity for detecting HCC, followed by miR-1825 and CD133/EpCAM-expressing LCSCs. Conclusions These findings indicate the relevance of CD133/EpCAM-expressing cells in the pathogenesis of liver cirrhosis and HCC developed as a consequence of either chronic HCV or HBV infection. Accordingly, CD133/EpCAM-expressing cells, miR-1290, and miR-1825, could serve as promising diagnostic and prognostic biomarkers as well as therapeutic targets in patients suffering from liver cirrhosis or HCC.
Collapse
Affiliation(s)
- Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt,Corresponding author. Immunology Department, Theodor Bilharz Research Institute, Warraq El-Hadar, 12411, Egypt.
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Eman El-Ahwany
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Zoheiry
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
9
|
Artificial Oocyte: Development and Potential Application. Cells 2022; 11:cells11071135. [PMID: 35406698 PMCID: PMC8998074 DOI: 10.3390/cells11071135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility.
Collapse
|
10
|
Cao J, Hao J, Wang L, Tan Y, Tian Y, Li S, Ma A, Fu B, Dai J, Zhai P, Xiang P, Zhang Y, Cheng T, Peng Y, Zhou Q, Zhao T. Developing standards to support the clinical translation of stem cells. Stem Cells Transl Med 2021; 10 Suppl 2:S85-S95. [PMID: 34724717 PMCID: PMC8560191 DOI: 10.1002/sct3.13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stem cells, which could be developed as starting or raw materials for cell therapy, hold tremendous promise for regenerative medicine. However, despite multiple fundamental and clinical studies, clinical translation of stem cells remains in the early stages. In contrast to traditional chemical drugs, cellular products are complex, and efficacy can be altered by culture conditions, suboptimal cell culture techniques, and prolonged passage such that translation of stem cells from bench to bedside involves not only scientific exploration but also normative issues. Establishing an integrated system of standards to support stem cell applications has great significance in efficient clinical translation. In recent years, regulators and the scientific community have recognized gaps in standardization and have begun to develop standards to support stem cell research and clinical translation. Here, we discuss the development of these standards, which support the translation of stem cell products into clinical therapy, and explore ongoing work to define current stem cell guidelines and standards. We also introduce general aspects of stem cell therapy and current international consensus on human pluripotent stem cells, discuss standardization of clinical-grade stem cells, and propose a framework for establishing stem cell standards. Finally, we review ongoing development of international and Chinese standards supporting stem cell therapy.
Collapse
Affiliation(s)
- Jiani Cao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingPeople's Republic of China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingPeople's Republic of China
| | - Jie Hao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingPeople's Republic of China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingPeople's Republic of China
| | - Lei Wang
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingPeople's Republic of China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingPeople's Republic of China
| | - Yuanqing Tan
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingPeople's Republic of China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingPeople's Republic of China
| | - Yuchang Tian
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingPeople's Republic of China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingPeople's Republic of China
- University of Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Shiyu Li
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingPeople's Republic of China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingPeople's Republic of China
- University of Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Aijin Ma
- Beijing Technology and Business UniversityBeijingPeople's Republic of China
| | - Boqiang Fu
- China National Institute of MetrologyBeijingPeople's Republic of China
| | - Jianwu Dai
- University of Chinese Academy of SciencesBeijingPeople's Republic of China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Peijun Zhai
- China National Accreditation Service for Conformity AssessmentBeijingPeople's Republic of China
| | - Peng Xiang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yong Zhang
- HHLIFE Company Inc.ShenzhenPeople's Republic of China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinPeople's Republic of China
| | - Yaojin Peng
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingPeople's Republic of China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingPeople's Republic of China
- University of Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Qi Zhou
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingPeople's Republic of China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingPeople's Republic of China
- University of Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Tongbiao Zhao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingPeople's Republic of China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingPeople's Republic of China
- University of Chinese Academy of SciencesBeijingPeople's Republic of China
| |
Collapse
|
11
|
Bittenglova K, Habart D, Saudek F, Koblas T. The Potential of Pancreatic Organoids for Diabetes Research and Therapy. Islets 2021; 13:85-105. [PMID: 34523383 PMCID: PMC8528407 DOI: 10.1080/19382014.2021.1941555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/04/2021] [Indexed: 10/20/2022] Open
Abstract
The success of clinical transplantation of pancreas or isolated pancreatic islets supports the concept of cell-based cure for diabetes. One limitation is the shortage of cadaver human pancreata. The demand-supply gap could potentially be bridged by harnessing the self-renewal capacity of stem cells. Pluripotent stem cells and adult pancreatic stem cells have been explored as possible cell sources. Recently, a system for long-term culture of proposed adult pancreatic stem cells in a form of organoids was developed. Generated organoids partially mimic the architecture and cell-type composition of pancreatic tissue. Here, we review the attempts over the past decade, to utilize the organoid cell culture principles in order to identify, expand, and differentiate the adult pancreatic stem cells from different compartments of mouse and human pancreata. The development of the culture conditions, effects of specific growth factors and small molecules is discussed. The potential utility of the adult pancreatic stem cells is considered in the context of other cell sources.
Collapse
Affiliation(s)
- Katerina Bittenglova
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Habart
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Frantisek Saudek
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Koblas
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
12
|
Sustained intrinsic WNT and BMP4 activation impairs hESC differentiation to definitive endoderm and drives the cells towards extra-embryonic mesoderm. Sci Rep 2021; 11:8242. [PMID: 33859268 PMCID: PMC8050086 DOI: 10.1038/s41598-021-87547-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
We identified a human embryonic stem cell subline that fails to respond to the differentiation cues needed to obtain endoderm derivatives, differentiating instead into extra-embryonic mesoderm. RNA-sequencing analysis showed that the subline has hyperactivation of the WNT and BMP4 signalling. Modulation of these pathways with small molecules confirmed them as the cause of the differentiation impairment. While activation of WNT and BMP4 in control cells resulted in a loss of endoderm differentiation and induction of extra-embryonic mesoderm markers, inhibition of these pathways in the subline restored its ability to differentiate. Karyotyping and exome sequencing analysis did not identify any changes in the genome that could account for the pathway deregulation. These findings add to the increasing evidence that different responses of stem cell lines to differentiation protocols are based on genetic and epigenetic factors, inherent to the line or acquired during cell culture.
Collapse
|
13
|
Tezel T, Ruff A. Retinal cell transplantation in retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:336-347. [PMID: 35070661 PMCID: PMC8757529 DOI: 10.4103/tjo.tjo_48_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa is the most common hereditary retinal disease. Dietary supplements, neuroprotective agents, cytokines, and lately, prosthetic devices, gene therapy, and optogenetics have been employed to slow down the retinal degeneration or improve light perception. Completing retinal circuitry by transplanting photoreceptors has always been an appealing idea in retinitis pigmentosa. Recent developments in stem cell technology, retinal imaging techniques, tissue engineering, and transplantation techniques have brought us closer to accomplish this goal. The eye is an ideal organ for cell transplantation due to a low number of cells required to restore vision, availability of safe surgical and imaging techniques to transplant and track the cells in vivo, and partial immune privilege provided by the subretinal space. Human embryonic stem cells, induced pluripotential stem cells, and especially retinal organoids provide an adequate number of cells at a desired developmental stage which may maximize integration of the graft to host retina. However, stem cells must be manufactured under strict good manufacturing practice protocols due to known tumorigenicity as well as possible genetic and epigenetic stabilities that may pose a danger to the recipient. Immune compatibility of stem cells still stands as a problem for their widespread use for retinitis pigmentosa. Transplantation of stem cells from different sources revealed that some of the transplanted cells may not integrate the host retina but slow down the retinal degeneration through paracrine mechanisms. Discovery of a similar paracrine mechanism has recently opened a new therapeutic path for reversing the cone dormancy and restoring the sight in retinitis pigmentosa.
Collapse
|
14
|
Hoseini SM, Montazeri F, Moghaddam-Matin M, Bahrami AR, Meimandi HH, Ghasemi-Esmailabad S, Kalantar SM. Comparison of chromosomal instability of human amniocytes in primary and long-term cultures in AmnioMAX II and DMEM media: A cross-sectional study. Int J Reprod Biomed 2020; 18:885-898. [PMID: 33134801 PMCID: PMC7569711 DOI: 10.18502/ijrm.v13i10.7773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/21/2019] [Accepted: 01/19/2020] [Indexed: 12/03/2022] Open
Abstract
Background The genomic stability of stem cells to be used in cell therapy and other clinical applications is absolutely critical. In this regard, the relationship between in vitro expansion and the chromosomal instability (CIN), especially in human amniotic fluid cells (hAFCs) has not yet been completely elucidated. Objective To investigate the CIN of hAFCs in primary and long-term cultures and two different culture mediums. Materials and Methods After completing prenatal genetic diagnoses (PND) using karyotype technique and chromosomal analysis, a total of 15 samples of hAFCs from 650 samples were randomly selected and cultured in two different mediums as AmnioMAX II and DMEM. Then, proliferative cells were fixed on the slide to be used in standard chromosome G-banding analysis. Also, the senescent cells were screened for aneuploidy considering 8 chromosomes by FISH technique using two probe sets including PID I (X-13-18-21) & PID II (Y-15-16-22). Results Karyotype and interphase fluorescence in situ hybridization (iFISH) results from 650 patients who were referred for prenatal genetic diagnosis showed that only 6 out of them had culture- derived CIN as polyploidy, including mosaic diploid-triploid and diploid-tetraploid. Moreover, the investigation of aneuploidies in senesced hAFCs demonstrated the rate of total chromosomal abnormalities as 4.3% and 9.9% in AmnioMAX- and DMEM-cultured hAFCs, respectively. Conclusion hAFCs showed a low rate of CIN in two AmnioMAX II and DMEM mediums and also in the proliferative and senescent phases. Therefore, they could be considered as an attractive stem cell source with therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Moghaddam-Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Heidarian Meimandi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeed Ghasemi-Esmailabad
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Taei A, Kiani T, Taghizadeh Z, Moradi S, Samadian A, Mollamohammadi S, Sharifi‐Zarchi A, Guenther S, Akhlaghpour A, Asgari Abibeiglou B, Najar‐Asl M, Karamzadeh R, Khalooghi K, Braun T, Hassani S, Baharvand H. Temporal activation of LRH-1 and RAR-γ in human pluripotent stem cells induces a functional naïve-like state. EMBO Rep 2020; 21:e47533. [PMID: 33252195 PMCID: PMC7534641 DOI: 10.15252/embr.201847533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/13/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts, conversion of pre-established hPSCs, and generation of new cell lines from blastocysts. 2a2iL-hPSCs match several defined criteria of naïve-like pluripotency and contribute to human-mouse interspecies chimeras. Activation of TGF-β signaling is instrumental for acquisition of naïve-like pluripotency by the 2a2iL induction procedure, and transient activation of TGF-β signaling substitutes for 2a to generate naïve-like hPSCs. We reason that 2a2iL-hPSCs are an easily attainable system to evaluate properties of naïve-like hPSCs and for various applications.
Collapse
Affiliation(s)
- Adeleh Taei
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
- Department of Developmental BiologyUniversity of Science and CultureTehranIran
| | - Tahereh Kiani
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Zeinab Taghizadeh
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Sharif Moradi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Azam Samadian
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Sepideh Mollamohammadi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Ali Sharifi‐Zarchi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
- Computer Engineering DepartmentSharif University of TechnologyTehranIran
| | - Stefan Guenther
- Department of Cardiac Development and RemodelingMax‐Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Azimeh Akhlaghpour
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Behrouz Asgari Abibeiglou
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Mostafa Najar‐Asl
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Razieh Karamzadeh
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Keynoosh Khalooghi
- Department of Cardiac Development and RemodelingMax‐Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Thomas Braun
- Department of Cardiac Development and RemodelingMax‐Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Seyedeh‐Nafiseh Hassani
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
- Department of Developmental BiologyUniversity of Science and CultureTehranIran
| |
Collapse
|
16
|
Halliwell J, Barbaric I, Andrews PW. Acquired genetic changes in human pluripotent stem cells: origins and consequences. Nat Rev Mol Cell Biol 2020; 21:715-728. [DOI: 10.1038/s41580-020-00292-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
|
17
|
Zhang ZP, Zhang JT, Huang SC, He XY, Deng LX. Double sperm cloning (DSC) is a promising strategy in mammalian genetic engineering and stem cell research. Stem Cell Res Ther 2020; 11:388. [PMID: 32894201 PMCID: PMC7487873 DOI: 10.1186/s13287-020-01907-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) derived from somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs) are promising tools for meeting the personalized requirements of regenerative medicine. However, some obstacles need to be overcome before clinical trials can be undertaken. First, donor cells vary, and the reprogramming procedures are diverse, so standardization is a great obstacle regarding SCNT and iPSCs. Second, somatic cells derived from a patient may carry mitochondrial DNA mutations and exhibit telomere instability with aging or disease, and SCNT-ESCs and iPSCs retain the epigenetic memory or epigenetic modification errors. Third, reprogramming efficiency has remained low. Therefore, in addition to improving their success rate, other alternatives for producing ESCs should be explored. Producing androgenetic diploid embryos could be an outstanding strategy; androgenic diploid embryos are produced through double sperm cloning (DSC), in which two capacitated sperms (XY or XX, sorted by flow cytometer) are injected into a denucleated oocyte by intracytoplasmic sperm injection (ICSI) to reconstruct embryo and derive DSC-ESCs. This process could avoid some potential issues, such as mitochondrial interference, telomere shortening, and somatic epigenetic memory, all of which accompany somatic donor cells. Oocytes are naturally activated by sperm, which is unlike the artificial activation that occurs in SCNT. The procedure is simple and practical and can be easily standardized. In addition, DSC-ESCs can overcome ethical concerns and resolve immunological response matching with sperm providers. Certainly, some challenges must be faced regarding imprinted genes, epigenetics, X chromosome inactivation, and dosage compensation. In mice, DSC-ESCs have been produced and have shown excellent differentiation ability. Therefore, the many advantages of DSC make the study of this process worthwhile for regenerative medicine and animal breeding.
Collapse
Affiliation(s)
- Zhi-Ping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun-Tao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiu-Yuan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Li-Xin Deng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
18
|
Uncovering low-level mosaicism in human embryonic stem cells using high throughput single cell shallow sequencing. Sci Rep 2019; 9:14844. [PMID: 31619727 PMCID: PMC6796059 DOI: 10.1038/s41598-019-51314-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have significant levels of low-grade genetic mosaicism, which commonly used techniques fail to detect in bulk DNA. These copy number variations remain a hurdle for the clinical translation of hPSC, as their effect in vivo ranges from unknown to dangerous, and the ability to detect them will be necessary as the field advances. As such there is need for techniques which can efficiently analyse genetic content in single cells with higher throughput and lower costs. We report here on the use of the Fluidigm C1 single cell WGA platform in combination with shallow whole genome sequencing to analyse the genetic content of single hPSCs. From a hPSC line carrying an isochromosome 20, 56 single cells were analysed and found to carry a total of 50 aberrations, across 23% of cells, which could not be detected by bulk analysis. Aberrations were predominantly segmental gains, with a fewer number of segmental losses and aneuploidies. Interestingly, 40% of the breakpoints seen here correspond to known DNA fragile sites. Our results therefore demonstrate the feasibility of single cell shallow sequencing of hPSC and further expand upon the biological importance and frequency of single cell mosaicism in hPSC.
Collapse
|
19
|
Markouli C, Couvreu De Deckersberg E, Regin M, Nguyen HT, Zambelli F, Keller A, Dziedzicka D, De Kock J, Tilleman L, Van Nieuwerburgh F, Franceschini L, Sermon K, Geens M, Spits C. Gain of 20q11.21 in Human Pluripotent Stem Cells Impairs TGF-β-Dependent Neuroectodermal Commitment. Stem Cell Reports 2019; 13:163-176. [PMID: 31178415 PMCID: PMC6627003 DOI: 10.1016/j.stemcr.2019.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gain of 20q11.21 is one of the most common recurrent genomic aberrations in human pluripotent stem cells. Although it is known that overexpression of the antiapoptotic gene Bcl-xL confers a survival advantage to the abnormal cells, their differentiation capacity has not been fully investigated. RNA sequencing of mutant and control hESC lines, and a line transgenically overexpressing Bcl-xL, shows that overexpression of Bcl-xL is sufficient to cause most transcriptional changes induced by the gain of 20q11.21. Moreover, the differentially expressed genes in mutant and Bcl-xL overexpressing lines are enriched for genes involved in TGF-β- and SMAD-mediated signaling, and neuron differentiation. Finally, we show that this altered signaling has a dramatic negative effect on neuroectodermal differentiation, while the cells maintain their ability to differentiate to mesendoderm derivatives. These findings stress the importance of thorough genetic testing of the lines before their use in research or the clinic. Bcl-xL overexpression drives the transcriptomic profile of 20q11.21 mutant lines 20q11.21 mutant lines downregulate CHCHD2, a known TGF-β pathway modulator Mutant lines differentially express genes involved in TGF-β and SMAD signaling Mutant lines show impaired ectoderm commitment due to TGF-β signaling deregulation
Collapse
Affiliation(s)
- C Markouli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E Couvreu De Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - H T Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang 550000, Vietnam
| | - F Zambelli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium; Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| | - A Keller
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - D Dziedzicka
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - J De Kock
- Department of In Vitro Toxicology & Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - L Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - L Franceschini
- Laboratory of Molecular & Cellular Therapy, Department of Immunology - Physiology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - K Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - C Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
20
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Attwood SW, Edel MJ. iPS-Cell Technology and the Problem of Genetic Instability-Can It Ever Be Safe for Clinical Use? J Clin Med 2019; 8:E288. [PMID: 30823421 PMCID: PMC6462964 DOI: 10.3390/jcm8030288] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
The use of induced Pluripotent Stem Cells (iPSC) as a source of autologous tissues shows great promise in regenerative medicine. Nevertheless, several major challenges remain to be addressed before iPSC-derived cells can be used in therapy, and experience of their clinical use is extremely limited. In this review, the factors affecting the safe translation of iPSC to the clinic are considered, together with an account of efforts being made to overcome these issues. The review draws upon experiences with pluripotent stem-cell therapeutics, including clinical trials involving human embryonic stem cells and the widely transplanted mesenchymal stem cells. The discussion covers concerns relating to: (i) the reprogramming process; (ii) the detection and removal of incompletely differentiated and pluripotent cells from the resulting medicinal products; and (iii) genomic and epigenetic changes, and the evolutionary and selective processes occurring during culture expansion, associated with production of iPSC-therapeutics. In addition, (iv) methods for the practical culture-at-scale and standardization required for routine clinical use are considered. Finally, (v) the potential of iPSC in the treatment of human disease is evaluated in the light of what is known about the reprogramming process, the behavior of cells in culture, and the performance of iPSC in pre-clinical studies.
Collapse
Affiliation(s)
- Stephen W Attwood
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
| | - Michael J Edel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain.
- Victor Chang Cardiac Research Institute, Sydney, NSW 2145, Australia.
- Harry Perkins Research Institute, Fiona Stanley Hospital, University of Western Australia, PO Box 404, Bull Creek, Western Australia 6149, Australia.
| |
Collapse
|
22
|
Mishra S, Kacin E, Stamatiadis P, Franck S, Van der Jeught M, Mertes H, Pennings G, De Sutter P, Sermon K, Heindryckx B, Geens M. The role of the reprogramming method and pluripotency state in gamete differentiation from patient-specific human pluripotent stem cells. Mol Hum Reprod 2019; 24:173-184. [PMID: 29471503 DOI: 10.1093/molehr/gay007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/10/2018] [Indexed: 12/16/2022] Open
Abstract
The derivation of gametes from patient-specific pluripotent stem cells may provide new perspectives for genetic parenthood for patients currently facing sterility. We use current data to assess the gamete differentiation potential of patient-specific pluripotent stem cells and to determine which reprogramming strategy holds the greatest promise for future clinical applications. First, we compare the two best established somatic cell reprogramming strategies: the production of induced pluripotent stem cells (iPSC) and somatic cell nuclear transfer followed by embryonic stem cell derivation (SCNT-ESC). Recent reports have indicated that these stem cells, though displaying a similar pluripotency potential, show important differences at the epigenomic level, which may have repercussions on their applicability. By comparing data on the genetic and epigenetic stability of these cell types during derivation and in-vitro culture, we assess the reprogramming efficiency of both technologies and possible effects on the subsequent differentiation potential of these cells. Moreover, we discuss possible implications of mitochondrial heteroplasmy. We also address the ethical aspects of both cell types, as well as the safety considerations associated with clinical applications using these cells, e.g. the known genomic instability of human PSCs during long-term culture. Secondly, we discuss the role of the stem cell pluripotency state in germ cell differentiation. In mice, success in germ cell development from pluripotent stem cells could only be achieved when starting from a naive state of pluripotency. It remains to be investigated if the naive state is also crucial for germ cell differentiation in human cells and to what extent human naive pluripotency resembles the naive state in mouse.
Collapse
Affiliation(s)
- S Mishra
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - E Kacin
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - P Stamatiadis
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - S Franck
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - M Van der Jeught
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - H Mertes
- Bioethics Institute Ghent, Department of Philosophy and Moral Sciences, Blandijnberg 2, 9000 Ghent, Belgium
| | - G Pennings
- Bioethics Institute Ghent, Department of Philosophy and Moral Sciences, Blandijnberg 2, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - K Sermon
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - M Geens
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| |
Collapse
|
23
|
Eguizabal C, Aran B, Chuva de Sousa Lopes SM, Geens M, Heindryckx B, Panula S, Popovic M, Vassena R, Veiga A. Two decades of embryonic stem cells: a historical overview. Hum Reprod Open 2019; 2019:hoy024. [PMID: 30895264 PMCID: PMC6396646 DOI: 10.1093/hropen/hoy024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION How did the field of stem cell research develop in the years following the derivation of the first human embryonic stem cell (hESC) line? SUMMARY ANSWER Supported by the increasing number of clinical trials to date, significant technological advances in the past two decades have brought us ever closer to clinical therapies derived from pluripotent cells. WHAT IS KNOWN ALREADY Since their discovery 20 years ago, the use of human pluripotent stem cells has progressed tremendously from bench to bedside. Here, we provide a concise review of the main keystones of this journey and focus on ongoing clinical trials, while indicating the most relevant future research directions. STUDY DESIGN, SIZE, DURATION This is a historical narrative, including relevant publications in the field of pluripotent stem cells (PSC) derivation and differentiation, recounted both through scholarly research of published evidence and interviews of six pioneers who participated in some of the most relevant discoveries in the field. PARTICIPANTS/MATERIALS, SETTING, METHODS The authors all contributed by researching the literature and agreed upon body of works. Portions of the interviews of the field pioneers have been integrated into the review and have also been included in full for advanced reader interest. MAIN RESULTS AND THE ROLE OF CHANCE The stem cell field is ever expanding. We find that in the 20 years since the derivation of the first hESC lines, several relevant developments have shaped the pluripotent cell field, from the discovery of different states of pluripotency, the derivation of induced PSC, the refinement of differentiation protocols with several clinical trials underway, as well as the recent development of organoids. The challenge for the years to come will be to validate and refine PSCs for clinical use, from the production of highly defined cell populations in clinical grade conditions to the possibility of creating replacement organoids for functional, if not anatomical, function restoration. LIMITATIONS, REASONS FOR CAUTION This is a non-systematic review of current literature. Some references may have escaped the experts’ analysis due to the exceedingly diverse nature of the field. As the field of regenerative medicine is rapidly advancing, some of the most recent developments may have not been captured entirely. WIDER IMPLICATIONS OF THE FINDINGS The multi-disciplinary nature and tremendous potential of the stem cell field has important implications for basic as well as translational research. Recounting these activities will serve to provide an in-depth overview of the field, fostering a further understanding of human stem cell and developmental biology. The comprehensive overview of clinical trials and expert opinions included in this narrative may serve as a valuable scientific resource, supporting future efforts in translational approaches. STUDY FUNDING/COMPETING INTEREST(S) ESHRE provided funding for the authors’ on-site meeting and discussion during the preparation of this manuscript. S.M.C.S.L. is funded by the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). M.G. is supported by the Methusalem grant of Vrije Universiteit Brussel, in the name of Prof. Karen Sermon and by Innovation by Science and Technology in Flanders (IWT, Project Number: 150042). A.V. and B.A. are supported by the Plataforma de Proteomica, Genotipado y Líneas Celulares (PT1770019/0015) (PRB3), Instituto de Salud Carlos III. Research grant to B.H. by the Research Foundation—Flanders (FWO) (FWO.KAN.2016.0005.01 and FWO.Project G051516N). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER Not applicable. ESHRE Pages are not externally peer reviewed. This article has been approved by the Executive Committee of ESHRE.
Collapse
Affiliation(s)
- C Eguizabal
- Cell Therapy and Stem Cell Group, Basque Center for Blood Transfusion and Human Tissues, Barrio Labeaga S/N, Galdakao, Spain
| | - B Aran
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - S M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands.,Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Vrije Univeristeit Brussel, Laarbeeklaan 103, Jette (Brussels), Belgium
| | - B Heindryckx
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - S Panula
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - M Popovic
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - A Veiga
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain.,Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
24
|
Capatina C, Cimpean AM, Raica M, Coculescu M, Poiana C. SOX 2 Expression in Human Pituitary Adenomas-Correlations With Pituitary Function. In Vivo 2019; 33:79-83. [PMID: 30587606 PMCID: PMC6364058 DOI: 10.21873/invivo.11442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM The aim of this study was to evaluate SOX2 expression in pituitary adenomas and its correlation to their secretory state and clinicopathological parameters. PATIENTS AND METHODS Thirty-four patients were clinically evaluated and surgery was recommended for tumor removal. Histopathological diagnosis by hematoxylin eosin staining was followed by immunohistochemistry for pituitary hormones and SOX2 co-expression. RESULTS Fourteen of the 34 cases were GH-secreting adenomas, 10 were prolactinomas and 10 non-functioning pituitary adenomas. SOX2-positive expression was detected in 47.05% of total cases: 8 GH-secreting adenomas (57.14%), 6 prolactinomas (60%) and 2 non-functioning adenomas (20%). SOX2 positivity was significantly higher amongst secreting adenomas (p=0.041). SOX2-negative tumors were significantly associated with corticotrophin deficiency (p=0.047) and gonadotrophin deficiency (p=0.041). No correlation with tumor size or extrasellar extension was detected. CONCLUSION SOX2 is differentially expressed in pituitary adenomas and influences the secretory state or clinical behavior of pituitary adenomas.
Collapse
Affiliation(s)
- Cristina Capatina
- Endocrinology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- CI Parhon National Institute of Endocrinology, Bucharest, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Mihail Coculescu
- Endocrinology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- CI Parhon National Institute of Endocrinology, Bucharest, Romania
| | - Catalina Poiana
- Endocrinology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- CI Parhon National Institute of Endocrinology, Bucharest, Romania
| |
Collapse
|
25
|
Abstract
Epigenetics can be explored at different levels and can be divided into two major areas: epigenetics of nuclear-encoded DNA and epigenetics of mitochondrial-encoded DNA. In epigenetics of nuclear-encoded DNA, the main roles are played by DNA methylation, changes in histone structure and several types of non-coding RNAs. Mitochondrial epigenetics seems to be similar in the aspect of DNA methylation and to some extent in the role of non-coding RNAs but differs significantly in changes in components coiling DNA. Nuclear DNA is coiled around histones, but mitochondrial DNA, together with associated proteins, is located in mitochondrial pseudocompartments called nucleoids. It has been shown that mitochondrial epigenetic mechanisms influence cell fate, transcription regulation, cell division, cell cycle, physiological homeostasis, bioenergetics and even pathologies, but not all of these mechanisms have been explored in stem cells. The main issue is that most of these mechanisms have only recently been discovered in mitochondria, while improvements in methodology, especially next-generation sequencing, have enabled in-depth studies. Because studies exploring mitochondria from other aspects show that mitochondria are crucial for the normal behavior of stem cells, it is suggested that precise mitochondrial epigenetics in stem cells should be studied more intensively.
Collapse
|
26
|
Zambelli F, Mertens J, Dziedzicka D, Sterckx J, Markouli C, Keller A, Tropel P, Jung L, Viville S, Van de Velde H, Geens M, Seneca S, Sermon K, Spits C. Random Mutagenesis, Clonal Events, and Embryonic or Somatic Origin Determine the mtDNA Variant Type and Load in Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:102-114. [PMID: 29910126 PMCID: PMC6117474 DOI: 10.1016/j.stemcr.2018.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023] Open
Abstract
In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation.
Collapse
Affiliation(s)
- Filippo Zambelli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium; S.I.S.Me.R. Reproductive Medicine Unit, Via Mazzini 12, Bologna 40100, Italy
| | - Joke Mertens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Dominika Dziedzicka
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Johan Sterckx
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, Belgium
| | - Christina Markouli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Alexander Keller
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | | | - Laura Jung
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédérationde Médecine Translationelle, Université de Strasbourg, 3 rue Koeberlé, Strasbourg 67000, France
| | - Stephane Viville
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédérationde Médecine Translationelle, Université de Strasbourg, 3 rue Koeberlé, Strasbourg 67000, France; Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| | - Hilde Van de Velde
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium; Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, Belgium
| | - Mieke Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Sara Seneca
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium; Centre for Medical Genetics, UZ Brussel, Laarbeeklaan 101, Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium.
| |
Collapse
|
27
|
Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS, Olabisi RM, Libutti S, Tischfield J, Maus MV, Deans R, Barcia RN, Anderson DG, Ritz J, Preti R, Parekkadan B. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng 2018; 2:362-376. [PMID: 31011198 PMCID: PMC6594100 DOI: 10.1038/s41551-018-0246-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The achievements of cell-based therapeutics have galvanized efforts to bring cell therapies to the market. To address the demands of the clinical and eventual commercial-scale production of cells, and with the increasing generation of large clinical datasets from chimeric antigen receptor T-cell immunotherapy, from transplants of engineered haematopoietic stem cells and from other promising cell therapies, an emphasis on biomanufacturing requirements becomes necessary. Robust infrastructure should address current limitations in cell harvesting, expansion, manipulation, purification, preservation and formulation, ultimately leading to successful therapy administration to patients at an acceptable cost. In this Review, we highlight case examples of cutting-edge bioprocessing technologies that improve biomanufacturing efficiency for cell therapies approaching clinical use.
Collapse
Affiliation(s)
- Ayesha Aijaz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - David Smith
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Danika Khong
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - Courtney LeBlon
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Owen S Fenton
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | - Jay Tischfield
- Human Genetics Institute of New Jersey, RUCDR, Piscataway, NJ, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | - Daniel G Anderson
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jerome Ritz
- Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Robert Preti
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Sentien Biotechnologies, Inc, Lexington, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
28
|
Hazelbaker DZ, Beccard A, Bara AM, Dabkowski N, Messana A, Mazzucato P, Lam D, Manning D, Eggan K, Barrett LE. A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease. Stem Cell Reports 2018; 9:1315-1327. [PMID: 29020615 PMCID: PMC5639480 DOI: 10.1016/j.stemcr.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022] Open
Abstract
Scaling of CRISPR-Cas9 technology in human pluripotent stem cells (hPSCs) represents an important step for modeling complex disease and developing drug screens in human cells. However, variables affecting the scaling efficiency of gene editing in hPSCs remain poorly understood. Here, we report a standardized CRISPR-Cas9 approach, with robust benchmarking at each step, to successfully target and genotype a set of psychiatric disease-implicated genes in hPSCs and provide a resource of edited hPSC lines for six of these genes. We found that transcriptional state and nucleosome positioning around targeted loci was not correlated with editing efficiency. However, editing frequencies varied between different hPSC lines and correlated with genomic stability, underscoring the need for careful cell line selection and unbiased assessments of genomic integrity. Together, our step-by-step quantification and in-depth analyses provide an experimental roadmap for scaling Cas9-mediated editing in hPSCs to study psychiatric disease, with broader applicability for other polygenic diseases.
Collapse
Affiliation(s)
- Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne M Bara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicole Dabkowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrizia Mazzucato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Danielle Manning
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16:9-18. [PMID: 29928381 DOI: 10.3892/ol.2018.8679] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) results from the progressive accumulation of multiple genetic and epigenetic aberrations within cells. The progression from colorectal adenoma to carcinoma is caused by three major pathways: Microsatellite instability, chromosomal instability and CpG island methylator phenotype. A growing body of scientific evidences suggests that CRC is a heterogeneous disease, and genetic characteristics of the tumors determine their prognostic outcome and response to targeted therapies. Early diagnosis and effective targeted therapies based on a current knowledge of the molecular characteristics of CRC are essential to the successful treatment of CRC. Therefore, the present review summarized the current understanding of the molecular characteristics of CRC, and discussed its implications for diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Hong-Quan Duong
- Department of Cancer Research, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi 100000, Vietnam
| |
Collapse
|
30
|
Heng HH, Horne SD, Chaudhry S, Regan SM, Liu G, Abdallah BY, Ye CJ. A Postgenomic Perspective on Molecular Cytogenetics. Curr Genomics 2018; 19:227-239. [PMID: 29606910 PMCID: PMC5850511 DOI: 10.2174/1389202918666170717145716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The postgenomic era is featured by massive data collection and analyses from various large scale-omics studies. Despite the promising capability of systems biology and bioinformatics to handle large data sets, data interpretation, especially the translation of -omics data into clinical implications, has been challenging. DISCUSSION In this perspective, some important conceptual and technological limitations of current systems biology are discussed in the context of the ultimate importance of the genome beyond the collection of all genes. Following a brief summary of the contributions of molecular cytogenetics/cytogenomics in the pre- and post-genomic eras, new challenges for postgenomic research are discussed. Such discussion leads to a call to search for a new conceptual framework and holistic methodologies. CONCLUSION Throughout this synthesis, the genome theory of somatic cell evolution is highlighted in contrast to gene theory, which ignores the karyotype-mediated higher level of genetic information. Since "system inheritance" is defined by the genome context (gene content and genomic topology) while "parts inheritance" is defined by genes/epigenes, molecular cytogenetics and cytogenomics (which directly study genome structure, function, alteration and evolution) will play important roles in this postgenomic era.
Collapse
Affiliation(s)
- Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven D. Horne
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sophia Chaudhry
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sarah M. Regan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Batoul Y. Abdallah
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christine J. Ye
- The Division of Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Geens M, Chuva De Sousa Lopes SM. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Hum Reprod Update 2018; 23:520-532. [PMID: 28582519 DOI: 10.1093/humupd/dmx015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSC), both embryonic and induced (hESC and hiPSC), are regarded as a valuable in vitro model for early human development. In order to fulfil this promise, it is important that these cells mimic as closely as possible the in vivo molecular events, both at the genetic and epigenetic level. One of the most important epigenetic events during early human development is X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female cells. XCI is important for proper development and aberrant XCI has been linked to several pathologies. Recently, novel data obtained using high throughput single-cell technology during human preimplantation development have suggested that the XCI mechanism is substantially different from XCI in mouse. It has also been suggested that hPSC show higher complexity in XCI than the mouse. Here we compare the available recent data to understand whether XCI during human preimplantation can be properly recapitulated using hPSC. OBJECTIVE AND RATIONALE We will summarize what is known on the timing and mechanisms of XCI during human preimplantation development. We will compare this to the XCI patterns that are observed during hPSC derivation, culture and differentiation, and comment on the cause of the aberrant XCI patterns observed in hPSC. Finally, we will discuss the implications of the aberrant XCI patterns on the applicability of hPSC as an in vitro model for human development and as cell source for regenerative medicine. SEARCH METHODS Combinations of the following keywords were applied as search criteria in the PubMed database: X chromosome inactivation, preimplantation development, embryonic stem cells, induced pluripotent stem cells, primordial germ cells, differentiation. OUTCOMES Recent single-cell RNASeq data have shed new light on the XCI process during human preimplantation development. These indicate a gradual inactivation on both XX chromosomes, starting from Day 4 of development and followed by a random choice to inactivate one of them, instead of the mechanism in mice where imprinted XCI is followed by random XCI. We have put these new findings in perspective using previous data obtained in human (and mouse) embryos. In addition, there is an ongoing discussion whether or not hPSC lines show X chromosome reactivation upon derivation, mimicking the earliest embryonic cells, and the XCI states observed during culture of hPSC are highly variable. Recent studies have shown that hPSC rapidly progress to highly aberrant XCI patterns and that this process is probably driven by suboptimal culture conditions. Importantly, these aberrant XCI states seem to be inherited by the differentiated hPSC-progeny. WIDER IMPLICATIONS The aberrant XCI states (and epigenetic instability) observed in hPSC throw a shadow on their applicability as an in vitro model for development and disease modelling. Moreover, as the aberrant XCI states observed in hPSC seem to shift to a more malignant phenotype, this may also have important consequences for the safety aspect of using hPSC in the clinic.
Collapse
Affiliation(s)
- Mieke Geens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Reproductive Medicine, Ghent-Fertility and Stem Cell Team (G-FaST), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
32
|
Keller A, Dziedzicka D, Zambelli F, Markouli C, Sermon K, Spits C, Geens M. Genetic and epigenetic factors which modulate differentiation propensity in human pluripotent stem cells. Hum Reprod Update 2018; 24:162-175. [PMID: 29377992 DOI: 10.1093/humupd/dmx042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC) lines are known to have a bias in their differentiation. This gives individual cell lines a propensity to preferentially differentiate towards one germ layer or cell type over others. Chromosomal aberrations, mitochondrial mutations, genetic diversity and epigenetic variance are the main drivers of this phenomenon, and can lead to a wide range of phenotypes. OBJECTIVE AND RATIONALE Our aim is to provide a comprehensive overview of the different factors which influence differentiation propensity. Specifically, we sought to highlight known genetic variances and their mechanisms, in addition to more general observations from larger abnormalities. Furthermore, we wanted to provide an up-to-date list of a growing number of predictive indicators which are able to identify differentiation propensity before the initiation of differentiation. As differentiation propensity can lead to difficulties in both research as well as clinical translation, our thorough overview could be a useful tool. SEARCH METHODS Combinations of the following key words were applied as search criteria in the PubMed database: embryonic stem cells, induced pluripotent stem cells, differentiation propensity (also: potential, efficiency, capacity, bias, variability), epigenetics, chromosomal abnormalities, genetic aberrations, X chromosome inactivation, mitochondrial function, mitochondrial metabolism, genetic diversity, reprogramming, predictive marker, residual stem cell, clinic. Only studies in English were included, ranging from 2000 to 2017, with a majority ranging from 2010 to 1017. Further manuscripts were added from cross-references. OUTCOMES Differentiation propensity is affected by a wide variety of (epi)genetic factors. These factors clearly lead to a loss of differentiation capacity, preference towards certain cell types and oftentimes, phenotypes which begin to resemble cancer. Broad changes in (epi)genetics, such as aneuploidies or wide-ranging modifications to the epigenetic landscape tend to lead to extensive, less definite changes in differentiation capacity, whereas more specific abnormalities often have precise ramifications in which certain cell types become more preferential. Furthermore, there appears to be a greater, though often less considered, contribution to differentiation propensity by factors such as mitochondria and inherent genetic diversity. Varied differentiation capacity can also lead to potential consequences in the clinical translation of hPSC, including the occurrence of residual undifferentiated stem cells, and the transplantation of potentially transformed cells. WIDER IMPLICATIONS As hPSC continue to advance towards the clinic, our understanding of them progresses as well. As a result, the challenges faced become more numerous, but also more clear. If the transition to the clinic is to be achieved with a minimum number of potential setbacks, thorough evaluation of the cells will be an absolute necessity. Altered differentiation propensity represents at least one such hurdle, for which researchers and eventually clinicians will need to find solutions. Already, steps are being taken to tackle the issue, though further research will be required to evaluate any long-term risks it poses.
Collapse
Affiliation(s)
- Alexander Keller
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Dominika Dziedzicka
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Filippo Zambelli
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Christina Markouli
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Karen Sermon
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Claudia Spits
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Mieke Geens
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| |
Collapse
|
33
|
Vaňhara P, Kučera L, Prokeš L, Jurečková L, Peña-Méndez EM, Havel J, Hampl A. Intact Cell Mass Spectrometry as a Quality Control Tool for Revealing Minute Phenotypic Changes of Cultured Human Embryonic Stem Cells. Stem Cells Transl Med 2017; 7:109-114. [PMID: 29248004 PMCID: PMC5746154 DOI: 10.1002/sctm.17-0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022] Open
Abstract
The stability of in vitro cell cultures is an important issue for any clinical, bio-industrial, or pharmacological use. Embryonic stem cells are pluripotent; consequently, they possess the ability to differentiate into all three germ layers and are inherently prone to respond to differentiation stimuli. However, long-term culture inevitably yields clones that are best adapted to the culture conditions, passaging regimes, or differentiation sensitivity. This cellular plasticity is a major obstacle in the development of bio-industrial or clinical-grade cultures. At present, the quality control of cell cultures is limited by the lack of reliable (epi)genetic or molecular markers or by the focus on a particular type of instability such as karyotype abnormalities or adverse phenotypic traits. Therefore, there is an ongoing need for robust, feasible, and sensitive methods of determining or confirming cell status and for revealing potential divergences from the optimal state. We modeled both intrinsic and extrinsic changes in human embryonic stem cell (hESC) states using different experimental strategies and addressed the changes in cell status by intact cell mass spectrometry fingerprinting. The analysis of spectral fingerprints by methods routinely used in analytical chemistry clearly distinguished the morphologically and biochemically similar populations of hESCs and provided a biomarker-independent tool for the quality control of cell culture. Stem Cells Translational Medicine 2018;7:109-114.
Collapse
Affiliation(s)
- Petr Vaňhara
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lukáš Kučera
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lubomír Prokeš
- Faculty of Science, Department of Chemistry, Masaryk University, Brno, Czech Republic
| | - Lucie Jurečková
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic
| | - Eladia María Peña-Méndez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain
| | - Josef Havel
- Faculty of Science, Department of Chemistry, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
34
|
Peh GSL, Ang HP, Lwin CN, Adnan K, George BL, Seah XY, Lin SJ, Bhogal M, Liu YC, Tan DT, Mehta JS. Regulatory Compliant Tissue-Engineered Human Corneal Endothelial Grafts Restore Corneal Function of Rabbits with Bullous Keratopathy. Sci Rep 2017; 7:14149. [PMID: 29074873 PMCID: PMC5658403 DOI: 10.1038/s41598-017-14723-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023] Open
Abstract
Corneal transplantation is the only treatment available to restore vision for individuals with blindness due to corneal endothelial dysfunction. However, severe shortage of available donor corneas remains a global challenge. Functional regulatory compliant tissue-engineered corneal endothelial graft substitute can alleviate this reliance on cadaveric corneal graft material. Here, isolated primary human corneal endothelial cells (CEnCs) propagated using a dual media approach refined towards regulatory compliance showed expression of markers indicative of the human corneal endothelium, and can be tissue-engineered onto thin corneal stromal carriers. Both cellular function and clinical adaptability was demonstrated in a pre-clinical rabbit model of bullous keratopathy using a tissue-engineered endothelial keratoplasty (TE-EK) approach, adapted from routine endothelial keratoplasty procedure for corneal transplantation in human patients. Cornea thickness of rabbits receiving TE-EK graft gradually reduced over the first two weeks, and completely recovered to a thickness of approximately 400 µm by the third week of transplantation, whereas corneas of control rabbits remained significantly thicker over 1,000 µm (p < 0.05) throughout the course of the study. This study showed convincing evidence of the adaptability of the propagated CEnCs and their functionality via a TE-EK approach, which holds great promises in translating the use of cultured CEnCs into the clinic.
Collapse
Affiliation(s)
- Gary S L Peh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore. .,Duke-NUS Graduate Medical School, Singapore, Singapore.
| | - Heng-Pei Ang
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chan N Lwin
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Khadijah Adnan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Benjamin L George
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Xin-Yi Seah
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Shu-Jun Lin
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Maninder Bhogal
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Department of Corneal and External Disease, Moorfields Eye Hospital, London, UK
| | - Yu-Chi Liu
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore
| | - Donald T Tan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore. .,Duke-NUS Graduate Medical School, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
35
|
Martin U. Genome stability of programmed stem cell products. Adv Drug Deliv Rev 2017; 120:108-117. [PMID: 28917518 DOI: 10.1016/j.addr.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023]
Abstract
Inherited and acquired genomic abnormalities are known to cause genetic diseases and contribute to cancer formation. Recent studies demonstrated a substantial mutational load in mouse and human embryonic and induced pluripotent stem cells (ESCs and iPSCs). Single nucleotide variants, copy number variations, and larger chromosomal abnormalities may influence the differentiation capacity of pluripotent stem cells and the functionality of their derivatives in disease modeling and drug screening, and are considered a serious risk for cellular therapies based on ESC or iPSC derivatives. This review discusses the types and origins of different genetic abnormalities in pluripotent stem cells, methods for their detection, and the mechanisms of development and enrichment during reprogramming and culture expansion.
Collapse
Affiliation(s)
- Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH Cluster of Excellence, German Center for Lung Research, Hannover Medical School, Germany.
| |
Collapse
|
36
|
Chamorro CI, Zeiai S, Reinfeldt Engberg G, Brodin D, Lundin J, Nordenskjöld A, Fossum M. Study on genetic stability in human urothelial cells
in vitro. J Tissue Eng Regen Med 2017; 12:e720-e726. [DOI: 10.1002/term.2354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/05/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Clara Ibel Chamorro
- Department of Women's and Children's Health and Center for Molecular MedicineKarolinska Institutet Stockholm Sweden
| | - Said Zeiai
- Department of Women's and Children's Health and Center for Molecular MedicineKarolinska Institutet Stockholm Sweden
- Department of Pediatric Surgery, Section of Urology, Astrid Lindgren Children's HospitalKarolinska University Hospital Stockholm Sweden
| | - Gisela Reinfeldt Engberg
- Department of Women's and Children's Health and Center for Molecular MedicineKarolinska Institutet Stockholm Sweden
- Department of Pediatric Surgery, Section of Urology, Astrid Lindgren Children's HospitalKarolinska University Hospital Stockholm Sweden
| | - David Brodin
- Department of Biosciences and NutritionKarolinska Institutet Stockholm Sweden
| | - Johanna Lundin
- Department of Women's and Children's Health and Center for Molecular MedicineKarolinska Institutet Stockholm Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center for Molecular MedicineKarolinska Institutet Stockholm Sweden
- Department of Pediatric Surgery, Section of Urology, Astrid Lindgren Children's HospitalKarolinska University Hospital Stockholm Sweden
| | - Magdalena Fossum
- Department of Women's and Children's Health and Center for Molecular MedicineKarolinska Institutet Stockholm Sweden
- Department of Pediatric Surgery, Section of Urology, Astrid Lindgren Children's HospitalKarolinska University Hospital Stockholm Sweden
| |
Collapse
|
37
|
The role of methylation, DNA polymorphisms and microRNAs on HLA-G expression in human embryonic stem cells. Stem Cell Res 2017; 19:118-127. [DOI: 10.1016/j.scr.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
|
38
|
Mouka A, Tachdjian G, Dupont J, Drévillon L, Tosca L. In Vitro Gamete Differentiation from Pluripotent Stem Cells as a Promising Therapy for Infertility. Stem Cells Dev 2016; 25:509-21. [PMID: 26873432 DOI: 10.1089/scd.2015.0230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generation of gametes derived in vitro from pluripotent stem cells holds promising prospects for future reproductive applications. Indeed, it provides information on molecular and cellular mechanisms underlying germ cell (GC) development and could offer a new potential treatment for infertility. Great progress has been made in derivation of gametes from embryonic stem cells, despite ethical issues. Induced pluripotent stem cells (iPSCs) technology allows the reprogramming of a differentiated somatic cell, possibly emanating from the patient, into a pluripotent state. With the emergence of iPSCs, several studies created primordial GC stage to mature gamete-like cells in vitro in mice and humans. Recent findings in GC derivation suggest that in mice, functional gametes can be generated in vitro. This strengthens the idea that it might be possible in the future to generate functional human sperm and oocytes from pluripotent stem cells in culture.
Collapse
Affiliation(s)
- Aurélie Mouka
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France .,2 Université Paris-Sud , Le Kremlin-Bicêtre Cedex, France
| | - Gérard Tachdjian
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France .,2 Université Paris-Sud , Le Kremlin-Bicêtre Cedex, France
| | - Joëlle Dupont
- 3 Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique , Nouzilly, France
| | - Loïc Drévillon
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France
| | - Lucie Tosca
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France .,2 Université Paris-Sud , Le Kremlin-Bicêtre Cedex, France
| |
Collapse
|
39
|
Grzybek M, Golonko A, Walczak M, Lisowski P. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol Dis 2016; 99:84-120. [PMID: 27890672 DOI: 10.1016/j.nbd.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches.
Collapse
Affiliation(s)
- Maciej Grzybek
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Aleksandra Golonko
- Department of Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Marta Walczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; iPS Cell-Based Disease Modelling Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
40
|
Karatas OF, Suer I, Yuceturk B, Yilmaz M, Oz B, Guven G, Cansiz H, Creighton CJ, Ittmann M, Ozen M. Identification of microRNA profile specific to cancer stem-like cells directly isolated from human larynx cancer specimens. BMC Cancer 2016; 16:853. [PMID: 27816053 PMCID: PMC5097853 DOI: 10.1186/s12885-016-2863-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
Background Emerging evidences proposed that microRNAs are associated with regulation of distinct physio-pathological processes including development of normal stem cells and carcinogenesis. In this study we aimed to investigate microRNA profile of cancer stem-like cells (CSLCs) isolated form freshly resected larynx cancer (LCa) tissue samples. Methods CD133 positive (CD133+) stem-like cells were isolated from freshly resected LCa tumor specimens. MicroRNA profile of 12 pair of CD133+ and CD133− cells was determined using microRNA microarray and differential expressions of selvected microRNAs were validated by quantitative real time PCR (qRT-PCR). Results MicroRNA profiling of CD133+ and CD133− LCa samples with microarray revealed that miR-26b, miR-203, miR-200c, and miR-363-3p were significantly downregulated and miR-1825 was upregulated in CD133+ larynx CSLCs. qRT-PCR analysis in a total of 25 CD133+/CD133− sample pairs confirmed the altered expressions of these five microRNAs. Expressions of miR-26b, miR-200c, and miR-203 were significantly correlated with miR-363-3p, miR-203, and miR-363-3p expressions, respectively. Furthermore, in silico analysis revealed that these microRNAs target both cancer and stem-cell associated signaling pathways. Conclusions Our results showed that certain microRNAs in CD133+ cells could be used as cancer stem cell markers. Based on these results, we propose that this panel of microRNAs might carry crucial roles in LCa pathogenesis through regulating stem cell properties of tumor cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2863-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
| | - Ilknur Suer
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Betul Yuceturk
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey.,Advanced Genomics and Bioinformatics Research Center, The Scientific and Technological Research Council of Turkey (TUBITAK), Gebze, Kocaeli, Turkey
| | - Mehmet Yilmaz
- Department of Otorhinolaryngology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Buge Oz
- Department of Pathology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Gulgun Guven
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Harun Cansiz
- Department of Otorhinolaryngology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.,Michael E. DeBakey VAMC, Houston, TX, 77030, USA
| | - Mustafa Ozen
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey. .,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Pijuan-Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry CLR, Annerén C. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun 2016; 7:12170. [PMID: 27405751 PMCID: PMC4947164 DOI: 10.1038/ncomms12170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/03/2016] [Indexed: 01/30/2023] Open
Abstract
Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. Improved culture methods are needed to reliably grow human pluripotent stem cells (hPSCs) on a large scale. Here, the authors identify a xeno-free medium with a supplement of Inter-α-inhibitor that supports long-term propagation and improved single-cell passaging of hPSCs on uncoated plastic.
Collapse
Affiliation(s)
- Sara Pijuan-Galitó
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden
| | - Christoffer Tamm
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden
| | - Jens Schuster
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Box 815, Uppsala University, 751 08 Uppsala, Sweden
| | - Maria Sobol
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Box 815, Uppsala University, 751 08 Uppsala, Sweden
| | - Lars Forsberg
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Box 815, Uppsala University, 751 08 Uppsala, Sweden
| | - Catherine L R Merry
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden.,Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering &Modelling Room A59, University of Nottingham, NG7 2RD Nottingham, UK
| | - Cecilia Annerén
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden.,GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84 Uppsala, Sweden
| |
Collapse
|
42
|
Rebuzzini P, Zuccotti M, Redi CA, Garagna S. Achilles' heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture. Cell Mol Life Sci 2016; 73:2453-66. [PMID: 26961132 PMCID: PMC11108315 DOI: 10.1007/s00018-016-2171-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/28/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Pluripotent stem cells differentiate into almost any specialized adult cell type of an organism. PSCs can be derived either from the inner cell mass of a blastocyst-giving rise to embryonic stem cells-or after reprogramming of somatic terminally differentiated cells to obtain ES-like cells, named induced pluripotent stem cells. The potential use of these cells in the clinic, for investigating in vitro early embryonic development or for screening the effects of new drugs or xenobiotics, depends on capability to maintain their genome integrity during prolonged culture and differentiation. Both human and mouse PSCs are prone to genomic and (epi)genetic instability during in vitro culture, a feature that seriously limits their real potential use. Culture-induced variations of specific chromosomes or genes, are almost all unpredictable and, as a whole, differ among independent cell lines. They may arise at different culture passages, suggesting the absence of a safe passage number maintaining genome integrity and rendering the control of genomic stability mandatory since the very early culture passages. The present review highlights the urgency for further studies on the mechanisms involved in determining (epi)genetic and chromosome instability, exploiting the knowledge acquired earlier on other cell types.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy.
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy.
| | - Maurizio Zuccotti
- Unita' di Anatomia, Istologia ed Embriologia, Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali (S.BI.BI.T.), Università degli Studi di Parma, Via Volturno 39, 43100, Parma, Italy.
| | - Carlo Alberto Redi
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy
- Fondazione I.R.C.C.S. Policlinico San Matteo, Piazzale Golgi, 19, 27100, Pavia, Italy
| | - Silvia Garagna
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy.
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy.
| |
Collapse
|
43
|
Elkhenany H, Amelse L, Caldwell M, Abdelwahed R, Dhar M. Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering. J Anim Sci Biotechnol 2016; 7:16. [PMID: 26949532 PMCID: PMC4779249 DOI: 10.1186/s40104-016-0074-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/19/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Adult mesenchymal stem cells (MSCs) can be conveniently sampled from bone marrow, peripheral blood, muscle, adipose and connective tissue, harvested from various species, including, rodents, dogs, cats, horses, sheep, goats and human beings. The MSCs isolated from adult tissues vary in their morphological and functional properties. These variations are further complicated when cells are expanded by passaging in culture. These differences and changes in MSCs must be considered prior to their application in the clinic or in a basic research study. Goats are commonly used as animal models for bone tissue engineering to test the potential of stem cells for bone regeneration. As a result, goat MSCs isolated from bone marrow or adipose tissue should be evaluated using in vitro assays, prior to their application in a tissue engineering project. RESULTS In this study, we compared the stem cell properties of MSCs isolated from goat bone marrow and adipose tissue. We used quantitative and qualitative assays with a focus on osteogenesis, including, colony forming unit, rate of cell proliferation, tri-lineage differentiation and expression profiling of key signal transduction proteins to compare MSCs from low and high passages. Primary cultures generated from each source displayed the stem cell characteristics, with variations in their osteogenic potentials. Most importantly, low passaged bone marrow MSCs displayed a significantly higher and superior osteogenic potential, and hence, will be the preferred choice for bone tissue engineering in future in vivo experiments. In the bone marrow MSCs, this process is potentially mediated by the p38 MAPK pathway. On the other hand, osteogenic differentiation in the adipose tissue MSCs may involve the p44/42 MAPK pathway. CONCLUSIONS Based on these data, we can conclude that bone marrow and fat-derived MSCs undergo osteogenesis via two distinct signaling pathways. Even though the bone marrow MSCs are the preferred source for bone tissue engineering, the adipose tissue MSCs are an attractive alternative source and undergo osteo-differentiation differently from the bone marrow MSCs and hence, might require a cell-based enhancer/inducer to improve their osteogenic regenerative capacity.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, TN 37996 USA ; Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, 22785 Egypt
| | - Lisa Amelse
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Marc Caldwell
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Ramadan Abdelwahed
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, 22785 Egypt
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
44
|
Affiliation(s)
- Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal,
| | | |
Collapse
|
45
|
Jacobs K, Zambelli F, Mertzanidou A, Smolders I, Geens M, Nguyen HT, Barbé L, Sermon K, Spits C. Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability. Stem Cell Reports 2016; 6:330-41. [PMID: 26923824 PMCID: PMC4788786 DOI: 10.1016/j.stemcr.2016.01.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 12/01/2022] Open
Abstract
Human embryonic stem cells (hESC) show great promise for clinical and research applications, but their well-known proneness to genomic instability hampers the development to their full potential. Here, we demonstrate that medium acidification linked to culture density is the main cause of DNA damage and genomic alterations in hESC grown on feeder layers, and this even in the short time span of a single passage. In line with this, we show that increasing the frequency of the medium refreshments minimizes the levels of DNA damage and genetic instability. Also, we show that cells cultured on laminin-521 do not present this increase in DNA damage when grown at high density, although the (long-term) impact on their genomic stability remains to be elucidated. Our results explain the high levels of genome instability observed over the years by many laboratories worldwide, and show that the development of optimal culture conditions is key to solving this problem. Increased culture density induces DNA damage and genomic alterations in hESC Medium acidification due to lactic acid accumulation is the main driver More frequent medium refreshments rescues genomic integrity in high-density culture Laminin-521 reduces DNA damage but has no clear effect on genomic instability
Collapse
Affiliation(s)
- Kurt Jacobs
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Institute of Molecular Cancer Research, University of Zurich (UZH), Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Filippo Zambelli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Afroditi Mertzanidou
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Research Group Experimental Neuropharmacology, Center for Neurosciences C4N, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mieke Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ha Thi Nguyen
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang 550000, Vietnam
| | - Lise Barbé
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
46
|
Geens M, Seriola A, Barbé L, Santalo J, Veiga A, Dée K, Van Haute L, Sermon K, Spits C. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture. Mol Hum Reprod 2016; 22:285-98. [DOI: 10.1093/molehr/gaw004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/13/2016] [Indexed: 12/25/2022] Open
|
47
|
Suchorska WM, Augustyniak E, Łukjanow M. Genetic stability of pluripotent stem cells during anti-cancer therapies. Exp Ther Med 2016; 11:695-702. [PMID: 26997981 PMCID: PMC4774348 DOI: 10.3892/etm.2016.2993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a rapidly growing field that holds promise for the treatment of many currently unresponsive diseases. Stem cells (SCs) are undifferentiated cells with long-term self-renewal potential and the capacity to develop into specialized cells. SC-based therapies constitute a novel and promising concept in regenerative medicine. Radiotherapy is the most frequently used method in the adjuvant treatment of tumorous alterations. In the future, the usage of SCs in regenerative medicine will be affected by their regular and inevitable exposure to ionizing radiation (IR). This phenomenon will be observed during treatment as well as diagnosis. The issue of the genetic stability of SCs and cells differentiated from SCs is crucial in the context of the application of these cells in clinical practice. This review examines current knowledge concerning the DNA repair mechanisms (base excision repair, nucleotide excision repair, mismatch repair, homologous recombination and non-homologous end-joining) of SCs in response to the harmful effects of genotoxic agents such as IR and chemotherapeutics.
Collapse
Affiliation(s)
- Wiktoria Maria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznań, Poland; The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 20-091 Warsaw, Poland; Department of Electroradiology, Poznań University of Medical Sciences, 61-866 Poznań, Poland
| | - Ewelina Augustyniak
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznań, Poland; The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 20-091 Warsaw, Poland
| | - Magdalena Łukjanow
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| |
Collapse
|
48
|
RUSU E, NECULA LG, NEAGU AI, ALECU M, STAN C, ALBULESCU R, TANASE CP. Current status of stem cell therapy: opportunities and limitations. Turk J Biol 2016; 40:955-967. [DOI: 10.3906/biy-1506-95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
49
|
Tarantino G, Finelli C. Lipids, Low-Grade Chronic Inflammation and NAFLD. HANDBOOK OF LIPIDS IN HUMAN FUNCTION 2016:731-759. [DOI: 10.1016/b978-1-63067-036-8.00028-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Tarantino G, Finelli C. Lipids Nutrition and Epigenetic Modification in Obesity-Related Co-Morbitities * *All authors equally contributed to draft the manuscript. All authors gave final approval of the version to be published. Disclosure statement: The authors declare that there are no conflicts of interest. HANDBOOK OF LIPIDS IN HUMAN FUNCTION 2016:85-110. [DOI: 10.1016/b978-1-63067-036-8.00004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|