1
|
He SWJ, Voß F, Nicolaie MA, Brummelman J, van de Garde MDB, Bijvank E, Poelen M, Wijmenga-Monsuur AJ, Wyllie AL, Trzciński K, Van Beek J, Rots NY, den Hartog G, Hammerschmidt S, van Els CACM. Serological Profiling of Pneumococcal Proteins Reveals Unique Patterns of Acquisition, Maintenance, and Waning of Antibodies Throughout Life. J Infect Dis 2024; 230:e1299-e1310. [PMID: 38679601 PMCID: PMC11646596 DOI: 10.1093/infdis/jiae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024] Open
Abstract
Streptococcus pneumoniae is a leading cause of morbidity and mortality in children and older adults. However, knowledge on the development of pneumococcal protein-specific antibody responses throughout life is limited. To investigate this, we measured serum immunoglobulin G (IgG) levels to 55 pneumococcal proteins in 11-month-old infants (n = 73), 24-month-old children (n = 101), parents (n = 99), adults without children <6 years of age (n = 99), and older adults aged >60 years (n = 100). Our findings revealed low IgG levels in infancy, with distinct development patterns peaking in adults. A decrease in levels was observed for 27 antigens towards older age. Adults and older adults had increased IgG levels during pneumococcal carriage and at increased exposure risk to S. pneumoniae. Carriage was a stronger predictor than exposure or age for antibody responses. These findings highlight the dynamic nature of naturally acquired humoral immunity to pneumococcal proteins throughout life, offering insights for age-targeted interventions. CLINICAL TRIALS REGISTRATION Participants were selected from three clinical studies (NTR3462, NTR5405 and NTR3386) conducted in the Netherlands by the National Institute for Public Health and the Environment (RIVM).
Collapse
Affiliation(s)
- Samantha W J He
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Mioara A Nicolaie
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn D B van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Elske Bijvank
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martien Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Josine Van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Gerco den Hartog
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Laboratory of Medical Immunology, Radboudumc, Nijmegen, The Netherlands
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Croucher NJ, Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Turner C, Nosten F, Bentley SD, Liang X, Turner P, Goldblatt D. Genomic and panproteomic analysis of the development of infant immune responses to antigenically-diverse pneumococci. Nat Commun 2024; 15:355. [PMID: 38191887 PMCID: PMC10774285 DOI: 10.1038/s41467-023-44584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. This study characterises the immunoglobulin G (IgG) repertoire recognising pneumococci from birth to 24 months old (mo) in a prospectively-sampled cohort of 63 children using a panproteome array. IgG levels are highest at birth, due to transplacental transmission of maternal antibodies. The subsequent emergence of responses to individual antigens exhibit distinct kinetics across the cohort. Stable differences in the strength of individuals' responses, correlating with maternal IgG concentrations, are established by 6 mo. By 12 mo, children develop unique antibody profiles that are boosted by re-exposure. However, some proteins only stimulate substantial responses in adults. Integrating genomic data on nasopharyngeal colonisation demonstrates rare pneumococcal antigens can elicit strong IgG levels post-exposure. Quantifying such responses to the diverse core loci (DCL) proteins is complicated by cross-immunity between variants. In particular, the conserved N terminus of DCL protein zinc metalloprotease B provokes the strongest early IgG responses. DCL proteins' ability to inhibit mucosal immunity likely explains continued pneumococcal carriage despite hosts' polyvalent antibody repertoire. Yet higher IgG levels are associated with reduced incidence, and severity, of pneumonia, demonstrating the importance of the heterogeneity in response strength and kinetics across antigens and individuals.
Collapse
Affiliation(s)
- Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W12 0BZ, UK.
| | - Joseph J Campo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Timothy Q Le
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Jozelyn V Pablo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Christopher Hung
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Andy A Teng
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Claudia Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Xiaowu Liang
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
3
|
李 亭, 邓 文, 张 景, 李 平, 周 俊, 姚 振, 叶 小. [Dose-response relationship between age and Streptococcus pneumoniae vaccination coverage in kindergarten children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1059-1065. [PMID: 37905764 PMCID: PMC10621057 DOI: 10.7499/j.issn.1008-8830.2305003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/30/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVES To investigate the potential relationship between age and Streptococcus pneumoniae vaccination coverage in kindergarten children, and to provide a basis for guiding vaccination and developing new protein vaccines. METHODS The stratified cluster random sampling method was used to select 1 830 healthy children from six kindergartens in Shunde District, Foshan City, China, and nasopharyngeal swabs were collected for the isolation and identification of Streptococcus pneumoniae. The logistic regression model based on restricted cubic spline was used to analyze the dose-response relationship between age and Streptococcus pneumoniae vaccination coverage. RESULTS The rate of nasal Streptococcus pneumoniae carriage was 22.46% (411/1 830) among the kindergarten children, with the predominant serotypes of 6B, 19F, 15A, 23A, 34, and 23F. The coverage rates of 10-valent pneumococcal conjugate vaccine (PCV10) and 13-valent pneumococcal conjugate vaccine (PCV13) were 53.0% and 57.9%, respectively, and there was a significant non-linear dose-response relationship between age and the coverage rates of PCV10 and PCV13 (P<0.05), with a higher coverage rate of PCV10 (88.0%) and PCV13 (91.1%) in the children aged 2 years. There was a significant non-linear dose-response relationship between age and the coverage rates of pilus islet 1 (PI-1) and pilus islet 2 (PI-2) (P<0.05), with a lower vaccination coverage rate for PI-1 (37.7%) and PI-2 (16.1%). The coverage rates of PI-1 (13.0%-58.5%) and PI-2 (6.0%-29.4%) were lower in all age groups. The virulence genes lytA (99.5%) and ply (99.0%) associated with candidate protein vaccines showed higher vaccination coverage rates. CONCLUSIONS There is a significant non-linear dose-response relationship between the age of kindergarten children and the coverage rates of PCV10 and PCV13 serotypes, and kindergarten children aged 2 years have a relatively high coverage rate of PCV. The high prevalence of the virulence genes lytA and ply shows that they are expected to become candidate virulence factors for the development of a new generation of recombinant protein vaccines.
Collapse
|
4
|
Araujo AP, Colichio GBC, Oliveira MLS, German E, Nikolaou E, Chen T, Adler H, Ferreira DM, Miyaji EN. Serum levels of anti-PspA and anti-PspC IgG decrease with age and do not correlate with susceptibility to experimental human pneumococcal colonization. PLoS One 2021; 16:e0247056. [PMID: 33577617 PMCID: PMC7880446 DOI: 10.1371/journal.pone.0247056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/28/2021] [Indexed: 11/18/2022] Open
Abstract
Older adults are at increased risk of pneumococcal disease. This work aims to evaluate whether there is any decrease in serum IgG against variants of the antigens Pneumococcal surface protein A (PspA) and Pneumococcal surface protein C (PspC) in healthy adults with increasing age. Levels of IgG against PspA and PspC variants were determined by ELISA in serum samples comparing volunteers 18–30 years of age with volunteers who were 50–70+ before and after an experimental pneumococcal colonization challenge. The serotype 6B strain used in the challenge belongs to a minor group of pneumococcal isolates expressing two PspC variants. There was a decrease in levels of IgG with increasing age for the most common PspA variants and for all PspC variants analyzed. No correlation was found between basal levels of IgG against these antigens and protection against colonization. There was an increase in levels of IgG against PspA variants that are more cross-reactive with the variant expressed by the challenge strain post challenge in younger individuals who became colonized. Since the challenge strain used in our study expresses two different PspC variants, an increase in serum IgG against all PspC variants tested was observed in younger individuals who became colonized. For some of the antigen variants tested, a decrease in serum IgG was observed in young volunteers who were challenged but did not become colonized. Serum IgG antibodies against PspA and PspC variants thus decrease with age in healthy adults, but there is no correlation between levels of IgG against these antigens and protection against human experimental colonization. Though no correlation between naturally induced serum IgG antibodies against PspA and PspC and protection against colonization was observed, these results do not rule out the protective potential of these antigens as vaccines against pneumococcal infections.
Collapse
Affiliation(s)
| | | | | | - Esther German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eliane N. Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
5
|
Azarian T, Martinez PP, Arnold BJ, Qiu X, Grant LR, Corander J, Fraser C, Croucher NJ, Hammitt LL, Reid R, Santosham M, Weatherholtz RC, Bentley SD, O’Brien KL, Lipsitch M, Hanage WP. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol 2020; 18:e3000878. [PMID: 33091022 PMCID: PMC7580979 DOI: 10.1371/journal.pbio.3000878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Predicting how pathogen populations will change over time is challenging. Such has been the case with Streptococcus pneumoniae, an important human pathogen, and the pneumococcal conjugate vaccines (PCVs), which target only a fraction of the strains in the population. Here, we use the frequencies of accessory genes to predict changes in the pneumococcal population after vaccination, hypothesizing that these frequencies reflect negative frequency-dependent selection (NFDS) on the gene products. We find that the standardized predicted fitness of a strain, estimated by an NFDS-based model at the time the vaccine is introduced, enables us to predict whether the strain increases or decreases in prevalence following vaccination. Further, we are able to forecast the equilibrium post-vaccine population composition and assess the invasion capacity of emerging lineages. Overall, we provide a method for predicting the impact of an intervention on pneumococcal populations with potential application to other bacterial pathogens in which NFDS is a driving force.
Collapse
Affiliation(s)
- Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Pamela P. Martinez
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Brian J. Arnold
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Xueting Qiu
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Lindsay R. Grant
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jukka Corander
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Infection Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Laura L. Hammitt
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mathuram Santosham
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Robert C. Weatherholtz
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Stephen D. Bentley
- Infection Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | | | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Binsker U, Lees JA, Hammond AJ, Weiser JN. Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1. J Clin Invest 2020; 130:927-941. [PMID: 31687974 DOI: 10.1172/jci132005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Successful infection by mucosal pathogens requires overcoming the mucus barrier. To better understand this key step, we performed a survey of the interactions between human respiratory mucus and the human pathogen Streptococcus pneumoniae. Pneumococcal adherence to adult human nasal fluid was seen only by isolates expressing pilus-1. Robust binding was independent of pilus-1 adhesive properties but required Fab-dependent recognition of RrgB, the pilus shaft protein, by naturally acquired secretory IgA (sIgA). Pilus-1 binding by specific sIgA led to bacterial agglutination, but adherence required interaction of agglutinated pneumococci and entrapment in mucus particles. To test the effect of these interactions in vivo, pneumococci were preincubated with human sIgA before intranasal challenge in a mouse model of colonization. sIgA treatment resulted in rapid immune exclusion of pilus-expressing pneumococci. Our findings predict that immune exclusion would select for nonpiliated isolates in individuals who acquired RrgB-specific sIgA from prior episodes of colonization with piliated strains. Accordingly, genomic data comparing isolates carried by mothers and their children showed that mothers are less likely to be colonized with pilus-expressing strains. Our study provides a specific example of immune exclusion involving naturally acquired antibody in the human host, a major factor driving pneumococcal adaptation.
Collapse
|
7
|
Georgieva M, Buckee CO, Lipsitch M. Models of immune selection for multi-locus antigenic diversity of pathogens. Nat Rev Immunol 2019; 19:55-62. [PMID: 30479379 DOI: 10.1038/s41577-018-0092-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well accepted that pathogens can evade recognition and elimination by the host immune system by varying their antigenic targets. Thus, it has become a truism that host immunity is a major driver and determinant of the antigenic diversity of pathogens. However, it remains puzzling how host immunity selects for antigenic diversity at the level of the pathogen population, given that hosts have acquired immune responses to multiple antigens of most pathogens - sometimes through multiple effectors of both humoral and cellular immunity. In this Opinion article, we address this puzzle and the related question of why pathogens often have diversity at multiple antigenic loci. Here, we describe five hypotheses to explain the polymorphism of multiple antigens in a single pathogen species and highlight research relevant to our current models of thinking about multi-locus antigenic diversity.
Collapse
Affiliation(s)
- Maria Georgieva
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
8
|
Groves N, Sheppard CL, Litt D, Rose S, Silva A, Njoku N, Rodrigues S, Amin-Chowdhury Z, Andrews N, Ladhani S, Fry NK. Evolution of Streptococcus pneumoniae Serotype 3 in England and Wales: A Major Vaccine Evader. Genes (Basel) 2019; 10:genes10110845. [PMID: 31731573 PMCID: PMC6896183 DOI: 10.3390/genes10110845] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022] Open
Abstract
Despite its inclusion in pneumococcal conjugate vaccine 13 (PCV13), Streptococcus pneumoniae serotype 3 remains a major cause of invasive pneumococcal disease in England and Wales. Previous studies have indicated that there are distinct lineages within serotype 3 clonal complex 180 and the clade distributions have shifted in recent years with the emergence of clade II. We undertook whole genome sequencing and genomic analysis of 616 serotype 3 isolates from England and Wales between 2003 and 2018, including invasive and carriage isolates. Our investigations showed that clade II has expanded since 2014 and now represents 50% of serotype 3 invasive pneumococcal disease (IPD) isolates in England and Wales. Genomic analysis of antibiotic resistance and protein antigen genes showed that distinct profiles are present within the clades which could account for the recent emergence of this clade. This investigation highlights the importance and utility of routine whole genome sequencing and its ability to identify new and emerging variation at the single nucleotide level which informs surveillance and will impact future vaccine development.
Collapse
Affiliation(s)
- Natalie Groves
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
- Correspondence:
| | - Carmen L. Sheppard
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - David Litt
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Samuel Rose
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Ana Silva
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Nina Njoku
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Sofia Rodrigues
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Zahin Amin-Chowdhury
- Immunisation and Countermeasures, Public Health England–National Infection Service, London NW9 5EQ, UK; (Z.A.-C.); (S.L.)
| | - Nicholas Andrews
- Statistics, Modelling and Economics, Public Health England–National Infection Service, London NW9 5EQ, UK;
| | - Shamez Ladhani
- Immunisation and Countermeasures, Public Health England–National Infection Service, London NW9 5EQ, UK; (Z.A.-C.); (S.L.)
| | - Norman K. Fry
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
- Immunisation and Countermeasures, Public Health England–National Infection Service, London NW9 5EQ, UK; (Z.A.-C.); (S.L.)
| |
Collapse
|
9
|
Azarian T, Mitchell PK, Georgieva M, Thompson CM, Ghouila A, Pollard AJ, von Gottberg A, du Plessis M, Antonio M, Kwambana-Adams BA, Clarke SC, Everett D, Cornick J, Sadowy E, Hryniewicz W, Skoczynska A, Moïsi JC, McGee L, Beall B, Metcalf BJ, Breiman RF, Ho PL, Reid R, O’Brien KL, Gladstone RA, Bentley SD, Hanage WP. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog 2018; 14:e1007438. [PMID: 30475919 PMCID: PMC6283594 DOI: 10.1371/journal.ppat.1007438] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/06/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the USA, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3-31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identified a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939-1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last of which resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease, as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development.
Collapse
Affiliation(s)
- Taj Azarian
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Patrick K. Mitchell
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Maria Georgieva
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Claudette M. Thompson
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Amel Ghouila
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford; NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), Churchill Hospital, Oxford, United Kingdom
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Martin Antonio
- Medical Research Council Unit The Gambia, Fajara, The Gambia
| | | | - Stuart C. Clarke
- Faculty of Medicine and Institute for Life Sciences and Global Health Research Institute, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
| | - Dean Everett
- Queens Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Cornick
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ewa Sadowy
- National Medicines Institute, Warsaw, Poland
| | | | | | - Jennifer C. Moïsi
- Pfizer Vaccines, Medical Development, Scientific and Clinical Affairs, Paris, France
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Benjamin J. Metcalf
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Robert F. Breiman
- Global Health Institute, Emory University, Atlanta, Georgia, United States of America
| | - PL Ho
- Department of Microbiology, Queen Mary Hospital University of Hong Kong, Hong Kong, People’s Republic of China
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katherine L. O’Brien
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rebecca A. Gladstone
- Wellcome Trust, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Wellcome Trust, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Brooks LRK, Mias GI. Streptococcus pneumoniae's Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front Immunol 2018; 9:1366. [PMID: 29988379 PMCID: PMC6023974 DOI: 10.3389/fimmu.2018.01366] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae is an infectious pathogen responsible for millions of deaths worldwide. Diseases caused by this bacterium are classified as pneumococcal diseases. This pathogen colonizes the nasopharynx of its host asymptomatically, but overtime can migrate to sterile tissues and organs and cause infections. Pneumonia is currently the most common pneumococcal disease. Pneumococcal pneumonia is a global health concern and vastly affects children under the age of five as well as the elderly and individuals with pre-existing health conditions. S. pneumoniae has a large selection of virulence factors that promote adherence, invasion of host tissues, and allows it to escape host immune defenses. A clear understanding of S. pneumoniae's virulence factors, host immune responses, and examining the current techniques available for diagnosis, treatment, and disease prevention will allow for better regulation of the pathogen and its diseases. In terms of disease prevention, other considerations must include the effects of age on responses to vaccines and vaccine efficacy. Ongoing work aims to improve on current vaccination paradigms by including the use of serotype-independent vaccines, such as protein and whole cell vaccines. Extending our knowledge of the biology of, and associated host immune response to S. pneumoniae is paramount for our improvement of pneumococcal disease diagnosis, treatment, and improvement of patient outlook.
Collapse
Affiliation(s)
- Lavida R. K. Brooks
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Azarian T, Grant LR, Arnold BJ, Hammitt LL, Reid R, Santosham M, Weatherholtz R, Goklish N, Thompson CM, Bentley SD, O’Brien KL, Hanage WP, Lipsitch M. The impact of serotype-specific vaccination on phylodynamic parameters of Streptococcus pneumoniae and the pneumococcal pan-genome. PLoS Pathog 2018; 14:e1006966. [PMID: 29617440 PMCID: PMC5902063 DOI: 10.1371/journal.ppat.1006966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/16/2018] [Accepted: 03/09/2018] [Indexed: 11/18/2022] Open
Abstract
In the United States, the introduction of the heptavalent pneumococcal conjugate vaccine (PCV) largely eliminated vaccine serotypes (VT); non-vaccine serotypes (NVT) subsequently increased in carriage and disease. Vaccination also disrupts the composition of the pneumococcal pangenome, which includes mobile genetic elements and polymorphic non-capsular antigens important for virulence, transmission, and pneumococcal ecology. Antigenic proteins are of interest for future vaccines; yet, little is known about how the they are affected by PCV use. To investigate the evolutionary impact of vaccination, we assessed recombination, evolution, and pathogen demographic history of 937 pneumococci collected from 1998-2012 among Navajo and White Mountain Apache Native American communities. We analyzed changes in the pneumococcal pangenome, focusing on metabolic loci and 19 polymorphic protein antigens. We found the impact of PCV on the pneumococcal population could be observed in reduced diversity, a smaller pangenome, and changing frequencies of accessory clusters of orthologous groups (COGs). Post-PCV7, diversity rebounded through clonal expansion of NVT lineages and inferred in-migration of two previously unobserved lineages. Accessory COGs frequencies trended toward pre-PCV7 values with increasing time since vaccine introduction. Contemporary frequencies of protein antigen variants are better predicted by pre-PCV7 values (1998-2000) than the preceding period (2006-2008), suggesting balancing selection may have acted in maintaining variant frequencies in this population. Overall, we present the largest genomic analysis of pneumococcal carriage in the United States to date, which includes a snapshot of a true vaccine-naïve community prior to the introduction of PCV7. These data improve our understanding of pneumococcal evolution and emphasize the need to consider pangenome composition when inferring the impact of vaccination and developing future protein-based pneumococcal vaccines.
Collapse
Affiliation(s)
- Taj Azarian
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Lindsay R. Grant
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Brian J. Arnold
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
| | - Laura L. Hammitt
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Mathuram Santosham
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Robert Weatherholtz
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Novalene Goklish
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Claudette M. Thompson
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
| | | | - Katherine L. O’Brien
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
| |
Collapse
|
12
|
Antigenic Variation in Streptococcus pneumoniae PspC Promotes Immune Escape in the Presence of Variant-Specific Immunity. mBio 2018. [PMID: 29535198 PMCID: PMC5850329 DOI: 10.1128/mbio.00264-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genomic analysis reveals extensive sequence variation and hot spots of recombination in surface proteins of Streptococcus pneumoniae. While this phenomenon is commonly attributed to diversifying selection by host immune responses, there is little mechanistic evidence for the hypothesis that diversification of surface protein antigens produces an immune escape benefit during infection with S. pneumoniae. Here, we investigate the biological significance of sequence variation within the S. pneumoniae cell wall-associated pneumococcal surface protein C (PspC) protein antigen. Using pspC allelic diversity observed in a large pneumococcal collection, we produced variant-specific protein constructs that span the sequence variability within the pspC locus. We show that antibodies raised against these PspC constructs are variant specific and prevent association between PspC and the complement pathway mediator, human factor H. We found that PspC variants differ in their capacity to bind factor H, suggesting that sequence variation within pspC reflects differences in biological function. Finally, in an antibody-dependent opsonophagocytic assay, S. pneumoniae expressing a PspC variant matching the antibody specificity was killed efficiently. In contrast, killing efficacy was not evident against S. pneumoniae expressing mismatched PspC variants. Our data suggest that antigenic variation within the PspC antigen promotes immune evasion and could confer a fitness benefit during infection. Loci encoding surface protein antigens in Streptococcus pneumoniae are highly polymorphic. It has become a truism that these polymorphisms are the outcome of selective pressure on S. pneumoniae to escape host immunity. However, there is little mechanistic evidence to support the hypothesis that diversifying protein antigens produces a benefit for the bacteria. Using the highly diverse pspC locus, we have now characterized the functional and immune implications of sequence diversity within the PspC protein. We have characterized the spectrum of biological function among diverse PspC variants and show that pspC sequence diversity reflects functional differences. Further, we show that sequence variation in PspC confers an immune escape benefit in the presence of anti-PspC variant-specific immunity. Overall, the results of our studies provide insights into the functional implications of protein sequence diversity and the role of variant-specific immunity in its maintenance.
Collapse
|
13
|
Abstract
Colonization of the human nasopharynx by pneumococcus is extremely common and is both the primary reservoir for transmission and a prerequisite for disease. Current vaccines targeting the polysaccharide capsule effectively prevent colonization, conferring herd protection within vaccinated communities. However, these vaccines cover only a subset of all circulating pneumococcal strains, and serotype replacement has been observed. Given the success of pneumococcal conjugate vaccine (PCV) in preventing colonization in unvaccinated adults within vaccinated communities, reducing nasopharyngeal colonization has become an outcome of interest for novel vaccines. Here, we discuss the immunological mechanisms that control nasopharyngeal colonization, with an emphasis on findings from human studies. Increased understanding of these immunological mechanisms is required to identify correlates of protection against colonization that will facilitate the early testing and design of novel vaccines.
Collapse
Affiliation(s)
- Simon P. Jochems
- Department of Clinicial Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (SPJ); (DMF)
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Malley
- Division of Infectious Diseases, Boston Children′s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela M. Ferreira
- Department of Clinicial Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (SPJ); (DMF)
| |
Collapse
|
14
|
Kinetics of antibodies against pneumococcal proteins and their relationship to nasopharyngeal carriage in the first two months of life. PLoS One 2017; 12:e0185824. [PMID: 28982123 PMCID: PMC5628860 DOI: 10.1371/journal.pone.0185824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022] Open
Abstract
Introduction The currently used Streptococcus pneumoniae vaccines have had a significant impact on the pneumococcal diseases caused by the serotypes they cover. Their limitations have stimulated a search for alternate vaccines that will cover all serotypes, be affordable and effective in young children. Pneumococcal protein antigens are potential vaccine candidates that may meet some of the shortfalls of the current vaccines. Thus, this study aimed to determine the relationship between antibodies against pneumococcal protein antigens and nasopharyngeal carriage in infants. Methods One hundred and twenty mother-infant pairs were enrolled into the study. They had nasopharyngeal swabs(NPS) taken at birth and every two weeks for the first eight weeks after delivery, and blood samples were obtained at birth and every four weeks for the first eight weeks after delivery. Nasopharyngeal carriage of S. pneumoniae was determined from the NPS and antibodies against the pneumococcal proteins CbpA, PspA and rPly were measured in the blood samples. Results The S. pneumoniae carriage rate in infants increased to that of mothers by eight weeks of age. The odds of carriage in infants was 6.2 times (95% CI: 2.0–18.9) higher when their mothers were also carriers. Bacterial density in infants was lower at birth compared to their mothers (p = 0.004), but increased with age and became higher than that of their mothers at weeks 4 (p = 0.009), 6 (p = 0.002) and 8 (p<0.0001). At birth, the infants’ antibodies against CbpA, and rPly pneumococcal protein antigens were similar, but that of PspA was lower (p<0.0001), compared to their mothers. Higher antibody concentrations to CbpA [OR (95% CI): 0.49 (0.26–0.92, p = 0.03)], but not PspA and rPly, were associated with protection against carriage in the infants. Conclusion Naturally induced antibodies against the three pneumococcal protein antigens were transferred from mother to child. The proportion of infants with nasopharyngeal carriage and the bacterial density of S. pneumoniae increased with age within the first eight weeks of life. Higher concentrations of antibodies against CbpA, but not PspA and rPly, were associated with reduced risk of nasopharyngeal carriage of S. pneumoniae in infants.
Collapse
|