1
|
Woo J, Choi Y. Biomarkers in Detection of Hepatitis C Virus Infection. Pathogens 2024; 13:331. [PMID: 38668286 PMCID: PMC11054098 DOI: 10.3390/pathogens13040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The hepatitis C virus (HCV) infection affects 58 million people worldwide. In the United States, the incidence rate of acute hepatitis C has doubled since 2014; during 2021, this increased to 5% from 2020. Acute hepatitis C is defined by any symptom of acute viral hepatitis plus either jaundice or elevated serum alanine aminotransferase (ALT) activity with the detection of HCV RNA, the anti-HCV antibody, or hepatitis C virus antigen(s). However, most patients with acute infection are asymptomatic. In addition, ALT activity and HCV RNA levels can fluctuate, and a delayed detection of the anti-HCV antibody can occur among some immunocompromised persons with HCV infection. The detection of specific biomarkers can be of great value in the early detection of HCV infection at an asymptomatic stage. The high rate of HCV replication (which is approximately 1010 to 1012 virions per day) and the lack of proofreading by the viral RNA polymerase leads to enormous genetic diversity, creating a major challenge for the host immune response. This broad genetic diversity contributes to the likelihood of developing chronic infection, thus leading to the development of cirrhosis and liver cancer. Direct-acting antiviral (DAA) therapies for HCV infection are highly effective with a cure rate of up to 99%. At the same time, many patients with HCV infection are unaware of their infection status because of the mostly asymptomatic nature of hepatitis C, so they remain undiagnosed until the liver damage has advanced. Molecular mechanisms induced by HCV have been intensely investigated to find biomarkers for diagnosing the acute and chronic phases of the infection. However, there are no clinically verified biomarkers for patients with hepatitis C. In this review, we discuss the biomarkers that can differentiate acute from chronic hepatitis C, and we summarize the current state of the literature on the useful biomarkers that are detectable during acute and chronic HCV infection, liver fibrosis/cirrhosis, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329-4018, USA;
| |
Collapse
|
2
|
Wallace HL, Russell RS. Inflammatory Consequences: Hepatitis C Virus-Induced Inflammasome Activation and Pyroptosis. Viral Immunol 2024; 37:126-138. [PMID: 38593460 DOI: 10.1089/vim.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Hepatitis C virus (HCV), despite the availability of effective direct-acting antivirals (DAAs) that clear the virus from >95% of individuals treated, continues to cause significant health care burden due to disease progression that can lead to fibrosis, cirrhosis, and/or hepatocellular carcinoma. The fact that some people who are treated with DAAs still go on to develop worsening liver disease warrants further study into the immunopathogenesis of HCV. Many viral infections, including HCV, have been associated with activation of the inflammasome/pyroptosis pathway. This inflammatory cell death pathway ultimately results in cell lysis and release of inflammatory cytokines, IL-18 and IL-1β. This review will report on studies that investigated HCV and inflammasome activation/pyroptosis. This includes clinical in vivo data showing elevated pyroptosis-associated cytokines in the blood of individuals living with HCV, studies of genetic associations of pyroptosis-related genes and development of liver disease, and in vitro studies aimed at understanding the mechanism of pyroptosis induced by HCV. Finally, we discuss major gaps in understanding and outstanding questions that remain in the field of HCV-induced pyroptosis.
Collapse
Affiliation(s)
- Hannah L Wallace
- Immunology and Infectious Diseases Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St John's, Canada
| | - Rodney S Russell
- Immunology and Infectious Diseases Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St John's, Canada
| |
Collapse
|
3
|
Chen H, Jian Z, Xu T, Xu L, Deng L, Shao L, Zhang L, He L, Li Y, Zhu L. Advances in the mechanism of inflammasomes activation in herpes virus infection. Front Immunol 2024; 15:1346878. [PMID: 38590522 PMCID: PMC10999540 DOI: 10.3389/fimmu.2024.1346878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1β and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.
Collapse
Affiliation(s)
- Hourui Chen
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lina Shao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leyi Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youyou Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Wallace HL, Russell RS. Promiscuous Inflammasomes: The False Dichotomy of RNA/DNA Virus-Induced Inflammasome Activation and Pyroptosis. Viruses 2022; 14:2113. [PMID: 36298668 PMCID: PMC9609106 DOI: 10.3390/v14102113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 07/30/2023] Open
Abstract
It is well-known that viruses activate various inflammasomes, which can initiate the programmed cell death pathway known as pyroptosis, subsequently leading to cell lysis and release of inflammatory cytokines IL-1β and IL-18. This pathway can be triggered by various sensors, including, but not limited to, NLRP3, AIM2, IFI16, RIG-I, and NLRC4. Many viruses are known either to activate or inhibit inflammasomes as a part of the innate immune response or as a mechanism of pathogenesis. Early research in the field of virus-induced pyroptosis suggested a dichotomy, with RNA viruses activating the NLRP3 inflammasome and DNA viruses activating the AIM2 inflammasome. More recent research has shown that this dichotomy may not be as distinct as once thought. It seems many viruses activate multiple inflammasome sensors. Here, we detail which viruses fit the dichotomy as well as many that appear to defy this clearly false dichotomy. It seems likely that most, if not all, viruses activate multiple inflammasome sensors, and future research should focus on expanding our understanding of inflammasome activation in a variety of tissue types as well as virus activation of multiple inflammasomes, challenging biases that stemmed from early literature in this field. Here, we review primarily research performed on human viruses but also include details regarding animal viruses whenever possible.
Collapse
|
5
|
Auma AWN, Kowal C, Shive CL, Lange A, Damjanovska S, Zebrowski E, Reyes E, Calabrese L, Kostadinova L, Falck-Ytter Y, Mattar M, Anthony DD. Transient elastography score is elevated during rheumatoid factor-positive chronic hepatitis C virus infection and rheumatoid factor decline is highly variable over the course of direct-acting antiviral therapy. PLoS One 2022; 17:e0267512. [PMID: 35482664 PMCID: PMC9049346 DOI: 10.1371/journal.pone.0267512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/09/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Elevated rheumatoid factor (RF) levels and systemic immune activation are highly prevalent during chronic hepatitis C virus (HCV) infection. Direct-acting antiviral (DAA) therapy has been associated with normalization of various soluble immune activation parameters. Whether the RF levels relate to soluble immune activation markers during chronic HCV infection, and over what time frame RF levels normalize during and after DAA treatment is unknown and was investigated here. METHODS In a longitudinal study, plasma and serum was obtained from HCV infected RF positive (RF+) and RF negative (RF-) participants. The levels of RF, HCV RNA and soluble markers of inflammation were determined before (week 0), during (weeks 4, 8 and 12) and after (week 24) treatment with HCV DAA therapy. In a subset of RF+ participants, the analysis was extended to over 70 weeks after therapy initiation. Hepatic and other clinical parameters were determined at baseline (week 0) in all participants. RESULTS Before therapy, transient elastography (TE) score was greater in RF+ compared to RF- HCV infected participants, while the systemic levels of soluble inflammatory markers were comparable. Following DAA therapy initiation, HCV RNA levels became undetectable within 4 weeks in both the RF+ and RF- groups. RF levels declined in the first 6 months in most RF+ persons but most commonly remained positive. The levels of some soluble inflammatory markers declined, mainly within 4 weeks of DAA therapy start, in both the RF+ and RF- groups. The baseline (week 0) TE score correlated with RF levels before, during and after DAA therapy, while plasma IL-18 levels correlated with RF level after DAA therapy. CONCLUSION During chronic HCV infection, TE score is elevated in RF+ HCV infected individuals and factors other than HCV viremia (including liver stiffness or fibrosis and select markers of inflammation) likely contribute to persistence of RF after treatment of HCV with DAA.
Collapse
Affiliation(s)
- Ann W. N. Auma
- Department of Pathology, Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Corinne Kowal
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
| | - Carey L. Shive
- Department of Pathology, Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States of America
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
| | - Alyssa Lange
- Department of Pathology, Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States of America
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
| | - Sofi Damjanovska
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
| | - Elizabeth Zebrowski
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
| | - Elane Reyes
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
| | - Leonard Calabrese
- Department of Rheumatologic and Immunologic Disease, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Lenche Kostadinova
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
| | - Yngve Falck-Ytter
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
| | - Maya Mattar
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
| | - Donald D. Anthony
- Department of Pathology, Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States of America
- Cleveland VA Medical Center and VA GRECC, Cleveland, Ohio, United States of America
- Division of Rheumatology, MetroHealth Medical Center, Cleveland, Ohio, United States of America
| |
Collapse
|
6
|
Abstract
Herpesviruses are ubiquitous double-stranded DNA viruses that cause lifelong infections and are associated with a variety of diseases. While they have evolved multiple mechanisms to evade the immune system, they are all recognized by the innate immune system, which can lead to both localized and systemic inflammation. A more recently appreciated mechanism of herpesvirus innate immune activation is through inflammasome signaling. The inflammasome is an intracellular multiprotein complex that, when activated, leads to the release of proinflammatory cytokines, including IL-1β and IL-18, and activation of the inflammatory programed cell death pathway known as pyroptosis. Despite the herpesviruses sharing a similar structure, their mechanisms of inflammasome activation and the consequences of inflammasome activation in cases of virus-associated disease are not uniform. This review will highlight the similarities and differences among herpesviruses with regard to their mechanisms of inflammasome activation and impacts on diseases caused by herpesviruses. Furthermore, it will identify areas where additional studies are warranted to better understand the impact of this important innate immune signaling program on the pathogenesis of these common viruses.
Collapse
|
7
|
Wallace HL, Wang L, Gardner CL, Corkum CP, Grant MD, Hirasawa K, Russell RS. Crosstalk Between Pyroptosis and Apoptosis in Hepatitis C Virus-induced Cell Death. Front Immunol 2022; 13:788138. [PMID: 35237259 PMCID: PMC8882739 DOI: 10.3389/fimmu.2022.788138] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/10/2022] [Indexed: 01/15/2023] Open
Abstract
Extensive inflammation in the liver is known to contribute to the pathogenesis of hepatitis C virus (HCV) infection. Apoptosis has, for a long time, been known to act as a mechanism of hepatocyte death, but our previous research also identified inflammasome-mediated pyroptosis in infected and uninfected bystander cells as an additional mechanism of HCV-induced cytopathicity. The purpose of this study was to investigate the mechanism of HCV-induced cell death and to determine the timing and relative contributions of apoptosis and pyroptosis during HCV infection. In a model employing a cell culture-adapted strain of JFH-1 HCV and Huh-7.5 hepatocyte-like cells, we found that pyroptosis occurred earlier than did apoptosis during infection. CRISPR knockout of NLRP3 resulted in decreased caspase-1 activation, but not complete elimination, indicating multiple sensors are likely involved in HCV-induced pyroptosis. Knockout of gasdermin-D resulted in increased activation of apoptosis-related caspase-3, suggesting potential crosstalk between the two cell death pathways. An unexpected decrease in activated caspase-1 levels was observed when caspase-3 was knocked out, implying that caspase-3 may have a role in the initiation of pyroptosis, at least in the context of HCV infection. Lower viral titres in culture fluids and increased ratios of intracellular to extracellular levels of infectious virus were observed in knockout versus wild-type Huh-7.5 cells, suggesting that HCV may induce programmed cell death in order to enhance virus release from infected cells. These results contribute to the understanding of HCV pathogenesis and add to the increasing volume of literature suggesting various programmed cell death pathways are not mutually exclusive.
Collapse
Affiliation(s)
- Hannah L. Wallace
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Lingyan Wang
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Cassandra L. Gardner
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Christopher P. Corkum
- Confocal Imaging/Flow Cytometry Unit, Medical Laboratories, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Kensuke Hirasawa
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Rodney S. Russell
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- *Correspondence: Rodney S. Russell,
| |
Collapse
|
8
|
Karaba AH, Zhou W, Hsieh LL, Figueroa A, Massaccesi G, Rothman RE, Fenstermacher KZJ, Sauer L, Shaw-Saliba K, Blair PW, Robinson ML, Leung S, Wesson R, Alachkar N, El-Diwany R, Ji H, Cox AL. Differential Cytokine Signatures of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Influenza Infection Highlight Key Differences in Pathobiology. Clin Infect Dis 2022; 74:254-262. [PMID: 34013339 PMCID: PMC8243556 DOI: 10.1093/cid/ciab376] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Several inflammatory cytokines are upregulated in severe coronavirus disease 2019 (COVID-19). We compared cytokines in COVID-19 versus influenza to define differentiating features of the inflammatory response to these pathogens and their association with severe disease. Because elevated body mass index (BMI) is a known risk factor for severe COVID-19, we examined the relationship of BMI to cytokines associated with severe disease. METHODS Thirty-seven cytokines and chemokines were measured in plasma from 135 patients with COVID-19, 57 patients with influenza, and 30 healthy controls. Controlling for BMI, age, and sex, differences in cytokines between groups were determined by linear regression and random forest prediction was used to determine the cytokines most important in distinguishing severe COVID-19 and influenza. Mediation analysis was used to identify cytokines that mediate the effect of BMI and age on disease severity. RESULTS Interleukin-18 (IL-18), IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) were significantly increased in COVID-19 versus influenza patients, whereas granulocyte macrophage colony-stimulating factor, interferon-γ (IFN-γ), IFN-λ1, IL-10, IL-15, and monocyte chemoattractant protein 2 were significantly elevated in the influenza group. In subgroup analysis based on disease severity, IL-18, IL-6, and TNF-α were elevated in severe COVID-19, but not in severe influenza. Random forest analysis identified high IL-6 and low IFN-λ1 levels as the most distinct between severe COVID-19 and severe influenza. Finally, IL-1RA was identified as a potential mediator of the effects of BMI on COVID-19 severity. CONCLUSIONS These findings point to activation of fundamentally different innate immune pathways in severe acute respiratory syndrome coronavirus 2 and influenza infection, and emphasize drivers of severe COVID-19 to focus both mechanistic and therapeutic investigations.
Collapse
Affiliation(s)
- Andrew H Karaba
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leon L Hsieh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard E Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Lauren Sauer
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul W Blair
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew L Robinson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sherry Leung
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell Wesson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nada Alachkar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ramy El-Diwany
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
NLRP3 Inflammasome Expression in Gingival Crevicular Fluid of Patients with Periodontitis and Chronic Hepatitis C. Mediators Inflamm 2021; 2021:6917919. [PMID: 34840527 PMCID: PMC8626199 DOI: 10.1155/2021/6917919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
The study is aimed at assessing the impact that periodontal disease and chronic hepatitis C could have on gingival crevicular fluid levels of the NLRP3 inflammasome, caspase-1 (CASP-1), and interleukin-18 (IL-18) and at evaluating whether the increased local inflammatory reaction with clinical periodontal consequences is correlated to their upregulation. Patients were divided into four groups, according to their periodontal status and previously diagnosed hepatitis C, as follows: (i) CHC group, chronic hepatitis C patients; (ii) P group, periodontal disease patients, systemically healthy; (iii) CHC + P group, patients suffering from both conditions; and (iv) H group, systemically and periodontally healthy controls. Gingival crevicular samples were collected for quantitative analysis of the NLRP3 inflammasome, CASP-1, and IL-18. CHC + P patients expressed the worse periodontal status and the highest NLRP3, CASP-1, and IL-18 levels, the difference being statistically significant (p < 0.05). The P group patients also expressed significantly more elevated NLRP3, CASP-1, and IL-18 levels, as compared to nonperiodontal patients (CHC and H groups). Chronic hepatitis C and periodontal disease could have a significant influence on the upregulation of NLRP3 inflammasome and its components, possibly contributing to an increased local inflammatory reaction and clinical periodontal consequences.
Collapse
|
10
|
Karaba AH, Figueroa A, Werbel WA, Dioverti MV, Steinke SM, Ray SC, Cox AL, Avery RK. Interleukin-18 and tumor necrosis factor-α are elevated in solid organ transplant recipients with possible cytomegalovirus end-organ disease. Transpl Infect Dis 2021; 23:e13682. [PMID: 34216086 PMCID: PMC8455421 DOI: 10.1111/tid.13682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
End-organ cytomegalovirus (CMV) disease can be life threatening to solid organ transplant recipients. Diagnosis is often complicated by variation in amount of CMV DNA in plasma and the need for an invasive procedure to obtain a biopsy of the suspected affected organ, which can delay recognition and treatment. Several inflammatory cytokines are elevated in CMV disease, and the purpose of this study was to determine if they could be used to distinguish solid organ transplant recipients with CMV DNAemia alone from those with possible end-organ CMV disease. We found that regardless of pre-transplant CMV serostatus, plasma interleukin (IL)-18, tumor necrosis factor-α (TNF-α), and amount of CMV DNA in plasma were increased in possible end-organ CMV disease, with elevated IL-18 associated with increased odds of possible end-organ CMV disease even after adjusting for amount of CMV DNA. These findings highlight IL-18 and TNF-α as potential non-invasive markers of possible end-organ CMV disease regardless of transplanted organ or serostatus in solid organ transplant recipients.
Collapse
Affiliation(s)
- Andrew H. Karaba
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William A. Werbel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maria Veronica Dioverti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seema Mehta Steinke
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robin K. Avery
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Toro DM, Ramasawmy R, Silva Neto PV, Pereira GL, Sarmento PS, Dray HLSN, Sousa KS, Affonso JS, Silva JA, Garcia NP, Barbieri MV, Victória FS, Donadi EA, Costa AG, Ogusku MM, Sadahiro A, Tarragô AM, Malheiro A. Inflammasome genes polymorphisms may influence the development of hepatitis C in the Amazonas, Brazil. PLoS One 2021; 16:e0253470. [PMID: 34161370 PMCID: PMC8221483 DOI: 10.1371/journal.pone.0253470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/06/2021] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C is considered a major public health problem caused by the hepatitis C virus (HCV). Viral infections are known to induce production of IL1β through the signaling pathway of inflammasomes. Emerging evidences suggest that Inflammasome genes may influence the immune response against HCV as the host genetic background may contribute to the balance between acute and chronic inflammation. We investigated in 151 patients with chronic hepatitis C and 206 healthy blood donors’ individuals (HD). Polymorphisms in the IL1B and IL18 genes were genotyped by PCR-RFLP, while NLRP3, CARD8, CTSB and AIM2 by RT- PCR. Serum assay of IL-1β cytokine was performed by ELISA. 84 patients presented mild fibrosis (<F2) and 67 advanced fibrosis (≥ F2). Among the HD individuals the NLRP3-rs10754558 C/C genotype correlated with higher IL-1β levels compared to the G/G genotype. Similar pattern was observed in patients with hepatitis C, mean circulating IL-1β levels were 21,96 ± 4.5 and 10,62 ± 3.3pg/mL among the C/C and G/G genotypes, respectively. This pattern holds even after stratification of the patients into mild fibrosis and advanced fibrosis, demonstrating that the NLRP3-rs10754558 or another polymorphism in linkage disequilibrium with it possibly has an influence on the processing of pro-IL-1β. Notably, higher levels of IL-1β (Mann–Whitney test, p<0.0001) were observed among patients (mean ± SEM: 19,24 ±3.pg/mL) when compared with controls (mean ± SEM: 11,80 ±1.0pg/mL). Gene-gene interaction showed that individuals heterogyzotes for both CARD8-rs2009373 and IL1B-rs16944 are less prone to hepatitis C development (padj = 0.039). Similarly, herozygote carriers for CTSB-rs1692816 and AIM2-rs1103577 (padj = 0.008) or for IL18-rs187238 and NLRP3-rs10754558 (padj = 0.005), have less chances to the development of hepatitis C. However, between subgroups of <F2 and ≥F2, individuals homozygous for the T allele of CARD8-rs2009373 and heterozygous for IL18-rs187238 (padj = 0.028), have mild form of fibrosis.
Collapse
Affiliation(s)
- Diana Mota Toro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Faculdade de Medicina, Universidade Nilton Lins, Manaus, Amazonas, Brazil
- Genomic Health Surveilance Network: Optimization os Assistance and Research in The State of Amazonas -REGESAM, Manaus, Amazonas, Brazil
| | - Pedro Vieira Silva Neto
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Grenda Leite Pereira
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Priscila Santos Sarmento
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | - Keyla Santos Sousa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Juliana Santos Affonso
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Jéssica Albuquerque Silva
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
| | - Nadja Pinto Garcia
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
| | - Marilú Victória Barbieri
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Flamir Silva Victória
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Eduardo Antônio Donadi
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Faculdade de Medicina da Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Genomic Health Surveilance Network: Optimization os Assistance and Research in The State of Amazonas -REGESAM, Manaus, Amazonas, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- * E-mail: (AGC); (AM)
| | - Mauricio Morishi Ogusku
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Genomic Health Surveilance Network: Optimization os Assistance and Research in The State of Amazonas -REGESAM, Manaus, Amazonas, Brazil
- Laboratório de Micobacteriologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Genomic Health Surveilance Network: Optimization os Assistance and Research in The State of Amazonas -REGESAM, Manaus, Amazonas, Brazil
| | - Andréa Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Genomic Health Surveilance Network: Optimization os Assistance and Research in The State of Amazonas -REGESAM, Manaus, Amazonas, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Genomic Health Surveilance Network: Optimization os Assistance and Research in The State of Amazonas -REGESAM, Manaus, Amazonas, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- * E-mail: (AGC); (AM)
| |
Collapse
|
12
|
Abstract
Activation and viral control of the innate immune response are hallmarks of hepatitis C virus (HCV) infection and are major determinants of spontaneous clearance or progression to chronic infection and liver disease. In this review, we provide a contemporary overview of how HCV is sensed by the host cell to trigger innate immune activation and the mechanisms deployed by the virus to evade this response. Type I and III interferons (IFNs) are crucial mediators of antiviral innate immunity against HCV, and we specifically highlight the importance of IFN-λ host genetics for the outcome of HCV infection. Last, we focus on the proinflammatory responses elicited by HCV infection and describe our current understanding of how interleukin (IL)-1β signaling and cross talk between the IL-1β and IFN signaling pathways lead to sustained inflammation and increased risk of liver pathology.
Collapse
Affiliation(s)
- Johannes Schwerk
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | - Amina Negash
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | - Ram Savan
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| |
Collapse
|
13
|
Khera T, Du Y, Todt D, Deterding K, Strunz B, Hardtke S, Aregay A, Port K, Hardtke-Wolenski M, Steinmann E, Björkström NK, Manns MP, Hengst J, Cornberg M, Wedemeyer H. Long-lasting Imprint in the Soluble Inflammatory Milieu despite Early Treatment of Acute Symptomatic Hepatitis C. J Infect Dis 2021; 226:441-452. [PMID: 33517457 PMCID: PMC9417126 DOI: 10.1093/infdis/jiab048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Treatment with direct-acting antivirals (DAAs) in patients with chronic hepatitis C infection leads to partial restoration of soluble inflammatory mediators (SIMs). In contrast, we hypothesized that early DAA treatment of acute hepatitis C virus (HCV) with DAAs may normalize most SIMs. Methods In this study, we made use of a unique cohort of acute symptomatic hepatitis C patients who cleared HCV with a 6-week course of ledipasvir/sofosbuvir. Plasma samples were used for proximity extension assay measuring 92 proteins. Results Profound SIM alterations were observed in acute HCV patients, with marked upregulation of interleukin (IL)-6 and CXCL-10, whereas certain mediators were downregulated (eg, monocyte chemoattractant protein-4, IL-7). During treatment and follow-up, the majority of SIMs decreased but not all normalized (eg, CDCP1, IL-18). Of note, SIMs that were downregulated before DAA treatment remained suppressed, whereas others that were initially unchanged declined to lower values during treatment and follow-up (eg, CD244). Conclusions Acute hepatitis C was associated with marked changes in the soluble inflammatory milieu compared with both chronic hepatitis patients and healthy controls. Whereas early DAA treatment partly normalized this altered signature, long-lasting imprints of HCV remained.
Collapse
Affiliation(s)
- Tanvi Khera
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Yanqin Du
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Katja Deterding
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Svenja Hardtke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Amare Aregay
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Kerstin Port
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany.,German Center for Infection Research (DZIF), partner site Braunschweig, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany.,German Center for Infection Research (DZIF), partner site Braunschweig, Germany.,Center for individualized infection medicine (CIIM), Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany.,German Center for Infection Research (DZIF), partner site Braunschweig, Germany
| | | |
Collapse
|
14
|
Sepulveda-Crespo D, Resino S, Martinez I. Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs 2021; 81:419-443. [PMID: 33400242 DOI: 10.1007/s40265-020-01458-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals eliminate hepatitis C virus (HCV) in more than 95% of treated individuals and may abolish liver injury, arrest fibrogenesis, and reverse fibrosis and cirrhosis. However, liver regeneration is usually a slow process that is less effective in the late stages of fibrosis. What is more, fibrogenesis may prevail in patients with advanced cirrhosis, where it can progress to liver failure and hepatocellular carcinoma. Therefore, the development of antifibrotic drugs that halt and reverse fibrosis progression is urgently needed. Fibrosis occurs due to the repair process of damaged hepatic tissue, which eventually leads to scarring. The innate immune response against HCV is essential in the initiation and progression of liver fibrosis. HCV-infected hepatocytes and liver macrophages secrete proinflammatory cytokines and chemokines that promote the activation and differentiation of hepatic stellate cells (HSCs) to myofibroblasts that produce extracellular matrix (ECM) components. Prolonged ECM production by myofibroblasts due to chronic inflammation is essential to the development of fibrosis. While no antifibrotic therapy is approved to date, several drugs are being tested in phase 2 and phase 3 trials with promising results. This review discusses current state-of-the-art knowledge on treatments targeting the innate immune system to revert chronic hepatitis C-associated liver fibrosis. Agents that cause liver damage may vary (alcohol, virus infection, etc.), but fibrosis progression shows common patterns among them, including chronic inflammation and immune dysregulation, hepatocyte injury, HSC activation, and excessive ECM deposition. Therefore, mechanisms underlying these processes are promising targets for general antifibrotic therapies.
Collapse
Affiliation(s)
- Daniel Sepulveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| | - Isidoro Martinez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
15
|
Asadipour M, Fazeli P, Zohouri M, Bemani P, Mohebbiniya M, Khansalar S, Fattahi MR, Kalantar K. IL-18 in Blood Serum of Hepatitis C Patients Might be of Predictive Value for Individual Outcomes. Infect Disord Drug Targets 2020; 21:389-393. [PMID: 32634083 DOI: 10.2174/1871526520666200707113401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Pro- inflammatory cytokines including Interleukin (IL)-18 have been shown to be involved in the clearance of Hepatitis C virus (HCV) infection. However, changes in the balance of pro- and anti-inflammatory cytokines production during the immune response, can elicit a variety of liver damages. Therefore, it is of interest to study IL-18 serum levels in hepatitis patients and its correlation with HCV infection. METHODS Twenty-nine newly diagnosed HCV+ patients with no history of antiviral therapy, and 17 healthy controls, were enrolled in our study. Biochemical markers of liver disease were evaluated by biochemistry assay kits. Serum concentrations of IL-18 were determined with the ELISA method before and after treatment with pangenotypic direct-acting antivirals (DAAs) treatment. RESULTS Our results showed statistically significant difference in serum levels of IL-18 in HCV+ patients (692.261 ± 48.76) compared to healthy controls (520.00 ± 44.73) (P=0.021). However, there was no significant difference in IL-18 serum levels between the treated group compared to untreated patients (P=0.74). No significant correlations were detected between the level of IL-18 and liver enzyme levels. CONCLUSION According to our study, IL-18 might be a disease marker associated with HCV infection; however, this conclusion requires further investigation.
Collapse
Affiliation(s)
- Morvarid Asadipour
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Fazeli
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Zohouri
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Bemani
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Mohebbiniya
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soolmaz Khansalar
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Abouelasrar Salama S, Lavie M, De Buck M, Van Damme J, Struyf S. Cytokines and serum amyloid A in the pathogenesis of hepatitis C virus infection. Cytokine Growth Factor Rev 2019; 50:29-42. [PMID: 31718982 DOI: 10.1016/j.cytogfr.2019.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Expression of the acute phase protein serum amyloid A (SAA) is dependent on the release of the pro-inflammatory cytokines IL-1, IL-6 and TNF-α during infection and inflammation. Hepatitis C virus (HCV) upregulates SAA-inducing cytokines. In line with this, a segment of chronically infected individuals display increased circulating levels of SAA. SAA has even been proposed to be a potential biomarker to evaluate treatment efficiency and the course of disease. SAA possesses antiviral activity against HCV via direct interaction with the viral particle, but might also divert infectivity through its function as an apolipoprotein. On the other hand, SAA shares inflammatory and angiogenic activity with chemotactic cytokines by activating the G protein-coupled receptor, formyl peptide receptor 2. These latter properties might promote chronic inflammation and hepatic injury. Indeed, up to 80 % of infected individuals develop chronic disease because they cannot completely clear the infection, due to diversion of the immune response. In this review, we summarize the interconnection between SAA and cytokines in the context of HCV infection and highlight the dual role SAA could play in this disease. Nevertheless, more research is needed to establish whether the balance between those opposing activities can be tilted in favor of the host defense.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Muriel Lavie
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
17
|
Patra T, Ray RB, Ray R. Strategies to Circumvent Host Innate Immune Response by Hepatitis C Virus. Cells 2019; 8:E274. [PMID: 30909456 PMCID: PMC6468774 DOI: 10.3390/cells8030274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Innate immune responses generate interferons, proinflammatory cytokines, complement activation, and natural killer (NK) cell response. Ultimately, this leads to the induction of a robust virus-specific adaptive immunity. Although the host innate immune system senses and responds to eliminate virus infection, hepatitis C virus (HCV) evades immune attack and establishes persistent infection within the liver. Spontaneous clearance of HCV infection is associated with a prompt induction of innate immunity generated in an infected host. In this review, we have highlighted the current knowledge of our understanding of host⁻HCV interactions, especially for endogenous interferon production, proinflammatory response, NK cell response, and complement activation, which may impair the generation of a strong adaptive immune response for establishment of chronicity. The information may provide novel strategies in augmenting therapeutic intervention against HCV.
Collapse
Affiliation(s)
- Tapas Patra
- Departments of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA.
| | - Ratna B Ray
- Departments of Pathology, Saint Louis University, St. Louis, MO 63104, USA.
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA.
- Molecular Microbiology & Immunology, Saint Louis University, St. Louis, MO 63104, USA.
| |
Collapse
|
18
|
Negash AA, Olson RM, Griffin S, Gale M. Modulation of calcium signaling pathway by hepatitis C virus core protein stimulates NLRP3 inflammasome activation. PLoS Pathog 2019; 15:e1007593. [PMID: 30811485 PMCID: PMC6392285 DOI: 10.1371/journal.ppat.1007593] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major cause of hepatic inflammation and liver disease. HCV triggers NLRP3 inflammasome activation and interleukin-1β (IL-1β) production from hepatic macrophages, or Kupffer cells, to drive the hepatic inflammatory response. Here we examined HCV activation of the NLRP3 inflammasome signaling cascade in primary human monocyte derived macrophages and THP-1 cell models of hepatic macrophages to define the HCV-specific agonist and cellular processes of inflammasome activation. We identified the HCV core protein as a virion-specific factor of inflammasome activation. The core protein was both necessary and sufficient for IL-1β production from macrophages exposed to HCV or soluble core protein alone. NLRP3 inflammasome activation by the HCV core protein required calcium mobilization linked with phospholipase-C activation. Our findings reveal a molecular basis of hepatic inflammasome activation and IL-1β release triggered by HCV core protein. This study deciphers the molecular mechanism of Hepatitis C virus (HCV)-induced hepatic inflammation. HCV triggers NLRP3 inflammasome activation and IL-1β release from hepatic macrophages, thus driving liver inflammation. Using biochemical, virological, and genetic approaches we identified the HCV core protein as the specific viral stimulus that triggers intracellular calcium signaling linked with phospholipase-C activation to drive NLRP3 inflammasome activation and IL-1β release in macrophages.
Collapse
Affiliation(s)
- Amina A. Negash
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Rebecca M. Olson
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephen Griffin
- School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, United Kingdom
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
19
|
The role of the NLRP3 inflammasome and the activation of IL-1β in the pathogenesis of chronic viral hepatic inflammation. Cytokine 2018; 110:389-396. [PMID: 29803661 DOI: 10.1016/j.cyto.2018.04.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 04/06/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Chronic viral hepatitis is a prevalent disease with major health implications. Its underlying pathophysiological mechanisms are not fully understood. IL-1β and the NLRP3 inflammasome involvement has been suggested in recent years, from in vitro data and data from peripheral blood samples. Therefore, we investigated IL-1β and the NLRP3 inflammasome in liver tissues in an effort to clarify their role in the pathophysiology of chronic viral hepatitis. METHODS We studied liver biopsies from patients with a new diagnosis of either chronic hepatitis B (CHB) and chronic hepatitis C (CHC) or patients with chronic hepatitis B in remission (CHB-rem). The biopsies were separated in two parts. The first part was sent to histology to determine the grade of inflammation and fibrosis. From the second part, RNA was extracted and converted to cDNA used in semi-quantitative Real-Time PCR to measure the levels of IL1B, CASP1, NLRP3, ASC and IL1RA. The cell lines used in the in vitro experiments were Huh7.5, LX2 and THP-1 in variety of combinations of monocultures, co-cultures and triple cultures with one of the cell lines infected with the JFH-1 HCV clone. From the cell cultures RNA was extracted and converted to cDNA. For cell lines, we focused in the expression of IL1B and NLRP3. RESULTS The expression of IL1B, CASP1 and NLRP3 were found significantly different between our groups (p = 0.001, p = 0.001 and p = 0.038, respectively). CHB patients displayed significantly higher IL1B and CASP1 mRNA levels compared to both CHB-rem and CHC patients. IL1B expression significantly correlates with liver biochemical data in CHB patients (AST: p = 0.006, r = 0.457; ALT p = 0.002, r = 0.497). Finally, mRNA levels of IL1B in CHB patients significantly correlate with the degree of inflammation (p = 0.016) but not the stage of fibrosis (p = 0.362). Interestingly, the relative expression of IL1B in triple culture experiments in vitro was below of 1.5-fold, suggesting no activation of IL1B. Moreover, no activation of NLRP3 was demonstrated in all investigated in vitro conditions. CONCLUSION IL-1β might play an important role in the pathogenesis of chronic hepatic inflammation from HBV, but not from HCV.
Collapse
|
20
|
Sherman KE, Peters MG, Thomas D. Human immunodeficiency virus and liver disease: A comprehensive update. Hepatol Commun 2017; 1:987-1001. [PMID: 30838978 PMCID: PMC5721407 DOI: 10.1002/hep4.1112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
Among persons living with human immunodeficiency virus (HIV) infection, liver disease remains a major cause of morbidity and mortality. While the etiologies are varied and often overlapping in the individual patient, the underlying mechanisms, including oxidative stress, direct activation of stellate cells, HIV interaction with hepatocytes, and bacterial translocation with systemic immune activation, seem to be unifying characteristics. Early and fully suppressive HIV antiretroviral therapy is a mainstay of management either before or concurrent with treatment of etiologic cofactors, including hepatitis C virus, hepatitis B virus, and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Significant barriers to care that still exist include liver disease recognition, appropriate linkage to care, ongoing substance abuse, and psychiatric comorbidities in the HIV-infected population. Emerging issues in these patients include acute and chronic hepatitis E, underreported hepatitis D, and a rising incidence of hepatocellular carcinoma. (Hepatology Communications 2017;1:987-1001).
Collapse
|
21
|
Bolte FJ, O’Keefe AC, Webb LM, Serti E, Rivera E, Liang TJ, Ghany M, Rehermann B. Intra-Hepatic Depletion of Mucosal-Associated Invariant T Cells in Hepatitis C Virus-Induced Liver Inflammation. Gastroenterology 2017; 153:1392-1403.e2. [PMID: 28780074 PMCID: PMC5669813 DOI: 10.1053/j.gastro.2017.07.043] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Chronic hepatitis affects phenotypes of innate and adaptive immune cells. Mucosal-associated invariant T (MAIT) cells are enriched in the liver as compared with the blood, respond to intra-hepatic cytokines, and (via the semi-invariant T-cell receptor) to bacteria translocated from the gut. Little is known about the role of MAIT cells in livers of patients with chronic hepatitis C virus (HCV) infection and their fate after antiviral therapy. METHODS We collected blood samples from 42 patients with chronic HCV infection who achieved a sustained virologic response after 12 weeks of treatment with sofosbuvir and velpatasvir. Mononuclear cells were isolated from blood before treatment, at weeks 4 and 12 during treatment, and 24 weeks after the end of treatment. Liver biopsies were collected from 37 of the patients prior to and at week 4 of treatment. Mononuclear cells from 56 blood donors and 10 livers that were not suitable for transplantation were used as controls. Liver samples were assessed histologically for inflammation and fibrosis. Mononuclear cells from liver and blood were studied by flow cytometry and analyzed for responses to cytokine and bacterial stimulation. RESULTS The frequency of MAIT cells among T cells was significantly lower in blood and liver samples of patients with HCV infection than of controls (median, 1.31% vs 2.32% for blood samples, P = .0048; and median, 4.34% vs 13.40% for liver samples, P = .001). There was an inverse correlation between the frequency of MAIT cells in the liver and histologically determined levels of liver inflammation (r = -.5437, P = .0006) and fibrosis (r = -.5829, P = .0002). MAIT cells from the liver had higher levels of activation and cytotoxicity than MAIT cells from blood (P < .0001). Production of interferon gamma by MAIT cells was dependent on monocyte-derived interleukin 18, and was reduced in patients with HCV infection in response to T-cell receptor-mediated but not cytokine-mediated stimulation, as compared with controls. Anti-viral therapy rapidly decreased liver inflammation and MAIT cell activation and cytotoxicity, and increased the MAIT cell frequency among intra-hepatic but not blood T cells. The MAIT cell response to T-cell receptor-mediated stimulation did not change during the 12 weeks of antiviral therapy. CONCLUSIONS In analyses of paired blood and liver samples from patients with chronic HCV infection before, during, and after antiviral therapy with sofosbuvir and velpatasvir, we found that intrahepatic MAIT cells are activated by monocyte-derived cytokines and depleted in HCV-induced liver inflammation.
Collapse
Affiliation(s)
- Fabian J. Bolte
- Immunology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Ashley C. O’Keefe
- Immunology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Lauren M. Webb
- Immunology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Elisavet Serti
- Immunology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Elenita Rivera
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Marc Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD.
| |
Collapse
|
22
|
Dose of Retroviral Infection Determines Induction of Antiviral NK Cell Responses. J Virol 2017; 91:JVI.01122-17. [PMID: 28904191 PMCID: PMC5660477 DOI: 10.1128/jvi.01122-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are part of the innate immune system and recognize virus-infected cells as well as tumor cells. Conflicting data about the beneficial or even detrimental role of NK cells in different infectious diseases have been described previously. While the type of pathogen strongly influences NK cell functionality, less is known about how the infection dose influences the quality of a NK cell response against retroviruses. In this study, we used the well-established Friend retrovirus (FV) mouse model to investigate the impact of virus dose on the induction of antiviral NK cell functions. High-dose virus inoculation increased initial virus replication compared to that with medium- or low-dose viral challenge and significantly improved NK cell activation. Antiviral NK cell activity, including in vivo cytotoxicity toward infected target cells, was also enhanced by high-dose virus infection. NK cell activation following high-dose viral challenge was likely mediated by activated dendritic cells (DCs) and macrophages and the NK cell-stimulating cytokines interleukin 15 (IL-15) and IL-18. Neutralization of these cytokines decreased NK cell functions and increased viral loads, whereas IL-15 and IL-18 therapy improved NK cell activity. Here we demonstrate that virus dose positively correlates with antiviral NK cell activity and function, which are at least partly driven by IL-15 and IL-18. Our results suggest that NK cell activity may be therapeutically enhanced by administering IL-15 and IL-18 in virus infections that inadequately activate NK cells. IMPORTANCE In infections with retroviruses, like HIV and FV infection of mice, NK cells clearly mediate antiviral activities, but they are usually not sufficient to prevent severe pathology. Here we show that the initial infection dose impacts the induction of an antiviral NK cell response during an acute retroviral infection, which had not investigated before. High-dose infection resulted in a strong NK cell functionality, whereas no antiviral activities were detected after low- or medium-dose infection. Interestingly, DCs and macrophages were highly activated after high-dose FV challenge, which corresponded with increased levels of NK cell-stimulating cytokines IL-15 and IL-18. IL-15 and IL-18 neutralization decreased NK cell functions, whereas IL-15 and IL-18 therapy improved NK cell activity. Here we show the importance of cytokines for NK cell activation in retroviral infections; our findings suggest that immunotherapy combining the well-tolerated cytokines IL-15 and IL-18 might be an interesting approach for antiretroviral treatment.
Collapse
|
23
|
Hullegie SJ, Arends JEA, Groothuismink ZMA, Pas SD, Rijnders BJA, Boonstra A, Claassen MAA. Decreased pro-inflammatory immune responses during recurrent acute HCV infections in HIV co-infected patients. J Gen Virol 2017; 98:1294-1298. [PMID: 28597817 DOI: 10.1099/jgv.0.000768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients in high-risk groups continue to transmit the hepatitis C virus (HCV) and frequently experience reinfections. Since little is known regarding the immune response to HCV during reinfection, we compared primary and consecutive acute HCV infections in patients with an HIV infection, and focused on the cytokine bridging innate to adaptive immunity. We observed that the serum levels of IL-12p40, MIP-1β, MIG and IP-10 increased during primary acute HCV infection, but not during subsequent secondary acute reinfections. The weaker pro-inflammatory cytokine responses observed during HCV reinfections suggest more limited secondary acute immune responses, which may prevent damage to the infected liver.
Collapse
Affiliation(s)
| | - Joop E A Arends
- Department of Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Suzan D Pas
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | - Bart J A Rijnders
- Department of Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark A A Claassen
- Department of Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Vergara C, Thio C, Latanich R, Cox AL, Kirk GD, Mehta SH, Busch M, Murphy EL, Villacres MC, Peters MG, French AL, Golub E, Eron J, Lahiri CD, Shrestha S, Gustafson D, Young M, Anastos K, Aouizerat B, Kim AY, Lauer G, Thomas DL, Duggal P. Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections. Genes Immun 2017; 18:82-87. [PMID: 28300059 PMCID: PMC5408324 DOI: 10.1038/gene.2017.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/27/2022]
Abstract
Inflammasomes are multi-protein complexes integrating pathogen-triggered signaling leading to the generation of pro-inflammatory cytokines, including interleukin-18 (IL-18). Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV) infections are associated with elevated IL-18, suggesting inflammasome activation. However, there is marked person-to-person variation in the inflammasome response to HCV and HIV. We hypothesized that host genetics may explain this variation. To test this, we analyzed the associations of plasma IL-18 levels and polymorphisms in 10 genes in the inflammasome cascade. 1538 participants with active HIV and/or HCV infection in 3 ancestry groups are included. Samples were genotyped using the Illumina Omni 1-quad and Omni 2.5 arrays. Linear regression analyses were performed to test the association of variants with logIL-18 including HCV and HIV infection status and HIV-RNA, in each ancestry group and then meta-analyzed. Eleven highly correlated SNPs (r2=0.98-1) in the IL18-BCO2 region were significantly associated with logIL-18; Each T allele of rs80011693 confers a decrease of 0.06 log pg/mL of IL-18 after adjusting for covariates (rs80011693; rs111311302 β=-0.06, P-value=2.7×10-4). In conclusion, genetic variation in IL18 is associated with IL-18 production in response to HIV and HCV infection and may explain variability in the inflammatory outcomes of chronic viral infections.
Collapse
Affiliation(s)
- C Vergara
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - C Thio
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - R Latanich
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - A L Cox
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - G D Kirk
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - S H Mehta
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - M Busch
- University of California, San Francisco, CA, USA
| | - E L Murphy
- University of California, San Francisco, CA, USA.,Blood Systems Research Institute, San Francisco, CA, USA
| | - M C Villacres
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - M G Peters
- Blood Systems Research Institute, San Francisco, CA, USA
| | - A L French
- CORE Center/Stroger Hospital of Cook County, Chicago, IL, USA
| | - E Golub
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - J Eron
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C D Lahiri
- School of Medicine, Emory University, Atlanta, GA, USA
| | - S Shrestha
- The University of Alabama at Birmingham, AL, USA
| | - D Gustafson
- State University of New York-Downstate Medical Center, New York, NY, USA
| | - M Young
- Georgetown University Medical Center, Washington, DC, USA
| | - K Anastos
- Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY, USA
| | - B Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, NY, USA.,Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA
| | - A Y Kim
- Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - G Lauer
- Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - D L Thomas
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - P Duggal
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Veenhuis RT, Astemborski J, Chattergoon MA, Greenwood P, Jarosinski M, Moore RD, Mehta SH, Cox AL. Systemic Elevation of Proinflammatory Interleukin 18 in HIV/HCV Coinfection versus HIV or HCV Monoinfection. Clin Infect Dis 2017; 64:589-596. [PMID: 27927859 PMCID: PMC5850551 DOI: 10.1093/cid/ciw771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND HIV/HCV coinfection and elevated interleukin (IL)-18 levels are both associated with enhanced progression of hepatic inflammation and increased risk of diabetes, kidney disease, and cardiovascular disease. IL-18 is a proinflammatory cytokine made upon activation of the inflammasome, an innate sensing system. We assessed whether increased IL-18 could explain the increased incidence and progression of inflammatory conditions seen with HIV/HCV coinfection. METHODS Serum from 559 subjects with HIV monoinfection, HCV monoinfection, HIV/HCV coinfection, or people who inject drugs with neither infection was tested for IL-18 by ELISA and for 16 other analytes by electrochemiluminescence immunoassay. IL-18 levels were measured in 14 additional chronically HCV infected subjects who developed incident HIV infection to determine if IL-18 increases with coinfection. RESULTS IL-18 was significantly elevated in coinfected individuals versus both monoinfections (p<0.0001) independent of age, sex, and race. IL-18 levels were significantly higher in HIV monoinfection than in HCV monoinfection. High IL-18 levels were correlated with detectable HIV viremia and inversely with CD4 count (p<0.0001), consistent with HIV activation of the inflammasome resulting in CD4 T cell depletion. Incident HIV infection of chronically HCV infected subjects resulted in increased IL-18 (p<0.001), while HIV suppression was associated with normal IL-18 levels. Four additional analytes (IP-10, IL-12/23p40, IFNy, IL-15) were found to be elevated in HIV/HCV coinfection when compared to both monoinfections. CONCLUSIONS HIV/HCV coinfection results in significantly elevated serum IL-18. The elevated levels of this proinflammatory cytokine may explain the increased incidence and progression of inflammatory illnesses seen in coinfected individuals.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquie Astemborski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael A Chattergoon
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paige Greenwood
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marissa Jarosinski
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard D Moore
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shruti H Mehta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Karkhane M, Marzban A, Lashgarian HE, Zali MR. Genetic Variations in Host Factors and their Critical Role on HCV Medication. RESEARCH IN MOLECULAR MEDICINE 2017. [DOI: 10.29252/rmm.5.1.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Abstract
Hepatitis is damage and inflammation of the liver. It is triggered by both environmental and endogenous insults and is a platform for developing liver cirrhosis and cancer. Both innate and adaptive immune activation contribute to hepatic inflammation and disease. Viral hepatitis is the most common form of hepatitis and is typically associated with chronic viral infection. Alcohol-induced and non-alcoholic steatohepatitis are two rising hepatic problems. The innate immune inflammasome signaling cascade mediates the production of essential proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. These cytokines regulate hepatic cell interaction and crosstalk of the various inflammatory pathways and influence disease outcome.
Collapse
Affiliation(s)
- Amina A Negash
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | | |
Collapse
|
28
|
Carlin AF, Aristizabal P, Song Q, Wang H, Paulson MS, Stamm LM, Schooley RT, Wyles DL. Temporal dynamics of inflammatory cytokines/chemokines during sofosbuvir and ribavirin therapy for genotype 2 and 3 hepatitis C infection. Hepatology 2015; 62:1047-58. [PMID: 26147061 PMCID: PMC4589477 DOI: 10.1002/hep.27971] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED The analysis of inflammatory cytokines and chemokines produced during hepatitis C virus (HCV) infection has advanced our understanding of viral-host interactions and identified predictors of treatment response. Administration of interferons (IFNs) made it difficult to interpret biomarkers of immune activation during treatment. Direct-acting antiviral (DAA) regimens without IFN are now being used to treat HCV with excellent efficacy. To gain insight into HCV-host interactions occurring before, during, and after HCV treatment, we performed a case-control study that measured serial plasma levels of IFN-γ-inducible protein 10 (IP-10), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1 beta (MIP-1β), and interleukin-18 (IL-18) in 131 patients with chronic HCV treated with sofosbuvir (SOF) plus ribavirin (RBV). A linear regression analysis using baseline factors identified strong positive associations between elevated alanine aminotransferase and pretreatment IP-10 and between the presence of cirrhosis and elevated pretreatment IL-18. Mean IP-10, MCP-1, MIP-1β, and IL-18 levels all decline on therapy, but display different dynamics late in treatment and after cessation of therapy. On treatment, IP-10 and MIP-1β levels were significantly higher in individuals who achieved sustained virological response (SVR). Logistic regression analyses examining treatment response in all patients demonstrated significant associations between higher baseline MIP-1β levels and smaller decreases in MIP-1β early in treatment and SVR. Higher early MIP-1β levels were also significantly associated with SVR in subsets of patients with cirrhosis and individuals with genotype 3 (GT3) infection, two factors associated with decreased responsiveness to treatment. CONCLUSION Changes in IP-10 levels mirror HCV RNA, suggesting that IP-10 is an indicator of innate immune viral recognition. MIP-1β levels remain elevated in GT2/3 patients who achieved SVR, suggesting differential immune activation in those who respond to SOF/RBV therapy and a potential role in predicting treatment responses.
Collapse
Affiliation(s)
- Aaron F Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Paula Aristizabal
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | | | | | | | | | - Robert T Schooley
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - David L Wyles
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
29
|
Abstract
Natural killer (NK) cells are traditionally regarded as first-line effectors of the innate immune response, but they also have a distinct role in chronic infection. Here, we review the role of NK cells against hepatitis C virus (HCV) and hepatitis B virus (HBV), two agents that cause acute and chronic hepatitis in humans. Interest in NK cells was initially sparked by genetic studies that demonstrated an association between NK cell-related genes and the outcome of HCV infection. Viral hepatitis also provides a model to study the NK cell response to both endogenous and exogenous type I interferon (IFN). Levels of IFN-stimulated genes increase in both acute and chronic HCV infection and pegylated IFNα has been the mainstay of HCV and HBV treatment for decades. In chronic viral hepatitis, NK cells display decreased production of antiviral cytokines. This phenotype is found in both HCV and HBV infection but is induced by different mechanisms. Potent antivirals now provide the opportunity to study the reversibility of the suppressed cytokine production of NK cells in comparison with the antigen-induced defect in IFNγ and tumor necrosis factor-α production of virus-specific T cells. This has implications for immune reconstitution in other conditions of chronic inflammation and immune exhaustion, such as human immunodeficiency virus infection and cancer.
Collapse
Affiliation(s)
- Barbara Rehermann
- Correspondence Address correspondence to: Barbara Rehermann, MD, Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892. fax: 301-402-0491.Immunology SectionLiver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthDHHSBethesdaMaryland 20892
| |
Collapse
|
30
|
Balagopal A, Barin B, Quinn J, Rogers R, Sulkowski MS, Stock PG. Immunologic Predictors of Liver Transplantation Outcomes in HIV-HCV Co-Infected Persons. PLoS One 2015; 10:e0135882. [PMID: 26313939 PMCID: PMC4551738 DOI: 10.1371/journal.pone.0135882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/27/2015] [Indexed: 01/22/2023] Open
Abstract
Liver disease is a leading cause of mortality among HIV-infected persons in the highly active anti-retroviral therapy (HAART) era. Hepatitis C Virus (HCV) co-infection is prevalent in, and worsened by HIV; consequently many co-infected persons require liver transplantation (LT). Despite the need, post-LT outcomes are poor in co-infection. We examined predictors of outcomes post-LT. Immunologic biomarkers of immune activation, microbial translocation, and Th1/Th2 skewing were measured pre-LT in participants enrolled in a cohort of HIV infected persons requiring solid organ transplant (HIVTR). Predictive biomarkers were analyzed in Cox-proportional hazards models; multivariate models included known predictors of outcome and biomarkers from univariate analyses. Sixty-nine HIV-HCV co-infected persons with available pre-LT samples were tested: median (IQR) CD4+ T-cell count was 286 (210-429) cells mm-3; 6 (9%) had detectable HIV RNA. Median (IQR) follow-up was 2.1 (0.7-4.0) years, 29 (42%) people died, 35 (51%) had graft loss, 22 (32%) were treated for acute rejection, and 14 (20%) had severe recurrent HCV. In multivariate models, sCD14 levels were significantly lower in persons with graft loss post-LT (HR 0.10 [95%CI 0.02-0.68]). IL-10 levels were higher in persons with rejection (HR 2.10 [95%CI 1.01-4.34]). No markers predicted severe recurrent HCV. Monocyte activation pre-LT may be mechanistically linked to graft health in HIV-HCV co-infection.
Collapse
Affiliation(s)
- Ashwin Balagopal
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Burc Barin
- The EMMES Corporation, Rockville, MD, 20850, United States of America
| | - Jeffrey Quinn
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Rodney Rogers
- Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA, 94122, United States of America
| | - Mark S. Sulkowski
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Peter G. Stock
- Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA, 94122, United States of America
| |
Collapse
|
31
|
Rajeevan MS, Dimulescu I, Murray J, Falkenberg VR, Unger ER. Pathway-focused genetic evaluation of immune and inflammation related genes with chronic fatigue syndrome. Hum Immunol 2015; 76:553-60. [PMID: 26116897 DOI: 10.1016/j.humimm.2015.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/09/2014] [Accepted: 06/20/2015] [Indexed: 12/21/2022]
Abstract
Recent evidence suggests immune and inflammatory alterations are important in chronic fatigue syndrome (CFS). This study was done to explore the association of functionally important genetic variants in inflammation and immune pathways with CFS. Peripheral blood DNA was isolated from 50 CFS and 121 non-fatigued (NF) control participants in a population-based study. Genotyping was performed with the Affymetrix Immune and Inflammation Chip that covers 11K single nucleotide polymorphisms (SNPs) following the manufacturer's protocol. Genotyping accuracy for specific genes was validated by pyrosequencing. Golden Helix SVS software was used for genetic analysis. SNP functional annotation was done using SPOT and GenomePipe programs. CFS was associated with 32 functionally important SNPs: 11 missense variants, 4 synonymous variants, 11 untranslated regulatory region (UTR) variants and 6 intronic variants. Some of these SNPs were in genes within pathways related to complement cascade (SERPINA5, CFB, CFH, MASP1 and C6), chemokines (CXCL16, CCR4, CCL27), cytokine signaling (IL18, IL17B, IL2RB), and toll-like receptor signaling (TIRAP, IRAK4). Of particular interest is association of CFS with two missense variants in genes of complement activation, rs4151667 (L9H) in CFB and rs1061170 (Y402H) in CFH. A 5' UTR polymorphism (rs11214105) in IL18 also associated with physical fatigue, body pain and score for CFS case defining symptoms. This study identified new associations of CFS with genetic variants in pathways including complement activation providing additional support for altered innate immune response in CFS. Additional studies are needed to validate the findings of this exploratory study.
Collapse
Affiliation(s)
- Mangalathu S Rajeevan
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Irina Dimulescu
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Janna Murray
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Virginia R Falkenberg
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth R Unger
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
32
|
Interleukin-18 increases TLR4 and mannose receptor expression and modulates cytokine production in human monocytes. Mediators Inflamm 2015; 2015:236839. [PMID: 25873755 PMCID: PMC4383410 DOI: 10.1155/2015/236839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin-18 is a proinflammatory cytokine belonging to the interleukin-1 family of cytokines. This cytokine exerts many unique biological and immunological effects. To explore the role of IL-18 in inflammatory innate immune responses, we investigated its impact on expression of two toll-like receptors (TLR2 and TLR4) and mannose receptor (MR) by human peripheral blood monocytes and its effect on TNF-α, IL-12, IL-15, and IL-10 production. Monocytes from healthy donors were stimulated or not with IL-18 for 18 h, and then the TLR2, TLR4, and MR expression and intracellular TNF-α, IL-12, and IL-10 production were assessed by flow cytometry and the levels of TNF-α, IL-12, IL-15, and IL-10 in culture supernatants were measured by ELISA. IL-18 treatment was able to increase TLR4 and MR expression by monocytes. The production of TNF-α and IL-10 was also increased by cytokine treatment. However, IL-18 was unable to induce neither IL-12 nor IL-15 production by these cells. Taken together, these results show an important role of IL-18 on the early phase of inflammatory response by promoting the expression of some pattern recognition receptors (PRRs) that are important during the microbe recognition phase and by inducing some important cytokines such as TNF-α and IL-10.
Collapse
|
33
|
Abstract
Persistent viral infection, such as HCV infection, is the result of the inability of the host immune system to mount a successful antiviral response, as well as the escape strategies devised by the virus. Although each individual component of the host immune system plays important roles in antiviral immunity, the interactive network of immune cells as a whole acts against the virus. The innate immune system forms the first line of host defense against viral infection, and thus, virus elimination or chronic HCV infection is linked to the direct outcome of the interactions between the various innate immune cells and HCV. By understanding how the distinct components of the innate immune system function both individually and collectively during HCV infection, potential therapeutic targets can be identified to overcome immune dysfunction and control chronic viral infection.
Collapse
Affiliation(s)
- Banishree Saha
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
34
|
Serti E, Werner JM, Chattergoon M, Cox AL, Lohmann V, Rehermann B. Monocytes activate natural killer cells via inflammasome-induced interleukin 18 in response to hepatitis C virus replication. Gastroenterology 2014; 147:209-220.e3. [PMID: 24685721 PMCID: PMC4469643 DOI: 10.1053/j.gastro.2014.03.046] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Production of interferon (IFN)-γ by natural killer (NK) cells is attenuated during chronic infection with hepatitis C virus (HCV). We investigated whether this is due to intrinsic or extrinsic mechanisms of NK cells. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from patients with chronic HCV infection or uninfected blood donors (controls); NK cells and monocytes were isolated or eliminated. We cultured hepatoma cells that express luciferase-tagged subgenomic HCV replicons (Huh7/HCV replicon cells) or their HCV-negative counterparts (Huh7) with NK cells in the presence or absence of other populations of PBMCs. Antiviral activity, cytotoxicity, and cytokine production were assessed. RESULTS NK cells produced greater amounts of IFN-γ when PBMC were cocultured with Huh7/HCV replicon cells than with Huh7 cells; NK cells and PBMCs from controls suppressed HCV replication to a greater extent than those from patients with chronic HCV infection. This antiviral effect was predominantly mediated by tumor necrosis factor (TNF)-α and IFN-γ. The antiviral activity of NK cells and their production of IFN-γ were reduced when they were used in coculture alone (rather than with PBMC), or after depletion of CD14(+) monocytes, after knockdown of the inflammasome in monocytes, or after neutralization of interleukin-18, which is regulated by the inflammasome. These findings indicate a role for monocytes in NK cell activation. Compared with control monocytes, monocytes from patients with chronic HCV infection had reduced TNF-α-mediated (direct) and reduced NK cell-mediated (indirect) antiviral effects. Control monocytes increased the antiviral effects of NK cells from patients with chronic HCV infection and their production of IFN-γ. CONCLUSIONS Monocytes sense cells that contain replicating HCV and respond by producing interleukin-18 via the inflammasome and by activating NK cells. Patients with chronic HCV infection have reduced monocyte function, attenuating NK cell IFN-γ-mediated responses.
Collapse
Affiliation(s)
- Elisavet Serti
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD,
USA
| | - Jens M. Werner
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD,
USA
| | - Michael Chattergoon
- Division of Infectious Diseases, Johns Hopkins School of Medicine,
Baltimore, MD, USA
| | - Andrea L. Cox
- Division of Infectious Diseases, Johns Hopkins School of Medicine,
Baltimore, MD, USA
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of
Heidelberg, Heidelberg, Germany
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
35
|
Lin JC, Habersetzer F, Rodriguez-Torres M, Afdhal N, Lawitz EJ, Paulson MS, Zhu Y, Subramanian GM, McHutchison JG, Sulkowski M, Wyles DL, Schooley RT. Interferon γ-induced protein 10 kinetics in treatment-naive versus treatment-experienced patients receiving interferon-free therapy for hepatitis C virus infection: implications for the innate immune response. J Infect Dis 2014; 210:1881-5. [PMID: 24907384 DOI: 10.1093/infdis/jiu325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We measured interferon γ-induced protein 10 (IP-10) levels in 428 patients at baseline, week 1, and week 2 of all-oral treatment for hepatitis C virus (HCV) infection. An increased baseline IP-10 level was associated with a T allele in the IL28B gene, an increased alanine aminotransferase level in treatment-naive but not experienced patients, and an increased body mass index. At week 1, the mean decline in plasma IP-10 levels was the same in treatment-naive and treatment-experienced patients (-49%), whereas during week 2 the mean decline in IP-10 levels in treatment-naive patients (-14%) was significantly larger than in treatment-experienced patients (-2%; P = .0176). IP-10 thus may be a surrogate marker of the rate of intracellular viral replication complex decay.
Collapse
Affiliation(s)
| | - François Habersetzer
- Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg Inserm 1110 Université de Strasbourg, Strasbourg, France
| | | | - Nezam Afdhal
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Yanni Zhu
- Gilead Sciences, Foster City, California
| | | | | | - Mark Sulkowski
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
36
|
Chattergoon MA, Latanich R, Quinn J, Winter ME, Buckheit RW, Blankson JN, Pardoll D, Cox AL. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon. PLoS Pathog 2014; 10:e1004082. [PMID: 24788318 PMCID: PMC4006909 DOI: 10.1371/journal.ppat.1004082] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/07/2014] [Indexed: 02/07/2023] Open
Abstract
Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation. Pathogens are detected by the immune system in multiple ways that initiate responses to control infection. Two systems of first line defense against viruses are 1) the production of Type I interferons and 2) production of the cytokines IL-1β and IL-18 by the inflammasome. Type I interferons promote an antiviral state in the infected host. Inflammasome cytokines induce inflammation, modulate adaptive immune responses, and have direct antiviral effects. While both are produced in response to the chronic human viral infections HIV and HCV, we demonstrate here that inflammasome activation does not require cell infection and that the mechanisms for viral sensing as well as cell types in which sensing occurs are distinct between the two viruses and between the type I interferon vs. inflammasome systems. The relative amount of sensing via these different mechanisms may affect the balance between antiviral and inflammatory responses to chronic infection.
Collapse
Affiliation(s)
- Michael A. Chattergoon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rachel Latanich
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey Quinn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew E. Winter
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert W. Buckheit
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Drew Pardoll
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Chen W, Xu Y, Li H, Tao W, Xiang Y, Huang B, Niu J, Zhong J, Meng G. HCV genomic RNA activates the NLRP3 inflammasome in human myeloid cells. PLoS One 2014; 9:e84953. [PMID: 24400125 PMCID: PMC3882267 DOI: 10.1371/journal.pone.0084953] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/20/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Elevated plasma levels of IL-1β and IL-18 from patients with hepatitis C virus (HCV) infection indicate a possible activation of inflammasome by HCV. METHODOLOGY/PRINCIPAL FINDINGS To demonstrate whether HCV infection activates the inflammasome, we investigated inflammasome activation from HCV infected hepatic Huh7 cells, or monocytic cells and THP-1 derived macrophages challenged with HCV virions, but no any inflammasome activation was detected in these cells. However, when we transfected HCV genomic RNA into monocytes or macrophages, IL-1β was secreted in a dose-dependent manner. We also detected ASC oligomerization and caspase-1 cleavage in HCV RNA transfected macrophages. Using shRNA-mediated gene silencing or specific inhibitors, we found that HCV RNA-induced IL-1β secretion was dependent on the presence of inflammasome components such as NLRP3, ASC and caspase-1. Furthermore, we also found that RIG-I was dispensable for HCV RNA-induced NLRP3 inflammasome activation, while reactive oxygen species (ROS) production was required. CONCLUSIONS Our results indicate that HCV RNA activates the NLRP3 inflammasome in a ROS-dependent manner, and RIG-I is not required for this process.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yongfen Xu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hua Li
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wanyin Tao
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yu Xiang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bing Huang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Jin Zhong
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Guangxun Meng
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Shrivastava S, Mukherjee A, Ray R, Ray RB. Hepatitis C virus induces interleukin-1β (IL-1β)/IL-18 in circulatory and resident liver macrophages. J Virol 2013; 87:12284-90. [PMID: 24006444 PMCID: PMC3807883 DOI: 10.1128/jvi.01962-13] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV)-mediated chronic liver disease is a global health problem, and inflammation is believed to be an important player in disease pathogenesis. HCV infection often leads to severe fibrosis/cirrhosis and hepatocellular carcinoma, although the mechanisms for advancement of disease are not fully understood. The proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 have critical roles in establishment of inflammation. In this study, we examined induction of IL-1β/IL-18 secretion following HCV infection. Our results demonstrated that monocyte-derived human macrophages (THP-1) incubated with cell culture-grown HCV enhance the secretion of IL-1β/IL-18 into culture supernatants. A similar cytokine release was also observed for peripheral blood mononuclear cell (PBMC)-derived primary human macrophages and Kupffer cells (liver-resident macrophages) upon incubation with HCV. THP-1 cells incubated with HCV led to caspase-1 activation and release of proinflammatory cytokines. Subsequent studies demonstrated that HCV induces pro-IL-1β and pro-IL-18 synthesis via the NF-κB signaling pathway in macrophages. Furthermore, introduction of HCV viroporin p7 RNA into THP-1 cells was sufficient to cause IL-1β secretion. Together, our results suggested that human macrophages exposed to HCV induce IL-1β and IL-18 secretion, which may play a role in hepatic inflammation.
Collapse
Affiliation(s)
| | | | - Ranjit Ray
- Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B. Ray
- Departments of Pathology
- Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Activation and evasion of antiviral innate immunity by hepatitis C virus. J Mol Biol 2013; 426:1198-209. [PMID: 24184198 DOI: 10.1016/j.jmb.2013.10.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) chronically infects 130-170 million people worldwide and is a major public health burden. HCV is an RNA virus that infects hepatocytes within liver, and this infection is sensed as non-self by the intracellular innate immune response to program antiviral immunity to HCV. HCV encodes several strategies to evade this antiviral response, and this evasion of innate immunity plays a key role in determining viral persistence. This review discusses the molecular mechanisms of how the intracellular innate immune system detects HCV infection, including how HCV pathogen-associated molecular patterns are generated during infection and where they are recognized as foreign by the innate immune system. Further, this review highlights the key innate immune evasion strategies used by HCV to establish persistent infection within the liver, as well as how host genotype influences the outcome of HCV infection. Understanding these HCV-host interactions is key in understanding how to target HCV during infection and for the design of more effective HCV therapies at the immunological level.
Collapse
|
40
|
Page K, Stein E, Sansothy N, Evans J, Couture MC, Sichan K, Cockroft M, Mooney-Somers J, Phlong P, Kaldor J, Maher L, on behalf of the Young Women's Health Study Collaborative*. Sex work and HIV in Cambodia: trajectories of risk and disease in two cohorts of high-risk young women in Phnom Penh, Cambodia. BMJ Open 2013; 3:e003095. [PMID: 24022389 PMCID: PMC3773643 DOI: 10.1136/bmjopen-2013-003095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES HIV prevalence among Cambodian female sex workers (FSW) is among the highest in Southeast Asia. We describe HIV prevalence and associated risk exposures in FSW sampled serially in Phnom Penh, Cambodia (Young Women's Health Study (YWHS)), before and after the implementation of a new law designed to combat human trafficking and sexual exploitation. DESIGN Cross-sectional analysis of baseline data from two prospective cohorts. SETTING Community-based study in Phnom Penh, Cambodia. PARTICIPANTS Women aged 15-29 years, reporting ≥2 sexual partners in the last month and/or engaged in transactional sex in the last 3 months, were enrolled in the studies in 2007 (N=161; YWHS-1), and 2009 (N=220; YWHS-2) following information sessions where 285 and 345 women attended. PRIMARY OUTCOMES HIV prevalence, sexual risk behaviour, amphetamine-type stimulant (ATS) and alcohol use, and work-related factors were compared in the two groups, enrolled before and after implementation of the new law. RESULTS Participants in the two cohorts were similar in age (median 25 years), but YWHS-2 women reported fewer sex partners, more alcohol use and less ATS use. A higher proportion of YWHS-2 compared with YWHS-1 women worked in entertainment-based venues (68% vs 31%, respectively). HIV prevalence was significantly lower in the more recently sampled women: 9.2% (95% CI 4.5% to 13.8%) vs 23% (95% CI 16.5% to 29.7%). CONCLUSIONS Sex work context and risk have shifted among young FSW in Phnom Penh, following implementation of anti-prostitution and anti-trafficking laws. While both cohorts were recruited using the same eligibility criteria, more recently sampled women had lower prevalence of sexual risk and HIV infection. Women engaging more directly in transactional sex have become harder to sample and access. Future prevention research and programmes need to consider how new policies and demographic changes in FSW impact HIV transmission.
Collapse
Affiliation(s)
- Kimberly Page
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, and Global Health Sciences, San Francisco, California, USA
| | - Ellen Stein
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, and Global Health Sciences, San Francisco, California, USA
| | - Neth Sansothy
- National Center for HIV/AIDS, Dermatology and STDs (NCHADS), Sangkat Prekleap Russey Keo, Phnom Penh, Cambodia
| | - Jennifer Evans
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, and Global Health Sciences, San Francisco, California, USA
| | - Marie-Claude Couture
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, and Global Health Sciences, San Francisco, California, USA
| | - Keo Sichan
- Cambodian Women's Development Association (CWDA), Phnom Penh, Cambodia
| | - Melissa Cockroft
- Cambodian Women's Development Association (CWDA), Phnom Penh, Cambodia
| | - Julie Mooney-Somers
- The Kirby Institute (formerly the National Centre in HIV Epidemiology and Clinical Research); University of New South Wales, Darlinghurst, New South Wales, Australia
- The Centre for Values, Ethics and the Law in Medicine, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - John Kaldor
- The Kirby Institute (formerly the National Centre in HIV Epidemiology and Clinical Research); University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Lisa Maher
- The Kirby Institute (formerly the National Centre in HIV Epidemiology and Clinical Research); University of New South Wales, Darlinghurst, New South Wales, Australia
| | | |
Collapse
|
41
|
Kuppala MB, Syed SB, Bandaru S, Varre S, Akka J, Mundulru HP. Immunotherapeutic approach for better management of cancer--role of IL-18. Asian Pac J Cancer Prev 2013; 13:5353-61. [PMID: 23317183 DOI: 10.7314/apjcp.2012.13.11.5353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Interleukin-18 (IL-18) is an immune-stimulatory cytokine with antitumor activity in preclinical models. It plays pivotal roles in linking inflammatory immune responses and tumor progression and is a useful candidate in gene therapy of lymphoma or lymphoid leukemia. A phase I study of recombinant human IL-18 (rhIL-18) in patients with advanced cancer concluded that rhIL-18 can be safely given in biologically active doses to patients with advanced cancer. Some viruses can induce the secretion of IL-18 for immune evasion. The individual cytokine activity might be potentiated or inhibited by combinations of cytokines. Here we focus on combinational effects of cytokines with IL-18 in cancer progression. IL-18 is an important non-invasive marker suspected of contributing to metastasis. Serum IL-18 may a useful biological marker as independent prognostic factor of survival. In this review we cover roles of IL-18 in immune evasion, metastasis and angiogenesis, applications for chemotherapy and prognostic or diagnostic significance.
Collapse
Affiliation(s)
- Manohar Babu Kuppala
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, India.
| | | | | | | | | | | |
Collapse
|
42
|
Osburn WO, Levine JS, Chattergoon MA, Thomas DL, Cox AL. Anti-inflammatory cytokines, pro-fibrogenic chemokines and persistence of acute HCV infection. J Viral Hepat 2013; 20:404-13. [PMID: 23647957 PMCID: PMC3793396 DOI: 10.1111/jvh.12052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 12/01/2012] [Indexed: 12/12/2022]
Abstract
Chemokines and cytokines play a vital role in directing and regulating immune responses to viral infections. Persistent hepatitis C virus (HCV) infection is characterized by the loss of anti-HCV cellular immune responses, while control of HCV infection is associated with maintenance of anti-HCV cellular immune responses. To determine whether plasma concentrations of 19 chemokines and cytokines controlling T-cell trafficking and function differed based on infection outcome, we compared them in at-risk subjects followed prospectively for HCV infection. Levels were compared over time in subjects who controlled HCV infection (Clearance) and subjects who developed persistent HCV infection (Persistence) at two time points during acute infection: (i) first viraemic sample (initial viraemia) and (ii) last viraemic sample in Clearance subjects and time-matched samples in Persistence subjects. At initial viraemia, increased pro-inflammatory tumour necrosis factor α (TNFα) plasma concentrations were observed in the Clearance group, while the plasma levels of anti-inflammatory interleukin (IL)-2, IL-10 and IL-13 were higher in the Persistence group. IL-13 was positively correlated with IL-2 and IL-10 at initial viraemia in the Persistence group. At the time of last viraemia, plasma levels of eotaxin, macrophage chemoattractant protein-4 (MCP-4), IL-5 and IL-10 were higher in the Persistence group and IL-10 and IL-5 levels were positively correlated. Collectively, these results suggest that the development of persistent infection is associated with an anti-inflammatory and pro-fibrogenic chemokine and cytokine profile that is evident at the onset of infection and maintained throughout acute infection.
Collapse
Affiliation(s)
- W O Osburn
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis and hepatocellular carcinoma worldwide. Due to shared transmission routes, the prevalence of HCV is especially high among individuals infected with HIV. HIV uninfected individuals spontaneously clear HCV approximately 30 % of the time, while the rate of control in HIV infected individuals who subsequently acquire HCV is substantially lower. In addition, complications of HCV are more frequent in those with HIV infection, making liver disease the leading cause of non-AIDS-related death in HIV infected individuals. This review summarizes recent advances in understanding the role of the innate and adaptive immune responses to HCV in those with and without HIV. Further defining the interaction between hepatitis C and the host immune system will potentially reveal insights into HCV pathogenesis and the host's ability to prevent persistent infection, as well as direct the development of vaccines.
Collapse
Affiliation(s)
- Rebecca R Terilli
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Rangos Building, Suite 536, 855 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
44
|
Liu L, Fisher BE, Thomas DL, Cox AL, Ray SC. Spontaneous clearance of primary acute hepatitis C virus infection correlated with high initial viral RNA level and rapid HVR1 evolution. Hepatology 2012; 55:1684-91. [PMID: 22234804 PMCID: PMC3330174 DOI: 10.1002/hep.25575] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/16/2011] [Indexed: 12/20/2022]
Abstract
UNLABELLED The aim of this study is to determine whether early viral dynamics and evolution predict outcome of primary acute hepatitis C virus (HCV) infection. HCV- and human immunodeficiency virus-negative injection drug users were enrolled prospectively and followed monthly to identify acute HCV infection using RNA detection. Subjects with more than 1 month between HCV-RNA-negative and -positive visits were excluded to ensure stringent acute infection. Differences in medians of log-transformed viral RNA levels and evolutionary rates in each gene of a 5'-hemigenomic amplicon were assessed using Mann-Whitney's rank-sum test. Correlation coefficient was calculated using Spearman's rank order. Initial viremia level was 50-fold higher in subjects with spontaneous clearance (compared with persistence) of primary acute HCV infection (median, 7.1 versus 5.4 log(10) IU/mL; P = 0.002). Initial viremia level in subjects with interleukin (IL)28B-C allele at rs12979860 and clearance was higher than that in subjects with IL28B-T allele and persistence (P = 0.001). Evolutionary rates in the hypervariable region 1 (HVR1) region of the E2 gene were significantly higher in self-resolvers than those in persistence subjects during early infection, whereas other genes or regions had comparable rates. All major substitutions in HVR1 in persistence subjects were convergent changes, whereas over the same time interval clearance subjects displayed divergent evolution, indicating different immune responses between the two groups. CONCLUSION Spontaneous clearance of acute HCV infection is predicted by high initial viremia as well as favorable IL28B genotype and is associated with rapid envelope-sequence evolution. This linkage of host genetics, viral dynamics, and evolution provides new directions for mechanistic studies. (HEPATOLOGY 2012;55:1684-1691).
Collapse
Affiliation(s)
- Lin Liu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA, 21205
- Institute for Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China, 400038
| | - Brian E. Fisher
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA, 21205
| | - David L. Thomas
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA, 21205
- Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA, 21205
| | - Andrea L. Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA, 21205
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA, 21205
| | - Stuart C. Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA, 21205
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA, 21205
| |
Collapse
|