1
|
Sung D, Choi G, Ahn M, Byun H, Kim T, Lee H, Lee ZW, Park J, Jung Y, Han H, Choi S. Genome-wide phenotypic profiling of transcription factors and identification of novel targets to control the virulence of Vibrio vulnificus. Nucleic Acids Res 2025; 53:gkae1238. [PMID: 39704106 PMCID: PMC11797071 DOI: 10.1093/nar/gkae1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
For successful infection, the life-threatening pathogen Vibrio vulnificus elaborately regulates the expression of survival and virulence genes using various transcription factors (TFs). In this study, a library of the V. vulnificus mutants carrying specific signature tags in 285 TF genes was constructed and subjected to 16 phenotypic analyses. Consequently, 89 TFs affecting more than one phenotype of V. vulnificus were identified. Of these, 59 TFs affected the in vitro survival including growth, stress resistance, biofilm formation and motility, and 64 TFs affected the virulence of V. vulnificus. Particularly, 27 of the 64 TFs enhanced the in vitro hemolytic or cytotoxic activities, and 8 of the 27 TFs also increased the in vivo brine shrimp or murine infectivities of V. vulnificus. Among the eight TFs, HlyU, IscR, NagC, MetJ and Tet2 did not affect the growth of V. vulnificus but still regulated the expression of major exotoxin genes, including rtxA, vvhA and plpA, thereby emerging as potential drug targets for anti-virulence therapies with low selective pressure for developing resistance. Altogether, this study characterized the functions of TFs at a genome-wide scale and identified novel targets to control the virulence of V. vulnificus.
Collapse
Affiliation(s)
- Dayoung Sung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minji Ahn
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hokyung Byun
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae Young Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hojun Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Zee-Won Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Ryu H, Song JW, Luan H, Sim Y, Kwak SS, Jang H, Jo YJ, Yoon H, Jeong H, Shin J, Park DY, Kwon K, Ameer GA, Rogers JA. Materials and Device Designs for Wireless Monitoring of Temperature and Thermal Transport Properties of Wound Beds during Healing. Adv Healthc Mater 2024; 13:e2302797. [PMID: 37983897 PMCID: PMC11468708 DOI: 10.1002/adhm.202302797] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Chronic wounds represent a major health risk for diabetic patients. Regeneration of such wounds requires regular medical treatments over periods that can extend for several months or more. Schemes for monitoring the healing process can provide important feedback to the patient and caregiver. Although qualitative indicators such as malodor or fever can provide some indirect information, quantitative measurements of the wound bed have the potential to yield important insights. The work presented here introduces materials and engineering designs for a wireless system that captures spatio-temporal temperature and thermal transport information across the wound continuously throughout the healing process. Systematic experimental and computational studies establish the materials aspects and basic capabilities of this technology. In vivo studies reveal that both the temperature and the changes in this quantity offer information on wound status, with indications of initial exothermic reactions and mechanisms of scar tissue formation. Bioresorbable materials serve as the foundations for versions of this device that create possibilities for monitoring on and within the wound site, in a way that bypasses the risks of physical removal.
Collapse
Affiliation(s)
- Hanjun Ryu
- Department of Advanced Materials EngineeringChung‐Ang UniversityAnseong17546Republic of Korea
- Department of Intelligence Energy and IndustryChung‐Ang UniversitySeoul06974Republic of Korea
| | - Joseph W. Song
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Haiwen Luan
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Department of Mechanical and Aerospace EngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Youngmin Sim
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Sung Soo Kwak
- Center for Bionics of Biomedical Research InstituteKorea Institute of Science and TechnologySeoul02456Republic of Korea
| | - Hokyung Jang
- Science Corp. 1010 Atlantic Ave. 100AlamedaCA94501USA
| | - Young Jin Jo
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Hong‐Joon Yoon
- Department of Electronic EngineeringGachon UniversitySeongnam13120Republic of Korea
| | - Hyoyoung Jeong
- Department of Electrical and Computer EngineeringUniversity of CaliforniaDavis, DavisCA95616USA
| | - Jaeho Shin
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Do Yun Park
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Kyeongha Kwon
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Guillermo Antonio Ameer
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Surgery, Feinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208USA
- International Institute for NanotechnologyNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey Institute for BionanotechnologyEvanstonIL60208USA
| | - John A. Rogers
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Surgery, Feinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208USA
- International Institute for NanotechnologyNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey Institute for BionanotechnologyEvanstonIL60208USA
- Department of Mechanical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Neurological Surgery, Feinberg School of MedicineNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
3
|
Chatterjee S, More M. Cyanobacterial Harmful Algal Bloom Toxin Microcystin and Increased Vibrio Occurrence as Climate-Change-Induced Biological Co-Stressors: Exposure and Disease Outcomes via Their Interaction with Gut-Liver-Brain Axis. Toxins (Basel) 2023; 15:289. [PMID: 37104227 PMCID: PMC10144574 DOI: 10.3390/toxins15040289] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
The effects of global warming are not limited to rising global temperatures and have set in motion a complex chain of events contributing to climate change. A consequence of global warming and the resultant climate change is the rise in cyanobacterial harmful algal blooms (cyano-HABs) across the world, which pose a threat to public health, aquatic biodiversity, and the livelihood of communities that depend on these water systems, such as farmers and fishers. An increase in cyano-HABs and their intensity is associated with an increase in the leakage of cyanotoxins. Microcystins (MCs) are hepatotoxins produced by some cyanobacterial species, and their organ toxicology has been extensively studied. Recent mouse studies suggest that MCs can induce gut resistome changes. Opportunistic pathogens such as Vibrios are abundantly found in the same habitat as phytoplankton, such as cyanobacteria. Further, MCs can complicate human disorders such as heat stress, cardiovascular diseases, type II diabetes, and non-alcoholic fatty liver disease. Firstly, this review describes how climate change mediates the rise in cyanobacterial harmful algal blooms in freshwater, causing increased levels of MCs. In the later sections, we aim to untangle the ways in which MCs can impact various public health concerns, either solely or in combination with other factors resulting from climate change. In conclusion, this review helps researchers understand the multiple challenges brought forth by a changing climate and the complex relationships between microcystin, Vibrios, and various environmental factors and their effect on human health and disease.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California–Irvine, Irvine, CA 92697, USA
- Toxicology Core, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental and Occupational Health, Program in Public Health, University of California–Irvine, Irvine, CA 92697, USA
- Division of Infectious Disease, Department of Medicine, UCI School of Medicine, University of California–Irvine, Irvine, CA 92697, USA
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California–Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Zou S, Wang Q, Zhang P, Wang B, Liu G, Zhang F, Li J, Wang F, Wang B, Zhang L. Biomimetic Nanosponges Enable the Detoxification of Vibrio vulnificus Hemolysin. Int J Mol Sci 2022; 23:ijms23126821. [PMID: 35743264 PMCID: PMC9224624 DOI: 10.3390/ijms23126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Vibrio vulnificus (V. vulnificus) infection-associated multiple antibiotic resistance has raised serious public health concerns. Recently, nanosponges (NSs) have been expected to provide innovative platforms for addressing antibacterial and drug-resistant challenges by targeting various pore-forming toxins (PFTs). In the present study, we constructed NSs to explore the effects and possible mechanism of recombinant V. vulnificus hemolysin (rVvhA)-induced injuries. In vitro, NSs significantly reversed rVvhA-induced apoptosis and necrosis, and improved toxin-induced intracellular reactive oxygen species (ROS) production, adenosine triphosphate (ATP) depletion, and apoptosis signaling pathway disruption. To explore the clinical translation potential of NSs, we established VvhA-induced septicemia and wound infection mouse models, respectively, and further found NSs could notably attenuate rVvhA-induced acute toxicity and septicemia-associated inflammation, as well as local tissue damage. In a conclusion, NSs showed excellent protective effects against rVvhA-induced toxicity, thus providing useful insights into addressing the rising threats of severe V. vulnificus infections.
Collapse
Affiliation(s)
- Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Peipei Zhang
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China;
| | - Bo Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Jie Li
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Fan Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
- Correspondence: (B.W.); (L.Z.); Tel.: +86-021-81871128 (B.W.); +86-021-81871129 (L.Z.)
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
- Correspondence: (B.W.); (L.Z.); Tel.: +86-021-81871128 (B.W.); +86-021-81871129 (L.Z.)
| |
Collapse
|
5
|
Çam S, Brinkmeyer R. Differential expression of vvhA and CPS operon allele 1 genes in Vibrio vulnificus under biofilm and planktonic conditions. Antonie van Leeuwenhoek 2020; 113:1437-1446. [PMID: 32696279 DOI: 10.1007/s10482-020-01452-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Examination of genes encoding for the virulence factors, hemolysin/cytolysin (vvhA) and capsular polysaccharide (CPS allele 1), during biofilm formation revealed that their expression was influenced by the maturity of the biofilm as well as by temperature. At 24 °C, expression of vvhA during biofilm formation was low between 4 and 12 h but increased 10-fold by 24 h to (5.1 × 104 ± 6.3 × 103mRNA copies/ml) as the biofilm matured. Compared to planktonic cells, expression of vvhA during biofilm formation at 24 °C was initially up-regulated at 4 h (1.07 ± 0.00-fold) but then was down-regulated almost four-fold during the intermediate and mature stages of biofilm formation. In contrast, vvhA expression at 37 °C was up-regulated almost four-fold in the early stages (4 and 6 h) of biofilm formation and remained two-fold up-regulated by 24 h even as the biofilm was deteriorating. CPS allele 1 expression at 24 °C during biofilm formation was up-regulated (1.50 ± 0.18-fold) during the initial attachment phase of the cells but was strongly down-regulated during the intermediate phases at 8 and 10 h (74.42 ± 42.16-fold and 453.76 ± 193.32-fold, respectively), indicating that capsular polysaccharide (CPS) is not important to intermediate biofilm architecture. Interestingly, as the biofilm matured by 24 h, expression of CPS allele 1 was again up-regulated (1.88 ± 1.07), showing that CPS plays a role in mature biofilm. At 37 °C, CPS allele 1 expression was significantly up-regulated (up to 105) during biofilm formation, indicating that the biofilm form of V. vulnificus may be preferred over the planktonic form in the human host.
Collapse
Affiliation(s)
- Sedat Çam
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, USA.
- Department of Biology, Harran University, 63100, Şanlıurfa, Turkey.
| | - Robin Brinkmeyer
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, USA
| |
Collapse
|
6
|
Abbas G, Zafar I, Ahmad S, Azam SS. Immunoinformatics design of a novel multi-epitope peptide vaccine to combat multi-drug resistant infections caused by Vibrio vulnificus. Eur J Pharm Sci 2020; 142:105160. [PMID: 31751777 DOI: 10.1016/j.ejps.2019.105160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/23/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Multi-drug resistant Vibrio vulnificus is a Gram-negative bacillus responsible for diseases, such as: sepsis, septicemia, gastroenteritis, and fatal necrotizing fasciitis in humans. The treatment and prevention of V. vulnificus infections are challenging because of resistance to antibiotics and the non-availability of a licensed vaccine. Considering this, an in-silico based approach comprising subtractive proteomics, immunoinformatics, molecular docking, and dynamics simulation studies is applied herein to identify potential epitope vaccine candidates for the mentioned pathogen. Two potential vaccine candidates: vibC and flgL are filtered based on essentiality, outer membrane localization, virulence, antigenic, pathway mapping, and cellular protein-protein network analysis. Using immunoinformatic tools, 9-mer B-cell derived T-cell antigenic epitopes are predicted for the said shortlisted two proteins that are demonstrating excellent affinity for predominant HLA allele (DRB1*0101) in human population. Screened peptides are used further in multi-epitope peptide designing and linked to an adjuvant to enhance the immunogenic properties of the designed construct. Furthermore, the construct was docked blindly to TLR4 immune receptor, and analyzed in conformational dynamics simulation to decipher the complex affinity and understand time dependent behavior, respectively. We expect this designed in silico construct to be useful for vaccinologists to evaluate its immune protective efficacy in in vivo animal models.
Collapse
Affiliation(s)
- Ghulam Abbas
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Zafar
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
7
|
Li G, Wang MY. The role of Vibrio vulnificus virulence factors and regulators in its infection-induced sepsis. Folia Microbiol (Praha) 2019; 65:265-274. [PMID: 31840198 DOI: 10.1007/s12223-019-00763-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Due to the development of Marine aquaculture, infections caused by Vibrio vulnificus are common all over the world. Symptoms of V. vulnificus infection vary from gastrointestinal illness to septicemia. After infection with V. vulnificus, some patients showed gastrointestinal symptoms, including vomiting, fever, diarrhea, and so on. Others appeared wound infection at the site of contact with bacteria, and even developed sepsis. Once it develops into sepsis, the prognosis of patients is very poor. However, its underlying pathogenic mechanism remains largely undetermined. Growing evidence shows that it can induce primary septicemia mainly via essential virulence factors and regulators. Therefore, it is important to identify the factors that play roles in sepsis. In this review, we systematically expounded the role of V. vulnificus virulence factors and regulators in its infection-induced sepsis in order to provide useful information for the treatment and prevention of V. vulnificus.
Collapse
Affiliation(s)
- Gang Li
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China.,Weihai Municipal Hospital, Weihai, 264200, China
| | - Ming-Yi Wang
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China. .,Weihai Municipal Hospital, Weihai, 264200, China.
| |
Collapse
|
8
|
Small-molecule inhibitor of HlyU attenuates virulence of Vibrio species. Sci Rep 2019; 9:4346. [PMID: 30867441 PMCID: PMC6416295 DOI: 10.1038/s41598-019-39554-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/10/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing antibiotic resistance has led to the development of new strategies to combat bacterial infection. Anti-virulence strategies that impair virulence of bacterial pathogens are one of the novel approaches with less selective pressure for developing resistance than traditional strategies that impede viability. In this study, a small molecule CM14 [N-(4-oxo-4H-thieno[3,4-c]chromen-3-yl)-3-phenylprop-2-ynamide] that inhibits the activity of HlyU, a transcriptional regulator essential for the virulence of the fulminating human pathogen Vibrio vulnificus, has been identified. Without affecting bacterial growth or triggering the host cell death, CM14 reduces HlyU-dependent expression of virulence genes in V. vulnificus. In addition to the decreased hemolysis of human erythrocytes, CM14 impedes host cell rounding and lysis caused by V. vulnificus. Notably, CM14 significantly enhances survival of mice infected with V. vulnificus by alleviating hepatic and renal dysfunction and systemic inflammation. Biochemical, mass spectrometric, and mutational analyses revealed that CM14 inhibits HlyU from binding to target DNA by covalently modifying Cys30. Remarkably, CM14 decreases the expression of various virulence genes of other Vibrio species and thus attenuates their virulence phenotypes. Together, this molecule could be an anti-virulence agent against HlyU-harboring Vibrio species with a low selective pressure for the emergence of resistance.
Collapse
|
9
|
Ho YC, Hung FR, Weng CH, Li WT, Chuang TH, Liu TL, Lin CY, Lo CJ, Chen CL, Chen JW, Hashimoto M, Hor LI. Lrp, a global regulator, regulates the virulence of Vibrio vulnificus. J Biomed Sci 2017; 24:54. [PMID: 28800764 PMCID: PMC5554404 DOI: 10.1186/s12929-017-0361-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background An attenuated mutant (designated NY303) of Vibrio vulnificus, which causes serious wound infection and septicemia in humans, was isolated fortuitously from a clinical strain YJ016. This mutant was defective in cytotoxicity, migration on soft agar and virulence in the mouse. The purpose of this study was to map the mutation in this attenuated mutant and further explore how the gene thus identified is involved in virulence. Methods The whole genome sequence of mutant NY303 determined by next-generation sequencing was compared with that of strain YJ016 to map the mutations. By isolating and characterizing the specific gene-knockout mutants, the gene associated with the phenotype of mutant NY303 was identified. This gene encodes a global regulator, Lrp. A mutant, YH01, deficient in Lrp was isolated and examined in vitro, in vivo and ex vivo to find the affected virulence mechanisms. The target genes of Lrp were further identified by comparing the transcriptomes, which were determined by RNA-seq, of strain YJ016 and mutant YH01. The promoters bound by Lrp were identified by genome footprinting-sequencing, and those related with virulence were further examined by electrophoretic mobility shift assay. Results A mutation in lrp was shown to be associated with the reduced cytotoxicity, chemotaxis and virulence of mutant NY303. Mutant YH01 exhibited a phenotype resembling that of mutant NY303, and was defective in colonization in the mouse and growth in mouse serum, but not the antiphagocytosis ability. 596 and 95 genes were down- and up-regulated, respectively, in mutant YH01. Many of the genes involved in secretion of the MARTX cytotoxin, chemotaxis and iron-acquisition were down-regulated in mutant YH01. The lrp gene, which was shown to be negatively autoregulated, and 7 down-regulated virulence-associated genes were bound by Lrp in their promoters. A 14-bp consensus sequence, mkCrTTkwAyTsTG, putatively recognized by Lrp was identified in the promoters of these genes. Conclusions Lrp is a global regulator involved in regulation of cytotoxicity, chemotaxis and iron-acquisition in V. vulnificus. Down-regulation of many of the genes associated with these properties may be responsible, at least partly, for loss of virulence in mutant NY303. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0361-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Chi Ho
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Feng-Ru Hung
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Chao-Hui Weng
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Wei-Ting Li
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Tzu-Hung Chuang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Lin Liu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ching-Yuan Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan, 32001, Taiwan
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan, 32001, Taiwan
| | - Chun-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Jen-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan.,Center of Infectious Disease and Signal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Masayuki Hashimoto
- Center of Infectious Disease and Signal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lien-I Hor
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
10
|
Elgaml A, Miyoshi SI. Regulation systems of protease and hemolysin production inVibrio vulnificus. Microbiol Immunol 2017; 61:1-11. [DOI: 10.1111/1348-0421.12465] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Abdelaziz Elgaml
- Microbiology and Immunology Department; Faculty of Pharmacy; Mansoura University; Elgomhouria Street Mansoura 35516 Egypt
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama University; 1-1-1 Tsushima-Naka Kita-Ku Okayama 700-8530 Japan
| |
Collapse
|
11
|
Genotypic Diversity and Population Structure of Vibrio vulnificus Strains Isolated in Taiwan and Korea as Determined by Multilocus Sequence Typing. PLoS One 2015; 10:e0142657. [PMID: 26599487 PMCID: PMC4658092 DOI: 10.1371/journal.pone.0142657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
The genetic diversity and population structure of Vibrio vulnificus isolates from Korea and Taiwan were investigated using PCR-based assays targeting putative virulence-related genes and multilocus sequence typing (MLST). BOX-PCR genomic fingerprinting identified 52 unique genotypes in 84 environmental and clinical V. vulnificus isolates. The majority (> 50%) of strains had pathogenic genotypes for all loci tested; moreover, many environmental strains had pathogenic genotypes. Although significant (p < 0.05) inter-relationships among the genotypes were observed, the association between genotype and strain source (environmental or clinical) was not significant, indicating that genotypic characteristics alone are not sufficient to predict the isolation source or the virulence of a given V. vulnificus strain and vice versa. MLST revealed 23–35 allelic types per locus analyzed, resulting in a total of 44 unique sequence types (STs). Two major monophyletic groups (lineages A and B) corresponding to the two known lineages of V. vulnificus were observed; lineage A had six STs that were exclusively environmental, whereas lineage B had STs from both environmental and clinical sources. Pathogenic and nonpathogenic genotypes predominated in MLST lineages B and A, respectively. In addition, V. vulnificus was shown to be in linkage disequilibrium (p < 0.05), although two different recombination tests (PHI and Sawyer’s tests) detected significant evidence of recombination. Tajima’s D test also indicated that V. vulnificus might be comprised of recently sub-divided lineages. These results suggested that the two lineages revealed by MLST correspond to two distinct ecotypes of V. vulnificus.
Collapse
|
12
|
Lohith GK, Kingston JJ, Singh AK, Murali HS, Batra HV. Evaluation of recombinant leukocidin domain of VvhA exotoxin of Vibrio vulnificus as an effective toxoid in mouse model. Immunol Lett 2015; 167:47-53. [PMID: 26141623 DOI: 10.1016/j.imlet.2015.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 11/28/2022]
Abstract
Vibrio vulnificus hemolysin A (VvhA) is a pore forming toxin and plays an important role in the pathogenesis. The hemolytic and cytotytic property of VvhA toxin is associated with N-terminal leukocidin domain which triggers apoptotic signaling cascade in epithelial cells. The present study was undertaken to assess the protective efficacy of recombinant VvhA leukocidin domain (rL/VvhA) against VvhA toxin challenge using in vitro and in vivo assays. The rL/VvhA protein was found to be non-toxic with no significant hemolytic or cytotoxic effects. Intraperitoneal (I.P.) immunization of BALB/c mice with rL/VvhA protein elicited significantly higher specific serum antibody titer with mixed Th1/Th2 mediated immune responses. HeLa cell monolayer supplemented with anti-rL/VvhA antibodies were effectively protected (viability 86.69%) against lethal 5 LD50 toxin challenge. An effective in vitro proliferation of lymphocyte was observed upon re-stimulation of rL/VvhA primed splenocytes with formalin inactivated VvhA toxin (fVvhA). Co-expression of Th1/Th2 polarized cytokines (IFN-γ, IL-12 and IL-4), were seen in the cell culture supernatant. In contrast to sham immunized mice, rL/VvhA immunized mice demonstrated significant protection (90% survival) against native toxin challenge in vitro and in vivo infection models. These results suggested leukocidin domain of the VvhA toxin as protective immunogen for possible protection against V. vulnificus VvhA.
Collapse
Affiliation(s)
| | | | - Amit Kumar Singh
- Department of Microbiology, Defence Food Research Laboratory, Mysore 570011, India
| | | | - Harsh Vardhan Batra
- Department of Microbiology, Defence Food Research Laboratory, Mysore 570011, India.
| |
Collapse
|
13
|
Hor LI, Chen CL. Cytotoxins of Vibrio vulnificus: Functions and roles in pathogenesis. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2012.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Liu M, Crosa JH. The regulator HlyU, the repeat-in-toxin gene rtxA1, and their roles in the pathogenesis of Vibrio vulnificus infections. Microbiologyopen 2012; 1:502-13. [PMID: 23233275 PMCID: PMC3535394 DOI: 10.1002/mbo3.48] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/27/2012] [Accepted: 08/06/2012] [Indexed: 12/19/2022] Open
Abstract
HlyU is a master regulator that plays an essential role in the virulence of the human pathogen Vibrio vulnificus. One of the most noteworthy characteristics of HlyU regulation in this organism is its positive control of the expression of the repeat-in-toxin (RtxA1) gene, one of the most important virulence factors accounting for the fulminating and damaging nature of V. vulnificus infections. In this work, we reviewed the latest studies of RtxA1 in this bacterium and highlight the mechanism of gene regulation of rtxA1 expression by HlyU under a broader gene regulatory network.
Collapse
Affiliation(s)
- Moqing Liu
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
15
|
Kim SP, Lee GW, Kim CM, Shin SH. Coordinate Regulation ofVibrio vulnificusHeme Receptor HupA Expression by Cyclic AMP-receptor Protein and Ferric Uptake Regulator. ACTA ACUST UNITED AC 2012. [DOI: 10.4167/jbv.2012.42.4.294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sun-Pyo Kim
- Department of Emergence Medicine, Chosun University Medical School, Gwangju, Korea
| | - Gang-Wook Lee
- Department of Emergence Medicine, Chosun University Medical School, Gwangju, Korea
| | - Choon-Mee Kim
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, Korea
| | - Sung-Heui Shin
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, Korea
- Department of Microbiology, Chosun University Medical School, Gwangju, Korea
| |
Collapse
|
16
|
Lee TH, Kim YR, Rhee JH, Kim JH, Woo HR, Chung KM. Characterization of monoclonal antibodies targeting the RtxA1 toxin of Vibrio vulnificus. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Lo HR, Lin JH, Chen YH, Chen CL, Shao CP, Lai YC, Hor LI. RTX Toxin Enhances the Survival of Vibrio vulnificus During Infection by Protecting the Organism From Phagocytosis. J Infect Dis 2011; 203:1866-74. [DOI: 10.1093/infdis/jir070] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Regulation of cytotoxicity by quorum-sensing signaling in Vibrio vulnificus is mediated by SmcR, a repressor of hlyU. J Bacteriol 2011; 193:2557-65. [PMID: 21398530 DOI: 10.1128/jb.01259-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytotoxicity is an important virulence determinant in the pathogenesis of Vibrio vulnificus, and two cytotoxins, RTX (encoded by rtxA1) and cytolysin/hemolysin (encoded by vvhA), have been identified in this organism. We showed that the quorum-sensing regulator LuxO controlled the cytotoxicity of this organism: a ΔluxO mutant exhibited low cytotoxicity, whereas a constitutively activated luxO mutant, luxO(D47E), remained highly cytotoxic. The cytotoxicity of the ΔluxO mutant was restored when smcR, a Vibrio harveyi luxR homologue repressed by luxO, was further deleted. SmcR then was shown to repress the expression of both rtxA1 and vvhA. A DNA library of V. vulnificus was screened in Escherichia coli for clones that upregulated vvhA in the presence of SmcR, and hlyU, which has been shown to positively regulate rtxA1 and vvhA, was identified. We demonstrated that SmcR repressed the expression of hlyU and bound to a region upstream of hlyU in V. vulnificus. The deletion of hlyU resulted in the loss of cytotoxicity and reduced cytolysin/hemolysin production in the ΔsmcR mutant. The ΔsmcR ΔhlyU mutant regained cytotoxicity and cytolysin/hemolysin activity when hns, which has been shown to repress the transcription of rtxA1 and interfere with hlyU, was further removed. Collectively, our data suggest that SmcR mediates the regulation of cytotoxicity by quorum-sensing signaling in V. vulnificus by repressing hlyU, an activator of rtxA1 and vvhA.
Collapse
|
19
|
Horseman MA, Surani S. A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int J Infect Dis 2011; 15:e157-e166. [PMID: 21177133 DOI: 10.1016/j.ijid.2010.11.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/28/2010] [Accepted: 11/09/2010] [Indexed: 02/05/2023] Open
Abstract
Vibrio vulnificus is a halophilic Gram-negative bacillus found worldwide in warm coastal waters. The pathogen has the ability to cause primary sepsis in certain high-risk populations, including patients with chronic liver disease, immunodeficiency, iron storage disorders, end-stage renal disease, and diabetes mellitus. Most reported cases of primary sepsis in the USA are associated with the ingestion of raw or undercooked oysters harvested from the Gulf Coast. The mortality rate for patients with severe sepsis is high, exceeding 50% in most reported series. Other clinical presentations include wound infection and gastroenteritis. Mild to moderate wound infection and gastroenteritis may occur in patients without obvious risk factors. Severe wound infection is often characterized by necrotizing skin and soft-tissue infection, including fasciitis and gangrene. V. vulnificus possesses several virulence factors, including the ability to evade destruction by stomach acid, capsular polysaccharide, lipopolysaccharide, cytotoxins, pili, and flagellum. The preferred antimicrobial therapy is doxycycline in combination with ceftazidime and surgery for necrotizing soft-tissue infection.
Collapse
Affiliation(s)
- Michael A Horseman
- Department of Pharmacy Practice, College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas, USA.
| | | |
Collapse
|
20
|
Outer membrane vesicles of Vibrio vulnificus deliver cytolysin–hemolysin VvhA into epithelial cells to induce cytotoxicity. Biochem Biophys Res Commun 2010; 399:607-12. [DOI: 10.1016/j.bbrc.2010.07.122] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 07/29/2010] [Indexed: 12/20/2022]
|
21
|
|
22
|
Miyoshi S, Oh EG, Hirata K, Shinoda S. Exocellulr Toxic Factors Prowced byVibrio Vulnificus. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549309014409] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Drake SL, DePaola A, Jaykus LA. An Overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci Food Saf 2007. [DOI: 10.1111/j.1541-4337.2007.00022.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Lee HJ, Kim SM, Kim KS, Lee KH, Park SJ. Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun 2006; 74:5586-94. [PMID: 16988233 PMCID: PMC1594942 DOI: 10.1128/iai.00171-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a pathogenic bacterium that causes gastroenteritis and primary septicemia. To identify factors involved in microbial adherence to the host cells, we investigated bacterial proteins capable of binding to fibronectin, one of the main components comprised of the extracellular matrix of mammalian cells. A protein of approximately 35 kDa was purified from the extracts of V. vulnificus by its property to bind to immobilized fibronectin. This protein was identified as OmpU, one of the major outer membrane proteins of V. vulnificus. In binding assays using immobilized fibronectin, the number of ompU mutant cells bound to fibronectin was only 4% of that of wild-type cells bound to fibronectin. In addition, the exogenous addition of antibodies against OmpU resulted in a decreased ability of wild-type V. vulnificus to adhere to fibronectin. The ompU mutant was also defective in its adherence to RGD tripeptide (5% of the adherence of the wild type to RGD), cytoadherence to HEp-2 cells (7% of the adherence of the wild type to HEp-2), cytotoxicity to cell cultures (39% of the cytotoxicity of the wild type), and mortality in mice (10-fold increase in the 50% lethal dose). The ompU mutant complemented with the intact ompU gene restored its abilities for adherence to fibronectin, RGD tripeptide, and HEp-2 cells; cytotoxicity to HEp-2 cells; and mouse lethality. This study indicates that OmpU is an important virulence factor involved in the adherence of V. vulnificus to the host cells.
Collapse
Affiliation(s)
- Sung Young Goo
- Department of Parasitology, Yonsei University School of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Choi MH, Sun HY, Park RY, Bai YH, Chung YY, Kim CM, Shin SH. Human serum albumin enhances the hemolytic activity of Vibrio vulnificus. Biol Pharm Bull 2006; 29:180-2. [PMID: 16394536 DOI: 10.1248/bpb.29.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio vulnificus hemolysin (VvhA) is inactivated in the late growth phase by its oligomerization. Albumin is known to affect the activities of many bacterial toxins. In this study, we investigated the effects of human or bovine serum albumin (HSA or BSA) on the production and activity of VvhA. HSA did not affect V. vulnificus growth and vvhA transcription. However, VvhA hemolytic activity in culture supernatants was significantly higher in the presence of HSA than in the absence of HSA. By Western blot analysis, the oligomerization of VvhA was inhibited and the remaining active VvhA monomer was increased in culture supernatants containing HSA. BSA produced similar results. These findings indicate that both HSA and BSA stabilize VvhA and delay VvhA inactivation by oligomerization, and thus enhance VvhA activity.
Collapse
Affiliation(s)
- Mi-Hwa Choi
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Shin SH, Sun HY, Choi MH, Park RY, Bai YH, Kim CM, Kim SY, Kim YR, Lee SE, Rhee JH. Inactivation of Vibrio vulnificus hemolysin by oligomerization but not proteolysis. Biol Pharm Bull 2005; 28:1294-7. [PMID: 15997117 DOI: 10.1248/bpb.28.1294] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio vulnificus extracellular protease (VvpE) is believed to destroy its hemolysin (VvhA) in the late growth phase, without obvious experimental evidence. So, we attempted to elucidate the mechanism. The hemolytic activity steeply increased with the expression of the VvhA in the early growth phase, and then abruptly declined with the expression of VvpE in the late growth phase. However, the VvhA activity also abruptly declined in a VvpE-deficient mutant. In Western blot, the degradation of VvhA was not observed; instead, the oligomerization of VvhA increased with the concomitant loss of hemolytic activity. These results evidently indicate that the inactivation of VvhA is due to the novel oligomerization of VvhA by unknown mechanism, but not to the destruction of VvhA by VvpE, so that the routine functional assay measuring hemolytic activity cannot reflect the actual production of VvhA.
Collapse
Affiliation(s)
- Sung-Heui Shin
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Bacteria of the genus Vibrio are normal habitants of the aquatic environment and play roles for biocontrole of aquatic ecosystem, but some species are believed to be human pathogens. These species can be classified into two groups according to the types of diseases they cause: the gastrointestinal infections and the extraintestinal infections. The pathogenic species produce various pathogenic factors including enterotoxin, hemolysin, cytotoxin, protease, siderophore, adhesive factor, and hemagglutinin. We studied various pathogenic factors of vibrios with special emphasis on protease and hemolysin of V. vulnificus. V. vulnificus is now recognized as being among the most rapidly fatal of human pathogens, although the infection is appeared in patients having underlying disease(s) such as liver dysfunction, alcoholic cirrhosis or haemochromatosis. V. vulnificus protease (VVP) is thought to be a major toxic factor causing skin damage in the patients having septicemia. VVP is a metalloprotease and degrades a number of biologically important proteins including elastin, fibrinogen, and plasma proteinase inhibitors of complement components. VVP causes skin damages through activation of the Factor XII-plasma kallikrein-kinin cascade and/or exocytotic histamine release from mast cells, and a haemorrhagic lesion through digestion of the vascular basement membrane. Thus, the protease is the most probable candidate for tissue damage and bacterial invasion during an infection. Pathogenic roles and functional mechanism of other factors including hemolysins of V. vulnificus and V. mimicus are also shown in this review article.
Collapse
Affiliation(s)
- Sumio Shinoda
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
28
|
Lee SE, Ryu PY, Kim SY, Kim YR, Koh JT, Kim OJ, Chung SS, Choy HE, Rhee JH. Production of Vibrio vulnificus hemolysin in vivo and its pathogenic significance. Biochem Biophys Res Commun 2004; 324:86-91. [PMID: 15464986 DOI: 10.1016/j.bbrc.2004.09.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Indexed: 11/19/2022]
Abstract
Hemolyin/cytolysin (VvhA) is one of the representative exotoxins produced by Vibrio vulnificus. Cytotoxic mechanism of VvhA has been extensively studied. However, there have been controversies concerning the pathogenic significance since vvhA(-) mutant showed no LD(50) change in mice. In this study, we investigated whether VvhA is expressed in vivo. When V. vulnificus was cultured in the presence of normal pooled human serum, substantial amount of VvhA was detected by ELISA and the transcription of vvhA was also evidently confirmed by RT-PCR and a transcriptional reporter assay. To investigate whether VvhA is expressed in vivo, mice were infected with V. vulnificus and bacterial RNAs were harvested from the mice. In vivo vvhA transcription was observed evidently by RT-PCR. We hereby propose that VvhA is substantially produced in vivo and would contribute to the pathogenesis of V. vulnificus septicemia.
Collapse
Affiliation(s)
- Shee Eun Lee
- Department of Dental Pharmacology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee YR, Park KH, Lin ZZ, Kho YJ, Park JW, Rho HW, Koo BS, Kim HR, Song EK, Yu HN, Han MK, Lee SO, Jhee EC, Kim JS. A calcium-calmodulin antagonist blocks experimental Vibrio vulnificus cytolysin-induced lethality in an experimental mouse model. Infect Immun 2004; 72:6157-9. [PMID: 15385523 PMCID: PMC517569 DOI: 10.1128/iai.72.10.6157-6159.2004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We demonstrated that trifluoperazine, a calcium-calmodulin antagonist, blocked the hyperpermeability induced by Vibrio vulnificus cytolysin in in vitro-modeled endothelium and prevented the deaths of mice. Furthermore, compared to tetracycline alone, tetracycline combined with trifluoperazine enhanced the survival rate of V. vulnificus-infected mice, indicating the role of the cytolysin as an important factor in pathogenesis.
Collapse
Affiliation(s)
- Young-Rae Lee
- Department of Biochemistry, Chonbuk National University Medical School, Chonju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen YC, Chuang YC, Chang CC, Jeang CL, Chang MC. A K+ yptake protein, TrkA, is required for serum, protamine, and polymyxin B resistance in Vibrio vulnificus. Infect Immun 2004; 72:629-36. [PMID: 14742502 PMCID: PMC321579 DOI: 10.1128/iai.72.2.629-636.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus, a highly virulent marine bacterium, is the causative agent of both serious wound infections and fatal septicemia in many areas of the world. To identify the genes required for resistance to human serum, we constructed a library of transposon mutants of V. vulnificus and screened them for hypersensitivity to human serum. Here we report that one of the isolated serum-susceptible mutants had a mutation in an open reading frame identified as trkA, a gene encoding an amino acid sequence showing high identity to that of TrkA of Vibrio alginolyticus, a protein required for the uptake of potassium. A trkA isogenic mutant was constructed via insertional inactivation, and it was significantly more easily killed by human serum, protamine, or polymyxin B than was the wild type. At K+ concentrations of 1 to 20 mM, this isogenic mutant showed attenuated growth compared to the wild-type strain. In addition, infection experiments demonstrated virulence attenuation when this mutant was administered intraperitoneally or subcutaneously to both normal and iron-treated mice, indicating that TrkA may modulate the transport of potassium and resistance to host innate defenses and that it is important for virulence in mice.
Collapse
Affiliation(s)
- Yu-Chung Chen
- Department of Food Science, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Kim SJ, Kim BC, Kim DC, Kim MK, Cho KH, Seo JJ, Shin JH. A fatal case of Vibrio vulnificus meningoencephalitis. Clin Microbiol Infect 2003; 9:568-71. [PMID: 12848737 DOI: 10.1046/j.1469-0691.2003.00680.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this paper is to report a rare case of Vibrio vulnificus presenting as meningoencephalitis without a wound infection. Vibrio vulnificus is capable of causing severe and often fatal infections in susceptible individuals. It commonly causes necrotizing wound infections, primary septicemia, and gastroenteritis. A 69-year-old man had meningoencephalitis with lesion on the red nucleus, substantia nigra, basal ganglia, and dentate nucleus as the initial clinical manifestation of a V. vulnificus infection. This is the first case of V. vulnificus infection in which MRI demonstrated the involvement of deep nuclei of the brain.
Collapse
Affiliation(s)
- S J Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Rho HW, Choi MJ, Lee JN, Park JW, Kim JS, Park BH, Sohn HS, Kim HR. Cytotoxic mechanism of Vibrio vulnificus cytolysin in CPAE cells. Life Sci 2002; 70:1923-34. [PMID: 12005177 DOI: 10.1016/s0024-3205(02)01480-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vibrio vulnificus is an estuarian bacterium that causes septicemia and serious wound infection. The cytolysin, one of the important virulence determinants in V. vulnificus infection, has been reported to have lethal activity primarily by increasing pulmonary vascular permeability. In the present study, we investigated the cytotoxic mechanism of V. vulnificus cytolysin in cultured pulmonary artery endothelial (CPAE) cells, which are possible target cells of cytolysin in vivo. V. vulnificus cytolysin caused the CPAE cell damages with elevation of the cytosolic free Ca2+, DNA fragmentation, and decrease of the cellular NAD+ and ATP level. These cytotoxic effects of V. vulnificus cytolysin were prevented by EGTA and aminobenzamide, but were not affected by verapamil or catalase. These results indicate that the elevation of cytosolic free Ca2+ induced by V. vulnificus cytolysin causes the increase of DNA fragmentation and the damaged DNA activates nuclear poly(ADP-ribose) synthetase, which depletes the cellular NAD+ and ATP, resulting in cell death.
Collapse
Affiliation(s)
- Hye-Won Rho
- Department of Biochemistry and Institute for Medical Sciences, Medical School, Chonbuk National University, Chonju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fan JJ, Shao CP, Ho YC, Yu CK, Hor LI. Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infect Immun 2001; 69:5943-8. [PMID: 11500479 PMCID: PMC98719 DOI: 10.1128/iai.69.9.5943-5948.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We isolated a Vibrio vulnificus mutant that was deficient in both metalloprotease and cytolysin by allelic exchange. The virulence of this mutant in mice and its cytotoxicity for HEp-2 cells were comparable to those of the wild-type strain, indicating that neither factor was essential for these properties. The cytolysin, but not the protease, seemed to be important for causing damage in the alimentary tract of the mice.
Collapse
Affiliation(s)
- J J Fan
- Department of Microbiology and Immunology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
34
|
Starks AM, Schoeb TR, Tamplin ML, Parveen S, Doyle TJ, Bomeisl PE, Escudero GM, Gulig PA. Pathogenesis of infection by clinical and environmental strains of Vibrio vulnificus in iron-dextran-treated mice. Infect Immun 2000; 68:5785-93. [PMID: 10992486 PMCID: PMC101538 DOI: 10.1128/iai.68.10.5785-5793.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an opportunistic pathogen that contaminates oysters harvested from the Gulf of Mexico. In humans with compromising conditions, especially excess levels of iron in plasma and tissues, consumption of contaminated seafood or exposure of wounds to contaminated water can lead to systemic infection and disfiguring skin infection with extremely high mortality. V. vulnificus-associated diseases are noted for the rapid replication of the bacteria in host tissues, with extensive tissue damage. In this study we examined the virulence attributes of three virulent clinical strains and three attenuated oyster or seawater isolates in mouse models of systemic disease. All six V. vulnificus strains caused identical skin lesions in subcutaneously (s.c.) inoculated iron dextran-treated mice in terms of numbers of recovered CFU and histopathology; however, the inocula required for identical frequency and magnitude of infection were at least 350-fold higher for the environmental strains. At lethal doses, all strains caused s. c. skin lesions with extensive edema, necrosis of proximate host cells, vasodilation, and as many as 10(8) CFU/g, especially in perivascular regions. These data suggest that the differences between these clinical and environmental strains may be related to growth in the host or susceptibility to host defenses. In non-iron dextran-treated mice, strains required 10(5)-fold-higher inocula to cause an identical disease process as with iron dextran treatment. These results demonstrate that s.c. inoculation of iron dextran-treated mice is a useful model for studying systemic disease caused by V. vulnificus.
Collapse
Affiliation(s)
- A M Starks
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jeong KC, Jeong HS, Rhee JH, Lee SE, Chung SS, Starks AM, Escudero GM, Gulig PA, Choi SH. Construction and phenotypic evaluation of a Vibrio vulnificus vvpE mutant for elastolytic protease. Infect Immun 2000; 68:5096-106. [PMID: 10948131 PMCID: PMC101747 DOI: 10.1128/iai.68.9.5096-5106.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an opportunistic gram-negative pathogen that commonly contaminates oysters. Predisposed individuals who consume raw oysters can die within days from sepsis, and even otherwise healthy people are susceptible to serious wound infection after contact with contaminated seafood or seawater. Numerous secreted and cell-associated virulence factors have been proposed to account for the fulminating and destructive nature of V. vulnificus infections. Among the putative virulence factors is an elastolytic metalloprotease. We cloned and sequenced the vvpE gene encoding an elastase of V. vulnificus ATCC 29307. The functions of the elastase were assessed by constructing vvpE insertional knockout mutants and evaluating phenotypic changes in vitro and in mice. Although other types of protease activity were still observed in vvpE mutants, elastase activity was completely absent in the mutants and was restored by reintroducing the recombinant vvpE gene. In contrast to previous characterization of elastase as a potential virulence factor, which was demonstrated by injecting the purified protein into animals, inactivation of the V. vulnificus vvpE gene did not affect the ability of the bacteria to infect mice and cause damage, either locally in subcutaneous tissues or systemically in the liver, in both iron-treated and normal mice. Furthermore, a vvpE mutant was not affected with regard to cytolytic activity toward INT407 epithelial cells or detachment of INT407 cells from culture dishes in vitro. Therefore, it appears that elastase is less important in the pathogenesis of V. vulnificus than would have been predicted by examining the effects of administering purified proteins to animals. However, V. vulnificus utilizes a variety of virulence factors; hence, the effects of inactivation of elastase alone could be masked by other compensatory virulence factors.
Collapse
Affiliation(s)
- K C Jeong
- Department of Food Science and Technology, Institute of Biotechnology, Chonnam National University, Kwang-Ju, 500-757, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee SE, Shin SH, Kim SY, Kim YR, Shin DH, Chung SS, Lee ZH, Lee JY, Jeong KC, Choi SH, Rhee JH. Vibrio vulnificus has the transmembrane transcription activator ToxRS stimulating the expression of the hemolysin gene vvhA. J Bacteriol 2000; 182:3405-15. [PMID: 10852871 PMCID: PMC101907 DOI: 10.1128/jb.182.12.3405-3415.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an attempt to dissect the virulence regulatory mechanism in Vibrio vulnificus, we tried to identify the V. cholerae transmembrane virulence regulator toxRS (toxRS(Vc)) homologs in V. vulnificus. By comparing the sequences of toxRS of V. cholerae and V. parahaemolyticus (toxRS(Vp)), we designed a degenerate primer set targeting well-conserved sequences. Using the PCR product as an authentic probe for Southern blot hybridization, a 1.6-kb BglII-HindIII fragment and a 1.2-kb HindIII fragment containing two complete open reading frames and one partial open reading frame attributable to toxR(Vv), toxS(Vv), and htpG(Vv) were cloned. ToxR(Vv) shared 55.0 and 63.0% sequence homology with ToxR(Vc) and ToxR(Vp), respectively. ToxS(Vv) was 71.5 and 65.7% homologous to ToxS(Vc) and ToxS(Vp), respectively. The amino acid sequences of ToxRS(Vv) showed transmembrane and activity domains similar to those observed in ToxRS(Vc) and ToxRS(Vp). Western blot analysis proved the expression of ToxR(Vv) in V. vulnificus. ToxRS(Vv) enhanced, in an Escherichia coli background, the expression of the V. vulnificus hemolysin gene (vvhA) fivefold. ToxRS(Vv) also activated the ToxR(Vc)-regulated ctx promoter incorporated into an E. coli chromosome. A toxR(Vv) null mutation decreased hemolysin production. The defect in hemolysin production could be complemented by a plasmid harboring the wild-type gene. The toxR(Vv) mutation also showed a reversed outer membrane protein expression profile in comparison to the isogenic wild-type strain. These results demonstrate that ToxR(Vv) may regulate the virulence expression of V. vulnificus.
Collapse
Affiliation(s)
- S E Lee
- Department of Microbiology, Chosun University Medical School, Kwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Previous work suggested that a metalloprotease, Vvp, may be a virulence factor of Vibrio vulnificus, which causes severe wound infection and septicemia in humans. To determine the role of Vvp in pathogenesis, we isolated an isogenic protease-deficient (PD) mutant of Vibrio vulnificus by in vivo allelic exchange. This PD mutant was as virulent as its parental strain in mice infected intraperitoneally and was 10-fold more virulent in mice infected via the oral route. Furthermore, the PD mutant was indistinguishable from its parental strain in invasion from peritoneal cavity into blood stream, enhancement of vascular permeability, growth in murine blood, and utilization of hemoglobin and transferrin. These data suggest that Vvp is not essential for virulence in the mouse. However, the cytolysin activity in the culture supernatant of the PD mutant was found to be twofold higher than that of the wild-type strain and remained for a much longer period. The higher cytolysin activity of the PD mutant may be associated with the enhanced virulence in mice infected via the oral route.
Collapse
Affiliation(s)
- C P Shao
- Department of Microbiology and Immunology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
| | | |
Collapse
|
38
|
Wang SM, Liu CC, Chiou YY, Yang HB, Chen CT. Vibrio vulnificus infection complicated by acute respiratory distress syndrome in a child with nephrotic syndrome. Pediatr Pulmonol 2000; 29:400-3. [PMID: 10790253 DOI: 10.1002/(sici)1099-0496(200005)29:5<400::aid-ppul10>3.0.co;2-j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A 9-year-old girl with nephrotic syndrome visited a local hospital after developing fever, chills, and edematous changes and multiple hemorrhagic bullae on both legs over 2 days. Cultures of blood and an aspirate from the bullae yielded Vibrio vulnificus. The patient was transferred to our hospital because of persistent fever, generalized edema, acute renal failure, and disseminated intravascular coagulopathy. We treated this patient as a V. vulnificus infection complicated with necrotizing fasciitis. With minocycline and ceftazidime combination therapy was instituted. Emergency fasciotomy and continuous peritoneal dialysis were performed. The patient developed acute respiratory distress syndrome (ARDS) during the hospitalization, requiring intubation and mechanical ventilation. She eventually died. The histopathological findings showed diffuse alveolar damage with lobular pneumonitis. Hyaline membranes, composed of proteinaceous exudate and cellular debris, covered the alveolar surfaces. Microscopic examinations of lung could not distinguish the effects of cytolysin from other insults to lungs that occur in ARDS. This report highlights the postmortem pathological findings in V. vulnificus infection in a child with nephrotic syndrome complicated by ARDS.
Collapse
Affiliation(s)
- S M Wang
- Department of Pediatrics, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Abstract
Vibrio vulnificus is capable of causing severe and often fatal infections in susceptible individuals. It causes two distinct disease syndromes, a primary septicemia and necrotizing wound infections. This review discusses the interaction of environmental conditions, host factors, and bacterial virulence determinants that contribute to the epidemiology and pathogenesis of V. vulnificus.
Collapse
Affiliation(s)
- M S Strom
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | | |
Collapse
|
40
|
Kim JS, Chae MR, Chang K, Park KH, Rho HW, Park BH, Park JW, Kim HR. Cytotoxicity of Vibrio vulnificus cytolysin on rat peritoneal mast cells. Microbiol Immunol 1999; 42:837-43. [PMID: 10037218 DOI: 10.1111/j.1348-0421.1998.tb02359.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histamine has been thought to be a permeability enhancing factor in Vibrio vulnificus infection. The injection of living bacteria or purified V. vulnificus cytolysin (VVC) can cause lethality in mice by inducing hemoconcentration and increased vascular permeability. In the present study, we tried to identify whether histamine release causes the increased vascular permeability that is responsible for the lethal effect of VVC. Treatment of rat peritoneal mast cells with high concentrations of VVC caused the release of whole cellular histamine and lactate dehydrogenase (LDH). At concentrations less than 10 HU/ml, histamine and LDH were not released whereas preloaded 2-deoxy-D-glucose was rapidly effluxed with the concomitant decrease in cellular ATP. VVC-treated mast cells were refractory to the stimulation of histamine secretion by Compound 48/80 but remained fully responsive to Ca2+ plus GTP-gamma-S. These results indicate that histamine can be released from mast cells only when the concentration of VVC is high enough to cause the lysis of cells. At low concentrations, VVC does not induce the release of stored histamine from damaged cells. The intravenous injection of 80 HU purified VVC to rats, which can produce the calculated blood concentration of about 3 HU/ml, caused a marked increase in pulmonary vascular permeability, hemoconcentration and death. However, no increase in blood histamine level was detected. This level of VVC in rat blood was enough to cause severe hemoconcentration and lethality but might not be enough to cause cytolysis of the mast cells and resulting histamine release.
Collapse
Affiliation(s)
- J S Kim
- Department of Biochemistry, Chonbuk National University Medical School and Institutes for Medical Sciences, Chonju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Litwin CM, Byrne BL. Cloning and characterization of an outer membrane protein of Vibrio vulnificus required for heme utilization: regulation of expression and determination of the gene sequence. Infect Immun 1998; 66:3134-41. [PMID: 9632577 PMCID: PMC108324 DOI: 10.1128/iai.66.7.3134-3141.1998] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/1998] [Accepted: 04/22/1998] [Indexed: 02/07/2023] Open
Abstract
Vibrio vulnificus is a halophilic, marine pathogen that has been associated with septicemia and serious wound infections in patients with iron overload and preexisting liver disease. For V. vulnificus, the ability to acquire iron from the host has been shown to correlate with virulence. V. vulnificus is able to use host iron sources such as hemoglobin and heme. We previously constructed a fur mutant of V. vulnificus which constitutively expresses at least two iron-regulated outer membrane proteins, of 72 and 77 kDa. The N-terminal amino acid sequence of the 77-kDa protein purified from the V. vulnificus fur mutant had 67% homology with the first 15 amino acids of the mature protein of the Vibrio cholerae heme receptor, HutA. In this report, we describe the cloning, DNA sequence, mutagenesis, and analysis of transcriptional regulation of the structural gene for HupA, the heme receptor of V. vulnificus. DNA sequencing of hupA demonstrated a single open reading frame of 712 amino acids that was 50% identical and 66% similar to the sequence of V. cholerae HutA and similar to those of other TonB-dependent outer membrane receptors. Primer extension analysis localized one promoter for the V. vulnificus hupA gene. Analysis of the promoter region of V. vulnificus hupA showed a sequence homologous to the consensus Fur box. Northern blot analysis showed that the transcript was strongly regulated by iron. An internal deletion in the V. vulnificus hupA gene, done by using marker exchange, resulted in the loss of expression of the 77-kDa protein and the loss of the ability to use hemin or hemoglobin as a source of iron. The hupA deletion mutant of V. vulnificus will be helpful in future studies of the role of heme iron in V. vulnificus pathogenesis.
Collapse
Affiliation(s)
- C M Litwin
- Section of Clinical Immunology, Microbiology and Virology, Department of Pathology, University of Utah, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|
42
|
|
43
|
Tamplin ML, Jackson JK, Buchrieser C, Murphree RL, Portier KM, Gangar V, Miller LG, Kaspar CW. Pulsed-field gel electrophoresis and ribotype profiles of clinical and environmental Vibrio vulnificus isolates. Appl Environ Microbiol 1996; 62:3572-80. [PMID: 8837412 PMCID: PMC168162 DOI: 10.1128/aem.62.10.3572-3580.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vibrio vulnificus belongs to the autochthonous bacterial flora of warm estuarine waters. It can cause life-threatening extraintestinal disease in persons who have underlying illness and who consume raw shellfish or contact wounds with estuarine water. Currently, very little is known about genetic diversity within this species. In this report, we describe high-level variation in restriction fragment length polymorphism profiles among 53 clinical and 78 environmental isolates, as determined by pulsed-field gel electrophoresis. In contrast, ribotype profiles showed greater similarity. When combined ribotype profiles of clinical and environmental isolates were analyzed, four predominant clusters were observed. Interestingly, a low number (16%) of clinical isolates were found in cluster C, compared with clusters A, B, and D (range, 50 to 83%). In addition, 83% of all Hawaiian isolates were located in a single cluster, indicating a possible relationship between geography and genotype. We also report that spontaneous translucent colonial morphotypes were distinct by both restriction fragment length polymorphism and biochemical profiles, compared with opaque parent strains.
Collapse
Affiliation(s)
- M L Tamplin
- Department of Home Economics, University of Florida, Gainesville 32611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Biosca EG, Amaro C. Toxic and enzymatic activities of Vibrio vulnificus biotype 2 with respect to host specificity. Appl Environ Microbiol 1996; 62:2331-7. [PMID: 8779570 PMCID: PMC168013 DOI: 10.1128/aem.62.7.2331-2337.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this work, the enzymatic activities of selected strains of biotypes 1 and 2 of Vabrio vulnificus were analyzed by using conventional methods and the API ZYM system. The toxic activities of extracellular products (ECPs) were further evaluated by in vitro and in vivo experiments. The ECPs of both biotypes (i) showed high-level hydrolytic activities, (ii) displayed cytotoxicity for fish cell lines, and (iii) were lethal for eels. Exotoxins seem to be proteinaceous since heat treatment of ECP samples destroyed their toxicity. Only biotype 2 strains were virulent for cels, suggesting that host specificity must be related to differences in cell surface properties. Infectivity trials with other fish species also revealed that only biotype 2 strains were virulent.
Collapse
Affiliation(s)
- E G Biosca
- Departamento de Microbiologia y Ecologia, Universidad de Valencia, Spain
| | | |
Collapse
|
45
|
Horré R, Marklein G, Schaal KP. Vibrio vulnificus, an emerging human pathogen. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1996; 284:273-84. [PMID: 8837388 DOI: 10.1016/s0934-8840(96)80103-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R Horré
- Institute of Medical Microbiology and Immunology, University of Bonn, Germany
| | | | | |
Collapse
|
46
|
Park JW, Ma SN, Song ES, Song CH, Chae MR, Park BH, Rho RW, Park SD, Kim HR. Pulmonary damage by Vibrio vulnificus cytolysin. Infect Immun 1996; 64:2873-6. [PMID: 8698528 PMCID: PMC174159 DOI: 10.1128/iai.64.7.2873-2876.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Vibrio vulnificus is an estuarine bacterium that causes septicemia and serious wound infection. Cytolysin produced by V. vulnificus has been incriminated as one of the important virulence determinants of bacterial infection. Cytolysin (8 hemolytic units) given intravenously to mice via their tail veins caused severe hemoconcentration and lethality. Cytolysin treatment greatly increased pulmonary wet weight and vascular permeability as measured by (125)I-labeled albumin leakage without affecting those factors of other organs significantly. Blood neutrophils were markedly decreased in number after cytolysin injection, with a concomitant increase in the level of pulmonary myeloperoxidase activity, indicating that cytolysin-induced neutropenia might be due to pulmonary sequestration of neutrophils. By microscopic examination, severe perivascular edema and neutrophil infiltration were evident in lung tissues. These results suggest that increased vascular permeability and neutrophil sequestration in the lungs are important factors in lethal activity by cytolysin.
Collapse
Affiliation(s)
- J W Park
- Department of Biochemistry and Anatomy, School of Medicine, Chonbuk National University, Chonju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Devi SJ, Hayat U, Powell JL, Morris JG. Preclinical immunoprophylactic and immunotherapeutic efficacy of antisera to capsular polysaccharide-tetanus toxoid conjugate vaccines of Vibrio vulnificus. Infect Immun 1996; 64:2220-4. [PMID: 8675330 PMCID: PMC174059 DOI: 10.1128/iai.64.6.2220-2224.1996] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Vibrio vulnificus is an oyster-associated bacterial pathogen that causes life-threatening fulminating septicemia and necrotizing wound infections in humans. The capsular polysaccharide of V. vulnificus (VvPS) is critical for virulence. Previously we showed that active immunization of mice with a VvPS-tetanus toxoid (VvPS-TTa) conjugate vaccine conferred significantly higher protection against subsequent lethal challenge than immunization with VvPS alone. In the current study, we examined the utility of immunoprophylaxis or immunotherapy with hyperimmune antisera elicited by VvPS-TTa and VvPS-TTb conjugate vaccines prepared by different synthetic schemes. First we demonstrated that the Ribi adjuvant significantly enhanced the murine antibody response (P < or = 0.02) to both conjugates. Subsequently, high-titered polyclonal antisera were raised to VvPS-TTa and VvPS-TTb conjugate vaccines by using Ribi adjuvant or Freund's adjuvants. Antisera were observed to have protective effects when administered before and after acute lethal infection. All animals receiving prophylactic antisera intraperitoneally 24 h before lethal challenge with homologous carbotype 1 were protected, while 73 to 100% of control mice succumbed. Immunotherapy was also effective, with survival rates of 60 to 73% seen among mice when antisera were administered 2 h after bacterial challenge, at a time when symptoms of infection were already apparent. The protective effect of capsular antiserum appeared to be serotype specific. Antisera to the, carbotype 1 VvPS-TTa vaccine did not confer cross-protection against lethal challenge with carbotype 2 V. vulnificus despite partial structural similarity and a weak serological cross-reaction between the two carbotypes. Immune globulins induced by a potential multivalent VvPS conjugate vaccine composed of clinically prevalent carbotypes may have utility in the management of V. vulnificus infections and deserve further evaluation.
Collapse
Affiliation(s)
- S J Devi
- Division of Bacterial Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
48
|
Kook H, Lee SE, Baik YH, Chung SS, Rhee JH. Vibrio vulnificus hemolysin dilates rat thoracic aorta by activating guanylate cyclase. Life Sci 1996; 59:PL41-7. [PMID: 8699927 DOI: 10.1016/0024-3205(96)00292-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hemolysin produced by Vibrio vulnificus caused hypotension and tachycardia in rats and dilated rat thoracic aorta. Hemolysin-induced vasodilatation of the aorta was not affected by N omega-nitro-L-arginine methyl ester and aminoguanidine, NO synthase inhibitors, whereas the vasodilatation was inhibited by LY 83,583, a guanylate cyclase inhibitor. Hemolysin elevated cGMP levels, and the elevation was abolished by LY 83,583. These results suggest that V. vulnificus hemolysin activates guanylate cyclase independently of NO synthase, and the subsequent increase in cGMP levels results in vasodilatation.
Collapse
Affiliation(s)
- H Kook
- Department of Pharmacology, Chonnam University Medical School, Dong-Ku, Kwangiu, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Devi SJ, Hayat U, Frasch CE, Kreger AS, Morris JG. Capsular polysaccharide-protein conjugate vaccines of carbotype 1 Vibrio vulnificus: construction, immunogenicity, and protective efficacy in a murine model. Infect Immun 1995; 63:2906-11. [PMID: 7622211 PMCID: PMC173395 DOI: 10.1128/iai.63.8.2906-2911.1995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vibrio vulnificus causes septicemia and wound infections in immunocompromised humans. The capsular polysaccharide of Vibrio vulnificus (VvPS) is critical for virulence. We synthesized conjugate vaccines of carbotype 1 VvPS under conditions and in formulations suitable for human use. Purified VvPS was conjugated to tetanus toxoid (TT) or to inactivated V. vulnificus cytolysin or elastase by two different schemes. All conjugates elicited elevated anticapsular immunoglobulin G (IgG) and IgM and antiprotein IgG responses in mice compared with saline placebo. The conjugates prepared through caboxyl activation of VvPS (VvPS-TTa, VvPS-cytolysin, and VvPS-elastase) were more immunogenic than the one prepared through hydroxyl activation (VvPS-TTb). The protective efficacy of conjugated and unconjugated formulations of VvPS and that of protein carriers were evaluated in a mouse septicemia model. Eighty percent of mice actively immunized with VvPS-TTa vaccine survived challenge with carbotype 1 V. vulnificus, while VvPS-cytolysin and VvPS-elastase conjugates conferred 44 and 40% protection, respectively. Control mice immunized with VvPS, cytolysin, or elastase alone, or saline only, showed 70 to 100% mortality. VvPS-TTa vaccine is nontoxic, immunogenic, and protective in mice.
Collapse
Affiliation(s)
- S J Devi
- Division of Bacterial Products, U.S. Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
50
|
Moyenuddin M, Wachsmuth K, Houghton JE, Ahearn DG. Potential pathogenic factors produced by a clinical nontoxigenicVibrio cholerae O1. Curr Microbiol 1993. [DOI: 10.1007/bf01568956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|