1
|
Černotová D, Hrůzová K, Touš J, Janča R, Stuchlík A, Levčík D, Svoboda J. Early social deficits in TgF344-AD rats are accompanied by sex-specific parvalbumin-positive interneuron reduction and altered brain oscillations in the hippocampal CA2. Neurobiol Dis 2025; 208:106875. [PMID: 40097074 DOI: 10.1016/j.nbd.2025.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025] Open
Abstract
Social withdrawal and deficits in social cognition are hallmarks of Alzheimer's disease (AD). While early deficits in social behavior and memory have been documented in mouse AD models, they remain understudied in rat models. Early-stage AD is accompanied by dysfunction of parvalbumin-positive (PV+) interneurons, implicating their potential connection to early symptoms. In this study, we employed a 5-trial social memory task to investigate early deficits in social cognition in 6-month-old TgF344-AD male and female rats. We counted the number of PV+ interneurons and recorded local field potentials during social interactions in the hippocampal CA2 - a region critical for social information processing. Our results show decreased social interest and novelty preference in TgF344-AD male and female rats. However, reduced PV+ interneuron numbers were observed only in female rats and specific to the CA2 area. The electrophysiological recordings revealed reduced theta-gamma phase-amplitude coupling in the CA2 during direct social interactions. We conclude that deficits in social cognition accompany early-stage AD in TgF344-AD rats and are potentially linked to PV+ interneuron and brain oscillatory dysfunction in the CA2 region of the hippocampus.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 100 00, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 100 00, Czech Republic
| | - Jan Touš
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 160 00, Czech Republic
| | - Radek Janča
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 160 00, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| |
Collapse
|
2
|
Granov R, Vedad S, Wang SH, Durham A, Shah D, Pasinetti GM. The Role of the Neural Exposome as a Novel Strategy to Identify and Mitigate Health Inequities in Alzheimer's Disease and Related Dementias. Mol Neurobiol 2025; 62:1205-1224. [PMID: 38967905 PMCID: PMC11711138 DOI: 10.1007/s12035-024-04339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
With the continuous increase of the elderly population, there is an urgency to understand and develop relevant treatments for Alzheimer's disease and related dementias (ADRD). In tandem with this, the prevalence of health inequities continues to rise as disadvantaged communities fail to be included in mainstream research. The neural exposome poses as a relevant mechanistic approach and tool for investigating ADRD onset, progression, and pathology as it accounts for several different factors: exogenous, endogenous, and behavioral. Consequently, through the neural exposome, health inequities can be addressed in ADRD research. In this paper, we address how the neural exposome relates to ADRD by contributing to the discourse through defining how the neural exposome can be developed as a tool in accordance with machine learning. Through this, machine learning can allow for developing a greater insight into the application of transferring and making sense of experimental mouse models exposed to health inequities and potentially relate it to humans. The overall goal moving beyond this paper is to define a multitude of potential factors that can increase the risk of ADRD onset and integrate them to create an interdisciplinary approach to the study of ADRD and subsequently translate the findings to clinical research.
Collapse
Affiliation(s)
- Ravid Granov
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Skyler Vedad
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Shu-Han Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA.
- Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
3
|
Kwon KJ, Kim HY, Han SH, Shin CY. Future Therapeutic Strategies for Alzheimer's Disease: Focus on Behavioral and Psychological Symptoms. Int J Mol Sci 2024; 25:11338. [PMID: 39518892 PMCID: PMC11547068 DOI: 10.3390/ijms252111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive, degenerative brain disorder that impairs memory and thinking skills, leading to significant economic and humanistic burdens. It is associated with various neuropsychiatric symptoms (NPS) such as anxiety, agitation, depression, aggression, apathy, and psychosis. NPSs are common in patients with AD, affecting up to 97% of individuals diagnosed with AD. The severity of NPS is linked to disease progression and cognitive decline. NPS in Alzheimer's disease leads to increased morbidity, mortality, caregiver burden, earlier nursing home placement, and higher healthcare costs. Despite their significant impact, clinical research on NPS in AD is limited. In clinical settings, accurately distinguishing and diagnosing NPS related to AD remains a challenge. Additionally, conventional treatments for NPS in AD are often ineffective, highlighting the need for new therapies that target these specific symptoms. Understanding these comorbidities can aid in early diagnosis and better management of AD. In this review, we provide a summary of the various neurological and psychiatric symptoms (NPS) associated with AD and new candidates under development for the treatment of NPS based on their therapeutic targets and mechanisms. On top of the conventional NPS studied so far, this review adds recent advancements in the understanding of social functional impairment in AD. This review also provides information that can contribute to the advancement of studies and translational research in this field by emphasizing therapeutic targets and mechanisms of action focused on AD-related NPS rather than conventional mechanisms targeted in AD drug development. Above all, considering the relative lack of research in this new field despite the importance of clinical, medical, and translational research, it may increase interest in NPS in AD, its pathophysiological mechanisms, and potential therapeutic candidates such as molecules with antioxidant potential.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Hahn Young Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Seol-Heui Han
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
| |
Collapse
|
4
|
Fanaei H, Shoorijeh BT, Hafezinouri H, Mirzaei I, Parsi-Moud A. Impact of social isolation on corticosterone release and recovery after stroke in aged rats: A behavioral and biochemical analysis. Exp Gerontol 2024; 192:112453. [PMID: 38723916 DOI: 10.1016/j.exger.2024.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Social isolation (SI) after stroke reduces recovery. The aim of this study was to evaluate the effects of SI on corticosterone release and recovery after stroke in aged rats. A total of 64 male Wistar rats (aged 24 months) were used in the present study. All rats were housed in pairs for two weeks. After two weeks, rats were randomly assigned to one of four groups: (1) rats underwent sham surgery and kept socially isolated (control/social isolated (CO/SI) group); (2) rats underwent sham surgery and kept pair housed (control/pair housed (CO/PH) group); (3) rats underwent middle cerebral artery occlusion (MCAO) surgery and kept socially isolated (stroke/isolated (ST/SI) group); (4) rats underwent MCAO surgery and kept pair housed (stroke/pair housed (ST/PH)) group. Behaviors were assessed using the adhesive removal test, rotarod test and social interaction test at 1st, 7th, 14th and 21st days after stroke. Serum biochemical analysis was also performed on the behavioral testing days. Results showed THAT serum corticosterone and MDA levels in CO/PH group were significantly lower than CO/SI group. Serum BDNF levels in CO/PH group was significantly higher than CO/SI group. Serum corticosterone and MDA levels in ST/PH group were lower than ST/SI group. In ST/PH group, serum Total antioxidant capacity (TAC) and BDNF levels were significantly higher than ST/SI group. Biochemical analysis of certain regions of the brain (hippocampus, striatum and cerebral cortex) was performed on 21st day after stroke. In the hippocampus of CO/PH group, BDNF and TAC levels were significantly higher than CO/SI group. The hippocampal MDA level of CO/PH group were significantly lower than CO/SI group. BDNF and TAC levels in the hippocampus, striatum and cerebral cortex of ST/PH group were significantly higher and MDA level was significantly lower as compared with ST/SI group. Both ischemic groups showed sensorimotor recovery over a 21-day period, but recovery of ST/PH group was significantly greater than ST/SI group. Total social interaction time in ST/PH group was significantly longer than ST/SI group. Based on the results of this study, social interaction after stroke enhances histologic and sensorimotor recovery through reduction of HPA activity and corticosterone release, leading to increased TAC and BDNF levels.
Collapse
Affiliation(s)
- Hamed Fanaei
- Pregnancy Health Research Center, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | - Hamid Hafezinouri
- Laboratory Animal Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ilia Mirzaei
- Student Research Committee, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abolfazl Parsi-Moud
- Student Research Committee, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Sinclair D, Canty AJ, Ziebell JM, Woodhouse A, Collins JM, Perry S, Roccati E, Kuruvilla M, Leung J, Atkinson R, Vickers JC, Cook AL, King AE. Experimental laboratory models as tools for understanding modifiable dementia risk. Alzheimers Dement 2024; 20:4260-4289. [PMID: 38687209 PMCID: PMC11180874 DOI: 10.1002/alz.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Experimental laboratory research has an important role to play in dementia prevention. Mechanisms underlying modifiable risk factors for dementia are promising targets for dementia prevention but are difficult to investigate in human populations due to technological constraints and confounds. Therefore, controlled laboratory experiments in models such as transgenic rodents, invertebrates and in vitro cultured cells are increasingly used to investigate dementia risk factors and test strategies which target them to prevent dementia. This review provides an overview of experimental research into 15 established and putative modifiable dementia risk factors: less early-life education, hearing loss, depression, social isolation, life stress, hypertension, obesity, diabetes, physical inactivity, heavy alcohol use, smoking, air pollution, anesthetic exposure, traumatic brain injury, and disordered sleep. It explores how experimental models have been, and can be, used to address questions about modifiable dementia risk and prevention that cannot readily be addressed in human studies. HIGHLIGHTS: Modifiable dementia risk factors are promising targets for dementia prevention. Interrogation of mechanisms underlying dementia risk is difficult in human populations. Studies using diverse experimental models are revealing modifiable dementia risk mechanisms. We review experimental research into 15 modifiable dementia risk factors. Laboratory science can contribute uniquely to dementia prevention.
Collapse
Affiliation(s)
- Duncan Sinclair
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Alison J. Canty
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
- Global Brain Health Institute, Trinity CollegeDublinIreland
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jessica M. Collins
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Maneesh Kuruvilla
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jacqueline Leung
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Rachel Atkinson
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
6
|
Wang Z, Zhang L, Yang J, Zeng Y, Su C, Yao M, Zhang H, Hu W, Liu Y, Lai Y, Wang X, Zeng J, Liu R. Chronic stress induces Alzheimer's disease-like pathologies through DNA damage-Chk1-CIP2A signaling. Aging (Albany NY) 2024; 16:9168-9187. [PMID: 38819231 PMCID: PMC11164505 DOI: 10.18632/aging.205862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Stress is an important initiating factor in promoting Alzheimer's disease (AD) pathogenesis. However, the mechanism by which stress induces AD-like cognitive impairment remains to be clarified. Here, we demonstrate that DNA damage is increased in stress hormone Corticotropin-releasing factor (CRF)-treated cells and in brains of mice exposed to chronic restraint stress. Accumulation of DNA damage drives activation of cell cycle checkpoint protein kinase 1 (Chk1), upregulation of cancerous inhibitor of PP2A (CIP2A), tau hyperphosphorylation, and Aβ overproduction, eventually resulting in synaptic impairment and cognitive deficits. Pharmacological intervention targeting Chk1 by specific inhibitor and DNA damage by vitamin C, suppress DNA damage-Chk1-CIP2A signaling pathway in chronic stress animal model, which in turn attenuate AD-like pathologies, synaptic impairments and cognitive deficits. Our study uncovers a novel molecular mechanism of stress-induced AD-like pathologies and provides effective preventive and therapeutic strategies targeting this signaling pathway.
Collapse
Affiliation(s)
- Zhuoqun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Jiayu Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zeng
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengke Su
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengdong Yao
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiliang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yi Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwen Lai
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Huang HZ, Ai WQ, Wei N, Zhu LS, Liu ZQ, Zhou CW, Deng MF, Zhang WT, Zhang JC, Yang CQ, Hu YZ, Han ZT, Zhang HH, Jia JJ, Wang J, Liu FF, Li K, Xu Q, Yuan M, Man H, Guo Z, Lu Y, Shu K, Zhu LQ, Liu D. Senktide blocks aberrant RTN3 interactome to retard memory decline and tau pathology in social isolated Alzheimer's disease mice. Protein Cell 2024; 15:261-284. [PMID: 38011644 PMCID: PMC10984625 DOI: 10.1093/procel/pwad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Sporadic or late-onset Alzheimer's disease (LOAD) accounts for more than 95% of Alzheimer's disease (AD) cases without any family history. Although genome-wide association studies have identified associated risk genes and loci for LOAD, numerous studies suggest that many adverse environmental factors, such as social isolation, are associated with an increased risk of dementia. However, the underlying mechanisms of social isolation in AD progression remain elusive. In the current study, we found that 7 days of social isolation could trigger pattern separation impairments and presynaptic abnormalities of the mossy fibre-CA3 circuit in AD mice. We also revealed that social isolation disrupted histone acetylation and resulted in the downregulation of 2 dentate gyrus (DG)-enriched miRNAs, which simultaneously target reticulon 3 (RTN3), an endoplasmic reticulum protein that aggregates in presynaptic regions to disturb the formation of functional mossy fibre boutons (MFBs) by recruiting multiple mitochondrial and vesicle-related proteins. Interestingly, the aggregation of RTN3 also recruits the PP2A B subunits to suppress PP2A activity and induce tau hyperphosphorylation, which, in turn, further elevates RTN3 and forms a vicious cycle. Finally, using an artificial intelligence-assisted molecular docking approach, we determined that senktide, a selective agonist of neurokinin3 receptors (NK3R), could reduce the binding of RTN3 with its partners. Moreover, application of senktide in vivo effectively restored DG circuit disorders in socially isolated AD mice. Taken together, our findings not only demonstrate the epigenetic regulatory mechanism underlying mossy fibre synaptic disorders orchestrated by social isolation and tau pathology but also reveal a novel potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen-Qing Ai
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, China
| | - Ling-Shuang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao-Wen Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Man-Fei Deng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen-Tao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jia-Chen Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun-Qing Yang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Zhuo Hu
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing 100853, China
| | - Zhi-Tao Han
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing 100853, China
| | - Hong-Hong Zhang
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing 100853, China
| | - Jian-Jun Jia
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing 100853, China
| | - Jing Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang-Fang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Xu
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Lanooij SD, Drinkenburg WHIM, Eisel ULM, van der Zee EA, Kas MJH. The effects of social environment on AD-related pathology in hAPP-J20 mice and tau-P301L mice. Neurobiol Dis 2023; 187:106309. [PMID: 37748620 DOI: 10.1016/j.nbd.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-β plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - W H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands; Department of Neuroscience, Janssen Research & Development, a Division on Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - U L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - E A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
9
|
Popović N, Baño-Otalora B, Rol MÁ, Venero C, Madrid JA, Popović M. Effects of long-term individual housing of middle-aged female Octodon degus on spatial learning and memory in the Barnes maze task. Front Behav Neurosci 2023; 17:1221090. [PMID: 37600762 PMCID: PMC10435294 DOI: 10.3389/fnbeh.2023.1221090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Prolonged social isolation is a form of passive chronic stress that has consequences on human and animal behavior. The present study was undertaken to elucidate whether the long-term isolation would precipitate age-related changes in anxiety and spatial learning and memory in degus. Methods We investigated the effects of long-term social isolation on anxiety levels in the light-dark test, and spatial orientation abilities in the Barnes maze. Middle-aged female Octodon degus were allocated to either group-housed (3 animals per cage) or individually-housed for 5 months. Results Under this experimental condition, there were no significant group differences in the anxiety level tested in the light-dark test and in the motivation to escape from the Barnes maze. There were no significant differences in cortisol levels between individually- and group-housed animals. On the last acquisition training day of spatial learning, individually- housed animals had a significantly higher number of correct responses and a smaller number of reference and working memory errors than the group-housed animals. In addition, isolated animals showed a tendency for reference and working memory impairment on the retention trial, while group-housed degus showed improvement in these parameters. Discussion and conclusion The present study indicates that prolonged social isolation during adulthood in female degus has a dual effect on spatial orientation. Specifically, it results in a significant improvement in acquisition skills but a slight impairment in memory retention. The obtained cognitive changes were not accompanied by modification in anxiety and cortisol levels.
Collapse
Affiliation(s)
- Natalija Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Beatriz Baño-Otalora
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, Instituto Universitario de Investigación en Envejecimiento, Murcia, Spain
| | - María Ángeles Rol
- Biomedical Research Institute of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, Instituto Universitario de Investigación en Envejecimiento, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
- Instituto Mixto de Investigación–Escuela Nacional de Sanidad, Madrid, Spain
| | - Juan Antonio Madrid
- Biomedical Research Institute of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, Instituto Universitario de Investigación en Envejecimiento, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Souza JG, Farias-Itao DS, Aliberti MJR, Bertola L, de Andrade FB, Lima-Costa MF, Ferri CP, Suemoto CK. Social Isolation, Loneliness, and Cognitive Performance in Older Adults: Evidence From the ELSI-Brazil Study. Am J Geriatr Psychiatry 2023; 31:610-620. [PMID: 37211500 DOI: 10.1016/j.jagp.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The association between social isolation and cognitive performance has been less investigated in low-to-middle-income countries (LMIC) and the presence of depression as a moderator on this association has not been examined. The authors examined the associations of social isolation and perceived loneliness with cognitive performance in the Brazilian Longitudinal Study of Aging. METHODS In this cross-sectional analysis, social isolation was evaluated by a composite score including marital status, social contact, and social support. The dependent variable was global cognitive performance, which considered memory, verbal fluency, and temporal orientation tests. Linear and logistic regressions were adjusted for sociodemographic and clinical variables. The authors added interaction terms of depressive symptoms with social isolation and loneliness to examine whether depression, measured through the Center for Epidemiologic Studies-Depression Scale, modified these associations. RESULTS Among 6,986 participants (mean age = 62.1 ± 9.2 years), higher levels of social connections were associated with better global cognitive performance (B = 0.02, 95%CI: 0.02; 0.04). Perceived loneliness was associated with worse cognition (B = -0.26, 95%CI = -0.34; -0.18). Interactions of depressive symptoms with social connections scores were found on memory z-score and with loneliness on global and memory z-scores, suggesting a weaker association between social isolation or loneliness and cognition among those with depressive symptoms. CONCLUSION In a large sample from an LMIC, social isolation and loneliness were associated with worse cognitive performance. Surprisingly, depressive symptoms decrease the strength of these associations. Future longitudinal studies are important to assess the direction of the association between social isolation and cognitive performance.
Collapse
Affiliation(s)
- Jonas Gordilho Souza
- Laboratório de Investigação Médica em Envelhecimento (LIM-66) (JGS,MJRA,CKS), Serviço de Geriatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Marlon J R Aliberti
- Laboratório de Investigação Médica em Envelhecimento (LIM-66) (JGS,MJRA,CKS), Serviço de Geriatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Research Institute (MJRA), Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Laiss Bertola
- Center for Clinical and Epidemiological Research (LB), Hospital Universitario, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiola Bof de Andrade
- Rene Rachou Institute (FBDA,MFL), Oswaldo Cruz Foundation (FIOCRUZ), Minas Gerais, Brazil
| | - Maria Fernanda Lima-Costa
- Rene Rachou Institute (FBDA,MFL), Oswaldo Cruz Foundation (FIOCRUZ), Minas Gerais, Brazil; Department of Preventive Medicine (MFL), Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Cleusa P Ferri
- Health Technology Assessment Unit - Hospital Alemão Oswaldo Cruz (CPF), Sao Paulo, Brazil; Department of Psychiatry (CPF), Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Claudia K Suemoto
- Laboratório de Investigação Médica em Envelhecimento (LIM-66) (JGS,MJRA,CKS), Serviço de Geriatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Javaid S, Alqahtani F, Ashraf W, Anjum SMM, Rasool MF, Ahmad T, Alasmari F, Alasmari AF, Alqarni SA, Imran I. Tiagabine suppresses pentylenetetrazole-induced seizures in mice and improves behavioral and cognitive parameters by modulating BDNF/TrkB expression and neuroinflammatory markers. Biomed Pharmacother 2023; 160:114406. [PMID: 36791567 DOI: 10.1016/j.biopha.2023.114406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Tiagabine (Tia), a new-generation antiseizure drug that mimics the GABAergic signaling by inhibiting GABA transporter type-1, is the least studied molecule in chronic epilepsy models with comorbid neurobehavioral and neuroinflammatory parameters. Therefore, the current study investigated the effects of Tia in a real-time manner on electroencephalographic (EEG) activity, behavioral manifestations and mRNA expression in pentylenetetrazole (PTZ)-kindled mice. Male BALB/c mice were treated with tiagabine (0.5, 1 and 2 mg/kg) for 21 days with simultaneous PTZ (40 mg/kg) injection every other day for a total of 11 injections and monitored for seizure progression with synchronized validation through EEG recordings from cortical electrodes. The post-kindling protection from anxiety and memory deficit was verified by a battery of behavioral experiments. Isolated brains were evaluated for oxidative alterations and real-time changes in mRNA expression for BDNF/TrkB, GAT-1 and GAT-3 as well as neuroinflammatory markers. Experimental results revealed that Tia at the dose of 2 mg/kg maximally inhibited the development of full bloom seizure and reduced epileptic spike discharges from the cortex. Furthermore, Tia dose-dependently exerted the anxiolytic effects and protected from PTZ-evoked cognitive impairment. Tia reduced lipid peroxidation and increased superoxide dismutase and glutathione levels in the brain via augmentation of GABAergic modulation. PTZ-induced upregulated BDNF/TrkB signaling and pro-inflammatory cytokines were mitigated by Tia with upregulation of GAT-1 and GAT-3 transporters in whole brains. In conclusion, the observed effects of Tia might have resulted from reduced oxidative stress, BDNF/TrkB modulation and mitigated neuroinflammatory markers expression leading to reduced epileptogenesis and improved epilepsy-related neuropsychiatric effects.
Collapse
Affiliation(s)
- Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Université Grenoble Alpes, France
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Abdullah Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
12
|
Ren Y, Savadlou A, Park S, Siska P, Epp JR, Sargin D. The impact of loneliness and social isolation on the development of cognitive decline and Alzheimer's Disease. Front Neuroendocrinol 2023; 69:101061. [PMID: 36758770 DOI: 10.1016/j.yfrne.2023.101061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Alzheimer's Disease (AD) is the leading cause of dementia, observed at a higher incidence in women compared with men. Treatments aimed at improving pathology in AD remain ineffective to stop disease progression. This makes the detection of the early intervention strategies to reduce future disease risk extremely important. Isolation and loneliness have been identified among the major risk factors for AD. The increasing prevalence of both loneliness and AD emphasizes the urgent need to understand this association to inform treatment. Here we present a comprehensive review of both clinical and preclinical studies that investigated loneliness and social isolation as risk factors for AD. We discuss that understanding the mechanisms of how loneliness exacerbates cognitive impairment and AD with a focus on sex differences will shed the light for the underlying mechanisms regarding loneliness as a risk factor for AD and to develop effective prevention or treatment strategies.
Collapse
Affiliation(s)
- Yi Ren
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Aisouda Savadlou
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Soobin Park
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Paul Siska
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Canada; Department of Physiology & Pharmacology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
13
|
Lanooij SD, Eisel ULM, Drinkenburg WHIM, van der Zee EA, Kas MJH. Influencing cognitive performance via social interactions: a novel therapeutic approach for brain disorders based on neuroanatomical mapping? Mol Psychiatry 2023; 28:28-33. [PMID: 35858991 PMCID: PMC9812764 DOI: 10.1038/s41380-022-01698-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023]
Abstract
Many psychiatric and neurological disorders present deficits in both the social and cognitive domain. In this perspectives article, we provide an overview and the potential of the existence of an extensive neurobiological substrate underlying the close relationship between these two domains. By mapping the rodent brain regions involved in the social and/or cognitive domain, we show that the vast majority of brain regions involved in the cognitive domain are also involved in the social domain. The identified neuroanatomical overlap has an evolutionary basis, as complex social behavior requires cognitive skills, and aligns with the reported functional interactions of processes underlying cognitive and social performance. Based on the neuroanatomical mapping, recent (pre-)clinical findings, and the evolutionary perspective, we emphasize that the social domain requires more focus as an important treatment target and/or biomarker, especially considering the presently limited treatment strategies for these disorders.
Collapse
Affiliation(s)
- Suzanne D. Lanooij
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ulrich L. M. Eisel
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Wilhelmus H. I. M. Drinkenburg
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands ,grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Eddy A. van der Zee
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Martien J. H. Kas
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
Černotová D, Hrůzová K, Levčík D, Svoboda J, Stuchlík A. Linking Social Cognition, Parvalbumin Interneurons, and Oxytocin in Alzheimer's Disease: An Update. J Alzheimers Dis 2023; 96:861-875. [PMID: 37980658 PMCID: PMC10741376 DOI: 10.3233/jad-230333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 11/21/2023]
Abstract
Finding a cure for Alzheimer's disease (AD) has been notoriously challenging for many decades. Therefore, the current focus is mainly on prevention, timely intervention, and slowing the progression in the earliest stages. A better understanding of underlying mechanisms at the beginning of the disease could aid in early diagnosis and intervention, including alleviating symptoms or slowing down the disease progression. Changes in social cognition and progressive parvalbumin (PV) interneuron dysfunction are among the earliest observable effects of AD. Various AD rodent models mimic these early alterations, but only a narrow field of study has considered their mutual relationship. In this review, we discuss current knowledge about PV interneuron dysfunction in AD and emphasize their importance in social cognition and memory. Next, we propose oxytocin (OT) as a potent modulator of PV interneurons and as a promising treatment for managing some of the early symptoms. We further discuss the supporting evidence on its beneficial effects on AD-related pathology. Clinical trials have employed the use of OT in various neuropsychiatric diseases with promising results, but little is known about its prospective impacts on AD. On the other hand, the modulatory effects of OT in specific structures and local circuits need to be clarified in future studies. This review highlights the connection between PV interneurons and social cognition impairment in the early stages of AD and considers OT as a promising therapeutic agent for addressing these early deficits.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Lanooij SD, Eisel ULM, van der Zee EA, Kas MJH. Variation in Group Composition Alters an Early-Stage Social Phenotype in hAPP-Transgenic J20 Mice. J Alzheimers Dis 2023; 93:211-224. [PMID: 36970900 DOI: 10.3233/jad-221126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Altered social behavior is one of the symptoms of Alzheimer's disease (AD) that results in social withdrawal and loneliness and provides a major burden on patients and their relatives. Furthermore, loneliness is associated with an increased risk to develop AD and related dementias. OBJECTIVE We aimed to investigate if altered social behavior is an early indicator of amyloid-β (Aβ) pathology in J20 mice, and if co-housing with wild type (WT) mice can positively influence this social phenotype. METHODS The social phenotype of group-housed mice was assessed using an automated behavioral scoring system for longitudinal recordings. Female mice were housed in a same-genotype (4 J20 or WT mice per colony) or mixed-genotype (2 J20 mice + 2 WT mice) colony. At 10 weeks of age, their behavior was assessed for five consecutive days. RESULTS J20 mice showed increased locomotor activity and social sniffing, and reduced social contact compared to WT mice housed in same-genotype colonies. Mixed-genotype housing reduced the social sniffing duration of J20 mice, increased social contact frequency of J20 mice, and increased nest hide by WT mice. CONCLUSION Thus, altered social behavior can be used as an early indicator of Aβ-pathology in female J20 mice. Additionally, when co-housed with WT mice, their social sniffing phenotype is not expressed and their social contact phenotype is reduced. Our findings highlight the presence of a social phenotype in the early stages of AD and indicate a role for social environment variation in the expression of social behavior of WT and J20 mice.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Ulrich L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Liu YS, Zhao HF, Li Q, Cui HW, Huang GD. Research Progress on the Etiology and Pathogenesis of Alzheimer's Disease from the Perspective of Chronic Stress. Aging Dis 2022:AD.2022.1211. [PMID: 37163426 PMCID: PMC10389837 DOI: 10.14336/ad.2022.1211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 05/12/2023] Open
Abstract
Due to its extremely complex pathogenesis, no effective drugs to prevent, delay progression, or cure Alzheimer's disease (AD) exist at present. The main pathological features of AD are senile plaques composed of β-amyloid, neurofibrillary tangles formed by hyperphosphorylation of the tau protein, and degeneration or loss of neurons in the brain. Many risk factors associated with the onset of AD, including gene mutations, aging, traumatic brain injury, endocrine and cardiovascular diseases, education level, and obesity. Growing evidence points to chronic stress as one of the major risk factors for AD, as it can promote the onset and development of AD-related pathologies via a mechanism that is not well known. The use of murine stress models, including restraint, social isolation, noise, and unpredictable stress, has contributed to improving our understanding of the relationship between chronic stress and AD. This review summarizes the evidence derived from murine models on the pathological features associated with AD and the related molecular mechanisms induced by chronic stress. These results not only provide a retrospective interpretation for understanding the pathogenesis of AD, but also provide a window of opportunity for more effective preventive and identifying therapeutic strategies for stress-induced AD.
Collapse
Affiliation(s)
- Yun-Sheng Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hua-Fu Zhao
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qian Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Han-Wei Cui
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, China
| | - Guo-Dong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
17
|
Drinkwater E, Davies C, Spires-Jones TL. Potential neurobiological links between social isolation and Alzheimer's disease risk. Eur J Neurosci 2022; 56:5397-5412. [PMID: 34184343 DOI: 10.1111/ejn.15373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
It is estimated that 40% of dementia cases could be prevented by modification of lifestyle factors that associate with disease risk. One of these potentially modifiable lifestyle factors is social isolation. In this review, we discuss what is known about associations between social isolation and Alzheimer's disease, the most common cause of dementia. This is particularly relevant in the time of the COVID-19 pandemic when social isolation has been enforced with potential emerging negative impacts on cognition. While there are neurobiological mechanisms emerging that may account for the observed epidemiological associations between social isolation and Alzheimer's disease, more fundamental research is needed to fully understand the brain changes induced by isolation that may make people vulnerable to disease.
Collapse
Affiliation(s)
| | - Caitlin Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Translational Neuroscience PhD Programme, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Niotis K, Akiyoshi K, Carlton C, Isaacson R. Dementia Prevention in Clinical Practice. Semin Neurol 2022; 42:525-548. [PMID: 36442814 DOI: 10.1055/s-0042-1759580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over 55 million people globally are living with dementia and, by 2050, this number is projected to increase to 131 million. This poses immeasurable challenges for patients and their families and a significant threat to domestic and global economies. Given this public health crisis and disappointing results from disease-modifying trials, there has been a recent shift in focus toward primary and secondary prevention strategies. Approximately 40% of Alzheimer's disease (AD) cases, which is the most common form of dementia, may be prevented or at least delayed. Success of risk reduction studies through addressing modifiable risk factors, in addition to the failure of most drug trials, lends support for personalized multidomain interventions rather than a "one-size-fits-all" approach. Evolving evidence supports early intervention in at-risk patients using individualized interventions directed at modifiable risk factors. Comprehensive risk stratification can be informed by emerging principals of precision medicine, and include expanded clinical and family history, anthropometric measurements, blood biomarkers, neurocognitive evaluation, and genetic information. Risk stratification is key in differentiating subtypes of dementia and identifies targetable areas for intervention. This article reviews a clinical approach toward dementia risk stratification and evidence-based prevention strategies, with a primary focus on AD.
Collapse
Affiliation(s)
- Kellyann Niotis
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Kiarra Akiyoshi
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York.,Department of Neurology, Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, Florida
| |
Collapse
|
19
|
Muntsant A, Giménez-Llort L. Crosstalk of Alzheimer’s disease-phenotype, HPA axis, splenic oxidative stress and frailty in late-stages of dementia, with special concerns on the effects of social isolation: A translational neuroscience approach. Front Aging Neurosci 2022; 14:969381. [PMID: 36185472 PMCID: PMC9520301 DOI: 10.3389/fnagi.2022.969381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Coping with emotional stressors strongly impacts older people due to their age-related impaired neuroendocrine and immune systems. Elevated cortisol levels seem to be associated with an increased risk of cognitive decline and dementia. In Alzheimer’s disease (AD), alterations in the innate immune system result in crosstalk between immune mediators and neuronal and endocrine functions. Besides, neuropsychiatric symptoms such as depression, anxiety, or agitation are observed in most patients. Here, we studied the psychophysiological response to intrinsic (AD-phenotype) and extrinsic (anxiogenic tests) stress factors and their relation to liver, kidneys, heart, and spleen oxidative status in 18-months-old female gold-standard C57BL/6 mice and 3xTg-AD mice model for AD. The emotional, cognitive, and motor phenotypes were assessed under three different anxiogenic conditions. Survival, frailty index, and immunoendocrine status (corticosterone levels and oxidative stress of peripheral organs) were evaluated. Genotype differences in neuropsychiatric-like profiles and cognitive disfunction in 3xTg-AD females that survived beyond advanced stages of the disease persisted despite losing other behavioral and hypothalamic–pituitary–adrenal (HPA) physiological differences. A secondary analysis studied the impact of social isolation, naturally occurring in 3xTg-AD mice due to the death of cage mates. One month of isolation modified hyperactivity and neophobia patterns and disrupt the obsessive-compulsive disorder-like digging ethogram. Frailty index correlated with spleen organometrics in all groups, whereas two AD-specific salient functional correlations were identified: (1) Levels of corticosterone with worse performance in the T-maze, (2) and with a lower splenic GPx antioxidant enzymatic activity, which may suppose a potent risk of morbidity and mortality in AD.
Collapse
Affiliation(s)
- Aida Muntsant
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: Lydia Giménez-Llort,
| |
Collapse
|
20
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Doroszkiewicz J, Mroczko B. New Possibilities in the Therapeutic Approach to Alzheimer's Disease. Int J Mol Sci 2022; 23:8902. [PMID: 36012193 PMCID: PMC9409036 DOI: 10.3390/ijms23168902] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the fact that Alzheimer's disease (AD) is the most common cause of dementia, after many years of research regarding this disease, there is no casual treatment. Regardless of the serious public health threat it poses, only five medical treatments for Alzheimer's disease have been authorized, and they only control symptoms rather than changing the course of the disease. Numerous clinical trials of single-agent therapy did not slow the development of disease or improve symptoms when compared to placebo. Evidence indicates that the pathological alterations linked to AD start many years earlier than a manifestation of the disease. In this pre-clinical period before the neurodegenerative process is established, pharmaceutical therapy might prove invaluable. Although recent findings from the testing of drugs such as aducanumab are encouraging, they should nevertheless be interpreted cautiously. Such medications may be able to delay the onset of dementia, significantly lowering the prevalence of the disease, but are still a long way from having a clinically effective disease-modifying therapy.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269 Bialystok, Poland
| |
Collapse
|
22
|
Tong W, Zhang K, Yao H, Li L, Hu Y, Zhang J, Song Y, Guan Q, Li S, Sun YE, Jin L. Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulated in Exercise in a Mouse Model of Parkinson’s Disease. Front Aging Neurosci 2022; 14:891644. [PMID: 35813950 PMCID: PMC9260255 DOI: 10.3389/fnagi.2022.891644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundExercise plays an essential role in improving motor symptoms in Parkinson’s disease (PD), but the underlying mechanism in the central nervous system remains unclear.MethodsMotor ability was observed after 12-week treadmill exercise on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. RNA-sequencing on four brain regions (cerebellum, cortex, substantia nigra (SN), and striatum) from control animals, MPTP-induced PD, and MPTP-induced PD model treated with exercise for 12 weeks were performed. Transcriptional networks on the four regions were further identified by an integrative network biology approach.ResultsThe 12-week treadmill exercise significantly improved the motor ability of an MPTP-induced mouse model of PD. RNA-seq analysis showed SN and striatum were remarkably different among individual region’s response to exercise in the PD model. Especially, synaptic regulation pathways about axon guidance, synapse assembly, neurogenesis, synaptogenesis, transmitter transport-related pathway, and synaptic regulation genes, including Neurod2, Rtn4rl2, and Cd5, were upregulated in SN and striatum. Lastly, immunofluorescence staining revealed that exercise rescued the loss of TH+ synapses in the striatal region in PD mice, which validates the key role of synaptic regulation pathways in exercise-induced protective effects in vivo.ConclusionSN and striatum are important brain regions in which critical transcriptional changes, such as in synaptic regulation pathways, occur after the exercise intervention on the PD model.
Collapse
Affiliation(s)
- Weifang Tong
- Department of Neurology, Tongji Hospital, School of Medicine, Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, China
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kunshan Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, China
| | - Hongkai Yao
- Department of Neurology, Tongji Hospital, School of Medicine, Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, China
| | - Lixi Li
- Department of Neurology, Tongji Hospital, School of Medicine, Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, China
| | - Yong Hu
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, Department of Neurology, NYU Langone Health, NYU School of Medicine, New York, NY, United States
| | - Jingxing Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Guan
- Department of Neurology, Tongji Hospital, School of Medicine, Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, China
| | - Siguang Li
- Department of Neurology, Tongji Hospital, School of Medicine, Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, China
- *Correspondence: Siguang Li,
| | - Yi E. Sun
- Department of Neurology, Tongji Hospital, School of Medicine, Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, China
- Yi E. Sun,
| | - Lingjing Jin
- Department of Neurology, Tongji Hospital, School of Medicine, Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, China
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
- Lingjing Jin,
| |
Collapse
|
23
|
Zhang WJ, Li DN, Lian TH, Guo P, Zhang YN, Li JH, Guan HY, He MY, Zhang WJ, Zhang WJ, Luo DM, Wang XM, Zhang W. Clinical Features and Potential Mechanisms Relating Neuropathological Biomarkers and Blood-Brain Barrier in Patients With Alzheimer’s Disease and Hearing Loss. Front Aging Neurosci 2022; 14:911028. [PMID: 35783139 PMCID: PMC9245454 DOI: 10.3389/fnagi.2022.911028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background The aim of this study was to explore clinical features and potential mechanisms relating neuropathological biomarkers and blood-brain barrier (BBB) in Alzheimer’s disease (AD) and hearing loss (HL). Materials and Methods A total of 65 patients with AD were recruited and auditory function was assessed by threshold of pure tone audiometry (PTA). Patients were divided into AD with HL (AD-HL) and AD with no HL (AD-nHL) groups based on the standard of World Health Organization. Clinical symptoms were assessed by multiple rating scales. The levels of neuropathological biomarkers of β amyloid1-42 (Aβ1–42) and multiple phosphorylated tau (P-tau), and BBB factors of matrix metalloproteinases (MMPs), receptor of advanced glycation end products, glial fibrillary acidic protein, and low-density lipoprotein receptor related protein 1 were measured. Results (1) Compared with AD-nHL group, AD-HL group had significantly impaired overall cognitive function and cognitive domains of memory, language, attention, execution, and activities of daily living (ADL) reflected by the scores of rating scales (P < 0.05). PTA threshold was significantly correlated with the impairments of overall cognitive function and cognitive domains of memory and language, and ADL in patients with AD (P < 0.05). (2) P-tau (S199) level was significantly increased in CSF from AD-HL group (P < 0.05), and was significantly and positively correlated with PTA threshold in patients with AD. (3) MMP-3 level was significantly elevated in CSF from AD-HL group (P < 0.05), and was significantly and positively correlated with PTA threshold in patients with AD (P < 0.05). (4) In AD-HL group, P-tau (S199) level was significantly and positively correlated with the levels of MMP-2 and MMP-3 in CSF (P < 0.05). Conclusion AD-HL patients have severely compromised overall cognitive function, multiple cognitive domains, and ADL. The potential mechanisms of AD-HL involve elevations of AD neuropathological biomarker of P-tau (S199) and BBB factor of MMP-3, and close correlations between P-tau (S199) and MMP-2/MMP-3 in CSF. Findings from this investigation highly suggest significance of early evaluation of HL for delaying AD progression, and indicate new directions of drug development by inhibiting neuropathological biomarkers of AD and protecting BBB.
Collapse
Affiliation(s)
- Wei-jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dan-ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Teng-hong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-nan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-hui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-yue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-jing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong-mei Luo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory on Parkinson’s Disease, Beijing, China
- *Correspondence: Wei Zhang,
| |
Collapse
|
24
|
Tang X, Yv H, Wang F, Wang J, Liu S, Wu X, Dong R, Lin X, Wang B, Bi Y. The Relationship Between Suboptimal Social Networks and Postoperative Delirium: The PNDABLE Study. Front Aging Neurosci 2022; 14:851368. [PMID: 35769605 PMCID: PMC9235411 DOI: 10.3389/fnagi.2022.851368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Background Although it has been proven that social networks are related to cognition, studies are conducted to characterize the correlation between social networks and postoperative delirium (POD). Objective We investigated whether suboptimal social networks are a risk factor for POD, and to verify whether different levels of intimacy in the same social relationship can affect the concentration of cerebrospinal fluid (CSF) biomarkers, such as amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau), and the mediating role of CSF biomarkers between social network and POD in middle-aged and elderly Han people. Methods Our study recruited 743 participants from The Perioperative Neurocognitive Disorder and Biomarker Lifestyle (PNDABLE) study. Confusion Assessment Method (CAM) was used to evaluate the incidence of POD and its severity was measured using the Memorial Delirium Assessment Scale (MDAS). The social networks were measured using self-reported questionnaires about social ties. Mann–Whitney U test, Logistic Regression and Independent-samples test were used for Statistical Analysis. Results The incidence of POD was 20.7%. Mann–Whitney U test showed that the total score of the social network was associated with POD (P < 0.001). Independent-samples test showed that different levels of intimacy in the same social relationship were significantly associated with CSF POD biomarkers, and mediation analyses revealed that the association between suboptimal social networks and POD was partially mediated by T-tau (proportion: 20%), P-tau (proportion: 33%), Aβ42/T-tau (proportion: 14%), and Aβ42/P-tau (proportion: 15%). Conclusion Having suboptimal social networks is a risk factor for POD in middle-aged and elderly Han people. CSF POD biomarkers can mediate the correlation between suboptimal social networks and POD, which is mainly mediated by tau protein. Clinical Trial Registration www.chictr.org.cn, identifier ChiCTR2000033439.
Collapse
Affiliation(s)
- Xinhui Tang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Hui Yv
- Department of Anesthesiology, Qingdao Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Fei Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Jiahan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Siyv Liu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyue Wu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Rui Dong
- Department of Anesthesiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Yanlin Bi,
| |
Collapse
|
25
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
26
|
Zhang L, Wang X, Yu W, Ying J, Fang P, Zheng Q, Feng X, Hu J, Xiao F, Chen S, Wei G, Lin Y, Liu X, Yang D, Fang Y, Xu G, Hua F. CB2R Activation Regulates TFEB-Mediated Autophagy and Affects Lipid Metabolism and Inflammation of Astrocytes in POCD. Front Immunol 2022; 13:836494. [PMID: 35392078 PMCID: PMC8981088 DOI: 10.3389/fimmu.2022.836494] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that the accumulation of lipid drots (LDs) accelerates damage to mitochondria and increases the release of inflammatory factors. These have been implicated as a mechanism underlying neurodegenerative diseases or tumors and aging-related diseases such as postoperative cognitive dysfunction (POCD), nevertheless, accumulation of lipid droplets has not been extensively studied in the central nervous system (CNS). Here, we found that after surgery, there was activation of astrocytes and lipid accumulation in the hippocampus. However, cannabinoid receptor type II (CB2R) activation significantly reduced lipid accumulation in astrocytes and change the expression of genes related to lipid metabolism. CB2R reduces the release of the inflammatory factors interleukin-1 beta (IL-1β) and interleukin 6 (IL-6) in peripheral serum and simultaneously improves cognitive ability in mice with POCD. Further research on mechanisms indicates that CB2R activation promotes the nuclear entry of the bHLH-leucine zipper transcription factor, the transcription factor EB (TFEB), and which is a master transcription factor of the autophagy–lysosomal pathway, also reduces TFEB-S211 phosphorylation. When CB2R promotes TFEB into the nucleus, TFEB binds at two sites within promoter region of PGC1α, promoting PGC1α transcription and accelerating downstream lipid metabolism. The aforementioned process leads to autophagy activation and decreases cellular lipid content. This study uncovers a new mechanism allowing CB2R to regulate lipid metabolism and inflammation in POCD.
Collapse
Affiliation(s)
- Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
27
|
Mieske P, Diederich K, Lewejohann L. Roaming in a Land of Milk and Honey: Life Trajectories and Metabolic Rate of Female Inbred Mice Living in a Semi Naturalistic Environment. Animals (Basel) 2021; 11:ani11103002. [PMID: 34680021 PMCID: PMC8532919 DOI: 10.3390/ani11103002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
Despite tremendous efforts at standardization, the results of scientific studies can vary greatly, especially when considering animal research. It is important to emphasize that consistent different personality-like traits emerge and accumulate over time in laboratory mice despite genetic and environmental standardization. To understand to what extent variability can unfold over time, we conducted a long-term study using inbred mice living in an exceptionally complex environment comprising an area of 4.6 m2 spread over five levels. In this semi-naturalistic environment (SNE) the activity and spatial distribution of 20 female C57Bl/6J was recorded by radio-frequency identification (RFID). All individuals were monitored from an age of 11 months to 22 months and their individual pattern of spatial movement in time is described as roaming entropy. Overall, we detected an increase of diversification in roaming behavior over time with stabilizing activity patterns at the individual level. However, spontaneous behavior of the animals as well as physiological parameters did not correlate with cumulative roaming entropy. Moreover, the amount of variability did not exceed the literature data derived from mice living in restricted conventional laboratory conditions. We conclude that even taking quantum leaps towards improving animal welfare does not inevitably mean a setback in terms of data quality.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (K.D.); (L.L.)
- Correspondence:
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (K.D.); (L.L.)
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (K.D.); (L.L.)
- Animal Behavior and Laboratory Animal Science, Institute of Animal Welfare, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| |
Collapse
|
28
|
Kim S, Nam Y, Ham MJ, Park C, Moon M, Yoo DH. Neurological Mechanisms of Animal-Assisted Intervention in Alzheimer's Disease: A Hypothetical Review. Front Aging Neurosci 2021; 13:682308. [PMID: 34335229 PMCID: PMC8317687 DOI: 10.3389/fnagi.2021.682308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder with aggregation of amyloid-beta (Aβ) and tau as the pathological hallmarks. AD is the most common form of dementia and is characterized by a progressive decline of cognition. The failure of pharmacological approaches to treat AD has resulted in an increased focus on non-pharmacological interventions that can mitigate cognitive decline and delay disease progression in patients with AD. Animal-assisted intervention (AAI), a non-pharmacological intervention, improves emotional, social, and cognitive dysfunction in patients with neurodegenerative diseases. In particular, AAI is reported to mitigate the effects of cognitive impairment in patients with AD. Despite the positive effects of AAI on cognitive dysfunction in patients with AD, there have been no studies on how AAI affects AD-related pathologies. This review postulates potential neurological mechanisms of emotional or social interaction through AAI in countering AD-related pathologies, such as Aβ deposition, tau hyperphosphorylation, neuroinflammation, and impaired adult hippocampal neurogenesis (AHN), and proposes insights for future research by organizing accumulated previous evidence.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Min-Joo Ham
- Department of Occupational Therapy, Konyang University, Daejeon, South Korea
| | - Chisoo Park
- Department of Occupational Therapy, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
| | - Doo-Han Yoo
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
- Department of Occupational Therapy, Konyang University, Daejeon, South Korea
| |
Collapse
|
29
|
Ali AA, Abd El-Fattah AI, Abu-Elfotuh K, Elariny HA. Natural antioxidants enhance the power of physical and mental activities versus risk factors inducing progression of Alzheimer's disease in rats. Int Immunopharmacol 2021; 96:107729. [PMID: 33971493 DOI: 10.1016/j.intimp.2021.107729] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/02/2021] [Accepted: 04/25/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease that is exacerbated by social isolation (SI) and protein malnutrition (PM). Antioxidants, physical and mental activities (Ph&M) can maintain cognitive functions and protect against dementia. OBJECTIVE To investigate the impact of Epigallocatechin-3-gallate (EGCG), Vitamin E (VE), Vitamin C (VC), and Selenium (Se), in enhancing the potential effect of Ph&M versus SI&PM as risk factors in the progression of AD in rats. METHODS Aluminum chloride (70 mg/kg, I.P for 5 weeks) was used to induce AD in rats that either normally fed or socially isolated and protein malnourished (SI&PM). Simultaneously, rats were weekly exposed to Ph&M either alone or in combination with EGCG (10 mg/kg, I.P), VC (400 mg/kg, P.O), VE (100 mg/kg, P.O), and Se (1 mg/kg, P.O). RESULTS The combination protocol of EGCG, VE, VC, and Se together with Ph&M significantly increased brain monoamines, superoxide dismutase (SOD), total antioxidant capacity (TAC) and brain-derived neurotrophic factor (BDNF) in AD, SI&PM and SI&PM/AD groups. Additionally, this regimen significantly mitigated brain acetylcholine esterase (ACHE), β-amyloid (Aβ), Tau protein, β-secretase, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and Interleukin 1β (IL-1β) as well as DNA fragmentation. These biochemical findings were supported by the histopathological examinations of brain tissue. CONCLUSION The combination protocol of antioxidants with Ph&M activities mitigated SI&PM-induced progressive risk of AD.
Collapse
Affiliation(s)
- Azza A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | - Karema Abu-Elfotuh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hemat A Elariny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
30
|
Lin YF, Wang LY, Chen CS, Li CC, Hsiao YH. Cellular senescence as a driver of cognitive decline triggered by chronic unpredictable stress. Neurobiol Stress 2021; 15:100341. [PMID: 34095365 PMCID: PMC8163993 DOI: 10.1016/j.ynstr.2021.100341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
When an individual is under stress, the undesired effect on the brain often exceeds expectations. Additionally, when stress persists for a long time, it can trigger serious health problems, particularly depression. Recent studies have revealed that depressed patients have a higher rate of brain aging than healthy subjects and that depression increases dementia risk later in life. However, it remains unknown which factors are involved in brain aging triggered by chronic stress. The most critical change during brain aging is the decline in cognitive function. In addition, cellular senescence is a stable state of cell cycle arrest that occurs because of damage and/or stress and is considered a sign of aging. We used the chronic unpredictable stress (CUS) model to mimic stressful life situations and found that, compared with nonstressed control mice, CUS-treated C57BL/6 mice exhibited depression-like behaviors and cognitive decline. Additionally, the protein expression of the senescence marker p16INK4a was increased in the hippocampus, and senescence-associated β-galactosidase (SA-β-gal)-positive cells were found in the hippocampal dentate gyrus (DG) in CUS-treated mice. Furthermore, the levels of SA-β-gal or p16INK4a were strongly correlated with the severity of memory impairment in CUS-treated mice, whereas clearing senescent cells using the pharmacological senolytic cocktail dasatinib plus quercetin (D + Q) alleviated CUS-induced cognitive deficits, suggesting that targeting senescent cells may be a promising candidate approach to study chronic stress-induced cognitive decline. Our findings open new avenues for stress-related research and provide new insight into the association of chronic stress-induced cellular senescence with cognitive deficits.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Yun Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Sheng Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chun Li
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
31
|
Zhang L, Xiao F, Zhang J, Wang X, Ying J, Wei G, Chen S, Huang X, Yu W, Liu X, Zheng Q, Xu G, Yu S, Hua F. Dexmedetomidine Mitigated NLRP3-Mediated Neuroinflammation via the Ubiquitin-Autophagy Pathway to Improve Perioperative Neurocognitive Disorder in Mice. Front Pharmacol 2021; 12:646265. [PMID: 34079457 PMCID: PMC8165564 DOI: 10.3389/fphar.2021.646265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Surgery and anesthesia-induced perioperative neurocognitive disorder (PND) are closely related to NOD-like receptors (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome microglia inflammatory response. Inhibiting the occurrence of neuroinflammation is an important treatment method to improve postoperative delirium. Fewer NLRP3-targeting molecules are currently available in the clinic to reduce the incidence of postoperative delirium. Dexmedetomidine (DEX), an α2 adrenergic receptor agonist has been shown to have antioxidant and anti-inflammatory activities. The present study showed that DEX reduced the production of cleaved caspase1 (CASP1) and destroyed the NLRP3–PYD And CARD Domain Containing (PYCARD)–CASP1 complex assembly, thereby reducing the secretion of IL-1β interleukin beta (IL-1β). DEX promoted the autophagy process of microglia and reduced NLRP3 expression. More interestingly, it promoted the ubiquitination and degradation of NLRP3. Thus, this study demonstrated that DEX reduced NLRP3-mediated inflammation through the activation of the ubiquitin-autophagy pathway. This study provided a new mechanism for treating PND using DEX. Methods: C57BL/6 mice were pre-administered DEX 3 days in advance, and an abdominal exploration model was used to establish a perioperative neurocognitive disorder model. The anti-inflammatory effect of DEX was explored in vivo by detecting NLRP3-CASP1/IL-1β protein expression and behavioral testing. Primary microglia were stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) in vitro, the expression of CASP1 and IL-1β was detected in the supernatant of cells, and the expression of autophagy-related proteins microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) and sequestosome 1 (SQSTM1) was examined in the cytoplasm. Meanwhile, Co-immunoprecipitation (Co-IP) was used to detect NLRP3 protein ubiquitination so as to clarify the new mechanism underlying the anti-inflammatory effect of DEX. Results: Pre-administration of DEX reduced the protein expression of NLRP3, CASP1, and IL-1β in the hippocampus of mice induced by surgery and also improved the impairment of learning and memory ability. At the same time, DEX also effectively relieved the decrease in spine density of the hippocampal brain induced by surgery. DEX decreased the cleaved CASP1 expression, blocked the assembly of NLRP3–PYCARD–CASP1 complex, and also reduced the secretion of mature IL-1β in vitro. Mechanically, it accelerated the degradation of NLRP3 inflammasome via the autophagy–ubiquitin pathway and reduced the green fluorescent protein/red fluorescent protein MAP1LC3B ratio, which was comparable to the effect when using the autophagy activator rapamycin (Rapa). Furthermore, it increased the ubiquitination of NLRP3 after LPS plus ATP stimulated microglia. Conclusion: DEX attenuated the hippocampal brain inflammation by promoting NLRP3 inflammasome degradation via the autophagy–ubiquitin pathway, thus improving cognitive impairment in mice.
Collapse
Affiliation(s)
- Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hosptial of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xiangfei Huang
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hosptial of Nanchang Univerisity, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
32
|
Ma YH, Wang YY, Tan L, Xu W, Shen XN, Wang HF, Hou XH, Cao XP, Bi YL, Dong Q, Yang JL, Yu JT. Social Networks and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2021; 81:263-272. [PMID: 33749650 DOI: 10.3233/jad-201426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although social networks are deemed as moderators of incident Alzheimer's disease (AD), few data are available on the mechanism relevant to AD pathology. OBJECTIVE We aimed to investigate whether social networks affect metabolism of cerebrospinal fluid (CSF) AD biomarkers during early stage and identify modification effects of genetic factor and subjective cognitive decline (SCD). METHODS We studied participants from the Chinese Alzheimer's disease Biomarker and Lifestyle (CABLE) database who received cognition assessments and CSF amyloid-β (Aβ1-42 and Aβ1-40) and tau proteins (total-tau [T-tau] and phosphorylated-tau [P-tau]) measurements. The social networks were measured using self-reported questionnaires about social ties. Linear regression models were used. RESULTS Data were analyzed from 886 cognitively intact individuals aged 61.91 years (SD = 10.51), including 295 preclinical AD participants and 591 healthy controls. Social networks were mostly associated with CSF indicators of AD multi-pathologies (low P-tau/Aβ1-42 and T-tau/Aβ1-42 and high Aβ1-42/Aβ1-40). Significant differences of genetic and cognitive status were observed for CSF indicators, in which associations of social network scores with CSF P-tau and indicators of multi-pathologies appeared stronger in APOE 4 carriers (versus non-carriers) and participants with SCD (versus controls), respectively. Alternatively, more pronounced associations for CSF T-tau (β= -0.005, p < 0.001), Aβ1-42/Aβ1-40 (β= 0.481, p = 0.001), and T-tau/Aβ1-42 (β= -0.047, p < 0.001) were noted in preclinical AD stage than controls. CONCLUSION These findings consolidated strong links between social networks and AD risks. Social networks as a modifiable lifestyle probably affected metabolisms of multiple AD pathologies, especially among at-risk populations.
Collapse
Affiliation(s)
- Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Yu Wang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiu-Long Yang
- Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Gendron WH, Fertan E, Pelletier S, Roddick KM, O'Leary TP, Anini Y, Brown RE. Age related weight loss in female 5xFAD mice from 3 to 12 months of age. Behav Brain Res 2021; 406:113214. [PMID: 33677013 DOI: 10.1016/j.bbr.2021.113214] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
In addition to cognitive decline, patients with Alzheimer's disease (AD) exhibit sensory, motor, and neuropsychiatric deficits. Many AD patients also show weight loss, suggesting that AD may involve a metabolic syndrome. The 5xFAD mouse model shows age-related weight loss compared to wildtype controls, and thus may exhibit metabolic dysfunction. This longitudinal study measured age-related weight loss in female 5xFAD and B6SJL/JF2 wild-type mice from 3 to 12 months of age, and examines some of the behavioural and physiological phenotypes in these mice that have been proposed to contribute to this weight loss. Because some mice had to be singly housed during the study, we also examined genotype by housing interactions. The 5xFAD mice weighed less and ate less than WT littermates starting at 6 months of age, exhibited less home cage activity, had higher frailty scores, less white adipose tissue, and lower leptin expression. At 9 and 12 months of age, heavier 5xFAD mice performed better on the rotarod, suggesting that metabolic deficits which begin between 6 and 9 months of age may exacerbate the behavioural deficits in 5xFAD mice. These results indicate that the 5xFAD mouse is a useful model to study the behavioural and metabolic changes in AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Stephanie Pelletier
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Timothy P O'Leary
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Halifax, Nova Scotia, B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada; Departments of Physiology and Biophysics, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
34
|
Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis 2021; 81:871-920. [PMID: 33935078 PMCID: PMC8293659 DOI: 10.3233/jad-201462] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.
Collapse
Affiliation(s)
- Taylor J. Krivanek
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Seth A. Gale
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Brittany M. McFeeley
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Casey M. Nicastri
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Kirk R. Daffner
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| |
Collapse
|
35
|
Abstract
INTRODUCTION The tachykinin family of peptides (substance P, neurokinin A) via the neurokinin-1 (NK-1), NK-2, and NK-3 receptors is involved in many physiological/physiopathological actions. Antagonists of these receptors may be used to treat many human pathologies. AREAS COVERED This review offers an overview (from 2014 to present) of the actions exerted by NK receptor (NK-R) antagonists on emesis, pruritus, cardiomyopathy, respiratory tract diseases, bacterial infection, cancer, ocular pain, corneal neovascularization, excess of body fat/weight, conditioned fear, social isolation stress, hot flush, melanogenesis, follicle development, fish reproduction, and sex-hormone-dependent diseases. EXPERT OPINION From 2014, no invention has been published using NK-2R antagonists. Although the tachykinin/NK receptor system is involved in a great number of mechanisms, to date, the use of only five NK-1R antagonists have been approved in humans but no NK-2R or NK-3R antagonist. NK receptor antagonists are safe in human trials and are potential therapeutic agents, but this potential is currently minimized. In humans, more studies on molecules acting as NK receptor antagonists and exerting a potential therapeutic action must be carried out. The antipruritic or antitumor action of NK-1R antagonists must be explored in greater depth: the highest safe dose and the time of administration (for a long period of time) of these antagonists must be well established.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen Del Rocío University Hospital (IBIS) , Seville, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla Y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca , Salamanca, Spain
| |
Collapse
|
36
|
Lowry CA, Jin AY. Improving the Social Relevance of Experimental Stroke Models: Social Isolation, Social Defeat Stress and Stroke Outcome in Animals and Humans. Front Neurol 2020; 11:427. [PMID: 32477259 PMCID: PMC7240068 DOI: 10.3389/fneur.2020.00427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
The outcome of ischemic stroke varies across socioeconomic strata, even among countries with universal health care. Emerging evidence suggests that psychosocial aspects of low socioeconomic status such as social isolation and social defeat stress interact with, and contribute to, stroke pathophysiology. However, experimental investigations of stroke rarely account for such socioeconomic influences. Social isolation in stroke survivors is associated with increased infarction volume, increased risk of post-stroke depression, and worse long-term functional outcome. Social defeat is thought to contribute significantly to chronic stress in low socioeconomic status groups and is associated with poor health outcomes. Chronic stress is also associated with worse post-stroke functional outcome and greater disability even after accounting for stroke severity, vascular risk factors, and access to acute stroke care. Experimental stroke studies which incorporate social isolation or social defeat stress have shown that both tissue and functional stroke outcome is affected by the increased expression of TNF-α and IL-6, increased glucocorticoid production, and suppression of the protooncogene bcl-2. This review explores the consequences of social isolation and social defeat stress on stroke, preclinical stroke models that have been used to investigate these factors, and possible molecular mechanisms underlying the influence of socioeconomic disparities on stroke outcome.
Collapse
Affiliation(s)
- Chloe A Lowry
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Albert Y Jin
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
37
|
Liang F, Yang S, Zhang Y, Hao T. Social housing promotes cognitive function through enhancing synaptic plasticity in APP/PS1 mice. Behav Brain Res 2020; 368:111910. [PMID: 31034995 DOI: 10.1016/j.bbr.2019.111910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that loneliness increases the risk of AD (Alzheimer's disease) onset, while active and frequent social housing delays the onset of cognitive impairment. The mechanism of how this occurs remains unclear. In this study, we investigated how social interaction affected cognitive function and AD pathology in APP/PS1 (amyloid precursor protein/presenilin-1) mice. APP/PS1 mice were divided into either a social isolation (SI) group, a social contact with one mouse (SCO) group, or a social contact with five mice (SCF) group. Our results demonstrated that social housing improved the behavioral performance of APP/PS1 mice in Morris Water Maze testing, without significantly altering the rates of amyloid plaque deposition or amyloidogenic APP processes. Furthermore, the synaptic function, dendritic spine density, and complexity of neuronal network were notably increased in the SCF group, as compared to the SI and SCO groups. Additional protein and mRNA analyses of isolated astrocyte and microglia revealed that several glial genes related to regulation and anti-inflammatory progression were significantly upregulated, while pro-inflammatory markers were decreased. These findings highlight the important role of quality social communication (five mice not one mice) on maintaining neuronal function during AD pathogenesis and provide evidence to place great emphasis of family care of AD patients.
Collapse
Affiliation(s)
- Feiyu Liang
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shen Yang
- Departments of Neurology, Tai'an City Central Hospital, Tai'an, Shandong, 271000, China
| | - Yang Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tianpao Hao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
38
|
Muntsant A, Giménez-Llort L. Impact of Social Isolation on the Behavioral, Functional Profiles, and Hippocampal Atrophy Asymmetry in Dementia in Times of Coronavirus Pandemic (COVID-19): A Translational Neuroscience Approach. Front Psychiatry 2020; 11:572583. [PMID: 33329110 PMCID: PMC7732415 DOI: 10.3389/fpsyt.2020.572583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
The impact of COVID-19 on the elderly is devastating, and nursing homes are struggling to provide the best care to the most fragile. The urgency and severity of the pandemic forces the use of segregation in restricted areas and confinement in individual rooms as desperate strategies to avoid the spread of disease and the worst-case scenario of becoming a deadly trap. The conceptualization of the post-COVID-19 era implies strong efforts to redesign all living conditions, care/rehabilitation interventions, and management of loneliness forced by social distance measures. Recently, a study of gender differences in COVID-19 found that men are more likely to suffer more severe effects of the disease and are over twice as likely to die. It is well-known that dementia is associated with increased mortality, and males have worse survival and deranged neuro-immuno-endocrine systems than females. The present study examines the impact of long-term isolation in male 3xTg-AD mice modeling advanced stages of Alzheimer's disease (AD) and as compared to age-matched counterparts with normal aging. We used a battery of ethological and unconditioned tests resembling several areas in nursing homes. The main findings refer to an exacerbated (two-fold increase) hyperactivity and emergence of bizarre behaviors in isolated 3xTg-AD mice, worrisome results since agitation is a challenge in the clinical management of dementia and an important cause of caregiver burden. This increase was consistently shown in gross (activity in most of the tests) and fine (thermoregulatory nesting) motor functions. Isolated animals also exhibited re-structured anxiety-like patterns and coping-with-stress strategies. Bodyweight and kidney weight loss were found in AD-phenotypes and increased by isolation. Spleen weight loss was isolation dependent. Hippocampal tau pathology was not modified, but asymmetric atrophy of the hippocampus, recently described in human patients with dementia and modeled here for the first time in an animal model of AD, was found to increase with isolation. Overall, the results show awareness of the impact of isolation in elderly patients with dementia, offering some guidance from translational neuroscience in these times of coronavirus and post-COVID-19 pandemic. They also highlight the relevance of personalized-based interventions tailored to the heterogeneous and complex clinical profile of the individuals with dementia and to consider the implications on caregiver burden.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Somalwar AR, Choudhary AG, Balasubramanian N, Sakharkar AJ, Subhedar NK, Kokare DM. Cocaine- and amphetamine-regulated transcript peptide promotes reward seeking behavior in socially isolated rats. Brain Res 2019; 1728:146595. [PMID: 31830460 DOI: 10.1016/j.brainres.2019.146595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Reward deficit, expressed as anhedonia, is one of the major symptoms associated with neuropsychiatric disorders, but the underlying maladaptations have not been understood. Herein, we test the hypothesis that the neuropeptide cocaine- and amphetamine-regulated transcript (CART) may participate in the process. The study is justified since the peptide is a major player in inducing satiety and also processing of reward. The rats were socially isolated to induce reward deficit and conditioned to self-stimulate via an electrode in lateral hypothalamus (LH)-medial forebrain bundle (MFB) region. Compared to group-housed control rats, the socially isolated animals showed decreased lever press activity and elevated ICSS threshold indicating anhedonia-like condition. However, the effects of social isolation were alleviated by CART administered via intracerebroventricular route. The changes in the expression of CART protein and mRNA were screened using immunofluorescence and qRT-PCR methods, respectively. Socially isolated rats showed reduction in the expression of CART in the LH, nucleus accumbens shell (AcbSh) and posterior ventral tegmental area (pVTA) and CART mRNA in the Acb and LH. Double immunostaining with antibodies against CART and synaptophysin revealed significant loss of colabeled elements in LH, AcbSh and pVTA. We suggest that down-regulation of endogenous CARTergic system in the LH-pVTA-AcbSh reward circuitry may be causal to motivational anhedonia like phenotype seen in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Amita R Somalwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | | | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
| |
Collapse
|
40
|
Gendron CM, Chakraborty TS, Chung BY, Harvanek ZM, Holme KJ, Johnson JC, Lyu Y, Munneke AS, Pletcher SD. Neuronal Mechanisms that Drive Organismal Aging Through the Lens of Perception. Annu Rev Physiol 2019; 82:227-249. [PMID: 31635526 DOI: 10.1146/annurev-physiol-021119-034440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sensory neurons provide organisms with data about the world in which they live, for the purpose of successfully exploiting their environment. The consequences of sensory perception are not simply limited to decision-making behaviors; evidence suggests that sensory perception directly influences physiology and aging, a phenomenon that has been observed in animals across taxa. Therefore, understanding the neural mechanisms by which sensory input influences aging may uncover novel therapeutic targets for aging-related physiologies. In this review, we examine different perceptive experiences that have been most clearly linked to aging or age-related disease: food perception, social perception, time perception, and threat perception. For each, the sensory cues, receptors, and/or pathways that influence aging as well as the individual or groups of neurons involved, if known, are discussed. We conclude with general thoughts about the potential impact of this line of research on human health and aging.
Collapse
Affiliation(s)
- Christi M Gendron
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Tuhin S Chakraborty
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Zachary M Harvanek
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Kristina J Holme
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jacob C Johnson
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Yang Lyu
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Allyson S Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
41
|
Frame AK, Lone A, Harris RA, Cumming RC. Simple Protocol for Distinguishing Drug-induced Effects on Spatial Memory Acquisition, Consolidation and Retrieval in Mice Using the Morris Water Maze. Bio Protoc 2019; 9:e3376. [PMID: 33654872 DOI: 10.21769/bioprotoc.3376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/02/2022] Open
Abstract
The Morris water maze (MWM) is one of the most commonly used tests for assessing spatial learning and memory in mice. While the MWM is highly amenable to testing the effects of memory modifying drugs, most studies do not consider the timing or duration of drug exposure when conducting the MWM assay; factors that can strongly influence the effect of the drug on different stages of memory and interfere with data interpretation. Herein we describe a MWM protocol which offers the advantage of distinguishing the impact of a fast acting intraperitoneally (IP) injected drug on the different stages of spatial memory: acquisition, consolidation, and retrieval. Mice initially undergo habituation to both the MWM apparatus and IP injection procedure over the course of three days. For assessing the effect of a drug on memory acquisition, mice are injected with the drug prior to training sessions over four consecutive days, where mice learn to find an escape platform in a circular water tank using distal spatial cues. To determine the effect of the drug on memory consolidation, mice are injected with the drug immediately after each training session. For testing the effect of a drug on memory retrieval, mice receive mock IP injections on each training day and the drug is IP injected only once, prior to a probe trial, where mice attempt to locate the platform following its removal from the tank. This protocol provides a simple strategy for distinguishing the effect(s) of a CNS acting drug on the different stages of memory.
Collapse
Affiliation(s)
- Ariel K Frame
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Asad Lone
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Richard A Harris
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Robert C Cumming
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
42
|
Ali AA, Ahmed HI, Khaleel SA, Abu-Elfotuh K. Vinpocetine mitigates aluminum-induced cognitive impairment in socially isolated rats. Physiol Behav 2019; 208:112571. [PMID: 31175888 DOI: 10.1016/j.physbeh.2019.112571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 05/11/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Several reports have highlighted the role of vinpocetine in Alzheimer's disease (AD). However, the role of vinpocetine in AD under social isolation conditions has not yet been elucidated. Henceforth, this study aimed to investigate the potential neuroprotective effect of vinpocetine in aluminum-induced AD model associated with social isolation. Social isolation increased the escape latency in Morris water maze (MWM) test, elevated the immobility score and decreased swimming score in forced swimming test (FST) in aluminum treated rats. However, vinpocetine enhanced acquisition in MWM test and exerted anti-depressive effect in FST. The histopathological examination showed marked deterioration in the cerebral cortex and hippocampus of AD isolated rats, while vinpocetine revealed overt improvement. In addition, the levels of amyloid-β protein (Aβ), phosphorylated-tau (Ser396), malondialdehyde (MDA), interleukin 1-beta (IL-1β), tumor necrosis alpha (TNFα), p- Glycogen synthase kinase-3β (p-GSK3β) (Tyr216), and β-secretase (BACE1) gene expression were increased in socially isolated aluminum treated rats, yet, vinpocetine treatment reversed these deteriorating effects. Hence, this study provides profound insights into the role of vinpocetine in AD particularly in the conditions of social isolation. The effects of vinpocetine might be attributed not only to its antioxidant and anti-inflammatory properties, but also to its suppressing effect on GSK3β activity and its downstream BACE1.
Collapse
Affiliation(s)
- Azza A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hebatalla I Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University for sustainable development, Cairo, Egypt
| | - Sahar A Khaleel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Karema Abu-Elfotuh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
43
|
Zou W, Pu T, Feng W, Lu M, Zheng Y, Du R, Xiao M, Hu G. Blocking meningeal lymphatic drainage aggravates Parkinson's disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener 2019; 8:7. [PMID: 30867902 PMCID: PMC6396507 DOI: 10.1186/s40035-019-0147-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
Background Abnormal aggregation of brain α-synuclein is a central step in the pathogenesis of Parkinson’s disease (PD), thus, it is reliable to promote the clearance of α-synuclein to prevent and treat PD. Recent studies have revealed an essential role of glymphatic system and meningeal lymphatic vessels in the clearance of brain macromolecules, however, their pathophysiological aspects remain elusive. Method Meningeal lymphatic drainage of 18-week-old A53T mice was blocked via ligating the deep cervical lymph nodes. Six weeks later, glymphatic functions and PD-like phenotypes were systemically analyzed. Results Glymphatic influx of cerebrospinal fluid tracer was reduced in A53T mice, accompanied with perivascular aggregation of α-synuclein and impaired polarization of aquaporin 4 expression in substantia nigra. Cervical lymphatic ligation aggravated glymphatic dysfunction of A53T mice, causing more severe accumulation of α-synuclein, glial activation, inflammation, dopaminergic neuronal loss and motor deficits. Conclusion The results suggest that brain lymphatic clearance dysfunction may be an aggravating factor in PD pathology. Electronic supplementary material The online version of this article (10.1186/s40035-019-0147-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyan Zou
- 1Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023 Jiangsu China
| | - Tinglin Pu
- 2Jiangsu Key Laboratory of Neurodegeneratiion, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 Jiangsu China
| | - Weixi Feng
- 2Jiangsu Key Laboratory of Neurodegeneratiion, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 Jiangsu China
| | - Ming Lu
- 2Jiangsu Key Laboratory of Neurodegeneratiion, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 Jiangsu China
| | - Ying Zheng
- 2Jiangsu Key Laboratory of Neurodegeneratiion, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 Jiangsu China
| | - Renhong Du
- 2Jiangsu Key Laboratory of Neurodegeneratiion, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 Jiangsu China
| | - Ming Xiao
- 2Jiangsu Key Laboratory of Neurodegeneratiion, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 Jiangsu China
| | - Gang Hu
- 1Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023 Jiangsu China.,2Jiangsu Key Laboratory of Neurodegeneratiion, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 Jiangsu China
| |
Collapse
|
44
|
Pu T, Zou W, Feng W, Zhang Y, Wang L, Wang H, Xiao M. Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage. Exp Neurobiol 2019; 28:104-118. [PMID: 30853828 PMCID: PMC6401547 DOI: 10.5607/en.2019.28.1.104] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event that often is followed by permanent brain impairments. It is necessary to explore the pathogenesis of secondary pathological damages in order to find effective interventions for improving the prognosis of SAH. Blockage of brain lymphatic drainage has been shown to worsen cerebral ischemia and edema after acute SAH. However, whether or not there is persistent dysfunction of cerebral lymphatic drainage following SAH remains unclear. In this study, autologous blood was injected into the cisterna magna of mice to establish SAH model. One week after surgery, SAH mice showed decreases in fluorescent tracer drainage to the deep cervical lymph nodes (dcLNs) and influx into the brain parenchyma after injection into the cisterna magna. Moreover, SAH impaired polarization of astrocyte aquaporin-4 (AQP4) that is a functional marker of glymphatic clearance and resulted in accumulations of Tau proteins as well as CD3+, CD4+, and CD8+ cells in the brain. In addition, pathological changes, including microvascular spasm, activation of glial cells, neuroinflammation, and neuronal apoptosis were observed in the hippocampus of SAH mice. Present results demonstrate persistent malfunction of glymphatic and meningeal lymphatic drainage and related neuropathological damages after SAH. Targeting improvement of brain lymphatic clearance potentially serves as a new strategy for the treatment of SAH.
Collapse
Affiliation(s)
- Tinglin Pu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Wenyan Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Linmei Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Hongxing Wang
- Deptment of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
45
|
Pereda-Pérez I, Valencia A, Baliyan S, Núñez Á, Sanz-García A, Zamora B, Rodríguez-Fernández R, Esteban JA, Venero C. Systemic administration of a fibroblast growth factor receptor 1 agonist rescues the cognitive deficit in aged socially isolated rats. Neurobiol Aging 2019; 78:155-165. [PMID: 30928883 DOI: 10.1016/j.neurobiolaging.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 01/22/2019] [Accepted: 02/09/2019] [Indexed: 11/20/2022]
Abstract
Social isolation predominantly occurs in elderly people and it is strongly associated with cognitive decline. However, the mechanisms that produce isolation-related cognitive dysfunction during aging remain unclear. Here, we evaluated the cognitive, electrophysiological, and morphological effects of short- (4 weeks) and long-term (12 weeks) social isolation in aged male Wistar rats. Long-term but not short-term social isolation increased the plasma corticosterone levels and impaired spatial memory in the Morris water maze. Moreover, isolated animals displayed dampened hippocampal long-term potentiation in vivo, both in the dentate gyrus (DG) and CA1, as well as a specific reduction in the volume of the stratum oriens and spine density in CA1. Interestingly, social isolation induced a transient increase in hippocampal basic fibroblast growth factor (FGF2), whereas fibroblast growth factor receptor 1 (FGFR1) levels only increased after long-term isolation. Importantly, subchronic systemic administration of FGL, a synthetic peptide that activates FGFR1, rescued spatial memory in long-term isolated rats. These findings provide new insights into the neurobiological mechanisms underlying the detrimental effects on memory of chronic social isolation in the aged.
Collapse
Affiliation(s)
- Inmaculada Pereda-Pérez
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Madrid, Spain
| | - Azucena Valencia
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Shishir Baliyan
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ángel Núñez
- School of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Ancor Sanz-García
- Unidad de Análisis de datos, Instituto de Investigación Sanitaria Hospital de la Princesa, Madrid, Spain
| | - Berta Zamora
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Fetal Medicine Unit-SAMID, Department of Obstetrics and Gynecology, Hospital Universitario, Madrid, Spain
| | - Raquel Rodríguez-Fernández
- Department of Behavioural Sciences Methodology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - José Antonio Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC) / Universidad Autónoma de Madrid, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| |
Collapse
|
46
|
Pu T, Zou W, Feng W, Zhang Y, Wang L, Wang H, Xiao M. Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage. Exp Neurobiol 2019; 28:104-118. [PMID: 30853828 PMCID: PMC6401547 DOI: 10.5607/en.2019.28.1.104;17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event that often is followed by permanent brain impairments. It is necessary to explore the pathogenesis of secondary pathological damages in order to find effective interventions for improving the prognosis of SAH. Blockage of brain lymphatic drainage has been shown to worsen cerebral ischemia and edema after acute SAH. However, whether or not there is persistent dysfunction of cerebral lymphatic drainage following SAH remains unclear. In this study, autologous blood was injected into the cisterna magna of mice to establish SAH model. One week after surgery, SAH mice showed decreases in fluorescent tracer drainage to the deep cervical lymph nodes (dcLNs) and influx into the brain parenchyma after injection into the cisterna magna. Moreover, SAH impaired polarization of astrocyte aquaporin-4 (AQP4) that is a functional marker of glymphatic clearance and resulted in accumulations of Tau proteins as well as CD3+, CD4+, and CD8+ cells in the brain. In addition, pathological changes, including microvascular spasm, activation of glial cells, neuroinflammation, and neuronal apoptosis were observed in the hippocampus of SAH mice. Present results demonstrate persistent malfunction of glymphatic and meningeal lymphatic drainage and related neuropathological damages after SAH. Targeting improvement of brain lymphatic clearance potentially serves as a new strategy for the treatment of SAH.
Collapse
Affiliation(s)
- Tinglin Pu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Wenyan Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Linmei Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Hongxing Wang
- Deptment of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
47
|
Abstract
Population-based clinic-pathological studies have established that the most common pathological substrate of dementia in community-dwelling elderly people is mixed, especially Alzheimer's disease (AD) and cerebrovascular ischemic disease (CVID), rather than pure AD. While these could be just two frequent unrelated comorbidities in the elderly, epidemiological research has reinforced the idea that mid-life (age <65 years) vascular risk factors increase the risk of late-onset (age ≥ 65 years) dementia, and specifically AD. By contrast, healthy lifestyle choices such as leisure activities, physical exercise, and Mediterranean diet are considered protective against AD. Remarkably, several large population-based longitudinal epidemiological studies have recently indicated that the incidence and prevalence of dementia might be decreasing in Western countries. Although it remains unclear whether these positive trends are attributable to neuropathologically definite AD versus CVID, based on these epidemiological data it has been estimated that a sizable proportion of AD cases could be preventable. In this review, we discuss the current evidence about modifiable risk factors for AD derived from epidemiological, preclinical, and interventional studies, and analyze the opportunities for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John H. Growdon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Cao X, Xu H, Feng W, Su D, Xiao M. Deletion of aquaporin-4 aggravates brain pathology after blocking of the meningeal lymphatic drainage. Brain Res Bull 2018; 143:83-96. [PMID: 30347264 DOI: 10.1016/j.brainresbull.2018.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023]
Abstract
The glymphatic pathway and meningeal lymphatic vessels are involved in clearance of metabolic macromolecules from the brain. However, the functional interaction between the two systems in the maintenance of brain homeostasis remains unclear. Here we reported that deletion of aquaporin-4 (AQP4), a functional regulator of glymphatic clearance, aggravated brain pathology of 3 month-old mice after blocking of the meningeal lymphatic drainage for 2 weeks via ligation of the deep cervical lymphatic nodes (LdcLNs). LdcLNs increased total and phosphorylated Tau protein levels in the hippocampus of both genotype mice, but increased hippocampal amyloid beta 1-40 and 1-42 levels only in AQP4 null mice, with up-regulation of beta-site amyloid precursor protein-cleaving enzyme 1 and down-regulation of insulin degrading enzyme. Consistently, LdcLNs caused microglial reactivity and activation of nod-like receptor protein-3 inflammasomes in the AQP4 null hippocampus. These mice also showed hippocampal neuronal apoptosis and declines in exploring and cognitive abilities. Deletion of AQP4, but not LdcLNs, increased brain water content. Together, these findings have revealed respective and interactive roles of the glymphatic system and the dural lymphatic system in maintaining amyloid beta, Tau proteins and water homeostasis in the brain, helping to understand the pathogenesis of neurological diseases associated with mis-accumulation of brain macromolecules.
Collapse
Affiliation(s)
- Xuejin Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China
| | - Hanrong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China
| | - Dongyuan Su
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
49
|
Wang L, Zhang Y, Zhao Y, Marshall C, Wu T, Xiao M. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol 2018; 29:176-192. [PMID: 30192999 DOI: 10.1111/bpa.12656] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
The imbalance between production and clearance of amyloid-beta (Aβ) is a key step in the onset and development of Alzheimer's disease (AD). Therefore, reducing Aβ accumulation in the brain is a promising therapeutic strategy for AD. The recently discovered glymphatic system and meningeal lymphatic vasculature have been shown to be critical for the elimination of interstitial waste products, especially Aβ, from the brain. In the present study, ligation of deep cervical lymph nodes was performed to block drainage of this system and explore the consequences on Aβ-related pathophysiology. Five-month-old APP/PS1 mice and their wild-type littermates received deep cervical lymphatic node ligation. One month later, behavioral testing and pathological analysis were conducted. Results demonstrated that ligation of dcLNs exacerbated AD-like phenotypes of APP/PS1 mice, showing more severe brain Aβ accumulation, neuroinflammation, synaptic protein loss, impaired polarization of aquaporin-4 and deficits in cognitive and exploratory behaviors. These results suggest that brain lymphatic clearance malfunction is one of the deteriorating factors in the progression of AD, and restoring its function is a potential therapeutic target against AD.
Collapse
Affiliation(s)
- Linmei Wang
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanli Zhang
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Zhao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY
| | - Ting Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Wang L, Cao M, Pu T, Huang H, Marshall C, Xiao M. Enriched Physical Environment Attenuates Spatial and Social Memory Impairments of Aged Socially Isolated Mice. Int J Neuropsychopharmacol 2018; 21:1114-1127. [PMID: 30247630 PMCID: PMC6276026 DOI: 10.1093/ijnp/pyy084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Social isolation in the elderly is one of the principal health risks in an aging society. Physical environmental enrichment is shown to improve sensory, cognitive, and motor functions, but it is unknown whether environmental enrichment can protect against brain impairments caused by social isolation. METHODS Eighteen-month-old mice were housed, either grouped or isolated, in a standard or enriched environment for 2 months, respectively. Behavioral tests were performed to evaluate cognitive functional and social interaction ability. Synaptic protein levels, myelination, neuroinflammation, brain derived neurotrophic factor, and NOD-like receptor protein 3 inflammasome signaling pathways were examined in the medial prefrontal cortex and hippocampus. RESULTS Isolated aged mice exhibited declines in spatial memory and social memory compared with age-matched littermates living within group housing. The aforementioned memory malfunctions were mitigated in isolated aged mice that were housed in a large cage with a running wheel and novel toys. Enriched housing prevented synaptic protein loss, myelination defects, and downregulation of brain derived neurotrophic factor, while also increasing interleukin 1 beta and tumor necrosis factor alpha in the medial prefrontal cortex and hippocampus of isolated mice. In addition, activation of glial cells and NOD-like receptor protein 3 inflammasomes was partially ameliorated in the hippocampus of isolated mice treated with physical environmental enrichment. CONCLUSIONS These results suggest that an enriched physical environment program may serve as a nonpharmacological intervention candidate to help maintain healthy brain function of elderly people living alone.
Collapse
Affiliation(s)
- Linmei Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Cao
- Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tinglin Pu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huang Huang
- Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, Kentucky
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China,Correspondence: Ming Xiao, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China ()
| |
Collapse
|