1
|
Casto AM, Song H, Xie H, Selke S, Roychoudhury P, Wu MC, Wald A, Greninger AL, Johnston C. Viral Genomic Variation and the Severity of Genital Herpes Simplex Virus-2 Infection as Quantified by Shedding Rate: A Viral Genome-Wide Association Study. J Infect Dis 2024; 230:1357-1366. [PMID: 38805234 PMCID: PMC11646587 DOI: 10.1093/infdis/jiae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The clinical severity of genital herpes simplex virus-2 (HSV-2) infection varies widely among infected persons with some experiencing frequent genital lesions while others are asymptomatic. The viral genital shedding rate is closely associated with, and has been established as, a surrogate marker of clinical severity. METHODS To assess the relationship between viral genetics and shedding, we assembled a set of 145 persons who had the severity of their genital herpes quantified through determination of their HSV genital shedding rate. An HSV-2 sample from each person was sequenced and biallelic variants among these genomes were identified. RESULTS We found no association between metrics of genome-wide variation in HSV-2 and shedding rate. A viral genome-wide association study identified the minor alleles of 3 individual unlinked variants as significantly associated with higher shedding rate (P < 8.4 × 10-5): C44973T (A512T), a nonsynonymous variant in UL22 (glycoprotein H); A74534G, a synonymous variant in UL36 (large tegument protein); and T119283C, an intergenic variant. We also found an association between the total number of minor alleles for the significant variants and shedding rate (P = 6.6 × 10-7). CONCLUSIONS These results add to a growing body of literature for HSV suggesting a connection between viral genetic variation and clinically important phenotypes of infection.
Collapse
Affiliation(s)
- Amanda M Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Hoseung Song
- Division of Industrial and Systems Engineering, Graduate School of Data Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Stacy Selke
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michael C Wu
- Public Health Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Walter M, Haick AK, Riley R, Massa PA, Strongin DE, Klouser LM, Loprieno MA, Stensland L, Santo TK, Roychoudhury P, Aubert M, Taylor MP, Jerome KR, Verdin E. Viral gene drive spread during herpes simplex virus 1 infection in mice. Nat Commun 2024; 15:8161. [PMID: 39289368 PMCID: PMC11408514 DOI: 10.1038/s41467-024-52395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
Gene drives are genetic modifications designed to propagate efficiently through a population. Most applications rely on homologous recombination during sexual reproduction in diploid organisms such as insects, but we recently developed a gene drive in herpesviruses that relies on co-infection of cells by wild-type and engineered viruses. Here, we report on a viral gene drive against human herpes simplex virus 1 (HSV-1) and show that it propagates efficiently in cell culture and during HSV-1 infection in mice. We describe high levels of co-infection and gene drive-mediated recombination in neuronal tissues during herpes encephalitis as the infection progresses from the site of inoculation to the peripheral and central nervous systems. In addition, we show evidence that a superinfecting gene drive virus could recombine with wild-type viruses during latent infection. These findings indicate that HSV-1 achieves high rates of co-infection and recombination during viral infection, a phenomenon that is currently underappreciated. Overall, this study shows that a viral gene drive could spread in vivo during HSV-1 infection, paving the way toward therapeutic applications.
Collapse
Affiliation(s)
- Marius Walter
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US.
- Buck Institute for Research on Aging, Novato, CA, US.
| | - Anoria K Haick
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | | | - Paola A Massa
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | - Daniel E Strongin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| | - Lindsay M Klouser
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | - Michelle A Loprieno
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | - Laurence Stensland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| | - Tracy K Santo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | - Matthew P Taylor
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, US
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US.
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, US.
| |
Collapse
|
3
|
Abstract
Superinfection exclusion (SIE) is a phenomenon in which a primary viral infection interferes with secondary viral infections within that same cell. Although SIE has been observed across many viruses, it has remained relatively understudied. A recently characterized glycoprotein D (gD)-independent SIE of alphaherpesviruses presents a novel mechanism of coinfection restriction for herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV). In this study, we evaluated the role of multiplicity of infection (MOI), receptor expression, and trafficking of virions to gain greater insight into potential mechanisms of alphaherpesvirus SIE. We observed that high-MOI secondary viral infections were able to overcome SIE in a manner that was independent of receptor availability. We next assessed virion localization during SIE through live microscopy of fluorescently labeled virions and capsid assemblies. Analysis of these fluorescent assemblies identified changes in the distribution of capsids during SIE. These results indicate that SIE during PRV infection inhibits viral entry or fusion while HSV-1 SIE inhibits infection through a postentry mechanism. Although the timing and phenotype of SIE are similar between alphaherpesviruses, the related viruses implement different mechanisms to restrict coinfection. IMPORTANCE Most viruses utilize a form of superinfection exclusion to conserve resources and control population dynamics. gD-dependent superinfection exclusion in alphaherpesviruses is well documented. However, the undercharacterized gD-independent SIE provides new insight into how alphaherpesviruses limit sequential infection. The observations described here demonstrate that gD-independent SIE differs between PRV and HSV-1. Comparing these differences provides new insights into the underlying mechanisms of SIE implemented by two related viruses.
Collapse
|
4
|
Koelle DM, Dong L, Jing L, Laing KJ, Zhu J, Jin L, Selke S, Wald A, Varon D, Huang ML, Johnston C, Corey L, Posavad CM. HSV-2-Specific Human Female Reproductive Tract Tissue Resident Memory T Cells Recognize Diverse HSV Antigens. Front Immunol 2022; 13:867962. [PMID: 35432373 PMCID: PMC9009524 DOI: 10.3389/fimmu.2022.867962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023] Open
Abstract
Antigen-specific TRM persist and protect against skin or female reproductive tract (FRT) HSV infection. As the pathogenesis of HSV differs between humans and model organisms, we focus on humans with well-characterized recurrent genital HSV-2 infection. Human CD8+ TRM persisting at sites of healed human HSV-2 lesions have an activated phenotype but it is unclear if TRM can be cultivated in vitro. We recovered HSV-specific TRM from genital skin and ectocervix biopsies, obtained after recovery from recurrent genital HSV-2, using ex vivo activation by viral antigen. Up to several percent of local T cells were HSV-reactive ex vivo. CD4 and CD8 T cell lines were up to 50% HSV-2-specific after sorting-based enrichment. CD8 TRM displayed HLA-restricted reactivity to specific HSV-2 peptides with high functional avidities. Reactivity to defined peptides persisted locally over several month and was quite subject-specific. CD4 TRM derived from biopsies, and from an extended set of cervical cytobrush specimens, also recognized diverse HSV-2 antigens and peptides. Overall we found that HSV-2-specific TRM are abundant in the FRT between episodes of recurrent genital herpes and maintain competency for expansion. Mucosal sites are accessible for clinical monitoring during immune interventions such as therapeutic vaccination.
Collapse
Affiliation(s)
- David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lei Jin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Dana Varon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christine M. Posavad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
5
|
Forni D, Pontremoli C, Clerici M, Pozzoli U, Cagliani R, Sironi M. Recent Out-of-Africa Migration of Human Herpes Simplex Viruses. Mol Biol Evol 2021; 37:1259-1271. [PMID: 31917410 DOI: 10.1093/molbev/msaa001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are ubiquitous human pathogens. Both viruses evolved from simplex viruses infecting African primates and they are thus thought to have left Africa during early human migrations. We analyzed the population structure of HSV-1 and HSV-2 circulating strains. Results indicated that HSV-1 populations have limited geographic structure and the most evident clustering by geography is likely due to recent bottlenecks. For HSV-2, the only level of population structure is accounted for by the so-called "worldwide" and "African" lineages. Analysis of ancestry components and nucleotide diversity, however, did not support the view that the worldwide lineage followed early humans during out-of-Africa dispersal. Although phylogeographic analysis confirmed an African origin for both viruses, molecular dating with a method that corrects for the time-dependent rate phenomenon indicated that HSV-1 and HSV-2 migrated from Africa in relatively recent times. In particular, we estimated that the HSV-2 worldwide lineage left the continent in the 18th century, which corresponds to the height of the transatlantic slave trade, possibly explaining the high prevalence of HSV-2 in the Americas (second highest after Africa). The limited geographic clustering of HSV-1 makes it difficult to date its exit from Africa. The split between the basal clade, containing mostly African sequences, and all other strains was dated at ∼5,000 years ago. Our data do not imply that herpes simplex viruses did not infect early humans but show that the worldwide distribution of circulating strains is the result of relatively recent events.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Lecco, Italy
| | | | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Lecco, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Lecco, Italy
| |
Collapse
|
6
|
Vanni EAH, Foley JW, Davison AJ, Sommer M, Liu D, Sung P, Moffat J, Zerboni L, Arvin AM. The latency-associated transcript locus of herpes simplex virus 1 is a virulence determinant in human skin. PLoS Pathog 2020; 16:e1009166. [PMID: 33370402 PMCID: PMC7794027 DOI: 10.1371/journal.ppat.1009166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/08/2021] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects skin and mucosal epithelial cells and then travels along axons to establish latency in the neurones of sensory ganglia. Although viral gene expression is restricted during latency, the latency-associated transcript (LAT) locus encodes many RNAs, including a 2 kb intron known as the hallmark of HSV-1 latency. Here, we studied HSV-1 infection and the role of the LAT locus in human skin xenografts in vivo and in cultured explants. We sequenced the genomes of our stock of HSV-1 strain 17syn+ and seven derived viruses and found nonsynonymous mutations in many viral proteins that had no impact on skin infection. In contrast, deletions in the LAT locus severely impaired HSV-1 replication and lesion formation in skin. However, skin replication was not affected by impaired intron splicing. Moreover, although the LAT locus has been implicated in regulating gene expression in neurones, we observed only small changes in transcript levels that were unrelated to the growth defect in skin, suggesting that its functions in skin may be different from those in neurones. Thus, although the LAT locus was previously thought to be dispensable for lytic infection, we show that it is a determinant of HSV-1 virulence during lytic infection of human skin. Herpes simplex virus type 1 (HSV-1) infects and destroys the outer layer of skin cells, producing lesions known as cold sores. Although these lesions heal, the virus persists in the host for the lifetime and can reactivate to cause new lesions. This is possible because the virus enters the axons of neurones in the skin and moves to their cell bodies located in spinal or cranial nerve bundles called ganglia, where the virus becomes dormant (latent). The most abundant viral RNAs expressed during this state are the latency associated transcripts (LATs), which have been considered a hallmark of HSV-1 latency. Here, we studied HSV-1 infection and spread in human skin. Unexpectedly, we found that the LAT locus is necessary for lesion formation in skin. HSV-1 viruses that were genetically mutated to delete the start of the locus could not spread in skin, whereas viruses with many other genetic mutations had this capacity. Our results suggest that an antiviral drug that inhibits transcripts from this region of the viral genome could block viral spread in skin, or a vaccine could possibly be produced by genetically modifying the virus at the LAT locus and by doing so, limit the virus’ ability become latent in neurones.
Collapse
Affiliation(s)
- Emilia A. H. Vanni
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Joseph W. Foley
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marvin Sommer
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dongmei Liu
- Department of Microbiology and Immunology, State University of New York-Upstate Medical University, Syracuse, New York, United States of America
| | - Phillip Sung
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jennifer Moffat
- Department of Microbiology and Immunology, State University of New York-Upstate Medical University, Syracuse, New York, United States of America
| | - Leigh Zerboni
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ann M. Arvin
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
7
|
Analysis of Whole-Genome Sequences of Infectious laryngotracheitis Virus Isolates from Poultry Flocks in Canada: Evidence of Recombination. Viruses 2020; 12:v12111302. [PMID: 33198373 PMCID: PMC7696358 DOI: 10.3390/v12111302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023] Open
Abstract
Infectious laryngotracheitis virus (ILTV) is a herpes virus that causes an acute respiratory disease of poultry known as infectious laryngotracheitis (ILT). Chicken embryo origin (CEO) and tissue culture origin (TCO) live attenuated vaccines are routinely used for the control of ILT. However, vaccine virus is known to revert to virulence, and it has been recently shown that ILT field viral strains can undergo recombination with vaccinal ILTV and such recombinant ILT viruses possess greater transmission and pathogenicity potential. Based on complete or partial genes of the ILTV genome, few studies genotyped ILTV strains circulating in Canada, and so far, information is scarce on whole-genome sequencing or the presence of recombination in Canadian ILTV isolates. The objective of this study was to genetically characterize the 14 ILTV isolates that originated from three provinces in Canada (Alberta, British Columbia and Quebec). To this end, a phylogenetic analysis of 50 ILTV complete genome sequences, including 14 sequences of Canadian origin, was carried out. Additional phylogenetic analysis of the unique long, unique short and inverted repeat regions of the ILTV genome was also performed. We observed that 71%, 21% and 7% of the ILTV isolates were categorized as CEO revertant, wild-type and TCO vaccine-related, respectively. The sequences were also analyzed for potential recombination events, which included evidence in the British Columbia ILTV isolate. This event involved two ILTV vaccine (CEO) strains as parental strains. Recombination analysis also identified that one ILTV isolate from Alberta as a potential parental strain for a United States origin ILTV isolate. The positions of the possible recombination breakpoints were identified. These results indicate that the ILTV wild-type strains can recombine with vaccinal strains complicating vaccine-mediated control of ILT. Further studies on the pathogenicity of these ILTV strains, including the recombinant ILTV isolate are currently ongoing.
Collapse
|
8
|
Abstract
Alphaherpesviruses, as large double-stranded DNA viruses, were long considered to be genetically stable and to exist in a homogeneous state. Recently, the proliferation of high-throughput sequencing (HTS) and bioinformatics analysis has expanded our understanding of herpesvirus genomes and the variations found therein. Recent data indicate that herpesviruses exist as diverse populations, both in culture and in vivo, in a manner reminiscent of RNA viruses. In this review, we discuss the past, present, and potential future of alphaherpesvirus genomics, including the technical challenges that face the field. We also review how recent data has enabled genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures, including those introduced by cell culture. While we focus on the human alphaherpesviruses, we draw key insights from related veterinary species and from the beta- and gamma-subfamilies of herpesviruses. Promising technologies and potential future directions for herpesvirus genomics are highlighted as well, including the potential to link viral genetic differences to phenotypic and disease outcomes.
Collapse
Affiliation(s)
- Chad V. Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Moriah L. Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
9
|
Escher F, Pietsch H, Aleshcheva G, Bock T, Baumeier C, Elsaesser A, Wenzel P, Hamm C, Westenfeld R, Schultheiss M, Gross U, Morawietz L, Schultheiss H. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail 2020; 7:2440-2447. [PMID: 32529795 PMCID: PMC7307078 DOI: 10.1002/ehf2.12805] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Since December 2019, the novel coronavirus SARS-CoV-2 has spread rapidly throughout China and keeps the world in suspense. Cardiovascular complications with myocarditis and embolism due to COVID-19 have been reported. SARS-CoV-2 genome detection in the heart muscle has not been demonstrated so far, and the underlying pathophysiological mechanisms remain to be investigated. METHODS AND RESULTS Endomyocardial biopsies (EMBs) of 104 patients (mean age: 57.90 ± 16.37 years; left ventricular ejection fraction: 33.7 ± 14.6%, sex: n = 79 male/25 female) with suspected myocarditis or unexplained heart failure were analysed. EMB analysis included histology, immunohistochemistry, and detection of SARS-CoV-2 genomes by real-time reverse transcription polymerase chain reaction in the IKDT Berlin, Germany. Among 104 EMBs investigated, five were confirmed with SARS-CoV-2 infected by reverse real-time transcriptase polymerase chain reaction. We describe patients of different history of symptoms and time duration. Additionally, we investigated histopathological changes in myocardial tissue showing that the inflammatory process in EMBs seemed to permeate vascular wall leading to small arterial obliteration and damage. CONCLUSIONS This is the first report that established the evidence of SARS-CoV-2 genomes detection in EMBs. In these patients, myocardial injury ischaemia may play a role, which could explain the ubiquitous troponin increases. EMB-based identification of the cause of myocardial injury may contribute to explain the different evolution of complicated SARS-CoV-2-infection and to design future specific and personalized treatment strategies.
Collapse
Affiliation(s)
- Felicitas Escher
- Institute of Cardiac Diagnostics and TherapyIKDT GmbHBerlinGermany
- Department of Cardiology, Campus Virchow – KlinikumCharité – University Medicine BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
| | - Heiko Pietsch
- Institute of Cardiac Diagnostics and TherapyIKDT GmbHBerlinGermany
- Department of Cardiology, Campus Virchow – KlinikumCharité – University Medicine BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
| | - Ganna Aleshcheva
- Institute of Cardiac Diagnostics and TherapyIKDT GmbHBerlinGermany
| | - Thomas Bock
- Institute of Cardiac Diagnostics and TherapyIKDT GmbHBerlinGermany
- Institute of Tropical MedicineUniversity of TübingenTübingenGermany
| | | | | | - Philip Wenzel
- Center for Cardiology – Cardiology IUniversity Medical CenterMainzGermany
- Center for Thrombosis and HemostasisUniversity Medical CenterMainzGermany
| | - Christian Hamm
- Department of CardiologyCampus Kerckhoff of Justus‐Liebig‐University GiessenBad NauheimGermany
| | - Ralph Westenfeld
- Department of Cardiology, Pulmonology and Vascular MedicineHeinrich Heine UniversityDüsseldorfGermany
| | - Maximilian Schultheiss
- Department of OphthalmologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Ulrich Gross
- Institute of Cardiac Diagnostics and TherapyIKDT GmbHBerlinGermany
| | - Lars Morawietz
- Institute of Cardiac Diagnostics and TherapyIKDT GmbHBerlinGermany
| | | |
Collapse
|
10
|
Casto AM, Huang MLW, Xie H, Jerome KR, Wald A, Johnston CM, Greninger AL. Herpes Simplex Virus Mistyping due to HSV-1 × HSV-2 Interspecies Recombination in Viral Gene Encoding Glycoprotein B. Viruses 2020; 12:E860. [PMID: 32781734 PMCID: PMC7472045 DOI: 10.3390/v12080860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Human herpes simplex viruses (HSV) 1 and 2 are extremely common human pathogens with overlapping disease spectra. Infections due to HSV-1 and HSV-2 are distinguished in clinical settings using sequence-based "typing" assays. Here we describe a case of HSV mistyping caused by a previously undescribed HSV-1 × HSV-2 recombination event in UL27, the HSV gene that encodes glycoprotein B. This is the first documented case of HSV mistyping caused by an HSV-1 × HSV-2 recombination event and the first description of an HSV interspecies recombination event in UL27, which is frequently used as a target for diagnostics and experimental therapeutics. We also review the primer and probe target sequences for a commonly used HSV typing assay from nearly 700 HSV-1 and HSV-2 samples and find that about 4% of HSV-1 samples have a single nucleotide change in at least one of these loci, which could impact assay performance. Our findings illustrate how knowledge of naturally occurring genomic variation in HSV-1 and HSV-2 is essential for the design and interpretation of molecular diagnostics for these viruses.
Collapse
Affiliation(s)
- Amanda M. Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Meei-Li W. Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Keith R. Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Christine M. Johnston
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| |
Collapse
|
11
|
Kolb AW, Brandt CR. Genomic nucleotide-based distance analysis for delimiting old world monkey derived herpes simplex virus species. BMC Genomics 2020; 21:436. [PMID: 32590937 PMCID: PMC7318535 DOI: 10.1186/s12864-020-06847-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex viruses form a genus within the alphaherpesvirus subfamily, with three identified viral species isolated from Old World monkeys (OWM); Macacine alphaherpesvirus 1 (McHV-1; herpes B), Cercopithecine alphaherpesvirus 2 (SA8), and Papiine alphaherpesvirus 2 (PaHV-2; herpes papio). Herpes B is endemic to macaques, while PaHV-2 and SA8 appear endemic to baboons. All three viruses are genetically and antigenically similar, with SA8 and PaHV-2 thought to be avirulent in humans, while herpes B is a biosafety level 4 pathogen. Recently, next-generation sequencing (NGS) has resulted in an increased number of published OWM herpes simplex genomes, allowing an encompassing phylogenetic analysis. RESULTS In this study, phylogenetic networks, in conjunction with a genome-based genetic distance cutoff method were used to examine 27 OWM monkey herpes simplex isolates. Genome-based genetic distances were calculated, resulting in distances between lion and pig-tailed simplex viruses themselves, and versus herpes B core strains that were higher than those between PaHV-2 and SA8 (approximately 14 and 10% respectively). The species distance cutoff was determined to be 8.94%, with the method recovering separate species status for PaHV-2 and SA8 and showed that lion and pig-tailed simplex viruses (vs core herpes B strains) were well over the distance species cutoff. CONCLUSIONS We propose designating lion and pig-tailed simplex viruses as separate, individual viral species, and that this may be the first identification of viral cryptic species.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave, Madison, WI, 53706, USA.
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave, Madison, WI, 53706, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Mozzi A, Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. Intrinsically disordered regions are abundant in simplexvirus proteomes and display signatures of positive selection. Virus Evol 2020; 6:veaa028. [PMID: 32411391 PMCID: PMC7211401 DOI: 10.1093/ve/veaa028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Whereas the majority of herpesviruses co-speciated with their mammalian hosts, human herpes simplex virus 2 (HSV-2, genus Simplexvirus) most likely originated from the cross-species transmission of chimpanzee herpesvirus 1 to an ancestor of modern humans. We exploited the peculiar evolutionary history of HSV-2 to investigate the selective events that drove herpesvirus adaptation to a new host. We show that HSV-2 intrinsically disordered regions (IDRs)-that is, protein domains that do not adopt compact three-dimensional structures-are strongly enriched in positive selection signals. Analysis of viral proteomes indicated that a significantly higher portion of simplexvirus proteins is disordered compared with the proteins of other human herpesviruses. IDR abundance in simplexvirus proteomes was not a consequence of the base composition of their genomes (high G + C content). Conversely, protein function determines the IDR fraction, which is significantly higher in viral proteins that interact with human factors. We also found that the average extent of disorder in herpesvirus proteins tends to parallel that of their human interactors. These data suggest that viruses that interact with fast-evolving, disordered human proteins, in turn, evolve disordered viral interactors poised for innovation. We propose that the high IDR fraction present in simplexvirus proteomes contributes to their wider host range compared with other herpesviruses.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan 20090, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan 20148, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| |
Collapse
|
13
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Smeriglio A, Mandalari G, Sciortino MT. In Vitro Anti-HSV-1 Activity of Polyphenol-Rich Extracts and Pure Polyphenol Compounds Derived from Pistachios Kernels ( Pistacia vera L.). PLANTS 2020; 9:plants9020267. [PMID: 32085514 PMCID: PMC7076519 DOI: 10.3390/plants9020267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022]
Abstract
Natural compounds are a prominent source of novel antiviral drugs. Several reports have previously shown the antimicrobial activity of pistachio polyphenol extracts. Therefore, the aim of our research was to investigate the activity of polyphenol-rich extracts of natural shelled (NPRE) pistachios kernels (Pistacia vera L.) on herpes simplex virus type 1 (HSV-1) replication. The Vero cell line was used to assess the cytotoxicity and antiviral activity. The cell viability was calculated by detection of cellular ATP after treatment with various concentrations of NPRE. For antiviral studies, five nontoxic-concentrations (0.1, 0.2, 0.4, 0.6, 0.8 mg/mL) were tested. Our study demonstrated that treatment with NPRE (0.4, 0.6, 0.8 mg/mL) reduced the expression of the viral proteins ICP8 (infected cell polypeptide 8), UL42 (unique long UL42 DNA polymerase processivity factor), and US11 (unique short US11 protein), and resulted in a decrease of viral DNA synthesis. The 50% cytotoxic concentration (CC50), 50% inhibitory concentration (EC50), and the selectivity index (SI) values for NPRE were 1.2 mg/mL, 0.4mg/mL, and 3, respectively. Furthermore, we assessed the anti-herpetic effect of a mix of pure polyphenol compounds (NS MIX) present in NPRE. In conclusion, our findings indicate that natural shelled pistachio kernels have remarkable inhibitory activity against HSV-1.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.); (A.S.); (G.M.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.); (A.S.); (G.M.)
- Shenzhen International Institute for Biomedical Research, 140 Jinye Ave. Building A10, Dapeng New District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.); (A.S.); (G.M.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.); (A.S.); (G.M.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.); (A.S.); (G.M.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.); (A.S.); (G.M.)
- Correspondence: ; Tel.: +39-090-676-5217
| |
Collapse
|
14
|
Marshak JO, Dong L, Koelle DM. The Murine Intravaginal HSV-2 Challenge Model for Investigation of DNA Vaccines. Methods Mol Biol 2020; 2060:429-454. [PMID: 31617196 DOI: 10.1007/978-1-4939-9814-2_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA vaccines have been licensed in veterinary medicine and have promise for humans. This format is relatively immunogenic in mice and guinea pigs, the two principle HSV-2 animal models, permitting rapid assessment of vectors, antigens, adjuvants, and delivery systems. Limitations include the relatively poor immunogenicity of naked DNA in humans and the profound differences in HSV-2 pathogenesis between host species. Herein, we detail lessons learned investigating candidate DNA vaccines in the progesterone-primed female mouse vaginal model of HSV-2 infection as a guide to investigators in the field.
Collapse
Affiliation(s)
- Joshua O Marshak
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA. .,Department of Global Health, University of Washington, Seattle, WA, USA. .,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
15
|
Lassalle F, Beale MA, Bharucha T, Williams CA, Williams RJ, Cudini J, Goldstein R, Haque T, Depledge DP, Breuer J. Whole genome sequencing of Herpes Simplex Virus 1 directly from human cerebrospinal fluid reveals selective constraints in neurotropic viruses. Virus Evol 2020; 6:veaa012. [PMID: 32099667 PMCID: PMC7031915 DOI: 10.1093/ve/veaa012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) chronically infects over 70 per cent of the global population. Clinical manifestations are largely restricted to recurrent epidermal vesicles. However, HSV-1 also leads to encephalitis, the infection of the brain parenchyma, with high associated rates of mortality and morbidity. In this study, we performed target enrichment followed by direct sequencing of HSV-1 genomes, using target enrichment methods on the cerebrospinal fluid (CSF) of clinical encephalitis patients and from skin swabs of epidermal vesicles on non-encephalopathic patients. Phylogenetic analysis revealed high inter-host diversity and little population structure. In contrast, samples from different lesions in the same patient clustered with similar patterns of allelic variants. Comparison of consensus genome sequences shows HSV-1 has been freely recombining, except for distinct islands of linkage disequilibrium (LD). This suggests functional constraints prevent recombination between certain genes, notably those encoding pairs of interacting proteins. Distinct LD patterns characterised subsets of viruses recovered from CSF and skin lesions, which may reflect different evolutionary constraints in different body compartments. Functions of genes under differential constraint related to immunity or tropism and provide new hypotheses on tissue-specific mechanisms of viral infection and latency.
Collapse
Affiliation(s)
- Florent Lassalle
- Department of Infectious Disease Epidemiology, Imperial College London, St-Mary's Hospital campus, Praed Street, London W2 1NY, UK
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, St-Mary's Hospital campus, Praed Street, London W2 1NY, UK
| | - Mathew A Beale
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden CB10 1SA, UK
| | - Tehmina Bharucha
- Department of Virology, Royal Free Hospital, 10 Pond Street, Hampstead, London NW3 2PS, UK
| | - Charlotte A Williams
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Rachel J Williams
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Juliana Cudini
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden CB10 1SA, UK
| | - Richard Goldstein
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Tanzina Haque
- Department of Virology, Royal Free Hospital, 10 Pond Street, Hampstead, London NW3 2PS, UK
| | - Daniel P Depledge
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH
| |
Collapse
|
16
|
Akhtar LN, Szpara ML. Viral genetic diversity and its potential contributions to the development and progression of neonatal herpes simplex virus (HSV) disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:249-256. [PMID: 32944492 PMCID: PMC7491914 DOI: 10.1007/s40588-019-00131-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Neonatal infection by herpes simplex virus (HSV) 1 or 2 presents a devastating burden to new parents, due to the unpredictability of severe clinical outcomes, as well as the potential for lifelong reactivation. While just under half of neonatal HSV infections have mild clinical impacts akin to those observed in adults, the other half experience viral spread throughout the body (disseminated infection) and/or the brain (central nervous system infection). SUMMARY Here we summarize current data on clinical diagnostic measures, antiviral therapy, and known factors of human host biology that contribute to the distinct neonatal outcomes of HSV infection. RECENT FINDINGS We then explore recent new data on how viral genetic diversity between infections may impact clinical outcomes. Further research will be critical to build upon these early findings and to provide statistical power to our ability to discern and/or predict the potential clinical path of a given neonatal infection.
Collapse
Affiliation(s)
- Lisa N. Akhtar
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Moriah L. Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
17
|
Houldcroft CJ. Human Herpesvirus Sequencing in the Genomic Era: The Growing Ranks of the Herpetic Legion. Pathogens 2019; 8:E186. [PMID: 31614759 PMCID: PMC6963362 DOI: 10.3390/pathogens8040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
The nine human herpesviruses are some of the most ubiquitous pathogens worldwide, causing life-long latent infection in a variety of different tissues. Human herpesviruses range from mild childhood infections to known tumour viruses and 'trolls of transplantation'. Epstein-Barr virus was the first human herpesvirus to have its whole genome sequenced; GenBank now includes thousands of herpesvirus genomes. This review will cover some of the recent advances in our understanding of herpesvirus diversity and disease that have come about as a result of new sequencing technologies, such as target enrichment and long-read sequencing. It will also look at the problem of resolving mixed-genotype infections, whether with short or long-read sequencing methods; and conclude with some thoughts on the future of the field as herpesvirus population genomics becomes a reality.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambs CB2 0QQ UK.
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs CB10 1SA, UK.
| |
Collapse
|