1
|
Paião HGO, da Costa AC, Ferreira NE, Honorato L, dos Santos BM, de Matos MLM, Domingues RB, Senne CA, Lopes ADO, de Paula VS, Witkin SS, Tozetto-Mendoza TR, Mendes-Correa MC. Phylogenetic Analysis of Varicella-Zoster Virus in Cerebrospinal Fluid from Individuals with Acute Central Nervous System Infection: An Exploratory Study. Viruses 2025; 17:286. [PMID: 40007041 PMCID: PMC11860453 DOI: 10.3390/v17020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND There is scarce information on Varicella-Zoster virus genetic variability in individuals with acute central nervous system infection in Brazil. The objective of this study was the molecular characterization of Varicella-Zoster virus isolates in cerebrospinal fluid from individuals with acute central nervous system infection. METHODS Cerebrospinal fluid samples were collected from individuals evaluated in emergency and community healthcare services in São Paulo, Brazil. Varicella-Zoster virus identification was performed using commercial platforms Biofire-FilmArray Meningitis/Encephalitis (BioMérieux, Craponne, France) and XGEN-UMLTI-N9® (Mobius Life, Pinhais, Brazil). Positive samples were further characterized as wild-type or vaccine-strain by a real-time polymerase chain reaction assay that targeted a single nucleotide polymorphism in open reading frame 62. We also estimated the mean genetic distance and phylogenetic reconstruction based on open reading frames 22, 38, 54, and 62 in relation to sequences of intercontinentally circulating Varicella-Zoster virus isolates. RESULTS Among the 600 cerebrospinal fluid samples, we identified Varicella-Zoster virus in 30 (5%) samples. None were positive for the vaccine-strain. Twelve samples were sequenced and phylogenetically classified into Clades 1 (41.7%), 2 (25%), 3 (8.3%), 5 (16.7%), or 6 (8%). CONCLUSION Enhanced characterization of circulating Varicella-Zoster virus Clades in Brazil identified previously unreported Clades 2 and 6 as well as three other Clades disseminated intercontinentally. These findings reinforce the importance of Varicella-Zoster virus molecular surveillance in cerebrospinal fluid.
Collapse
Affiliation(s)
- Heuder G. O. Paião
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; (A.C.d.C.); (N.E.F.); (L.H.); (S.S.W.); (T.R.T.-M.); (M.C.M.-C.)
- Departamento de Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Arnaldo, 455, São Paulo 01246-903, Brazil
| | - Antônio C. da Costa
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; (A.C.d.C.); (N.E.F.); (L.H.); (S.S.W.); (T.R.T.-M.); (M.C.M.-C.)
| | - Noely E. Ferreira
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; (A.C.d.C.); (N.E.F.); (L.H.); (S.S.W.); (T.R.T.-M.); (M.C.M.-C.)
- Departamento de Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Arnaldo, 455, São Paulo 01246-903, Brazil
| | - Layla Honorato
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; (A.C.d.C.); (N.E.F.); (L.H.); (S.S.W.); (T.R.T.-M.); (M.C.M.-C.)
- Departamento de Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Arnaldo, 455, São Paulo 01246-903, Brazil
| | - Bianca M. dos Santos
- Serviço de Cuidados Paliativos do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, R. Cotoxó, 1142, São Paulo 05021-001, Brazil;
| | - Maria L. M. de Matos
- Faculdade de Medicina, Universidade de São Caetano do Sul, R. Santo Antônio, 50, São Caetano do Sul 09521-160, Brazil;
| | - Renan B. Domingues
- Laboratório Senne Liquor, Av. Angélica, 2071, São Paulo 01239-030, Brazil; (R.B.D.); (C.A.S.)
| | - Carlos A. Senne
- Laboratório Senne Liquor, Av. Angélica, 2071, São Paulo 01239-030, Brazil; (R.B.D.); (C.A.S.)
| | - Amanda de O. Lopes
- Laboratório de Virologia Molecular do Instituto Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Brazil; (A.d.O.L.); (V.S.d.P.)
| | - Vanessa S. de Paula
- Laboratório de Virologia Molecular do Instituto Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Brazil; (A.d.O.L.); (V.S.d.P.)
| | - Steven S. Witkin
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; (A.C.d.C.); (N.E.F.); (L.H.); (S.S.W.); (T.R.T.-M.); (M.C.M.-C.)
- Departamento de Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Arnaldo, 455, São Paulo 01246-903, Brazil
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10001, USA
| | - Tânia R. Tozetto-Mendoza
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; (A.C.d.C.); (N.E.F.); (L.H.); (S.S.W.); (T.R.T.-M.); (M.C.M.-C.)
- Departamento de Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Arnaldo, 455, São Paulo 01246-903, Brazil
| | - Maria Cássia Mendes-Correa
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; (A.C.d.C.); (N.E.F.); (L.H.); (S.S.W.); (T.R.T.-M.); (M.C.M.-C.)
- Departamento de Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr Arnaldo, 455, São Paulo 01246-903, Brazil
| |
Collapse
|
2
|
Ortigas-Vasquez A, Szpara M. Embracing Complexity: What Novel Sequencing Methods Are Teaching Us About Herpesvirus Genomic Diversity. Annu Rev Virol 2024; 11:67-87. [PMID: 38848592 DOI: 10.1146/annurev-virology-100422-010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The arrival of novel sequencing technologies throughout the past two decades has led to a paradigm shift in our understanding of herpesvirus genomic diversity. Previously, herpesviruses were seen as a family of DNA viruses with low genomic diversity. However, a growing body of evidence now suggests that herpesviruses exist as dynamic populations that possess standing variation and evolve at much faster rates than previously assumed. In this review, we explore how strategies such as deep sequencing, long-read sequencing, and haplotype reconstruction are allowing scientists to dissect the genomic composition of herpesvirus populations. We also discuss the challenges that need to be addressed before a detailed picture of herpesvirus diversity can emerge.
Collapse
Affiliation(s)
- Alejandro Ortigas-Vasquez
- Departments of Biology and of Biochemistry and Molecular Biology; Center for Infectious Disease Dynamics; and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Moriah Szpara
- Departments of Biology and of Biochemistry and Molecular Biology; Center for Infectious Disease Dynamics; and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
3
|
Ortigas-Vasquez A, Pandey U, Renner DW, Bowen CD, Baigent SJ, Dunn J, Cheng H, Yao Y, Read AF, Nair V, Kennedy DA, Szpara ML. Comparative analysis of multiple consensus genomes of the same strain of Marek's disease virus reveals intrastrain variation. Virus Evol 2024; 10:veae047. [PMID: 39036034 PMCID: PMC11259760 DOI: 10.1093/ve/veae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Current strategies to understand the molecular basis of Marek's disease virus (MDV) virulence primarily consist of cataloging divergent nucleotides between strains with different phenotypes. However, most comparative genomic studies of MDV rely on previously published consensus genomes despite the confirmed existence of MDV strains as mixed viral populations. To assess the reliability of interstrain genomic comparisons relying on published consensus genomes of MDV, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform three-way comparisons between multiple consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). By contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Notably, we were able to identify 3 single-nucleotide polymorphisms (SNPs) in the unique long region and 16 SNPs in the unique short (US) region of CVI988GenBank.BAC that were not present in either CVI988Pirbright.lab or CVI988USDA.PA.field. Recombination analyses of field strains previously described as natural recombinants of CVI988 yielded no evidence of crossover events in the US region when either CVI988Pirbright.lab or CVI988USDA.PA.field were used to represent CVI988 instead of CVI988GenBank.BAC. We were also able to confirm that both CVI988 and Md5 populations were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. However, we did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988GenBank.BAC. Taken together, our findings suggest that continued reliance on the same published consensus genome of CVI988 may have led to an overestimation of genomic divergence between CVI988 and virulent strains and that multiple consensus genomes per strain may be necessary to ensure the accuracy of interstrain genomic comparisons.
Collapse
Affiliation(s)
- Alejandro Ortigas-Vasquez
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel W Renner
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Chris D Bowen
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Susan J Baigent
- Viral Oncogenesis Group, The Pirbright Institute, Woking GU24 0NF, UK
| | - John Dunn
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605, USA
| | - Hans Cheng
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Yongxiu Yao
- Viral Oncogenesis Group, The Pirbright Institute, Woking GU24 0NF, UK
| | - Andrew F Read
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Woking GU24 0NF, UK
| | - Dave A Kennedy
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Moriah L Szpara
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Davies EA, Dutton L, Guiver M. Evaluation of a custom designed hybridisation assay for whole genome sequencing of human adenoviruses direct from clinical samples. J Clin Virol 2024; 171:105640. [PMID: 38219683 DOI: 10.1016/j.jcv.2024.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Human Adenoviruses are a common cause of disease and can cause significant morbidity and mortality in immunocompromised patients. Nosocomial transmission events can occur with whole genome sequencing playing a crucial role. This study evaluates the performance of a custom designed SureSelectXT target enrichment assay based on 14 adenovirus genomes for sequencing direct from clinical samples. METHODS Modifications were made to the SureSelectXT low input protocol to enhance performance for viral targets. Consensus sequences were generated using an in-house designed three stage bioinformatics pipeline. We assessed, percentage of on target reads, average depth of coverage and percentage genome coverage to determine assay performance across a range of sample matrices. RESULTS Whole genome sequences were successfully generated for 91.6 % of samples assessed. Adenovirus DNA concentration was a good indicator of enrichment success. Highly specific enrichment was observed with only 6 % of samples showing < 50 % on target reads. Respiratory and faecal samples performed well where bloods showed higher levels of non-specific enrichment likely confounded by low adenovirus DNA concentrations. Protocol performance did not appear impacted by Adenovirus type or species. CONCLUSION Overall performance of this modified SureSelectXT protocol appears in line with previously published works although there are some confounding factors requiring further investigation. The use of a small RNA bait set has the potential to reduce associated costs which can be prohibitive.
Collapse
Affiliation(s)
- Emma Ann Davies
- UKHSA Manchester Virology Laboratory, Manchester Medical Microbiology Partnership, Manchester Foundation Trust, Manchester, UK.
| | - Laura Dutton
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester Foundation Trust, Manchester, UK
| | - Malcolm Guiver
- UKHSA Manchester Virology Laboratory, Manchester Medical Microbiology Partnership, Manchester Foundation Trust, Manchester, UK
| |
Collapse
|
5
|
Jakabek D, Chaganti J, Brew BJ. Infectious leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:431-453. [PMID: 39322393 DOI: 10.1016/b978-0-323-99209-1.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukoencephalopathy from infectious agents may have a rapid course, such as human simplex virus encephalitis; however, in many diseases, it may take months or years before diagnosis, such as in subacute sclerosing panencephalitis or Whipple disease. There are wide geographic distributions and susceptible populations, including both immunocompetent and immunodeficient patients. Many infections have high mortality rates, such as John Cunningham virus and subacute sclerosing panencephalitis, although others have effective treatments if suspected and treated early, such as herpes simplex encephalitis. This chapter will describe viral, bacterial, and protozoal infections, which predominantly cause leukoencephalopathy. We focus on the clinical presentation of these infectious agents briefly covering epidemiology and subtypes of infections. Next, we detail current pathophysiologic mechanisms causing white matter injury. Diagnostic and confirmatory tests are discussed. We cover predominantly MRI imaging features of leukoencephalopathies, and in addition, summarize the common imaging features. Additionally, we detail how imaging features may be used to narrow the differential of a leukoencephalopathy clinical presentation. Lastly, we present an outline of common treatment approaches where available.
Collapse
Affiliation(s)
- David Jakabek
- Department of Neurology, St. Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Joga Chaganti
- Department of Radiology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Bruce James Brew
- Department of Neurology, St. Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia; University of Notre Dame, Sydney, NSW, Australia; Department of HIV Medicine and Peter Duncan Neurosciences Unit St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Roshdy WH, Kandeil A, Fahim M, Naguib NY, Mohsen G, Shawky S, Abd El-Fattah MM, Naguib A, Salamony A, Shamikh YI, Moawad M, Guindy NE, Khalifa MK, Abbas E, Galal R, Hassany M, Ibrahem M, El-Shesheny R, Asem N, Kandeel A. Epidemiological characterization of viral etiological agents of the central nervous system infections among hospitalized patients in Egypt between 2016 and 2019. Virol J 2023; 20:170. [PMID: 37533069 PMCID: PMC10399032 DOI: 10.1186/s12985-023-02079-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
Viral infections of the central nervous system (CNS) are common worldwide and result in considerable morbidity and mortality associated with neurologic illness. Until now, there have been no epidemiologic data regarding viruses causing aseptic meningitis, encephalitis, and CNS infections in Egypt. We investigated 1735 archived cerebrospinal fluid samples collected from Egyptian patients between 2016 and 2019 and performed molecular characterization for infection for12 different viruses: herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesviruses 6 and 7 (HHV-6 and HHV-7), human enteroviruses (HEVs), human parechovirus (HPeV), parvovirus B19 (B19V), adenovirus (AdV), and mumps virus (MuV). All included samples were negative for bacterial infection. Our results indicated a relatively high prevalence of viral infection, with HEVs being the most prevalent viruses, followed by HSV-1, EBV, and then HSV-2. The highest prevalence was among male patients, peaking during the summer. Data obtained from this study will contribute to improving the clinical management of viral infections of the CNS in Egypt.
Collapse
Affiliation(s)
- Wael H Roshdy
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt.
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| | - Manal Fahim
- Department of Epidemiology and Surveillance, Ministry of Health, Cairo, 11613, Egypt
| | - Nourhan Y Naguib
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt
| | - Gehad Mohsen
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt
| | - Shaymaa Shawky
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt
| | - Marwa M Abd El-Fattah
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt
| | - Amel Naguib
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt
| | - Azza Salamony
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt
- Virology Department, Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Yara I Shamikh
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt
- Virology Department, Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Mahmoud Moawad
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nancy El Guindy
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt
| | - Mohamed K Khalifa
- Department of Virology, Central Public Health Laboratories, Ministry of Health, Cairo, 11613, Egypt
| | - Eman Abbas
- Department of Epidemiology and Surveillance, Ministry of Health, Cairo, 11613, Egypt
| | - Ramy Galal
- Public Health Initiative, Ministry of Health and Population, Cairo, Egypt
| | - Mohamed Hassany
- National Hepatology and Tropical Medicine Research Institute, Ministry of Health and Population, Cairo, Egypt
| | - Mohamed Ibrahem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Noha Asem
- Department of Public Health, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Amr Kandeel
- Ministry of Health and Population, Cairo, Egypt.
| |
Collapse
|
7
|
El-Duah P, Sylverken AA, Owusu M, Amoako YA, Yeboah R, Gorman R, Nyarko-Afriyie E, Schneider J, Jones TC, Bonney J, Adade T, Yeboah ES, Binger T, Corman VM, Drosten C, Phillips RO. Genetic characterization of varicella-zoster and HIV-1 viruses from the cerebrospinal fluid of a co-infected encephalitic patient, Ghana. Virol J 2022; 19:122. [PMID: 35883083 PMCID: PMC9327158 DOI: 10.1186/s12985-022-01854-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Encephalitis is a serious disease of the brain characterized by prodromal and specific neurological symptoms. HIV infections offer opportunistic viruses, such as Varicella-zoster virus (VZV), the chance to cause encephalitis in patients. There is a lack of information on the genetic diversity of VZV in Ghana and other parts of Africa which requires sequencing and characterization studies to address. The active evolution of HIV-1 in West Africa also requires continuous surveillance for the emergence of new genetic forms. CASE PRESENTATION VZV was detected in the CSF sample of an 11-year-old patient presenting with symptoms of encephalitis by real-time PCR diagnostics. To identify possible unknown aetiological pathogens, next-generation sequencing was performed, and revealed an HIV-1 co-infection. Alignments of concatenated HIV-1 genome fragments in the gag, pol, vif, env and nef regions and a near-complete VZV genome were analyzed by Bayesian inference, and phylogenetic trees were generated. The VZV sequence belongs to clade 5 and the HIV-1 sequence is a member of the CRF02_AG predominant circulating recombinant form in Ghana. CONCLUSIONS Diagnostic tests for CSF HIV would be useful where possible in patients presenting with encephalitis due to VZV and other opportunistic viruses in Kumasi to shed light on the role of HIV in encephalitis cases in Ghana. This report reaffirms the role of the CRF02_AG circulating recombinant form in HIV infections in Ghana and also gives a preliminary genetic characterization of VZV in Kumasi, Ghana.
Collapse
Affiliation(s)
- Philip El-Duah
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Augustina Angelina Sylverken
- Kumasi Centre for Collaborative Research Into Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Owusu
- Kumasi Centre for Collaborative Research Into Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Medical Diagnostics, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Ampem Amoako
- Kumasi Centre for Collaborative Research Into Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Richmond Yeboah
- Kumasi Centre for Collaborative Research Into Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richmond Gorman
- Kumasi Centre for Collaborative Research Into Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuella Nyarko-Afriyie
- Kumasi Centre for Collaborative Research Into Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Julia Schneider
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Zoology, Centre for Pathogen Evolution, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Joseph Bonney
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Titus Adade
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Eric Smart Yeboah
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Tabea Binger
- Kumasi Centre for Collaborative Research Into Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Victor Max Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research Into Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. .,Department of Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
8
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
9
|
Depledge DP, Breuer J. Varicella-Zoster Virus-Genetics, Molecular Evolution and Recombination. Curr Top Microbiol Immunol 2021; 438:1-23. [PMID: 34374828 DOI: 10.1007/82_2021_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This chapter first details the structure, organization and coding content of the VZV genome to provide a foundation on which the molecular evolution of the virus can be projected. We subsequently describe the evolution of molecular profiling approaches from restriction fragment length polymorphisms to single nucleotide polymorphism profiling to modern day high-throughput sequencing approaches. We describe how the application of these methodologies led to our current model of VZV phylogeograpy including the number and structure of geographic clades and the role of recombination in reshaping these.
Collapse
Affiliation(s)
- Daniel P Depledge
- Institute of Virology, Hannover Medical School (MHH), Hannover, Germany. .,Department of Microbiology, NYU School of Medicine, New York, USA.
| | - Judith Breuer
- Department of Infection & Immunology, University College London, London, UK
| |
Collapse
|
10
|
Khanna A, Larson DE, Srivatsan SN, Mosior M, Abbott TE, Kiwala S, Ley TJ, Duncavage EJ, Walter MJ, Walker JR, Griffith OL, Griffith M, Miller CA. Bam-readcount - rapid generation of basepair-resolution sequence metrics. ARXIV 2021:arXiv:2107.12817v1. [PMID: 34341766 PMCID: PMC8328062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Bam-readcount is a utility for generating low-level information about sequencing data at specific nucleotide positions. Originally designed to help filter genomic mutation calls, the metrics it outputs are useful as input for variant detection tools and for resolving ambiguity between variant callers1,2. In addition, it has found broad applicability in diverse fields including tumor evolution, single-cell genomics, climate change ecology, and tracking community spread of SARS-CoV-2.3-6.
Collapse
Affiliation(s)
- Ajay Khanna
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - David E. Larson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Current Affiliation: Benson Hill, Inc. St. Louis, MO
| | | | - Matthew Mosior
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Current Affiliation: Moffitt Cancer Center, Tampa, FL
| | - Travis E. Abbott
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Current Affiliation: Google, Inc. Mountain View, CA
| | - Susanna Kiwala
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Eric J. Duncavage
- Department of Pathology, Washington University School of Medicine, St. Louis, MO
| | - Matthew J. Walter
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Jason R. Walker
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Obi L. Griffith
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Christopher A. Miller
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
11
|
Advances and Perspectives in the Management of Varicella-Zoster Virus Infections. Molecules 2021; 26:molecules26041132. [PMID: 33672709 PMCID: PMC7924330 DOI: 10.3390/molecules26041132] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Varicella-zoster virus (VZV), a common and ubiquitous human-restricted pathogen, causes a primary infection (varicella or chickenpox) followed by establishment of latency in sensory ganglia. The virus can reactivate, causing herpes zoster (HZ, shingles) and leading to significant morbidity but rarely mortality, although in immunocompromised hosts, VZV can cause severe disseminated and occasionally fatal disease. We discuss VZV diseases and the decrease in their incidence due to the introduction of live-attenuated vaccines to prevent varicella or HZ. We also focus on acyclovir, valacyclovir, and famciclovir (FDA approved drugs to treat VZV infections), brivudine (used in some European countries) and amenamevir (a helicase-primase inhibitor, approved in Japan) that augur the beginning of a new era of anti-VZV therapy. Valnivudine hydrochloride (FV-100) and valomaciclovir stearate (in advanced stage of development) and several new molecules potentially good as anti-VZV candidates described during the last year are examined. We reflect on the role of antiviral agents in the treatment of VZV-associated diseases, as a large percentage of the at-risk population is not immunized, and on the limitations of currently FDA-approved anti-VZV drugs. Their low efficacy in controlling HZ pain and post-herpetic neuralgia development, and the need of multiple dosing regimens requiring daily dose adaptation for patients with renal failure urges the development of novel anti-VZV drugs.
Collapse
|
12
|
Abstract
Alphaherpesviruses, as large double-stranded DNA viruses, were long considered to be genetically stable and to exist in a homogeneous state. Recently, the proliferation of high-throughput sequencing (HTS) and bioinformatics analysis has expanded our understanding of herpesvirus genomes and the variations found therein. Recent data indicate that herpesviruses exist as diverse populations, both in culture and in vivo, in a manner reminiscent of RNA viruses. In this review, we discuss the past, present, and potential future of alphaherpesvirus genomics, including the technical challenges that face the field. We also review how recent data has enabled genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures, including those introduced by cell culture. While we focus on the human alphaherpesviruses, we draw key insights from related veterinary species and from the beta- and gamma-subfamilies of herpesviruses. Promising technologies and potential future directions for herpesvirus genomics are highlighted as well, including the potential to link viral genetic differences to phenotypic and disease outcomes.
Collapse
Affiliation(s)
- Chad V. Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Moriah L. Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
13
|
Varicella Zoster Reactivation Causing Aseptic Meningitis in Healthy Adolescents: A Case Series And Review Of The Literature. Pediatr Infect Dis J 2020; 39:e278-e282. [PMID: 32467453 DOI: 10.1097/inf.0000000000002759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe 3 cases of adolescent varicella-zoster virus reactivation, complicated by aseptic meningitis, presenting to our institution in a 3-year period. These cases highlight varicella-zoster virus reactivation as an important cause of aseptic meningitis in the differential diagnosis of healthy adolescents, even in the absence of a characteristic exanthem. Evidence-based management recommendations are needed.
Collapse
|
14
|
Tyrberg T, Nilsson S, Blennow K, Zetterberg H, Grahn A. Serum and cerebrospinal fluid neurofilament light chain in patients with central nervous system infections caused by varicella-zoster virus. J Neurovirol 2020; 26:719-726. [PMID: 32816287 PMCID: PMC7532135 DOI: 10.1007/s13365-020-00889-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Varicella-zoster virus (VZV) is a common cause of viral central nervous system (CNS) infection, and patients may suffer from severe neurological sequelae. The biomarker neurofilament light chain (NFL) is used for assessment of neuronal damage and is normally measured in cerebrospinal fluid (CSF). Novel methods have given the possibility to measure NFL in serum instead, which could be a convenient tool to estimate severity of disease and prognosis in VZV CNS infections. Here, we investigate the correlation of serum and CSF NFL in patients with VZV CNS infection and the association of NFL levels in serum and CSF with different VZV CNS entities. NFL in serum and CSF was measured in 61 patients who were retrospectively identified with neurological symptoms and VZV DNA in CSF detected by PCR. Thirty-three herpes zoster patients and 40 healthy blood donors served as control groups. NFL levels in serum and CSF correlated strongly in the patients with VZV CNS infection. Encephalitis was associated with significantly higher levels of NFL in both serum and CSF compared with meningitis and Ramsay Hunt syndrome. Surprisingly, herpes zoster controls had very high serum NFL levels, comparable with those shown in encephalitis patients. We show that analysis of serum NFL can be used instead of CSF NFL for estimation of neuronal injury in patients with VZV CNS infection. However, high levels of serum NFL also in patients with herpes zoster, without signs of CNS involvement, may complicate the interpretation.
Collapse
Affiliation(s)
- Tobias Tyrberg
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Staffan Nilsson
- Department of Mathematical Statistics, Chalmers University of Technology, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Anna Grahn
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
von Hofsten J, Ringlander J, Norberg P, Zetterberg M, Andersson M, Lindh M, Bergström T. Deep Sequencing of Varicella-Zoster Virus in Aqueous Humor From a Patient With Acute Retinal Necrosis Presenting With Acute Glaucoma. Open Forum Infect Dis 2020; 7:ofaa198. [PMID: 32587876 PMCID: PMC7305702 DOI: 10.1093/ofid/ofaa198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
We report a case of acute retinal necrosis presenting with acute glaucoma preceding inflammatory signs by several days. High-throughput sequencing on aqueous humor revealed a low-level diversity in the viral genome comparable to diversity seen in cutaneous vesicles in contrast to high diversity in encephalitis.
Collapse
Affiliation(s)
- Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Peter Norberg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Ophthalmology, Sahlgrenska University Hospital, Mölndal, Gothenburg, Sweden
| | - Maria Andersson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden
| |
Collapse
|
16
|
Houldcroft CJ. Human Herpesvirus Sequencing in the Genomic Era: The Growing Ranks of the Herpetic Legion. Pathogens 2019; 8:E186. [PMID: 31614759 PMCID: PMC6963362 DOI: 10.3390/pathogens8040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
The nine human herpesviruses are some of the most ubiquitous pathogens worldwide, causing life-long latent infection in a variety of different tissues. Human herpesviruses range from mild childhood infections to known tumour viruses and 'trolls of transplantation'. Epstein-Barr virus was the first human herpesvirus to have its whole genome sequenced; GenBank now includes thousands of herpesvirus genomes. This review will cover some of the recent advances in our understanding of herpesvirus diversity and disease that have come about as a result of new sequencing technologies, such as target enrichment and long-read sequencing. It will also look at the problem of resolving mixed-genotype infections, whether with short or long-read sequencing methods; and conclude with some thoughts on the future of the field as herpesvirus population genomics becomes a reality.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambs CB2 0QQ UK.
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs CB10 1SA, UK.
| |
Collapse
|
17
|
Brown LAK, Ruis C, Clark I, Roy S, Brown JR, Albuquerque AS, Patel SY, Miller J, Karim MY, Dervisevic S, Moore J, Williams CA, Cudini J, Moreira F, Neild P, Seneviratne SL, Workman S, Toumpanakis C, Atkinson C, Burns SO, Breuer J, Lowe DM. A comprehensive characterization of chronic norovirus infection in immunodeficient hosts. J Allergy Clin Immunol 2019; 144:1450-1453. [PMID: 31415785 PMCID: PMC6843911 DOI: 10.1016/j.jaci.2019.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li-An K Brown
- Department of Infectious Diseases, Royal Free London NHS Foundation Trust, London, United Kingdom; Department of Microbiology, Whittington Health NHS Trust, London, United Kingdom
| | - Christopher Ruis
- Division of Infection and Immunity, University College London, London, United Kingdom; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Medical Research Council (MRC)-Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ian Clark
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Julianne R Brown
- Department of Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Adriana S Albuquerque
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom
| | - Smita Y Patel
- Oxford University Hospitals NHS Trust and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Joanne Miller
- Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, Surrey, United Kingdom
| | - Mohammed Yousuf Karim
- Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, Surrey, United Kingdom; Pathology, Sidra Medicine, Doha, Qatar
| | - Samir Dervisevic
- Norfolk and Norwich University Hospital, Norwich, Norfolk, United Kingdom
| | - Jennifer Moore
- Norfolk and Norwich University Hospital, Norwich, Norfolk, United Kingdom
| | - Charlotte A Williams
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Juliana Cudini
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fernando Moreira
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Penny Neild
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Suranjith L Seneviratne
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Sarita Workman
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Christos Toumpanakis
- Department of Gastroenterology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Claire Atkinson
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom; Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - David M Lowe
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom; Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
18
|
Cross CP, English SW, Krause MA, Zalewski NL. Acute truncal ataxia in a healthy adult with varicella zoster virus cerebellitis: A case report and literature review. J Neurol Sci 2019; 400:186-187. [DOI: 10.1016/j.jns.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
|