1
|
Madali‐Kafes B, Parlak‐Yetisen L, Dikmen D. Exploring the anti-inflammatory effects of microencapsulated probiotic bacteria: in vivo and in vitro evaluation in healthy mouse models. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3753-3759. [PMID: 39888060 PMCID: PMC11990045 DOI: 10.1002/jsfa.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Encapsulation technology has been extensively employed in recent years to enhance the efficacy and efficiency of probiotics. Nevertheless, existing studies have primarily concentrated on product efficacy, with inadequate scrutiny concerning potential effects on living organisms. This study aimed to evaluate the effects of various encapsulated probiotic strains on inflammatory responses in healthy mice, alongside their in vitro viability. Nissle (EcN) and Lactobacillus rhamnosus GG (LGG) were microencapsulated for the study. RESULTS The differences in serum levels of Total Oxidant Status, Total Antioxidant Status, and C-reactive protein among the groups were statistically significant (LGG, P = 0.039, P = 0.024, and P < 0.001; EcN, P = 0.019, P = 0.012, and P = 0.037, respectively). The highest levels were found in the control group, while the lowest levels were observed in the microencapsulated group. There were no significant differences in tissue tumor necrosis factor or interleukin-6 levels for either LGG or EcN. CONCLUSION Probiotics reduced inflammation-related parameters in serum of healthy mice. Microencapsulation preserved viability in vitro, but in vivo no significant differences were observed in anti-inflammatory parameters or body weight between microencapsulated and free probiotics. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Berna Madali‐Kafes
- Department of Nutrition and DieteticsNecmettin Erbakan UniversityKonyaTurkey
| | | | - Derya Dikmen
- Department of Nutrition and DieteticsHacettepe UniversityAnkaraTurkey
| |
Collapse
|
2
|
Bonomo MG, D’Angelo S, Picerno V, Carriero A, Salzano G. Recent Advances in Gut Microbiota in Psoriatic Arthritis. Nutrients 2025; 17:1323. [PMID: 40284188 PMCID: PMC12030176 DOI: 10.3390/nu17081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by joint inflammation and skin lesions. Recent research has underscored the critical role of gut microbiota-comprising bacteria, fungi, viruses, and archaea-in the pathogenesis and progression of PsA. This narrative review synthesizes the latest findings on the influence of gut microbiota on PsA, focusing on mechanisms such as immune modulation, microbial dysbiosis, the gut-joint axis, and its impact on treatment. Advances in high-throughput sequencing and metagenomics have revealed distinct microbial profiles associated with PsA. Studies show that individuals with PsA have a unique gut microbiota composition, differing significantly from healthy controls. Alterations in the abundance of specific bacterial taxa, including a decrease in beneficial bacteria and an increase in potentially pathogenic microbes, contribute to systemic inflammation by affecting the intestinal barrier and promoting immune responses. This review explores the impact of various factors on gut microbiota composition, including age, hygiene, comorbidities, and medication use. Additionally, it highlights the role of diet, probiotics, and fecal microbiota transplantation as promising strategies to modulate gut microbiota and alleviate PsA symptoms. The gut-skin-joint axis concept illustrates how gut microbiota influences not only gastrointestinal health but also skin and joint inflammation. Understanding the complex interplay between gut microbiota and PsA could lead to novel, microbiome-based therapeutic approaches. These insights offer hope for improved patient outcomes through targeted manipulation of the gut microbiota, enhancing both diagnosis and treatment strategies for PsA.
Collapse
Affiliation(s)
- Maria Grazia Bonomo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| | - Salvatore D’Angelo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Valentina Picerno
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Antonio Carriero
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Giovanni Salzano
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| |
Collapse
|
3
|
Yu W, Xiao Y, Jayaraman A, Yen YC, Lee HU, Pettersson S, Je HS. Microbial metabolites tune amygdala neuronal hyperexcitability and anxiety-linked behaviors. EMBO Mol Med 2025; 17:249-264. [PMID: 39910348 PMCID: PMC11821874 DOI: 10.1038/s44321-024-00179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 02/07/2025] Open
Abstract
Changes in gut microbiota composition have been linked to anxiety behavior in rodents. However, the underlying neural circuitry linking microbiota and their metabolites to anxiety behavior remains unknown. Using male C57BL/6J germ-free (GF) mice, not exposed to live microbes, increased anxiety-related behavior was observed correlating with a significant increase in the immediate early c-Fos gene in the basolateral amygdala (BLA). This phenomenon coincided with increased intrinsic excitability and spontaneous synaptic activity of BLA pyramidal neurons associated with reduced small conductance calcium-activated potassium (SK) channel currents. Importantly, colonizing GF mice to live microbes or the microbial-derived metabolite indoles reverted SK channel activities in BLA pyramidal neurons and reduced the anxiety behavioral phenotype. These results are consistent with a molecular mechanism by which microbes and or microbial-derived indoles, regulate functional changes in the BLA neurons. Moreover, this microbe metabolite regulation of anxiety links these results to ancient evolutionarily conserved defense mechanisms associated with anxiety-related behaviors in mammals.
Collapse
Affiliation(s)
- Weonjin Yu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yixin Xiao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Anusha Jayaraman
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yi-Chun Yen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hae Ung Lee
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Karolinska Institutet, Department of Dental Medicine, Stockholm, Sweden.
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia.
- Department of Microbiology and Immunology, National University, Singapore, Singapore.
| | - H Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
4
|
Li X, Ding Q, Wan X, Wu Q, Ye S, Lou Y. Fecal microbiota transplantation attenuates Alzheimer's disease symptoms in APP/PS1 transgenic mice via inhibition of the TLR4-MyD88-NF-κB signaling pathway-mediated inflammation. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:2. [PMID: 39780269 PMCID: PMC11715513 DOI: 10.1186/s12993-024-00265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is a prevalent and progressive neurodegenerative disorder that is the leading cause of dementia. The underlying mechanisms of AD have not yet been completely explored. Neuroinflammation, an inflammatory response mediated by certain mediators, has been exhibited to play a crucial role in the pathogenesis of AD. Additionally, disruption of the gut microbiota has been found to be associated with AD, and fecal microbiota transplantation (FMT) has emerged as a potential therapeutic approach. However, the precise mechanism of FMT in the treatment of AD remains elusive. In this study, FMT was performed by transplanting fecal microbiota from healthy wild-type mice into APP/PS1 mice (APPswe, PSEN1dE9) to assess the effectiveness of FMT in mitigating AD-associated inflammation and to reveal its precise mechanism of action. The results demonstrated that FMT treatment improved cognitive function and reduced the expression levels of inflammatory factors by regulating the TLR4/MyD88/NF-κB signaling pathway in mice, which was accompanied by the restoration of gut microbial dysbiosis. These findings suggest that FMT has the potential to ameliorate AD symptoms and delay the disease progression in APP/PS1 mice.
Collapse
Affiliation(s)
- Xiang Li
- Wenzhou Key Laboratory of Sanitary Microbiology; School of Laboratory Medicine and Life Sciences; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- One Health Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Qingyong Ding
- Wenzhou Key Laboratory of Sanitary Microbiology; School of Laboratory Medicine and Life Sciences; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- One Health Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Testing Center of the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Xinxin Wan
- Wenzhou Key Laboratory of Sanitary Microbiology; School of Laboratory Medicine and Life Sciences; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- One Health Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qilong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology; School of Laboratory Medicine and Life Sciences; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- One Health Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shiqing Ye
- Wenzhou Key Laboratory of Sanitary Microbiology; School of Laboratory Medicine and Life Sciences; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- One Health Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology; School of Laboratory Medicine and Life Sciences; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- One Health Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Merino del Portillo M, Clemente-Suárez VJ, Ruisoto P, Jimenez M, Ramos-Campo DJ, Beltran-Velasco AI, Martínez-Guardado I, Rubio-Zarapuz A, Navarro-Jiménez E, Tornero-Aguilera JF. Nutritional Modulation of the Gut-Brain Axis: A Comprehensive Review of Dietary Interventions in Depression and Anxiety Management. Metabolites 2024; 14:549. [PMID: 39452930 PMCID: PMC11509786 DOI: 10.3390/metabo14100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Mental health is an increasing topic of focus since more than 500 million people in the world suffer from depression and anxiety. In this multifactorial disorder, parameters such as inflammation, the state of the microbiota and, therefore, the patient's nutrition are receiving more attention. In addition, food products are the source of many essential ingredients involved in the regulation of mental processes, including amino acids, neurotransmitters, vitamins, and others. For this reason, this narrative review was carried out with the aim of analyzing the role of nutrition in depression and anxiety disorders. To reach the review aim, a critical review was conducted utilizing both primary sources, such as scientific publications and secondary sources, such as bibliographic indexes, web pages, and databases. The search was conducted in PsychINFO, MedLine (Pubmed), Cochrane (Wiley), Embase, and CinAhl. The results show a direct relationship between what we eat and the state of our nervous system. The gut-brain axis is a complex system in which the intestinal microbiota communicates directly with our nervous system and provides it with neurotransmitters for its proper functioning. An imbalance in our microbiota due to poor nutrition will cause an inflammatory response that, if sustained over time and together with other factors, can lead to disorders such as anxiety and depression. Changes in the functions of the microbiota-gut-brain axis have been linked to several mental disorders. It is believed that the modulation of the microbiome composition may be an effective strategy for a new treatment of these disorders. Modifications in nutritional behaviors and the use of ergogenic components are presented as important non-pharmacological interventions in anxiety and depression prevention and treatment. It is desirable that the choice of nutritional and probiotic treatment in individual patients be based on the results of appropriate biochemical and microbiological tests.
Collapse
Affiliation(s)
- Mariana Merino del Portillo
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Pamplona, Spain;
| | - Manuel Jimenez
- Departamento de Didáctica de la Educación Física y Salud, Universidad Internacional de La Rioja, 26006 Logroño, Spain;
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Ana Isabel Beltran-Velasco
- Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, 28240 Madrid, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | | | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| |
Collapse
|
6
|
Crocetta A, Liloia D, Costa T, Duca S, Cauda F, Manuello J. From gut to brain: unveiling probiotic effects through a neuroimaging perspective-A systematic review of randomized controlled trials. Front Nutr 2024; 11:1446854. [PMID: 39360283 PMCID: PMC11444994 DOI: 10.3389/fnut.2024.1446854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The gut-brain axis, a bidirectional communication network between the gastrointestinal system and the brain, significantly influences mental health and behavior. Probiotics, live microorganisms conferring health benefits, have garnered attention for their potential to modulate this axis. However, their effects on brain function through gut microbiota modulation remain controversial. This systematic review examines the effects of probiotics on brain activity and functioning, focusing on randomized controlled trials using both resting-state and task-based functional magnetic resonance imaging (fMRI) methodologies. Studies investigating probiotic effects on brain activity in healthy individuals and clinical populations (i.e., major depressive disorder and irritable bowel syndrome) were identified. In healthy individuals, task-based fMRI studies indicated that probiotics modulate brain activity related to emotional regulation and cognitive processing, particularly in high-order areas such as the amygdala, precuneus, and orbitofrontal cortex. Resting-state fMRI studies revealed changes in connectivity patterns, such as increased activation in the Salience Network and reduced activity in the Default Mode Network. In clinical populations, task-based fMRI studies showed that probiotics could normalize brain function in patients with major depressive disorder and irritable bowel syndrome. Resting-state fMRI studies further suggested improved connectivity in mood-regulating networks, specifically in the subcallosal cortex, amygdala and hippocampus. Despite promising findings, methodological variability and limited sample sizes emphasize the need for rigorous, longitudinal research to clarify the beneficial effects of probiotics on the gut-brain axis and mental health.
Collapse
Affiliation(s)
- Annachiara Crocetta
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Sergio Duca
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Jordi Manuello
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Move’N’Brains Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Pereira LTG, Vilela WR, Bellozi PMQ, Engel DF, de Paula GC, de Andrade RR, Mortari MR, de Melo Teixeira M, Coleine C, Figueiredo CP, de Bem AF, Amato AA. Fecal microbiota transplantation ameliorates high-fat diet-induced memory impairment in mice. J Neurochem 2024; 168:2893-2907. [PMID: 38934224 DOI: 10.1111/jnc.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Gut dysbiosis is linked to metabolic and neurodegenerative diseases and comprises a plausible link between high-fat diet (HFD) and brain dysfunction. Here we show that gut microbiota modulation by either antibiotic treatment for 5 weeks or a brief 3-day fecal microbiota transplantation (FMT) regimen from low-fat (control) diet-fed mice decreased weight gain, adipose tissue hypertrophy, and glucose intolerance induced by HFD in C57BL/6 male mice. Notably, gut microbiota modulation by FMT completely reversed impaired recognition memory induced by HFD, whereas modulation by antibiotics had less pronounced effect. Improvement in recognition memory by FMT was accompanied by decreased HFD-induced astrogliosis in the hippocampal cornu ammonis region. Gut microbiome composition analysis indicated that HFD diminished microbiota diversity compared to control diet, whereas FMT partially restored the phyla diversity. Our findings reinforce the role of the gut microbiota on HFD-induced cognitive impairment and suggest that modulating the gut microbiota may be an effective strategy to prevent metabolic and cognitive dysfunction associated with unfavorable dietary patterns.
Collapse
Affiliation(s)
| | - Wembley Rodrigues Vilela
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Paula Maria Quaglio Bellozi
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Daiane Fátima Engel
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | | | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | | | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Cláudia Pinto Figueiredo
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
8
|
Sproten R, Nohr D, Guseva D. Nutritional strategies modulating the gut microbiome as a preventative and therapeutic approach in normal and pathological age-related cognitive decline: a systematic review of preclinical and clinical findings. Nutr Neurosci 2024; 27:1042-1057. [PMID: 38165747 DOI: 10.1080/1028415x.2023.2296727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
CONTEXT The proportion of the elderly population is on the rise across the globe, and with it the prevalence of age-related neurodegenerative diseases. The gut microbiota, whose composition is highly regulated by dietary intake, has emerged as an exciting research field in neurology due to its pivotal role in modulating brain functions via the gut-brain axis. OBJECTIVES We aimed at conducting a systematic review of preclinical and clinical studies investigating the effects of dietary interventions on cognitive ageing in conjunction with changes in gut microbiota composition and functionality. METHODS PubMed and Scopus were searched using terms related to ageing, cognition, gut microbiota and dietary interventions. Studies were screened, selected based on previously determined inclusion and exclusion criteria, and evaluated for methodological quality using recommended risk of bias assessment tools. RESULTS A total of 32 studies (18 preclinical and 14 clinical) were selected for inclusion. We found that most of the animal studies showed significant positive intervention effects on cognitive behavior, while outcomes on cognition, microbiome features, and health parameters in humans were less pronounced. The effectiveness of dietary interventions depended markedly on the age, gender, degree of cognitive decline and baseline microbiome composition of participants. CONCLUSION To harness the full potential of microbiome-inspired nutrition for cognitive health, one of the main challenges remains to better understand the interplay between host, his microbiome, dietary exposures, whilst also taking into account environmental influences. Future research should aim toward making use of host-specific microbiome data to guide the development of personalized therapies.
Collapse
Affiliation(s)
- Rieke Sproten
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Donatus Nohr
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Daria Guseva
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| |
Collapse
|
9
|
Pourahmad R, saleki K, Zare Gholinejad M, Aram C, Soltani Farsani A, Banazadeh M, Tafakhori A. Exploring the effect of gut microbiome on Alzheimer's disease. Biochem Biophys Rep 2024; 39:101776. [PMID: 39099604 PMCID: PMC11296257 DOI: 10.1016/j.bbrep.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most widespread and irreversible form of dementia and accounts for more than half of dementia cases. The most significant risk factors for AD are aging-related exacerbations, degradation of anatomical pathways, environmental variables and mitochondrial dysfunction. Finding a decisive therapeutic solution is a major current issue. Nuanced interactions between major neuropathological mechanisms in AD in patients and microbiome have recently gained rising attention. The presence of bacterial amyloid in the gut triggers the immune system, resulting in increased immune feedbacks and endogenous neuronal amyloid within the CNS. Also, early clinical research revealed that changing the microbiome with beneficial bacteria or probiotics could affect brain function in AD. New approaches focus on the possible neuroprotective action of disease-modifying medications in AD. In the present review, we discuss the impact of the gut microbiota on the brain and review emerging research that suggests a disruption in the microbiota-brain axis can affect AD by mediating neuroinflammation. Such novel methods could help the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning in Medical Sciences, Faculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Khaledi M, Sameni F, Gholipour A, Shahrjerdi S, Golmohammadi R, Gouvarchin Ghaleh HE, Poureslamfar B, Hemmati J, Mobarezpour N, Milasi YE, Rad F, Mehboodi M, Owlia P. Potential role of gut microbiota in major depressive disorder: A review. Heliyon 2024; 10:e33157. [PMID: 39027446 PMCID: PMC11254604 DOI: 10.1016/j.heliyon.2024.e33157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Interactions between the gut microbiota and host immunity are sophisticated, dynamic, and host-dependent. Scientists have recently conducted research showing that disturbances in the gut bacterial community can lead to a decrease in some metabolites and, consequently, to behaviors such as depression. Exposure to stressors dropped the relative abundance of bacteria in the genus Bacteroides while soaring the relative abundance of bacteria in the genus Clostridium, Coprococcus, Dialister, and Oscillibacter, which were also reduced in people with depression. Microbiota and innate immunity are in a bilateral relationship. The gut microbiota has been shown to induce the synthesis of antimicrobial proteins such as catalysidins, type C lectins, and defensins. Probiotic bacteria can modulate depressive behavior through GABA signaling. The gut microbiome produces essential metabolites such as neurotransmitters, tryptophan metabolites, and short-chain fatty acids (SCFAs) that can act on the CNS. In the case of dysbiosis, due to mucin changes, the ratio of intestinal-derived molecules may change and contribute to depression. Psychotropics, including Bifidobacterium longum NCC3001, Clostridium butyricum CBM588, and Lactobacillus acidophilus, have mental health benefits, and can have a positive effect on the host-brain relationship, and have antidepressant effects. This article reviews current studies on the association between gut microbiota dysbiosis and depression. Comprehensively, these findings could potentially lead to novel approaches to improving depressive symptoms via gut microbiota alterations, including probiotics, prebiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Abolfazl Gholipour
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahnaz Shahrjerdi
- Department of Physiology and Sports Pathology, Faculty of Sport Sciences, Arak University, Arak, Iran
| | - Reza Golmohammadi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Jaber Hemmati
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Niloofar Mobarezpour
- Reference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Rad
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahtab Mehboodi
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
11
|
Ahrens AP, Hyötyläinen T, Petrone JR, Igelström K, George CD, Garrett TJ, Orešič M, Triplett EW, Ludvigsson J. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 2024; 187:1853-1873.e15. [PMID: 38574728 DOI: 10.1016/j.cell.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.
Collapse
Affiliation(s)
- Angelica P Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - Joseph R Petrone
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Kajsa Igelström
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping 58185, Sweden
| | - Christian D George
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 702 81, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
12
|
Mazzone L, Dooling SW, Volpe E, Uljarević M, Waters JL, Sabatini A, Arturi L, Abate R, Riccioni A, Siracusano M, Pereira M, Engstrand L, Cristofori F, Adduce D, Francavilla R, Costa-Mattioli M, Hardan AY. Precision microbial intervention improves social behavior but not autism severity: A pilot double-blind randomized placebo-controlled trial. Cell Host Microbe 2024; 32:106-116.e6. [PMID: 38113884 DOI: 10.1016/j.chom.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by the presence of restricted/repetitive behaviors and social communication deficits. Because effective treatments for ASD remain elusive, novel therapeutic strategies are necessary. Preclinical studies show that L. reuteri selectively reversed social deficits in several models for ASD. Here, in a double-blind, randomized, placebo-controlled trial, we tested the effect of L. reuteri (a product containing a combination of strains ATCC-PTA-6475 and DSM-17938) in children with ASD. The treatment does not alter overall autism severity, restricted/repetitive behaviors, the microbiome composition, or the immune profile. However, L. reuteri combination yields significant improvements in social functioning that generalized across different measures. Interestingly, ATCC-PTA-6475, but not the parental strain of DSM-17938, reverses the social deficits in a preclinical mouse model for ASD. Collectively, our findings show that L. reuteri enhances social behavior in children with ASD, thereby warranting larger trials in which strain-specific effects should also be investigated.
Collapse
Affiliation(s)
- Luigi Mazzone
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy.
| | - Sean W Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Altos Labs, Inc, Bay Area Institute of Science, Redwood City, CA 94065, USA
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Mirko Uljarević
- Melbourne School of Psychological Sciences, University of Melbourne, Tin Alley, Carlton, Melbourne, VIC 3010, Australia
| | - Jillian L Waters
- Altos Labs, Inc, Bay Area Institute of Science, Redwood City, CA 94065, USA
| | - Andrea Sabatini
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Lucrezia Arturi
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| | - Roberta Abate
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Assia Riccioni
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| | - Martina Siracusano
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| | - Marcela Pereira
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Fernanda Cristofori
- Pediatric Gastroenterology and Hepatology Unit, Department of Interdisciplinary Medicine, Children's Hospital-Giovanni XXIII, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Domenico Adduce
- Pediatric Gastroenterology and Hepatology Unit, Department of Interdisciplinary Medicine, Children's Hospital-Giovanni XXIII, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Ruggiero Francavilla
- Pediatric Gastroenterology and Hepatology Unit, Department of Interdisciplinary Medicine, Children's Hospital-Giovanni XXIII, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Altos Labs, Inc, Bay Area Institute of Science, Redwood City, CA 94065, USA.
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
14
|
Mishra V, Yadav D, Solanki KS, Koul B, Song M. A Review on the Protective Effects of Probiotics against Alzheimer's Disease. BIOLOGY 2023; 13:8. [PMID: 38248439 PMCID: PMC10813289 DOI: 10.3390/biology13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
This review summarizes the protective effects of probiotics against Alzheimer's disease (AD), one of the most common neurodegenerative disorders affecting older adults. This disease is characterized by the deposition of tau and amyloid β peptide (Aβ) in different parts of the brain. Symptoms observed in patients with AD include struggles with writing, speech, memory, and knowledge. The gut microbiota reportedly plays an important role in brain functioning due to its bidirectional communication with the gut via the gut-brain axis. The emotional and cognitive centers in the brain are linked to the functions of the peripheral intestinal system via this gut-brain axis. Dysbiosis has been linked to neurodegenerative disorders, indicating the significance of gut homeostasis for proper brain function. Probiotics play an important role in protecting against the symptoms of AD as they restore gut-brain homeostasis to a great extent. This review summarizes the characteristics, status of gut-brain axis, and significance of gut microbiota in AD. Review and research articles related to the role of probiotics in the treatment of AD were searched in the PubMed database. Recent studies conducted using animal models were given preference. Recent clinical trials were searched for separately. Several studies conducted on animal and human models clearly explain the benefits of probiotics in improving cognition and memory in experimental subjects. Based on these studies, novel therapeutic approaches can be designed for the treatment of patients with AD.
Collapse
Affiliation(s)
- Vibhuti Mishra
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474003, India;
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kavita Singh Solanki
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
15
|
Zhao W, Adjei M, Zhang Z, Yuan Z, Cisang Z, Song T. The role of GnRH in Tibetan male sheep and goat reproduction. Reprod Domest Anim 2023; 58:1179-1187. [PMID: 37492901 DOI: 10.1111/rda.14432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis connects the hypothalamus, pituitary gland, and gonads. The regulation of reproductive processes includes integrating various factors from structural functions and environmental conditions in the HPG axis, with the outcome indication of these processes being the pulsatile secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus. These factors include feed consumption and nutritional condition, sex steroids, season/photoperiod, pheromones, age, and stress. GnRH pulsatile secretion affects the pattern of gonadotropin secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which then regulates both endocrine function and gamete maturation in the gonads. This regulates gonadotropins and testosterone (T) production. There is evidence that in males, GnRH participates in a variety of host behavioural and physiological processes such as the release of reproductive hormones, progression of spermatogenesis and sperm function, aggressive behaviour, and physiological metabolism. GnRH activates receptors expressed on Leydig cells and Sertoli cells, respectively to stimulate T secretion and spermatogenesis in the testis. Photoperiod affects the reproductive system of the hypothalamic-pituitary axis via rhythmic diurnal melatonin secretion. Increased release of melatonin promotes sexual activity, GnRH production, LH stimulation, and T production. This induces testicular functions, spermatogenesis, and puberty. GnRH reduces the release of LH by the pituitary through the cascade effect and decreases plasma concentration of T. Gut microbiota maintain sex steroid homeostasis and may induce reduction in reproduction productivity. Recently, findings of kisspeptin-neurokinin-dynorphin neuronal network in the brain have resulted in fast advances in how GnRH secretion is controlled. Emerging studies have also indicated that other neuropeptide analogues could be used in control reproduction procedures in various goat and sheep breeds. The Tibetan male sheep and goats reproduce on a seasonal basis and have high reproductive performance. This is a review for the role of GnRH in Tibetan male sheep and goats reproduction. This is intended to enhance reproductive knowledge for understanding the key roles of GnRH relating to male reproductive efficiency of Tibetan sheep or goats.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Michael Adjei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhenzhen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhenjie Yuan
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Zhuoma Cisang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Tianzeng Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| |
Collapse
|
16
|
Bruno L, Evariste L, Houdeau E. Dysregulation along the gut microbiota-immune system axis after oral exposure to titanium dioxide nanoparticles: A possible environmental factor promoting obesity-related metabolic disorders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121795. [PMID: 37187281 DOI: 10.1016/j.envpol.2023.121795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
Food additives are one major hallmark of ultra-processed food in the Western-diet, a food habit often associated with metabolic disorders. Among these additives, the whitener and opacifying agent titanium dioxide (TiO2) raises public health issues due to the ability of TiO2 nanoparticles (NPs) to cross biological barriers and accumulate in different systemic organs like spleen, liver and pancreas. However before their systemic passage, the biocidal properties of TiO2 NPs may alter the composition and activity of the gut microbiota, which play a crucial role for the development and maintenance of immune functions. Once absorbed, TiO2 NPs may further interact with immune intestinal cells involved in gut microbiota regulation. Since obesity-related metabolic diseases such as diabetes are associated with alterations in the microbiota-immune system axis, this raises questions about the possible involvement of long-term exposure to food-grade TiO2 in the development or worsening of these diseases. The current purpose is to review the dysregulations along the gut microbiota-immune system axis after oral TiO2 exposure compared to those reported in obese or diabetic patients, and to highlight potential mechanisms by which foodborne TiO2 NPs may increase the susceptibility to develop obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Lamas Bruno
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Lauris Evariste
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
17
|
Mitra S, Munni YA, Dash R, Sadhu T, Barua L, Islam MA, Chowdhury D, Bhattacharjee D, Mazumder K, Moon IS. Gut Microbiota in Autophagy Regulation: New Therapeutic Perspective in Neurodegeneration. Life (Basel) 2023; 13:life13040957. [PMID: 37109487 PMCID: PMC10144697 DOI: 10.3390/life13040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Gut microbiota and the brain are related via a complex bidirectional interconnective network. Thus, intestinal homeostasis is a crucial factor for the brain, as it can control the environment of the central nervous system and play a significant role in disease progression. The link between neuropsychological behavior or neurodegeneration and gut dysbiosis is well established, but many involved pathways remain unknown. Accumulating studies showed that metabolites derived from gut microbiota are involved in the autophagy activation of various organs, including the brain, one of the major pathways of the protein clearance system that is essential for protein aggregate clearance. On the other hand, some metabolites are evidenced to disrupt the autophagy process, which can be a modulator of neurodegeneration. However, the detailed mechanism of autophagy regulation by gut microbiota remains elusive, and little research only focused on that. Here we tried to evaluate the crosstalk between gut microbiota metabolites and impaired autophagy of the central nervous system in neurodegeneration and the key to future research regarding gut dysbiosis and compromised autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Toma Sadhu
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chittagong 4000, Bangladesh
| | - Largess Barua
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Md. Ariful Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Dipannita Chowdhury
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Debpriya Bhattacharjee
- Faculty of Environment and Natural Sciences, Brandenburg Technical University Cottbus Senftenberg, D-03013 Cottbus, Germany
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
18
|
Kissmann AK, Rosenau F, Herwig A, Diedrich V. Short Photoperiod-Dependent Enrichment of Akkermansia spec. as the Major Change in the Intestinal Microbiome of Djungarian Hamsters (Phodopus sungorus). Int J Mol Sci 2023; 24:ijms24076605. [PMID: 37047584 PMCID: PMC10095574 DOI: 10.3390/ijms24076605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The Djungarian hamster (Phodopus sungorus) is a prominent model organism for seasonal acclimatization, showing drastic whole-body physiological adjustments to an energetically challenging environment, which are considered to also involve the gut microbiome. Fecal samples of hamsters in long photoperiod and again after twelve weeks in short photoperiod were analyzed by 16S-rRNA sequencing to evaluate seasonal changes in the respective gut microbiomes. In both photoperiods, the overall composition was stable in the major superordinate phyla of the microbiota, with distinct and delicate changes of abundance in phyla representing each <1% of all. Elusimicrobia, Tenericutes, and Verrucomicrobia were exclusively present in short photoperiod hamsters. In contrast to Elusimicrobium and Aneroplasma as representatives of Elusimicrobia and Tenericutes, Akkermansia muciniphila is a prominent gut microbiome inhabitant well described as important in the health context of animals and humans, including neurodegenerative diseases and obesity. Since diet was not changed, Akkermansia enrichment appears to be a direct consequence of short photoperiod acclimation. Future research will investigate whether the Djungarian hamster intestinal microbiome is responsible for or responsive to seasonal acclimation, focusing on probiotic supplementation.
Collapse
Affiliation(s)
- Ann-Kathrin Kissmann
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frank Rosenau
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Victoria Diedrich
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
19
|
Dhami M, Raj K, Singh S. Relevance of Gut Microbiota to Alzheimer's Disease (AD): Potential Effects of Probiotic in Management of AD. AGING AND HEALTH RESEARCH 2023. [DOI: 10.1016/j.ahr.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
20
|
Yang S, Huan R, Yue J, Guo J, Deng M, Wang L, Peng S, Lin X, Liu L, Wang J, Han G, Zha Y, Liu J, Zhang J, Tan Y. Multiomics integration reveals the effect of Orexin A on glioblastoma. Front Pharmacol 2023; 14:1096159. [PMID: 36744263 PMCID: PMC9894894 DOI: 10.3389/fphar.2023.1096159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Objectives: This study involved a multi-omics analysis of glioblastoma (GBM) samples to elaborate the potential mechanism of drug treatment. Methods: The GBM cells treated with or without orexin A were acquired from sequencing analysis. Differentially expressed genes/proteins/metabolites (DEGs/ DEPs/ DEMs) were screened. Next, combination analyses were conducted to investigate the common pathways and correlations between the two groups. Lastly, transcriptome-proteome-metabolome association analysis was carried out to determine the common pathways, and the genes in these pathways were analyzed through Kaplan-Meier (K-M) survival analysis in public databases. Cell and animal experiments were performed to investigate the anti-glioma activity of orexin A. Results: A total of 1,527 DEGs, 52 DEPs, and 153 DEMs were found. Moreover, the combination analyses revealed that 6, 4, and 1 common pathways were present in the transcriptome-proteome, proteome-metabolome, and transcriptome-metabolome, respectively. Certain correlations were observed between the two data sets. Finally, 11 common pathways were discovered in association analysis, and 138 common genes were screened out in these common pathways. Six genes showed significant differences in terms of survival in both TCGA and CGGA. In addition, orexin A inhibited the proliferation, migration, and invasion of glioma in vitro and in vivo. Conclusion: Eleven common KEGG pathways with six common genes were found among different omics participations, revealing the underlying mechanisms in different omics and providing theoretical basis and reference for multi-omics research on drug treatment.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang, Guizhou Province, China
| | - Renzheng Huan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Guo
- Guizhou University Medical College, Guiyang, Guizhou Province, China
| | - Mei Deng
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Liya Wang
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shuo Peng
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jian Liu
- Guizhou University Medical College, Guiyang, Guizhou Province, China,Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jian Liu, ; Jiqin Zhang, ; Ying Tan,
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jian Liu, ; Jiqin Zhang, ; Ying Tan,
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jian Liu, ; Jiqin Zhang, ; Ying Tan,
| |
Collapse
|
21
|
Kim IB, Park SC, Kim YK. Microbiota-Gut-Brain Axis in Major Depression: A New Therapeutic Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:209-224. [PMID: 36949312 DOI: 10.1007/978-981-19-7376-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Major depression is impacted by the disruption of gut microbiota. Defects in gut microbiota can lead to microbiota-gut-brain axis dysfunction and increased vulnerability to major depression. While traditional chemotherapeutic approaches, such as antidepressant use, produce an overall partial therapeutic effect on depression, the gut microbiome has emerged as an effective target for better therapeutic outcomes. Recent representative studies on the microbiota hypothesis to explore the association between gut pathophysiology and major depression have indicated that restoring gut microbiota and microbiota-gut-brain axis could alleviate depression. We reviewed studies that supported the gut microbiota hypothesis to better understand the pathophysiology of depression; we also explored reports suggesting that gut microbiota restoration is an effective approach for improving depression. These findings indicate that gut microbiota and microbiota-gut-brain axis are appropriate new therapeutic targets for major depression.
Collapse
Affiliation(s)
- Il Bin Kim
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seon-Cheol Park
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea.
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, Republic of Korea.
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
22
|
Asbjornsdottir B, Miranda-Ribera A, Fiorentino M, Konno T, Cetinbas M, Lan J, Sadreyev RI, Gudmundsson LS, Gottfredsson M, Lauth B, Birgisdottir BE, Fasano A. Prophylactic Effect of Bovine Colostrum on Intestinal Microbiota and Behavior in Wild-Type and Zonulin Transgenic Mice. Biomedicines 2022; 11:biomedicines11010091. [PMID: 36672598 PMCID: PMC9855927 DOI: 10.3390/biomedicines11010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The microbiota-gut-brain axis (MGBA) involves bidirectional communication between intestinal microbiota and the gastrointestinal (GI) tract, central nervous system (CNS), neuroendocrine/neuroimmune systems, hypothalamic-pituitary-adrenal (HPA) axis, and enteric nervous system (ENS). The intestinal microbiota can influence host physiology and pathology. Dysbiosis involves the loss of beneficial microbial input or signal, diversity, and expansion of pathobionts, which can lead to loss of barrier function and increased intestinal permeability (IP). Colostrum, the first milk from mammals after birth, is a natural source of nutrients and is rich in oligosaccharides, immunoglobulins, growth factors, and anti-microbial components. The aim of this study was to investigate if bovine colostrum (BC) administration might modulate intestinal microbiota and, in turn, behavior in two mouse models, wild-type (WT) and Zonulin transgenic (Ztm)-the latter of which is characterized by dysbiotic microbiota, increased intestinal permeability, and mild hyperactivity-and to compare with control mice. Bioinformatics analysis of the microbiome showed that consumption of BC was associated with increased taxonomy abundance (p = 0.001) and diversity (p = 0.004) of potentially beneficial species in WT mice and shifted dysbiotic microbial community towards eubiosis in Ztm mice (p = 0.001). BC induced an anxiolytic effect in WT female mice compared with WT female control mice (p = 0.0003), and it reduced anxiogenic behavior in Ztm female mice compared with WT female control mice (p = 0.001), as well as in Ztm male mice compared with WT BC male mice (p = 0.03). As evidenced in MGBA interactions, BC supplementation may well be applied for prophylactic approaches in the future. Further research is needed to explore human interdependencies between intestinal microbiota, including eubiosis and pathobionts, and neuroinflammation, and the potential value of BC for human use. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Unit for Nutrition Research, Landspitali University Hospital and Faculty of Food Science and Nutrition, University of Iceland, 101 Reykjavik, Iceland
- Correspondence:
| | - Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Maria Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Takumi Konno
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Murat Cetinbas
- Department of Molecular Biology and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jinggang Lan
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Larus S. Gudmundsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, 101 Reykjavik, Iceland
| | - Magnus Gottfredsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Scientific Affairs, Landspitali University Hospital, 101 Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, 101 Reykjavik, Iceland
| | - Bertrand Lauth
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, 105 Reykjavik, Iceland
| | - Bryndis Eva Birgisdottir
- Unit for Nutrition Research, Landspitali University Hospital and Faculty of Food Science and Nutrition, University of Iceland, 101 Reykjavik, Iceland
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| |
Collapse
|
23
|
The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022; 12:cells12010054. [PMID: 36611848 PMCID: PMC9818777 DOI: 10.3390/cells12010054] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence shows that the complex gut microbial ecosystem in the human gastrointestinal (GI) tract regulates the physiology of the central nervous system (CNS) via microbiota and the gut-brain (MGB) axis. The GI microbial ecosystem communicates with the brain through the neuroendocrine, immune, and autonomic nervous systems. Recent studies have bolstered the involvement of dysfunctional MGB axis signaling in the pathophysiology of several neurodegenerative, neurodevelopmental, and neuropsychiatric disorders (NPDs). Several investigations on the dynamic microbial system and genetic-environmental interactions with the gut microbiota (GM) have shown that changes in the composition, diversity and/or functions of gut microbes (termed "gut dysbiosis" (GD)) affect neuropsychiatric health by inducing alterations in the signaling pathways of the MGB axis. Interestingly, both preclinical and clinical evidence shows a positive correlation between GD and the pathogenesis and progression of NPDs. Long-term GD leads to overstimulation of hypothalamic-pituitary-adrenal (HPA) axis and the neuroimmune system, along with altered neurotransmitter levels, resulting in dysfunctional signal transduction, inflammation, increased oxidative stress (OS), mitochondrial dysfunction, and neuronal death. Further studies on the MGB axis have highlighted the significance of GM in the development of brain regions specific to stress-related behaviors, including depression and anxiety, and the immune system in the early life. GD-mediated deregulation of the MGB axis imbalances host homeostasis significantly by disrupting the integrity of the intestinal and blood-brain barrier (BBB), mucus secretion, and gut immune and brain immune functions. This review collates evidence on the potential interaction between GD and NPDs from preclinical and clinical data. Additionally, we summarize the use of non-therapeutic modulators such as pro-, pre-, syn- and post-biotics, and specific diets or fecal microbiota transplantation (FMT), which are promising targets for the management of NPDs.
Collapse
|
24
|
Zhu H, Li G, Liu J, Xu X, Zhang Z. Gut microbiota is associated with the effect of photoperiod on seasonal breeding in male Brandt's voles (Lasiopodomys brandtii). MICROBIOME 2022; 10:194. [PMID: 36376894 PMCID: PMC9664686 DOI: 10.1186/s40168-022-01381-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/27/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Seasonal breeding in mammals has been widely recognized to be regulated by photoperiod, but the association of gut microbiota with photoperiodic regulation of seasonal breeding has never been investigated. RESULTS In this study, we investigated the association of gut microbiota with photoperiod-induced reproduction in male Brandt's voles (Lasiopodomys brandtii) through a long-day and short-day photoperiod manipulation experiment and fecal microbiota transplantation (FMT) experiment. We found photoperiod significantly altered reproductive hormone and gene expression levels, and gut microbiota of voles. Specific gut microbes were significantly associated with the reproductive hormones and genes of voles during photoperiod acclimation. Transplantation of gut microbes into recipient voles induced similar changes in three hormones (melatonin, follicle-stimulating hormone, and luteinizing hormone) and three genes (hypothalamic Kiss-1, testicular Dio3, and Dio2/Dio3 ratio) to those in long-day and short-day photoperiod donor voles and altered circadian rhythm peaks of recipient voles. CONCLUSIONS Our study firstly revealed the association of gut microbiota with photoperiodic regulation of seasonal breeding through the HPG axis, melatonin, and Kisspeptin/GPR54 system. Our results may have significant implications for pest control, livestock animal breeding, and human health management. Video Abstract.
Collapse
Affiliation(s)
- Hanyi Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Lamas B, Evariste L, Houdeau E. Interactions du dioxyde de titane alimentaire avec l’axe microbiote-système immunitaire : un nouvel acteur dans le développement de désordres métaboliques ? CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2022. [DOI: 10.1016/j.cnd.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Zhu J, Wang T, Lin Y, Xiong M, Chen J, Jian C, Zhang J, Xie H, Zeng F, Huang Q, Su J, Zhao Y, Li S, Zeng F. The change of plasma metabolic profile and gut microbiome dysbiosis in patients with rheumatoid arthritis. Front Microbiol 2022; 13:931431. [PMID: 36329847 PMCID: PMC9623673 DOI: 10.3389/fmicb.2022.931431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which is associated with progressive disability, systemic complications, and early death. But its etiology and pathogenesis are not fully understood. We aimed to investigate the alterations in plasma metabolite profiles, gut bacteria, and fungi and their role of them in the pathogenesis of RA. Methods Metabolomics profiling of plasma from 363 participants including RA (n = 244), systemic lupus erythematosus (SLE, n = 50), and healthy control (HC, n = 69) were performed using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The differentially expressed metabolites were selected among groups and used to explore important metabolic pathways. Gut microbial diversity analysis was performed by 16S rRNA sequencing and ITS sequencing (RA = 195, HC = 269), and the specific microbial floras were identified afterward. The diagnosis models were established based on significant differential metabolites and microbial floras, respectively. Results There were 63 differential metabolites discovered between RA and HC groups, mainly significantly enriched in the arginine and proline metabolism, glycine, serine, and threonine metabolism, and glycerophospholipid metabolism between RA and HC groups. The core differential metabolites included L-arginine, creatine, D-proline, ornithine, choline, betaine, L-threonine, LysoPC (18:0), phosphorylcholine, and glycerophosphocholine. The L-arginine and phosphorylcholine were increased in the RA group. The AUC of the predictive model was 0.992, based on the combination of the 10 differential metabolites. Compared with the SLE group, 23 metabolites increased and 61 metabolites decreased in the RA group. However, no significant metabolic pathways were enriched between RA and SLE groups. On the genus level, a total of 117 differential bacteria genera and 531 differential fungal genera were identified between RA and HC groups. The results indicated that three bacteria genera (Eubacterium_hallii_group, Escherichia-Shigella, Streptococcus) and two fungal genera (Candida and Debaryomyces) significantly increased in RA patients. The AUC was 0.80 based on a combination of six differential bacterial genera and the AUC was 0.812 based on a combination of seven differential fungal genera. Functional predictive analysis displayed that differential bacterial and differential fungus both were associated with KEGG pathways involving superpathway of L-serine and glycine biosynthesis I, arginine, ornithine, and proline interconversion. Conclusion The plasma metabolism profile and gut microbe profile changed markedly in RA. The glycine, serine, and threonine metabolism and arginine and proline metabolism played an important role in RA.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Wang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Yifei Lin
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Minghao Xiong
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | | | - Congcong Jian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Huanhuan Xie
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Fanwei Zeng
- Sichuan Province Orthopaedic Hospital, Chengdu, China
| | - Qian Huang
- Dazhou Vocational and Technical College, Dazhou, China
| | - Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Clinical Institute of Inflammation and Immunology, Sichuan University, Chengdu, China
- *Correspondence: Yi Zhao,
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
- Shilin Li,
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
- Fanxin Zeng,
| |
Collapse
|
27
|
Shanenko EF, Nikolaev YA, Ganina VI, Serykh IN, Oleskin AV, Mukhamedzhanova TG, Grigorieva NV, El’-Registan GI. Synthesis of Biogenic Amines by Lactic Acid Bacteria on Media of Plant and Animal Origin. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722300208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C. Role of the Gut-Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson's Disease. Microorganisms 2022; 10:1544. [PMID: 36013962 PMCID: PMC9412530 DOI: 10.3390/microorganisms10081544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative or neuropsychiatric disease, affecting 1% of seniors worldwide. The gut microbiota (GM) is one of the key access controls for most diseases and disorders. Disturbance in the GM creates an imbalance in the function and circulation of metabolites, resulting in unhealthy conditions. Any dysbiosis could affect the function of the gut, consequently disturbing the equilibrium in the intestine, and provoking pro-inflammatory conditions in the gut lumen, which send signals to the central nervous system (CNS) through the vagus enteric nervous system, possibly disturbing the blood-brain barrier. The neuroinflammatory conditions in the brain cause accumulation of α-syn, and progressively develop PD. An important aspect of understanding and treating the disease is access to broad knowledge about the influence of dietary supplements on GM. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Probiotic supplementation improves the function of the CNS, and improves the motor and non-motor symptoms of PD. Probiotic supplementation could be an adjuvant therapeutic method to manage PD. This review summarizes the role of GM in health, the GM-brain axis, the pathogenesis of PD, the role of GM and diet in PD, and the influence of probiotic supplementation on PD. The study encourages further detailed clinical trials in PD patients with probiotics, which aids in determining the involvement of GM, intestinal mediators, and neurological mediators in the treatment or management of PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | | | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| |
Collapse
|
29
|
Gu X, Bi N, Wang T, Huang C, Wang R, Xu Y, Wang HL. Probiotic Lactobacillus rhamnosus GR-1 supplementation attenuates Pb-induced learning and memory deficits by reshaping the gut microbiota. Front Nutr 2022; 9:934118. [PMID: 35928850 PMCID: PMC9344877 DOI: 10.3389/fnut.2022.934118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Lead (Pb) exposure during early life has been associated with an increased risk of neurodevelopmental disorders, including learning and memory deficits. The intestinal flora, via the microbiome–gut–brain axis, could play a significant role in the nervous system. However, the effects of probiotics on ameliorating Pb-induced learning and memory deficits are still unclear. In this study, we showed that adolescent Pb exposure (150 ppm) for 2 months impaired spatial learning and memory ability, accompanied by the decreasing diversity of gut microbiota, and the decreasing abundance of Lactobacillus at the genus level. Surprisingly, administration of the Lactobacillus rhamnosus GR-1 (1010 organisms/rat/day), not L. rhamnosus LGG or Lactobacillus reuteri RC-14, reversed learning and memory deficits induced by Pb exposure. Meanwhile, administration of the L. rhamnosus GR-1 increased the diversity of the gut microbiota composition and partially normalized the genus level of Lactobacillus, Parabacteroides, Enterococcus, and Akkermansia in Pb-exposed rats. Notably, supplementation of L. rhamnosus GR-1 decreased the gut permeability of Pb-exposed rats, reduced proinflammatory cytokines [interleukin-1β (IL-1β) and IL-6] expression, and promoted anti-inflammatory cytokines [granulocyte colony-stimulating factor (G-CSF)] expression. Interestingly, neural cell treatment with G-CSF rescued Pb-induced neurotoxicity. In general, L. rhamnosus GR-1 supplementation recovered the Pb-induced loss of intestinal bacteria (Lactobacillus), which may have reversed the damage to learning and memory ability. Collectively, our findings demonstrate an unexpectedly pivotal role of L. rhamnosus GR-1 in Pb-induced cognitive deficits and identify a potential probiotic therapy for cognitive dysfunction during early life.
Collapse
Affiliation(s)
- Xiaozhen Gu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Nanxi Bi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tian Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chengqing Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rongrong Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yi Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Yi Xu,
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Hui-Li Wang,
| |
Collapse
|
30
|
Shor EK, Brown SP, Freeman DA. Bacteria and Bellicosity: Photoperiodic Shifts in Gut Microbiota Drive Seasonal Aggressive Behavior in Male Siberian Hamsters. J Biol Rhythms 2022; 37:296-309. [PMID: 35502701 DOI: 10.1177/07487304221092105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The existence of a microbiome-gut-brain axis has been established wherein gut microbiota significantly impacts host behavior and physiology, with increasing evidence suggesting a role for the gut microbiota in maintaining host homeostasis. Communication between the gut microbiota and the host is bidirectional, and shifts in the composition of the gut microbiota are dependent on both internal and external cues (host-derived signals, such as stress and immunity, and endocrine and environmental signals, such as photoperiod). Although there is host-driven seasonal variation in the composition of the microbiota, the mechanisms linking photoperiod, gut microbiota, and host behavior have not been characterized. The results of the present study suggest that seasonal changes in the gut microbiota drive seasonal changes in aggression. Implanting short-day Siberian hamsters (Phodopus sungorus) with fecal microbiota from long-day hamsters resulted in a reversal of seasonal aggression, whereby short-day hamsters displayed aggression levels typical of long-day hamsters. In addition, there are correlations between aggressive behavior and several bacterial taxa. These results implicate the gut microbiota as part of the photoperiodic mechanism regulating seasonal host behavior and contribute toward a more comprehensive understanding of the relationships between the microbiota, host, and environment.
Collapse
Affiliation(s)
- Elyan K Shor
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - Shawn P Brown
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - David A Freeman
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
31
|
The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke. Cells 2022; 11:cells11071239. [PMID: 35406804 PMCID: PMC8997586 DOI: 10.3390/cells11071239] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Recent research on the gut microbiome has revealed the influence of gut microbiota (GM) on ischemic stroke pathogenesis and treatment outcomes. Alterations in the diversity, abundance, and functions of the gut microbiome, termed gut dysbiosis, results in dysregulated gut–brain signaling, which induces intestinal barrier changes, endotoxemia, systemic inflammation, and infection, affecting post-stroke outcomes. Gut–brain interactions are bidirectional, and the signals from the gut to the brain are mediated by microbially derived metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs); bacterial components, such as lipopolysaccharide (LPS); immune cells, such as T helper cells; and bacterial translocation via hormonal, immune, and neural pathways. Ischemic stroke affects gut microbial composition via neural and hypothalamic–pituitary–adrenal (HPA) pathways, which can contribute to post-stroke outcomes. Experimental and clinical studies have demonstrated that the restoration of the gut microbiome usually improves stroke treatment outcomes by regulating metabolic, immune, and inflammatory responses via the gut–brain axis (GBA). Therefore, restoring healthy microbial ecology in the gut may be a key therapeutic target for the effective management and treatment of ischemic stroke.
Collapse
|
32
|
D'Addario C, Pucci M, Bellia F, Girella A, Sabatucci A, Fanti F, Vismara M, Benatti B, Ferrara L, Fasciana F, Celebre L, Viganò C, Elli L, Sergi M, Maccarrone M, Buzzelli V, Trezza V, Dell'Osso B. Regulation of oxytocin receptor gene expression in obsessive-compulsive disorder: a possible role for the microbiota-host epigenetic axis. Clin Epigenetics 2022; 14:47. [PMID: 35361281 PMCID: PMC8973787 DOI: 10.1186/s13148-022-01264-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a prevalent and severe clinical condition. Robust evidence suggests a gene-environment interplay in its etiopathogenesis, yet the underlying molecular clues remain only partially understood. In order to further deepen our understanding of OCD, it is essential to ascertain how genes interact with environmental risk factors, a cross-talk that is thought to be mediated by epigenetic mechanisms. The human microbiota may be a key player, because bacterial metabolites can act as epigenetic modulators. We analyzed, in the blood and saliva of OCD subjects and healthy controls, the transcriptional regulation of the oxytocin receptor gene and, in saliva, also the different levels of major phyla. We also investigated the same molecular mechanisms in specific brain regions of socially isolated rats showing stereotyped behaviors reminiscent of OCD as well as short chain fatty acid levels in the feces of rats. RESULTS Higher levels of oxytocin receptor gene DNA methylation, inversely correlated with gene expression, were observed in the blood as well as saliva of OCD subjects when compared to controls. Moreover, Actinobacteria also resulted higher in OCD and directly correlated with oxytocin receptor gene epigenetic alterations. The same pattern of changes was present in the prefrontal cortex of socially-isolated rats, where also altered levels of fecal butyrate were observed at the beginning of the isolation procedure. CONCLUSIONS This is the first demonstration of an interplay between microbiota modulation and epigenetic regulation of gene expression in OCD, opening new avenues for the understanding of disease trajectories and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy. .,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
| | | | - Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | | | | | - Federico Fanti
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Matteo Vismara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Beatrice Benatti
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Ferrara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Federica Fasciana
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Laura Celebre
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Caterina Viganò
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Elli
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Manuel Sergi
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Bernardo Dell'Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy. .,Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", Psychiatry Unit 2, ASST Sacco-Fatebenefratelli, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
33
|
Novel probiotic treatment of autism spectrum disorder associated social behavioral symptoms in two rodent models. Sci Rep 2022; 12:5399. [PMID: 35354898 PMCID: PMC8967893 DOI: 10.1038/s41598-022-09350-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) has rapidly increased in the past decades, and several studies report about the escalating use of antibiotics and the consequent disruption of the gastrointestinal microbiome leading to the development of neurobehavioral symptoms resembling to those of ASD. The primary purpose of this study was to investigate whether depletion of the gastrointestinal microbiome via antibiotics treatment could induce ASD-like behavioral symptoms in adulthood. To reliably evaluate that, validated valproic acid (VPA) ASD animal model was introduced. At last, we intended to demonstrate the assessed potential benefits of a probiotic mixture (PM) developed by our research team. Male Wistar rats were used to create antibiotics treated; antibiotics and PM treated; PM treated, VPA treated; VPA and PM treated; and control groups. In all investigations we focused on social behavioral disturbances. Antibiotics-induced microbiome alterations during adulthood triggered severe deficits in social behavior similar to those observed in the VPA model. Furthermore, it is highlighted that our PM proved to attenuate both the antibiotics- and the VPA-generated antisocial behavioral symptoms. The present findings underline potential capacity of our PM to improve social behavioral alterations thus, indicate its promising therapeutic power to attenuate the social-affective disturbances of ASD.
Collapse
|
34
|
Feng Y, Fu S, Li C, Ma X, Wu Y, Chen F, Li G, Liu M, Liu H, Zhu J, Lan Z, Jiang G. Interaction of Gut Microbiota and Brain Function in Patients With Chronic Insomnia: A Regional Homogeneity Study. Front Neurosci 2022; 15:804843. [PMID: 35069107 PMCID: PMC8766814 DOI: 10.3389/fnins.2021.804843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have shown that the human gut microbiota (GM) plays a critical role in brain function and behavior via the complex microbiome–gut–brain axis. However, knowledge about the underlying relationship between the GM and changes in brain function in patients with chronic insomnia (CI) is still very limited. In this prospective study, 31 CI patients and 30 healthy controls were recruited. Resting-state functional magnetic resonance imaging scans were performed and brain functional alterations in CI patients were evaluated using the regional homogeneity (ReHo) method. We collected fecal samples of CI patients and used 16S rDNA amplicon sequencing to assess the relative abundance (RA) and alpha diversity of the GM. We also performed extensive sleep, mood, and cognitive assessments. Then, we tested for potential associations between the GM profile, ReHo alterations, and neuropsychological changes in CI patients. Our results showed associations between the RA of Lactobacilli, ReHo values in the left fusiform gyrus, and depression scores in CI patients. We also found some bacterial genera related to ReHo values of the right triangular inferior frontal gyrus. In addition, the RA of genus Coprobacter was correlated with ReHo values of the left angular gyrus and with specific cognitive performance. These findings revealed complex relationships between GM, brain function, and behavior in patients with CI.
Collapse
Affiliation(s)
- Ying Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feng Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guomin Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Mengchen Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hang Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiaying Zhu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhihong Lan
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Review on Selected Aggression Causes and the Role of Neurocognitive Science in the Diagnosis. Animals (Basel) 2022; 12:ani12030281. [PMID: 35158605 PMCID: PMC8833765 DOI: 10.3390/ani12030281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Aggression in dogs is often a reason for abandonment and/or euthanasia. Recently, knowledge about aggression has been subjected to more detailed analysis. In recent years, it has been studied in terms of factors affecting it, such as diet (especially nutritional supplements) and physiology (endocrine system). In addition, recently, new methods of brain research, such as neurocognitive research, have appeared, which enable a significant increase in knowledge about dog behavior, including aggression. Abstract Aggression as a behavior is not always desirable, often ends in abandonment and/or euthanasia. However, it is possible to prevent the occurrence of unwanted aggression in domestic dogs. Aggression is not a fully understood phenomenon. In recent years, many studies have focused on the influence of diet and physiology (including the endocrine system) on the emergence of behavioral disorders. In particular, the emphasis was put on nutritional additives such as fatty acids, amino acids, and probiotics. In addition, the possibility of using neurocognition in the observation of abnormal behavior in dogs has also been discussed, which may allow for a more detailed determination of the basis of aggressive behavior in dogs. In this review, the concepts related to aggression and its potential causes have been gathered. In addition, the possible influence of diet and hormones on aggression in dogs has been discussed, as well as the application of neurocognition in the possibility of its diagnosis.
Collapse
|
36
|
Wang Y, Dong J, Wang J, Chi W, Zhou W, Tian Q, Hong Y, Zhou X, Ye H, Tian X, Hu R, Wong A. Assessing the drug resistance profiles of oral probiotic lozenges. J Oral Microbiol 2022; 14:2019992. [PMID: 35024089 PMCID: PMC8745366 DOI: 10.1080/20002297.2021.2019992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Probiotic lozenges have been developed to harvest the benefits of probiotics for oral health, but their long-term consumption may encourage the transfer of resistance genes from probiotics to commensals, and eventually to disease-causing bacteria. Aim To screen commercial probiotic lozenges for resistance to antibiotics, characterize the resistance determinants, and examine their transferability in vitro. Results Probiotics of all lozenges were resistant to glycopeptide, sulfonamide, and penicillin antibiotics, while some were resistant to aminoglycosides and cephalosporins. High minimum inhibitory concentrations (MICs) were detected for streptomycin (>128 µg/mL) and chloramphenicol (> 512 µg/mL) for all probiotics but only one was resistant to piperacillin (MIC = 32 µg/mL). PCR analysis detected erythromycin (erm(T), ermB or mefA) and fluoroquinolone (parC or gyr(A)) resistance genes in some lozenges although there were no resistant phenotypes. The dfrD, cat-TC, vatE, aadE, vanX, and aph(3")-III or ant(2")-I genes conferring resistance to trimethoprim, chloramphenicol, quinupristin/dalfopristin, vancomycin, and streptomycin, respectively, were detected in resistant probiotics. The rifampicin resistance gene rpoB was also present. We found no conjugal transfer of streptomycin resistance genes in our co-incubation experiments. Conclusion Our study represents the first antibiotic resistance profiling of probiotics from oral lozenges, thus highlighting the health risk especially in the prevailing threat of drug resistance globally.
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Jingya Dong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yue Hong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| | - Rongdang Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
37
|
Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med 2022; 14:4. [PMID: 35016706 PMCID: PMC8751292 DOI: 10.1186/s13073-021-01005-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
At the dawn of the twentieth century, the medical care of mothers and children was largely relegated to family members and informally trained birth attendants. As the industrial era progressed, early and key public health observations among women and children linked the persistence of adverse health outcomes to poverty and poor nutrition. In the time hence, numerous studies connecting genetics ("nature") to public health and epidemiologic data on the role of the environment ("nurture") have yielded insights into the importance of early life exposures in relation to the occurrence of common diseases, such as diabetes, allergic and atopic disease, cardiovascular disease, and obesity. As a result of these parallel efforts in science, medicine, and public health, the developing brain, immune system, and metabolic physiology are now recognized as being particularly vulnerable to poor nutrition and stressful environments from the start of pregnancy to 3 years of age. In particular, compelling evidence arising from a diverse array of studies across mammalian lineages suggest that modifications to our metagenome and/or microbiome occur following certain environmental exposures during pregnancy and lactation, which in turn render risk of childhood and adult diseases. In this review, we will consider the evidence suggesting that development of the offspring microbiome may be vulnerable to maternal exposures, including an analysis of the data regarding the presence or absence of a low-biomass intrauterine microbiome.
Collapse
Affiliation(s)
- Erin E Bolte
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - David Moorshead
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - Kjersti M Aagaard
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, USA.
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
38
|
Queiroz SAL, Ton AMM, Pereira TMC, Campagnaro BP, Martinelli L, Picos A, Campos-Toimil M, Vasquez EC. The Gut Microbiota-Brain Axis: A New Frontier on Neuropsychiatric Disorders. Front Psychiatry 2022; 13:872594. [PMID: 35722583 PMCID: PMC9198224 DOI: 10.3389/fpsyt.2022.872594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder of integrative areas of the brain, characterized by cognitive decline and disability resulting in negative impacts on the family of the patients and the health care services worldwide. AD involves oxidative stress, neuroinflammation and accelerated apoptosis, accompanied by deposition of amyloid-β peptide plaques and tau protein-based neurofibrillary tangles in the central nervous system. Among the multiple factors that contribute to the onset and evolution of this disease, aging stands out. That is why the prevalence of this disease has increased due to the constant increase in life expectancy. In the hope of finding new, more effective methods to slow the progression of this disease, over the last two decades, researchers have promoted "omics"-based approaches that include the gut microbiota and their reciprocal interactions with different targets in the body. This scientific advance has also led to a better understanding of brain compartments and the mechanisms that affect the integrity of the blood-brain barrier. This review aims to discuss recent advances related to the gut-brain-microbiota axis in AD. Furthermore, considering that AD involves psychiatric symptoms, this review also focuses on the psychiatric factors that interact with this axis (an issue that has not yet been sufficiently addressed in the literature).
Collapse
Affiliation(s)
- Sarha A L Queiroz
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Alyne M M Ton
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Thiago M C Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Larissa Martinelli
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Aitor Picos
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| |
Collapse
|
39
|
Yeh YM, Lye XY, Lin HY, Wong JY, Wu CC, Huang CL, Tsai YC, Wang LC. Effects of Lactiplantibacillus plantarum PS128 on alleviating canine aggression and separation anxiety. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Gao Y, Nanan R, Macia L, Tan J, Sominsky L, Quinn TP, O'Hely M, Ponsonby AL, Tang ML, Collier F, Strickland DH, Dhar P, Brix S, Phipps S, Sly PD, Ranganathan S, Stokholm J, Kristiansen K, Gray L, Vuillermin P. The maternal gut microbiome during pregnancy and offspring allergy and asthma. J Allergy Clin Immunol 2021; 148:669-678. [PMID: 34310928 DOI: 10.1016/j.jaci.2021.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Environmental exposures during pregnancy that alter both the maternal gut microbiome and the infant's risk of allergic disease and asthma include a traditional farm environment and consumption of unpasteurized cow's milk, antibiotic use, dietary fiber and psychosocial stress. Multiple mechanisms acting in concert may underpin these associations and prime the infant to acquire immune competence and homeostasis following exposure to the extrauterine environment. Cellular and metabolic products of the maternal gut microbiome can promote the expression of microbial pattern recognition receptors, as well as thymic and bone marrow hematopoiesis relevant to regulatory immunity. At birth, transmission of maternally derived bacteria likely leverages this in utero programming to accelerate postnatal transition from a Th2 to Th1 and Th17 dominant immune phenotypes and maturation of regulatory immune mechanisms, which in turn reduce the child's risk of allergic disease and asthma. Although our understanding of these phenomena is rapidly evolving, the field is relatively nascent, and we are yet to translate existing knowledge into interventions that substantially reduce disease risk in humans. Here we review evidence that the maternal gut microbiome impacts the offspring's risk of allergic disease and asthma, discuss challenges and future directions for the field, and propose the hypothesis that maternal carriage of Prevotella copri during pregnancy decreases the offspring's risk of allergic disease via production of succinate which in turn promotes bone marrow myelopoiesis of dendritic cell precursors in the fetus.
Collapse
Affiliation(s)
- Yuan Gao
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ralph Nanan
- The Charles Perkins Center, the University of Sydney, Sydney, Australia
| | - Laurence Macia
- The Charles Perkins Center, the University of Sydney, Sydney, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jian Tan
- The Charles Perkins Center, the University of Sydney, Sydney, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Luba Sominsky
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia
| | - Thomas P Quinn
- Applied Artificial Intelligence Institute, Deakin University, Geelong, Australia
| | - Martin O'Hely
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Anne-Louise Ponsonby
- The Florey Institute, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia
| | - Fiona Collier
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia
| | | | - Poshmaal Dhar
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Peter D Sly
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia; Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, 4200 Slagelse, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lawrence Gray
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia.
| | - Peter Vuillermin
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia.
| |
Collapse
|
41
|
Jankowska-Kieltyka M, Roman A, Nalepa I. The Air We Breathe: Air Pollution as a Prevalent Proinflammatory Stimulus Contributing to Neurodegeneration. Front Cell Neurosci 2021; 15:647643. [PMID: 34248501 PMCID: PMC8264767 DOI: 10.3389/fncel.2021.647643] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Air pollution is regarded as an important risk factor for many diseases that affect a large proportion of the human population. To date, accumulating reports have noted that particulate matter (PM) is closely associated with the course of cardiopulmonary disorders. As the incidence of Alzheimer’s disease (AD), Parkinson’s disease (PD), and autoimmune disorders have risen and as the world’s population is aging, there is an increasing interest in environmental health hazards, mainly air pollution, which has been slightly overlooked as one of many plausible detrimental stimuli contributing to neurodegenerative disease onset and progression. Epidemiological studies have indicated a noticeable association between exposure to PM and neurotoxicity, which has been gradually confirmed by in vivo and in vitro studies. After entering the body directly through the olfactory epithelium or indirectly by passing through the respiratory system into the circulatory system, air pollutants are subsequently able to reach the brain. Among the potential mechanisms underlying particle-induced detrimental effects in the periphery and the central nervous system (CNS), increased oxidative stress, inflammation, mitochondrial dysfunction, microglial activation, disturbance of protein homeostasis, and ultimately, neuronal death are often postulated and concomitantly coincide with the main pathomechanisms of neurodegenerative processes. Other complementary mechanisms by which PM could mediate neurotoxicity and contribute to neurodegeneration remain unconfirmed. Furthermore, the question of how strong and proven air pollutants are as substantial adverse factors for neurodegenerative disease etiologies remains unsolved. This review highlights research advances regarding the issue of PM with an emphasis on neurodegeneration markers, symptoms, and mechanisms by which air pollutants could mediate damage in the CNS. Poor air quality and insufficient knowledge regarding its toxicity justify conducting scientific investigations to understand the biological impact of PM in the context of various types of neurodegeneration.
Collapse
Affiliation(s)
- Monika Jankowska-Kieltyka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Roman
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
42
|
Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest 2021; 131:143777. [PMID: 34128471 PMCID: PMC8203445 DOI: 10.1172/jci143777] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a chronic and progressive disease, and management requires an understanding of both the primary neurological injury and the secondary sequelae that affect peripheral organs, including the gastrointestinal (GI) tract. The brain-gut axis is composed of bidirectional pathways through which TBI-induced neuroinflammation and neurodegeneration impact gut function. The resulting TBI-induced dysautonomia and systemic inflammation contribute to the secondary GI events, including dysmotility and increased mucosal permeability. These effects shape, and are shaped by, changes in microbiota composition and activation of resident and recruited immune cells. Microbial products and immune cell mediators in turn modulate brain-gut activity. Importantly, secondary enteric inflammatory challenges prolong systemic inflammation and worsen TBI-induced neuropathology and neurobehavioral deficits. The importance of brain-gut communication in maintaining GI homeostasis highlights it as a viable therapeutic target for TBI. Currently, treatments directed toward dysautonomia, dysbiosis, and/or systemic inflammation offer the most promise.
Collapse
Affiliation(s)
- Marie Hanscom
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J. Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Terez Shea-Donohue
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Pan L, Ai X, Fu T, Ren L, Shang Q, Li G, Yu G. In vitro fermentation of hyaluronan by human gut microbiota: Changes in microbiota community and potential degradation mechanism. Carbohydr Polym 2021; 269:118313. [PMID: 34294327 DOI: 10.1016/j.carbpol.2021.118313] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 01/19/2023]
Abstract
Hyaluronan (HA) has been widely used as a dietary supplement which can be degraded by gut microbiota. However, the interactions between HA and gut microbiota have not been fully characterized. Here, using an in vitro system, we found that HA is readily fermented by human gut microbiota but with differing fermentative activities among individuals. HA-fermentation boosted Bacteroides spp., Bifidobacterium spp., Dialister spp., Faecalibacterium spp. and produced a significant amount of acetate, propionate and butyrate. Fermentation products profiling indicated that HA could be degraded into unsaturated even-numbered and saturated odd-numbered oligosaccharides. Further, polysaccharide lyases (PLs) and glycoside hydrolases (GHs) including GH88, PL8, PL29, PL35 and PL33 were identified from B. ovatus E3, which can help to explain the structure of the fermentation products. Collectively, our study sheds new light into the metabolism of HA and forms the basis for understanding the bioavailability of HA from a gut microbiota perspective.
Collapse
Affiliation(s)
- Lin Pan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xuze Ai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianyu Fu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Li Ren
- CP Pharmaceutical Qingdao Co., Ltd., Economic and Techchnological Development Zone, Qingdao 266432, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
44
|
Focus on the Complex Interconnection between Cancer, Narcolepsy and Other Neurodegenerative Diseases: A Possible Case of Orexin-Dependent Inverse Comorbidity. Cancers (Basel) 2021; 13:cancers13112612. [PMID: 34073579 PMCID: PMC8198883 DOI: 10.3390/cancers13112612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This narrative review first describes from several points of view the complex interrelationship between cancer and neurodegeneration, with special attention to the mechanisms that might underlie an inverse relationship between them. In particular, the mechanisms that might induce an imbalance between cell apoptotic and proliferative stimuli are discussed. Second, the review summarizes findings on orexins and their involvement in narcolepsy, neurodegenerative diseases, and cancer, starting from epidemiological data then addressing laboratory findings, animal models, and human clinical observational and interventional investigations. Important research efforts are warranted on these topics, as they might lead to novel therapeutic approaches to both neurodegenerative diseases and cancer. Abstract Conditions such as Alzheimer’s (AD) and Parkinson’s diseases (PD) are less prevalent in cancer survivors and, overall, cancer is less prevalent in subjects with these neurodegenerative disorders. This seems to suggest that a propensity towards one type of disease may decrease the risk of the other. In addition to epidemiologic data, there is also evidence of a complex biological interconnection, with genes, proteins, and pathways often showing opposite dysregulation in cancer and neurodegenerative diseases. In this narrative review, we focus on the possible role played by orexin signaling, which is altered in patients with narcolepsy type 1 and in those with AD and PD, and which has been linked to β-amyloid brain levels and inflammation in mouse models and to cancer in cell lines. Taken together, these lines of evidence depict a possible case of inverse comorbidity between cancer and neurodegenerative disorders, with a role played by orexins. These considerations suggest a therapeutic potential of orexin modulation in diverse pathologies such as narcolepsy, neurodegenerative disorders, and cancer.
Collapse
|
45
|
Deep Transcranial Magnetic Stimulation Affects Gut Microbiota Composition in Obesity: Results of Randomized Clinical Trial. Int J Mol Sci 2021; 22:ijms22094692. [PMID: 33946648 PMCID: PMC8125086 DOI: 10.3390/ijms22094692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Growing evidence highlights the crucial role of gut microbiota in affecting different aspects of obesity. Considering the ability of deep transcranial magnetic stimulation (dTMS) to modulate the cortical excitability, the reward system, and, indirectly, the autonomic nervous system (ANS), we hypothesized a potential role of dTMS in affecting the brain-gut communication pathways, and the gut microbiota composition in obesity. In a hospital setting, 22 subjects with obesity (5 M, 17 F; 44.9 ± 2.2 years; BMI 37.5 ± 1.0 kg/m2) were randomized into three groups receiving 15 sessions (3 per week for 5 weeks) of high frequency (HF), low frequency (LF) dTMS, or sham stimulation. Fecal samples were collected at baseline and after 5 weeks of treatment. Total bacterial DNA was extracted from fecal samples using the QIAamp DNA Stool Mini Kit (Qiagen, Italy) and analyzed by a metagenomics approach (Ion Torrent Personal Genome Machine). After 5 weeks, a significant weight loss was found in HF (HF: −4.1 ± 0.8%, LF: −1.9 ± 0.8%, sham: −1.3 ± 0.6%, p = 0.042) compared to LF and sham groups, associated with a decrease in norepinephrine compared to baseline (HF: −61.5 ± 15.2%, p < 0.01; LF: −31.8 ± 17.1%, p < 0.05; sham: −35.8 ± 21.0%, p > 0.05). Furthermore, an increase in Faecalibacterium (+154.3% vs. baseline, p < 0.05) and Alistipes (+153.4% vs. baseline, p < 0.05) genera, and a significant decrease in Lactobacillus (−77.1% vs. baseline, p < 0.05) were found in HF. Faecalibacterium variations were not significant compared to baseline in the other two groups (LF: +106.6%, sham: +27.6%; p > 0.05) as well as Alistipes (LF: −54.9%, sham: −15.1%; p > 0.05) and Lactobacillus (LF: −26.0%, sham: +228.3%; p > 0.05) variations. Norepinephrine change significantly correlated with Bacteroides (r2 = 0.734; p < 0.05), Eubacterium (r2 = 0.734; p < 0.05), and Parasutterella (r2 = 0.618; p < 0.05) abundance variations in HF. In conclusion, HF dTMS treatment revealed to be effective in modulating gut microbiota composition in subjects with obesity, reversing obesity-associated microbiota variations, and promoting bacterial species representative of healthy subjects with anti-inflammatory properties.
Collapse
|
46
|
Gut Microbiota and Bipolar Disorder: An Overview on a Novel Biomarker for Diagnosis and Treatment. Int J Mol Sci 2021; 22:ijms22073723. [PMID: 33918462 PMCID: PMC8038247 DOI: 10.3390/ijms22073723] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is the set of microorganisms that colonize the gastrointestinal tract of living creatures, establishing a bidirectional symbiotic relationship that is essential for maintaining homeostasis, for their growth and digestive processes. Growing evidence supports its involvement in the intercommunication system between the gut and the brain, so that it is called the gut-brain-microbiota axis. It is involved in the regulation of the functions of the Central Nervous System (CNS), behavior, mood and anxiety and, therefore, its implication in the pathogenesis of neuropsychiatric disorders. In this paper, we focused on the possible correlations between the gut microbiota and Bipolar Disorder (BD), in order to determine its role in the pathogenesis and in the clinical management of BD. Current literature supports a possible relationship between the compositional alterations of the intestinal microbiota and BD. Moreover, due to its impact on psychopharmacological treatment absorption, by acting on the composition of the microbiota beneficial effects can be obtained on BD symptoms. Finally, we discussed the potential of correcting gut microbiota alteration as a novel augmentation strategy in BD. Future studies are necessary to better clarify the relevance of gut microbiota alterations as state and disease biomarkers of BD.
Collapse
|
47
|
Merchán A, Pérez-Fernández C, López MJ, Moreno J, Moreno M, Sánchez-Santed F, Flores P. Dietary tryptophan depletion alters the faecal bacterial community structure of compulsive drinker rats in schedule-induced polydipsia. Physiol Behav 2021; 233:113356. [PMID: 33577871 DOI: 10.1016/j.physbeh.2021.113356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE Compulsive behaviour, present in different psychiatric disorders such as obsessive-compulsive disorder, schizophrenia and drug abuse, is associated with altered levels of serotonin (5-hydroxytryptamine, 5-HT). The gut microbiota regulates tryptophan (TRP) metabolism and may affect global 5-H synthesis in the enteric and central nervous systems, suggesting a possible involvement of gut microbiota in compulsive spectrum disorders. OBJECTIVES The present study investigated whether chronic TRP depletion by diet alters the faecal bacterial community profiles of compulsive versus non-compulsive rats in schedule-induced polydipsia (SIP). Peripheral plasma 5-HT and brain-derived neurotrophic factor (BDNF) levels were evaluated. METHODS Wistar rats were selected as High Drinkers (HD) or Low Drinkers (LD) according to their SIP behaviour and were fed for 14 days with either a TRP-free diet (T-) or a TRP-supplemented diet (T+). The faecal bacterial community structure was investigated with 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis. RESULTS Compulsive HD rats showed a lower bacterial diversity than LD rats, irrespectively of the diet. The TRP-depleted HD rats, the only group increasing compulsive licking in SIP, showed a reduction of bacterial evenness and a highly functionally organized community compared with the other groups, indicating that this bacterial community is more fragile to external changes due to the dominance of a low number of species. The chronic TRP depletion by diet effectively reduced peripheral plasma 5-HT levels in both HD and LD rats, while plasma BDNF levels were not altered. CONCLUSIONS These results highlight the possible implication of reduced microbial diversity in compulsive behaviour and the involvement of the serotonergic system in modulating the gut brain-axis in compulsive spectrum disorders.
Collapse
Affiliation(s)
- A Merchán
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - C Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - M J López
- Department of Biology and Geology and CIAMBITAL, University of Almería & CeiA3, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - J Moreno
- Department of Biology and Geology and CIAMBITAL, University of Almería & CeiA3, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - M Moreno
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - F Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - P Flores
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain.
| |
Collapse
|
48
|
What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity? Nutrients 2021; 13:nu13020373. [PMID: 33530406 PMCID: PMC7911032 DOI: 10.3390/nu13020373] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance.
Collapse
|
49
|
Luo J, Lin X, Bordiga M, Brennan C, Xu B. Manipulating effects of fruits and vegetables on gut microbiota – a critical review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jing Luo
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| | - Xian Lin
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Sericultural & Agri‐Food Research Institute Guangdong China
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale ‘A. Avogadro’ Novara Italy
| | - Charles Brennan
- Faculty of Agriculture and Life Sciences Lincoln University Christchurch New Zealand
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
50
|
Blanke EN, Holmes GM, Besecker EM. Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regen Res 2021; 16:254-263. [PMID: 32859772 PMCID: PMC7896240 DOI: 10.4103/1673-5374.290883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The adaptability of the central nervous system has been revealed in several model systems. Of particular interest to central nervous system-injured individuals is the ability for neural components to be modified for regain of function. In both types of neurotrauma, traumatic brain injury and spinal cord injury, the primary parasympathetic control to the gastrointestinal tract, the vagus nerve, remains anatomically intact. However, individuals with traumatic brain injury or spinal cord injury are highly susceptible to gastrointestinal dysfunctions. Such gastrointestinal dysfunctions attribute to higher morbidity and mortality following traumatic brain injury and spinal cord injury. While the vagal efferent output remains capable of eliciting motor responses following injury, evidence suggests impairment of the vagal afferents. Since sensory input drives motor output, this review will discuss the normal and altered anatomy and physiology of the gastrointestinal vagal afferents to better understand the contributions of vagal afferent plasticity following neurotrauma.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Emily M Besecker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA
| |
Collapse
|