1
|
Hay JA, Routledge I, Takahashi S. Serodynamics: A primer and synthetic review of methods for epidemiological inference using serological data. Epidemics 2024; 49:100806. [PMID: 39647462 DOI: 10.1016/j.epidem.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Abstract
We present a review and primer of methods to understand epidemiological dynamics and identify past exposures from serological data, referred to as serodynamics. We discuss processing and interpreting serological data prior to fitting serodynamical models, and review approaches for estimating epidemiological trends and past exposures, ranging from serocatalytic models applied to binary serostatus data, to more complex models incorporating quantitative antibody measurements and immunological understanding. Although these methods are seemingly disparate, we demonstrate how they are derived within a common mathematical framework. Finally, we discuss key areas for methodological development to improve scientific discovery and public health insights in seroepidemiology.
Collapse
Affiliation(s)
- James A Hay
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Isobel Routledge
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Phuong HT, Vy NHT, Thanh NTL, Tan M, de Bruin E, Koopmans M, Boni MF, Clapham HE. Estimating the force of infection of four dengue serotypes from serological studies in two regions of Vietnam. PLoS Negl Trop Dis 2024; 18:e0012568. [PMID: 39374298 PMCID: PMC11521262 DOI: 10.1371/journal.pntd.0012568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 10/29/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Dengue is endemic in Vietnam with circulation of all four serotypes (DENV1-4) all year-round. It is hard to estimate the disease's true serotype-specific transmission patterns from cases due to its high asymptomatic rate, low reporting rate and complex immunity and transmission dynamics. Seroprevalence studies have been used to great effect for understanding patterns of dengue transmission. We tested 991 population serum samples (ages 1-30 years, collected 2013 to 2017), 531 from Ho Chi Minh City and 460 from Khanh Hoa in Vietnam, using a flavivirus protein microarray assay. By applying our previously developed inference framework to the antibody profiles from this assay, we can (1) determine proportions of a population that have not been infected or infected, once, or more than once, and (2) infer the infecting serotype in those infected once. With these data, we then use mathematical models to estimate the force of infection (FOI) for all four DENV serotypes in HCMC and KH over 35 years up to 2017. Models with time-varying or serotype-specific DENV FOI assumptions fit the data better than constant FOI. Annual dengue FOI ranged from 0.005 (95%CI: 0.003-0.008) to 0.201 (95%CI: 0.174-0.228). FOI varied across serotypes, higher for DENV1 (95%CI: 0.033-0.048) and DENV2 (95%CI: 0.018-0.039) than DENV3 (95%CI: 0.007-0.010) and DENV4 (95%CI: 0.010-0.016). The use of the PMA on serial age-stratified cross-sectional samples increases the amount of information on transmission and population immunity, and should be considered for future dengue serological surveys, particularly to understand population immunity given vaccines with differential efficacy against serotypes, however, there remains limits to what can be inferred even using this assay.
Collapse
Affiliation(s)
- Huynh Thi Phuong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Nguyen Ha Thao Vy
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Le Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Maxine Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Erwin de Bruin
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marion Koopmans
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maciej F. Boni
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, Unites States of America
| | - Hannah E. Clapham
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
3
|
Valle C, Shrestha S, Godeke GJ, Hoogerwerf MN, Reimerink J, Eggink D, Reusken C. Multiplex Serology for Sensitive and Specific Flavivirus IgG Detection: Addition of Envelope Protein Domain III to NS1 Increases Sensitivity for Tick-Borne Encephalitis Virus IgG Detection. Viruses 2024; 16:286. [PMID: 38400061 PMCID: PMC10892675 DOI: 10.3390/v16020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Tick-borne encephalitis is a vaccine-preventable disease of concern for public health in large parts of Europe, with EU notification rates increasing since 2018. It is caused by the orthoflavivirus tick-borne encephalitis virus (TBEV) and a diagnosis of infection is mainly based on serology due to its short viremic phase, often before symptom onset. The interpretation of TBEV serology is hampered by a history of orthoflavivirus vaccination and by previous infections with related orthoflaviviruses. Here, we sought to improve TBEV sero-diagnostics using an antigen combination of in-house expressed NS1 and EDIII in a multiplex, low-specimen-volume set-up for the detection of immune responses to TBEV and other clinically important orthoflaviviruses (i.e., West Nile virus, dengue virus, Japanese encephalitis virus, Usutu virus and Zika virus). We show that the combined use of NS1 and EDIII results in both a specific and sensitive test for the detection of TBEV IgG for patient diagnostics, vaccination responses and in seroprevalence studies. This novel approach potentially allows for a low volume-based, simultaneous analysis of IgG responses to a range of orthoflaviviruses with overlapping geographic circulations and clinical manifestations.
Collapse
Affiliation(s)
- Coralie Valle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
- Unité des Virus Emergents (UVE), Aix-Marseille Université, IRD 190, Inserm 1207, 13005 Marseille, France
| | - Sandhya Shrestha
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Gert-Jan Godeke
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Marieke N. Hoogerwerf
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Johan Reimerink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Dirk Eggink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| |
Collapse
|
4
|
Tsai PS, Du PX, Keskin BB, Lee NY, Wan SW, Lin YL, Su WY, Lin PC, Lin WH, Shih HC, Ho TS, Syu GD. Antibody Profiling of Dengue Severities Using Flavivirus Protein Microarrays. Anal Chem 2023; 95:15217-15226. [PMID: 37800729 DOI: 10.1021/acs.analchem.3c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dengue is a viral disease transmitted by Aedes aegypti mosquitoes. According to the World Health Organization, about half of the world's population is at risk of dengue. There are four serotypes of the dengue virus. After infection with one serotype, it will be immune to such a serotype. However, subsequent infection with other serotypes will increase the risk of severe outcomes, e.g., dengue hemorrhagic fever, dengue shock syndrome, and even death. Since severe dengue is challenging to predict and lacks molecular markers, we aim to build a multiplexed Flavivirus protein microarray (Flaviarray) that includes all of the common Flaviviruses to profile the humoral immunity and cross-reactivity in the dengue patients with different outcomes. The Flaviarrays we fabricated contained 17 Flavivirus antigens with high reproducibility (R-square = 0.96) and low detection limits (172-214 pg). We collected serums from healthy subjects (n = 36) and dengue patients within 7 days after symptom onset (mild dengue (n = 21), hospitalized nonsevere dengue (n = 29), and severe dengue (n = 36)). After profiling the serum antibodies using Flaviarrays, we found that patients with severe dengue showed higher IgG levels against multiple Flavivirus antigens. With logistic regression, we found groups of markers with high performance in distinguishing dengue patients from healthy controls as well as hospitalized from mild cases (AUC > 0.9). We further reported some single markers that were suitable to separate dengue patients from healthy controls (AUC > 0.9) and hospitalized from mild outcomes (AUC > 0.8). Together, Flaviarray is a valuable tool to profile antibody specificities, uncover novel markers for decision-making, and shed some light on early preventions and treatments.
Collapse
Affiliation(s)
- Pei-Shan Tsai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Xian Du
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Batuhan Birol Keskin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Lan Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wen-Yu Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Chun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsi-Chang Shih
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan R.O.C
- Department of Pediatrics, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
de Bellegarde de Saint Lary C, Kasbergen LM, Bruijning-Verhagen PC, van der Jeugd H, Chandler F, Hogema BM, Zaaijer HL, van der Klis FR, Barzon L, de Bruin E, ten Bosch Q, Koopmans MP, Sikkema RS, Visser LG. Assessing West Nile virus (WNV) and Usutu virus (USUV) exposure in bird ringers in the Netherlands: a high-risk group for WNV and USUV infection? One Health 2023; 16:100533. [PMID: 37363259 PMCID: PMC10288042 DOI: 10.1016/j.onehlt.2023.100533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction In 2020, the first Dutch West Nile virus (WNV) infected birds were detected through risk-targeted surveillance of songbirds. Retrospective testing of patients with unexplained neurological disease revealed human WNV infections in July and August 2020. Bird ringers are highly exposed to mosquito bites and possibly avian excrements during ringing activities. This study therefore investigates whether bird ringers are at higher risk of exposure to WNV and Usutu virus (USUV). Methods Dutch bird ringers were asked to provide a single serum sample (May - September 2021) and to fill out a survey. Sera were screened by protein microarray for presence of specific IgG against WNV and USUV non-structural protein 1 (NS1), followed by focus reduction virus neutralization tests (FRNT). Healthcare workers (2009-2010), the national immunity cohort (2016-2017) and blood donors (2021) were used as control groups without this occupational exposure. Results The majority of the 157 participating bird ringers was male (132/157, 84%) and the median age was 62 years. Thirty-seven participants (37/157, 23.6%) showed WNV and USUV IgG microarray signals above background, compared to 6.4% (6/94) in the community cohort and 2.1% (2/96) in blood donors (p < 0.01). Two seroreactive bird ringers were confirmed WNV or USUV positive by FRNT. The majority of seroreactive bird ringers travelled to EU countries with reported WNV human cases (30/37, 81%) (p = 0.07). No difference was observed between bird ringers with and without previous yellow fever vaccination. Discussion The higher frequency of WNV and/or USUV IgG reactive bird ringers indicates increased flavivirus exposure compared to the general population, suggesting that individuals with high-exposure professions may be considered to complement existing surveillance systems. However, the complexity of serological interpretation in relation to location-specific exposure (including travel), and antibody cross-reactivity, remain a challenge when performing surveillance of emerging flaviviruses in low-prevalence settings.
Collapse
Affiliation(s)
- Chiara de Bellegarde de Saint Lary
- Department of Infectious Diseases, LUMC, Leiden, the Netherlands
- Julius Centre for Health Sciences and Primary Care, Department of Epidemiology, UMCU, Utrecht, the Netherlands
| | | | | | - Henk van der Jeugd
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
- Department of Animal Ecology, NIOO-KNAW, Wageningen, the Netherlands
| | | | | | | | | | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
- Microbiology and Virology Unit, Padova University Hospital, Padua, Italy
| | - Erwin de Bruin
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Quirine ten Bosch
- Quantitative Veterinary Epidemiology, WUR, Wageningen, the Netherlands
| | | | - Reina S. Sikkema
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| | - Leo G. Visser
- Department of Infectious Diseases, LUMC, Leiden, the Netherlands
| |
Collapse
|
6
|
Könenkamp L, Ziegler U, Naucke T, Groschup MH, Steffen I. Antibody ratios against NS1 antigens of tick-borne encephalitis and West Nile viruses support differential flavivirus serology in dogs. Transbound Emerg Dis 2022; 69:e2789-e2799. [PMID: 35704505 DOI: 10.1111/tbed.14630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022]
Abstract
Flavivirus diagnostics are complicated by substantial cross-reactivity of antibodies between different flavivirus species. This is of particular importance in regions with multiple endemic flaviviruses in co-circulation. Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis, the most common infection of the central nervous system in endemic regions of Europe and Asia. Since 2018, the related West Nile virus (WNV) has spread to Germany where its geographic distribution overlaps with TBEV endemic regions. Besides humans, various animal species are susceptible to TBEV and WNV infection. To compare antibody responses against these flaviviruses and test for cross-reactivity, we developed a multi-species luciferase immunoprecipitation system antibody detection assay for several different antigens. We performed a serosurvey of 682 dogs from five different European countries to detect antibodies against TBEV and WNV. Twelve specimens were positive for TBEV NS1 only and seven for WNV NS1 only. Two specimens were reactive to both NS1 antigens and another two were equivocal for WNV NS1. Interestingly, 89.5% of positive specimens had TBEV/WNV or WNV/TBEV signal ratios of 10 to >300 between individual NS1 antigens, allowing for a clear distinction between the two viruses. The remaining 10.5% of reactive specimens showed a five- to 10-fold difference between the two viruses and included possible dual exposures to both viruses. In contrast, equivocal samples showed low signal ratios between the NS1 antigens, suggesting unspecific reactivity. Based on these data, we found the NS1 protein to be a suitable antigen to distinguish between TBEV- and WNV-specific antibodies in dogs with sensitivity and specificity similar to virus neutralization tests.
Collapse
Affiliation(s)
- Laura Könenkamp
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | | | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Imke Steffen
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
7
|
Vinh DN, Nhat NTD, de Bruin E, Vy NHT, Thao TTN, Phuong HT, Anh PH, Todd S, Quan TM, Thanh NTL, Lien NTN, Ha NTH, Hong TTK, Thai PQ, Choisy M, Nguyen TD, Simmons CP, Thwaites GE, Clapham HE, Chau NVV, Koopmans M, Boni MF. Age-seroprevalence curves for the multi-strain structure of influenza A virus. Nat Commun 2021; 12:6680. [PMID: 34795239 PMCID: PMC8602397 DOI: 10.1038/s41467-021-26948-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
The relationship between age and seroprevalence can be used to estimate the annual attack rate of an infectious disease. For pathogens with multiple serologically distinct strains, there is a need to describe composite exposure to an antigenically variable group of pathogens. In this study, we assay 24,402 general-population serum samples, collected in Vietnam between 2009 to 2015, for antibodies to eleven human influenza A strains. We report that a principal components decomposition of antibody titer data gives the first principal component as an appropriate surrogate for seroprevalence; this results in annual attack rate estimates of 25.6% (95% CI: 24.1% - 27.1%) for subtype H3 and 16.0% (95% CI: 14.7% - 17.3%) for subtype H1. The remaining principal components separate the strains by serological similarity and associate birth cohorts with their particular influenza histories. Our work shows that dimensionality reduction can be used on human antibody profiles to construct an age-seroprevalence relationship for antigenically variable pathogens.
Collapse
MESH Headings
- Algorithms
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Geography
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A virus/classification
- Influenza A virus/immunology
- Influenza A virus/physiology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Models, Theoretical
- Seroepidemiologic Studies
- Time Factors
- Vietnam/epidemiology
- Virus Replication/immunology
Collapse
Affiliation(s)
- Dao Nguyen Vinh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Duy Nhat
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Erwin de Bruin
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Nguyen Ha Thao Vy
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Tran Thi Nhu Thao
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Huynh Thi Phuong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Pham Hong Anh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Stacy Todd
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Liverpool School of Tropical Medicine, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, England
| | - Tran Minh Quan
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Le Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | | | | | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Marc Choisy
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Cameron P Simmons
- Institute of Vector Borne Disease, Monash University, Melbourne, VIC, Australia
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah E Clapham
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Marion Koopmans
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Maciej F Boni
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
8
|
Kabir MA, Zilouchian H, Younas MA, Asghar W. Dengue Detection: Advances in Diagnostic Tools from Conventional Technology to Point of Care. BIOSENSORS 2021; 11:206. [PMID: 34201849 PMCID: PMC8301808 DOI: 10.3390/bios11070206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 06/02/2023]
Abstract
The dengue virus (DENV) is a vector-borne flavivirus that infects around 390 million individuals each year with 2.5 billion being in danger. Having access to testing is paramount in preventing future infections and receiving adequate treatment. Currently, there are numerous conventional methods for DENV testing, such as NS1 based antigen testing, IgM/IgG antibody testing, and Polymerase Chain Reaction (PCR). In addition, novel methods are emerging that can cut both cost and time. Such methods can be effective in rural and low-income areas throughout the world. In this paper, we discuss the structural evolution of the virus followed by a comprehensive review of current dengue detection strategies and methods that are being developed or commercialized. We also discuss the state of art biosensing technologies, evaluated their performance and outline strategies to address challenges posed by the disease. Further, we outline future guidelines for the improved usage of diagnostic tools during recurrence or future outbreaks of DENV.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; (M.A.K.); (H.Z.)
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Hussein Zilouchian
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; (M.A.K.); (H.Z.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | | | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; (M.A.K.); (H.Z.)
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
9
|
Repeated exposure to dengue virus elicits robust cross neutralizing antibodies against Zika virus in residents of Northeastern Thailand. Sci Rep 2021; 11:9634. [PMID: 33953258 PMCID: PMC8100282 DOI: 10.1038/s41598-021-88933-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are antigenically related mosquito-borne flaviviruses. ZIKV is becoming increasingly prevalent in DENV-endemic regions, raising the possibility that pre-existing immunity to one virus could modulate the response to a heterologous virus, although whether this would be beneficial or detrimental is unclear. Here, we analyzed sera from residents of a DENV-endemic region of Thailand to determine the prevalence of DENV-elicited antibodies capable of cross-neutralizing ZIKV. Sixty-one participants who were asymptomatic and unselected for viral serostatus were enrolled. Among them, 52 and 51 were seropositive for IgG antibody against DENV or ZIKV E proteins (ELISA assay), respectively. Notably, 44.23% (23/52) of DENV seropositive participants had serological evidence of multiple exposures to DENV, and these subjects had strikingly higher titers and broader reactivities of neutralizing antibodies (NAbs) against ZIKV and DENV heterotypes compared with participants with serological evidence of a single DENV infection (25/52, 48.1%). In total, 17 of the 61 participants (27.9%) had NAbs against ZIKV and all four DENV serotypes, and an additional 9 (14.8%) had NAbs against ZIKV and DENV1, 2, and 3. NAbs against DENV2 were the most prevalent (44/61, 72.1%) followed by DENV3 (38/61, 62.3%) and DENV1 (36/61, 59.0%). Of note, anti-ZIKV NAbs were more prevalent than anti-DENV4 NAbs (27/61, 44.3% and 21/61, 34.4%, respectively). Primary ZIKV infection was detected in two participants, confirming that ZIKV co-circulates in this region. Thus, residents of DENV-endemic regions with repeated exposure to DENV have higher titers of NAbs against ZIKV than individuals with only a single DENV exposure.
Collapse
|
10
|
Essential Oils of Zingiber Species from Vietnam: Chemical Compositions and Biological Activities. PLANTS 2020; 9:plants9101269. [PMID: 32993137 PMCID: PMC7601767 DOI: 10.3390/plants9101269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Mosquito-borne diseases are a large problem in Vietnam as elsewhere. Due to environmental concerns regarding the use of synthetic insecticides as well as developing insecticidal resistance, there is a need for environmentally-benign alternative mosquito control agents. In addition, resistance of pathogenic microorganisms to antibiotics is an increasing problem. As part of a program to identify essential oils as alternative larvicidal and antimicrobial agents, the leaf, stem, and rhizome essential oils of several Zingiber species, obtained from wild-growing specimens in northern Vietnam, were acquired by hydrodistillation and investigated using gas chromatography. The mosquito larvicidal activities of the essential oils were assessed against Culex quinquefasciatus, Aedes albopictus, and Ae. aegypti, and for antibacterial activity against a selection of Gram-positive and Gram-negative bacteria, and for activity against Candida albicans. Zingiber essential oils rich in α-pinene and β-pinene showed the best larvicidal activity. Zingiber nudicarpum rhizome essential oil showed excellent antibacterial activity against Enterococcus faecalis, Staphylococcus aureus, and Bacillus cereus, with minimum inhibitory concentrations (MIC) of 2, 8, and 1 μg/mL, respectively. However, the major components, α-pinene and β-pinene, cannot explain the antibacterial activities obtained.
Collapse
|