1
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Bryson A, Gonzalez G, Al-Atoom N, Nashar N, Smith JR, Nashar T. Extracellular vesicles are conduits for E. coli heat-labile enterotoxin (LT) and the B-subunits of LT and cholera toxin in immune cell-to-cell communication. Microb Pathog 2023; 177:106038. [PMID: 36841487 PMCID: PMC10065948 DOI: 10.1016/j.micpath.2023.106038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Several pathogens excrete their toxins either directly into the host or through extracellular vesicles. Enterotoxigenic E. coli is capable of secreting heat-labile toxin LT in extracellular vesicles (EVs) which are delivered to mammalian cells. LT and its B-subunit, LTB, and their structurally and functionally related toxin from Vibrio cholerae, CT and CTB, are potent immunogens and adjuvants. However, despite their reported remarkable effects on immune cells, the mechanisms by which they mediate their immunological properties are still unclear. We show that B cells incubated with LT or LTB secreted EVs in the cell culture medium. However, compared to unstimulated cells, EVs and their internal protein content were significantly reduced in recipient B cells. Analysis of protein markers of the vesicles secreted by B cells were found to be enriched in exosomes of endosomal origin. B cells incubated with FITC-CTB secreted CTB in EVs which were taken up by recipient B and T cells. FITC-CTB transfected into exosomes from mouse dendritic cells were also taken up by recipient B cells. Moreover, B cells incubated with FITC-CTB secreted CTB in EVs which increased the number of recipient B cells expressing higher levels of CD25 and CD86. These results suggest that EVs from B cells are conduits for the enterotoxins, and play an important role in the enterotoxins immune cell-to-cell communication. This is the first report which looked at EVs as a mean to deliver these proteins from and to immune cells.
Collapse
Affiliation(s)
- Andreya Bryson
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA
| | - Gabrielle Gonzalez
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA
| | - Nadia Al-Atoom
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA
| | - Nijad Nashar
- The University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, 14215, USA
| | - Ja R'eika Smith
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA
| | - Toufic Nashar
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA.
| |
Collapse
|
3
|
Knapp MPA, Johnson TA, Ritter MK, Rainer RO, Fiester SE, Grier JT, Connell TD, Arce S. Immunomodulatory regulation by heat-labile enterotoxins and potential therapeutic applications. Expert Rev Vaccines 2021; 20:975-987. [PMID: 34148503 DOI: 10.1080/14760584.2021.1945449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Heat-labile enterotoxins (HLTs) and their cognate ganglioside receptors have been extensively studied because of their therapeutic potential. Gangliosides play arole in modulating effector cells of the immune system, and HLTs provide a novel means for stimulating ganglioside-mediated responses in immunocompetent cells.Areas covered: To evaluate the mechanisms of HLT adjuvanticity, a systemic literature review was performed using relevant keyword searches of the PubMed database, accessing literature published as recently as late 2020. Since HLTs bind to specific ganglioside receptors on immunocytes, they can act as regulators via stimulation or tapering of immune responses from associated signal transduction events. Binding of HLTs to gangliosides can increase proliferation of T-cells, increase cytokine release, augment mucosal/systemic antibody responses, and increase the effectiveness of antigen presenting cells. Subunit components also independently stimulate certain immune responses. Mutant forms of HLTs have potent immunomodulatory effects without the toxicity associated with holotoxins.Expert opinion: HLTs have been the subject of abundant research exploring their use as vaccine adjuvants, in the treatment of autoimmune conditions, in cancer therapy, and for weight loss, proving that these molecules are promising tools in the field of immunotherapy.
Collapse
Affiliation(s)
- Mary-Peyton A Knapp
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Taylor A Johnson
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Madison K Ritter
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Robert O Rainer
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Department of Pathology, Greenville, SC, USA
| | - Steven E Fiester
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Department of Pathology, Greenville, SC, USA
| | - Jennifer T Grier
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Terry D Connell
- University of Buffalo, Jacobs School of Medicine and Biomedical Sciences and the Witebsky Center of Microbial Pathogenesis and Immunology, Buffalo, NY, USA
| | - Sergio Arce
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Cancer Institute, Greenville, SC, USA
| |
Collapse
|
4
|
Trujillo E, Rosales-Mendoza S, Angulo C. A multi-epitope plant-made chimeric protein (LTBentero) targeting common enteric pathogens is immunogenic in mice. PLANT MOLECULAR BIOLOGY 2020; 102:159-169. [PMID: 31820286 PMCID: PMC7223238 DOI: 10.1007/s11103-019-00938-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE A plant-based multiepitopic protein (LTBentero) containing epitopes from ETEC, S. typhimurium, and V. parahaemolyticus was produced in plants cells and triggered systemic and intestinal humoral responses in immunized mice. Around 200 million people suffer gastroenteritis daily and more than 2 million people die annually in developing countries due to such pathologies. Vaccination is an alternative to control this global health issue, however new low-cost vaccines are needed to ensure proper vaccine coverage. In this context, plants are attractive hosts for the synthesis and delivery of subunit vaccines. Therefore, in this study a plant-made multiepitopic protein named LTBentero containing epitopes from antigens of enterotoxigenic E. coli, S. typhimurium, and V. parahaemolyticus was produced and found immunogenic in mice. The LTBentero protein was expressed in tobacco plants at up to 5.29 µg g-1 fresh leaf tissue and was deemed immunogenic when administered to BALB/c mice either orally or subcutaneously. The plant-made LTBentero antigen induced specific IgG (systemic) and IgA (mucosal) responses against LTB, ST, and LptD epitopes. In conclusion, multiepitopic LTBentero was functionally produced in plant cells, being capable to trigger systemic and intestinal humoral responses and thus it constitutes a promising oral immunogen candidate in the fight against enteric diseases.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico.
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S, Mexico.
- Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S, Mexico.
| |
Collapse
|
5
|
Duan Q, Xia P, Nandre R, Zhang W, Zhu G. Review of Newly Identified Functions Associated With the Heat-Labile Toxin of Enterotoxigenic Escherichia coli. Front Cell Infect Microbiol 2019; 9:292. [PMID: 31456954 PMCID: PMC6700299 DOI: 10.3389/fcimb.2019.00292] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Heat-labile toxin (LT) is a well-characterized powerful enterotoxin produced by enterotoxigenic Escherichia coli (ETEC). This toxin is known to contribute to diarrhea in young children in developing countries, international travelers, as well as many different species of young animals. Interestingly, it has also been revealed that LT is involved in other activities in addition to its role in enterotoxicity. Recent studies have indicated that LT toxin enhances enteric pathogen adherence and subsequent intestinal colonization. LT has also been shown to act as a powerful adjuvant capable of upregulating vaccine antigenicity; it also serves as a protein or antigenic peptide display platform for new vaccine development, and can be used as a naturally derived cell targeting and protein delivery tool. This review summarizes the epidemiology, secretion, delivery, and mechanisms of action of LT, while also highlighting new functions revealed by recent studies.
Collapse
Affiliation(s)
- Qiangde Duan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rahul Nandre
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Guoqiang Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
6
|
Bal J, Luong NN, Park J, Song KD, Jang YS, Kim DH. Comparative immunogenicity of preparations of yeast-derived dengue oral vaccine candidate. Microb Cell Fact 2018; 17:24. [PMID: 29452594 PMCID: PMC5815244 DOI: 10.1186/s12934-018-0876-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/09/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dengue is listed as a neglected tropical disease by the Center for Disease Control and Preservation, as there are insufficient integrated surveillance strategies, no effective treatment, and limited licensed vaccines. Consisting of four genetically distinct serotypes, dengue virus (DENV) causes serious life-threatening infections due to its complexity. Antibody-dependent enhancement by pre-existing cross-reactive as well as homotypic antibodies further worsens the clinical symptoms of dengue. Thus, a vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes is essential to restrict its escalation. In deeply affected resource-limited countries, oral vaccination using food-grade organisms is considered to be a beneficial approach in terms of costs, patient comfort, and simple logistics for mass immunization. The current study used a mouse model to explore the immunogenicity of an oral dengue vaccine candidate prepared using whole recombinant yeast cells (WC) and cell-free extracts (CFE) from cells expressing recombinant Escherichia coli heat-labile toxin protein B-subunit (LTB) fused to the consensus dengue envelope domain III (scEDIII). Mice were treated orally with recombinant WC and CFE vaccines in 2-week intervals for 4 weeks and changes in systemic and mucosal immune responses were monitored. RESULTS Both WC and CFE dosage applications of LTB-scEDIII stimulated a systemic humoral immune response in the form of dengue-specific serum IgG as well as mucosal immune response in the form of secretory sIgA. Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further indicated an elevated mucosal immune response. Cellular immune response estimated through lymphocyte proliferation assay indicated higher levels in CFE than WC dosage. Furthermore, sera obtained after both oral administrations successfully neutralized DENV-1, whereas CFE formulation only neutralized DENV-2 serotype, two representative serotypes which cause severe dengue infection. Sera from mice that were fed CFE preparations demonstrated markedly higher neutralizing titers compared to those from WC-fed mice. However, WC feeding elicited strong immune responses, which were similar to the levels induced by CFE feeding after intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS CFE preparations of LTB-scEDIII produced strong immunogenicity with low processing requirements, signifying that this fusion protein shows promise as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Nguyen Ngoc Luong
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
7
|
Sharma M, Dash P, Sahoo PK, Dixit A. Th2-biased immune response and agglutinating antibodies generation by a chimeric protein comprising OmpC epitope (323-336) of Aeromonas hydrophila and LTB. Immunol Res 2018; 66:187-199. [PMID: 28940167 DOI: 10.1007/s12026-017-8953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aeromonas hydrophila is responsible for causing fatal infections in freshwater fishes. Besides chemical/antibiotic treatment and whole-cell vaccine, no subunit vaccine is currently available for A. hydrophila. Outer membrane proteins of gram-negative bacteria have been reported as effective vaccine candidates. Peptide antigens elicit focused immune responses against immunodominant stretches of the antigen. We have attempted to characterize the immunogenicity of linear B-cell epitopes of outer membrane protein (OmpC) of A. hydrophila identified using in silico tools, in conjugation with heat-labile enterotoxin B (LTB) subunit of Escherichia coli as a carrier protein. Antisera against the fusion protein harboring 323-336 residues of the AhOmpC (raised in mice) showed maximum cross-reactivity with the parent protein OmpC and LTB. The fusion protein displayed efficient GM1 ganglioside receptor binding, retaining the adjuvanicity of LTB. Antibody isotype profile and in vitro T-cell response analysis, cytokine ELISA, and array analysis collectively revealed a Th2-biased mixed T-helper cell response. Agglutination assay and flow cytometry analysis validated the ability of anti-fusion protein antisera to recognize the surface exposed epitopes on Aeromonas cells, demonstrating its neutralization potential. Oral immunization studies in Labeo rohita resulted in the generation of long-lasting humoral immune response, and the antisera could cross-react with the fusion protein as well as both the fusion partners. Considering significant similarity among OmpC of different enteric bacteria, the use of A. hydrophila OmpC epitope323-336 in fusion with LTB could have a broader scope in vaccine design.
Collapse
Affiliation(s)
- Mahima Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pujarini Dash
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Pramod K Sahoo
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
8
|
Cunha CEPD, Moreira C, Rocha ADSR, Finger PF, Magalhães CG, Ferreira MRA, Dellagostin OA, Moreira ÂN, Conceição FR. Parenteral adjuvant potential of recombinant B subunit of Escherichia coli heat-labile enterotoxin. Mem Inst Oswaldo Cruz 2017; 112:812-816. [PMID: 29211241 PMCID: PMC5719549 DOI: 10.1590/0074-02760170133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/29/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The B subunit of Escherichia coli heat-labile enterotoxin
(LTB) is a potent mucosal immune adjuvant. However, there is little
information about LTB's potential as a parenteral adjuvant. OBJECTIVES We aimed at evaluating and better understanding rLTB's potential as a
parenteral adjuvant using the fused R1 repeat of Mycoplasma
hyopneumoniae P97 adhesin as an antigen to characterise the
humoral immune response induced by this construct and comparing it to that
generated when aluminium hydroxide is used as adjuvant instead. METHODS BALB/c mice were immunised intraperitoneally with either rLTBR1 or
recombinant R1 adsorbed onto aluminium hydroxide. The levels of systemic
anti-rR1 antibodies (total Ig, IgG1, IgG2a, and IgA) were assessed by
enzyme-linked immunosorbent assay (ELISA). The ratio of IgG1 and IgG2a was
used to characterise a Th1, Th2, or mixed Th1/Th2 immune response. FINDINGS Western blot confirmed rR1, either alone or fused to LTB, remained antigenic;
anti-cholera toxin ELISA confirmed that LTB retained its activity when
expressed in a heterologous system. Mice immunised with the rLTBR1 fusion
protein produced approximately twice as much anti-rR1 immunoglobulins as
mice vaccinated with rR1 adsorbed onto aluminium hydroxide. Animals
vaccinated with either rLTBR1 or rR1 adsorbed onto aluminium hydroxide
presented a mixed Th1/Th2 immune response. We speculate this might be a
result of rR1 immune modulation rather than adjuvant modulation. Mice
immunised with rLTBR1 produced approximately 1.5-fold more serum IgA than
animals immunised with rR1 and aluminium hydroxide. MAIN CONCLUSIONS The results suggest that rLTB is a more powerful parenteral adjuvant than
aluminium hydroxide when administered intraperitoneally as it induced higher
antibody titres. Therefore, we recommend that rLTB be considered an
alternative adjuvant, even if different administration routes are
employed.
Collapse
Affiliation(s)
| | - Clóvis Moreira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | | | - Paula Fonseca Finger
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | - Carolina Georg Magalhães
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | | | - Odir Antônio Dellagostin
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | - Ângela Nunes Moreira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | - Fabricio Rochedo Conceição
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| |
Collapse
|
9
|
Hajishengallis G, Arce S, Gockel CM, Connell TD, Russell MW. Immunomodulation with Enterotoxins for the Generation of Secretory Immunity or Tolerance: Applications for Oral Infections. J Dent Res 2016; 84:1104-16. [PMID: 16304439 DOI: 10.1177/154405910508401205] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The heat-labile enterotoxins, such as cholera toxin (CT), and the labile toxins types I and II (LT-I and LT-II) of Escherichia coli have been extensively studied for their immunomodulatory properties, which result in the enhancement of immune responses. Despite superficial similarity in structure, in which a toxic A subunit is coupled to a pentameric binding B subunit, different toxins have different immunological properties. Administration of appropriate antigens admixed with or coupled to these toxins by oral, intranasal, or other routes in experimental animals induces mucosal IgA and circulating IgG antibodies that have protective potential against a variety of enteric, respiratory, or genital infections. These include the generation of salivary antibodies that may protect against colonization with mutans streptococci and the development of dental caries. However, exploitation of these adjuvants for human use requires an understanding of their mode of action and the separation of their desirable immunomodulatory properties from their toxicity. Recent findings have revealed that adjuvant action is not critically dependent upon the enzymic activity of the A subunits, and that the isolated B subunits may exert different effects on cells of the immune system than do the intact toxins. Interaction of the toxins with immunocompetent cells is not exclusively dependent upon their conventional ganglioside receptors. Immunomodulatory effects have been observed on dendritic cells, macrophages, CD4+ and CD8+ T-cells, and B-cells. Numerous factors—including the precise form of the toxin adjuvant, properties of the antigen, whether and how they are coupled, route of administration, and species of animal model—affect the outcome, whether this is enhanced humoral and cellular immunity, or specific induced tolerance toward the antigen.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, Immunology, and Parasitology, and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
10
|
Yu H, Li Y, Zeng J, Thon V, Nguyen DM, Ly T, Kuang HY, Ngo A, Chen X. Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. J Org Chem 2016; 81:10809-10824. [PMID: 27736072 DOI: 10.1021/acs.joc.6b01905] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosphingolipids are a diverse family of biologically important glycolipids. In addition to variations on the lipid component, more than 300 glycosphingolipid glycans have been characterized. These glycans are directly involved in various molecular recognition events. Several naturally occurring sialic acid forms have been found in sialic acid-containing glycosphingolipids, namely gangliosides. However, ganglioside glycans containing less common sialic acid forms are currently not available. Herein, highly effective one-pot multienzyme (OPME) systems are used in sequential for high-yield and cost-effective production of glycosphingolipid glycans, including those containing different sialic acid forms such as N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (Kdn), and 8-O-methyl-N-acetylneuraminic acid (Neu5Ac8OMe). A library of 64 structurally distinct glycosphingolipid glycans belonging to ganglio-series, lacto-/neolacto-series, and globo-/isoglobo-series glycosphingolipid glycans is constructed. These glycans are essential standards and invaluable probes for bioassays and biomedical studies.
Collapse
Affiliation(s)
- Hai Yu
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Yanhong Li
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Jie Zeng
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States.,School of Food Science, Henan Institute of Science and Technology , Xinxiang, Henan 453003, China
| | - Vireak Thon
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Dung M Nguyen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Thao Ly
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Hui Yu Kuang
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Alice Ngo
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
11
|
Ji J, Griffiths KL, Milburn PJ, Hirst TR, O'Neill HC. The B subunit of Escherichia coli heat-labile toxin alters the development and antigen-presenting capacity of dendritic cells. J Cell Mol Med 2015; 19:2019-31. [PMID: 26130503 PMCID: PMC4549052 DOI: 10.1111/jcmm.12599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/25/2015] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli's heat-labile enterotoxin (Etx) and its non-toxic B subunit (EtxB) have been characterized as adjuvants capable of enhancing T cell responses to co-administered antigen. Here, we investigate the direct effect of intravenously administered EtxB on the size of the dendritic and myeloid cell populations in spleen. EtxB treatment appears to enhance the development and turnover of dendritic and myeloid cells from precursors within the spleen. EtxB treatment also gives a dendritic cell (DC) population with higher viability and lower activation status based on the reduced expression of MHC-II, CD80 and CD86. In this respect, the in vivo effect of EtxB differs from that of the highly inflammatory mediator lipopolysaccharide. In in vitro bone marrow cultures, EtxB treatment was also found to enhance the development of DC from precursors dependent on Flt3L. In terms of the in vivo effect of EtxB on CD4 and CD8 T cell responses in mice, the interaction of EtxB directly with DC was demonstrated following conditional depletion of CD11c(+) DC. In summary, all results are consistent with EtxB displaying adjuvant ability by enhancing the turnover of DC in spleen, leading to newly mature myeloid and DC in spleen, thereby increasing DC capacity to perform as antigen-presenting cells on encounter with T cells.
Collapse
Affiliation(s)
- Jing Ji
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Kristin L Griffiths
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Peter J Milburn
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Timothy R Hirst
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Helen C O'Neill
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| |
Collapse
|
12
|
Ledeen RW, Wu G. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 2015; 40:407-18. [PMID: 26024958 DOI: 10.1016/j.tibs.2015.04.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
Abstract
GM1 ganglioside occurs widely in vertebrate tissues, where it exhibits many essential functions, both in the plasma membrane and intracellular loci. Its essentiality is revealed in the dire consequences resulting from genetic deletion. This derives from its key roles in several signalosome systems, characteristically located in membrane rafts, where it associates with specific proteins that have glycolipid-binding domains. Thus, GM1 interacts with proteins that modulate mechanisms such as ion transport, neuronal differentiation, G protein-coupled receptors (GPCRs), immune system reactivities, and neuroprotective signaling. The latter occurs through intimate association with neurotrophin receptors, which has relevance to the etiopathogenesis of neurodegenerative diseases and potential therapies. Here, we review the current state of knowledge of these GM1-associated mechanisms.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | - Gusheng Wu
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
13
|
Guan W, Liu W, Bao J, Li J, Yuan C, Tang J, Shi D. Analysis and application of a neutralizing linear epitope on liable toxin B of enterotoxin Escherichia coli. Appl Microbiol Biotechnol 2015; 99:5985-96. [PMID: 25794873 DOI: 10.1007/s00253-015-6448-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 01/11/2023]
Abstract
Heat-labile enterotoxin (LT) of enterotoxigenic Escherichia coli (ETEC) is one of the major virulence factors for causing diarrhea in piglets, and LT is a strong immunogen. Thus, LT represents an important target for development of vaccines and diagnostic tests. In this study, bioinformatic tools were used to predict six antigenic B cell epitopes in the B subunit of LT protein (LTB) of ETEC strains. Then, seven antigenic B cell epitopes of LTB were identified by polyclonal antisera (polyclonal antibody (PAb)) using a set of LTB-derived peptides expressed as maltose-binding protein (MBP) fusion protein. In addition, one LTB-specific monoclonal antibody (MAb) was generated and defined its corresponding epitope as mentioned above. This MAb was able to specifically bind with native LT toxin and has no cross-reaction with LT-II (type II heat-labile enterotoxin), Stx1 (Shiga toxin I), Stx2 (Shiga toxin II), STa (heat-stable enterotoxin I), and STb (heat-stable enterotoxin II) toxins. Further, this MAb was able to interrupt LT toxin specific binding to GM1 receptor, indicating that the corresponding epitope is the specific binding region to GM1 receptor. Moreover, in vitro and in vivo assay showed that the MAb was able to neutralize the native LT toxin. Diarrheal suckling pigs challenged with LT-positive ETEC strain recovered when an enema with this purified MAb was administered. This study will provide the foundation for further studies about the interaction between LT toxin and GM1 receptor and about the developing of epitope-based vaccines and specific therapeutic agent.
Collapse
Affiliation(s)
- Weikun Guan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
El-Kassas S, Faraj R, Martin K, Hajishengallis G, Connell TD, Nashar T. Cell clustering and delay/arrest in T-cell division implicate a novel mechanism of immune modulation by E. coli heat-labile enterotoxin B-subunits. Cell Immunol 2015; 295:150-62. [PMID: 25880107 DOI: 10.1016/j.cellimm.2015.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
The B-subunits of heat-labile enterotoxins LT-I (LT-IB) and LT-IIa (LT-IIaB) are strong adjuvants that bind to cell-surface receptors, including gangliosides G(M1) and GD1b, respectively. LT-IIaB also binds TLR-2. We demonstrate for the first time that co-incubation with the B-subunits induces significant clustering of B cells after only 4h, and B and T cells in 24h. Clustering was dependent on intact B-subunits, but not on the TLR-2 binding activity of LT-IIaB, indicating it was ganglioside-mediated. Treatment of B cells with LT-IB, a mixture of LT-IB+LT-IIaB, but not LT-IIaB alone, caused a delay in T cell division following ovalbumin endocytosis. B cell receptor-mediated uptake in presence of each treatment caused an arrest, but with increased production of IL-2. Further, treatments differentially increased the proportion of macrophages expressing MHC class-II. These results highlight the outcomes of interplay between signals involving different receptors and implicate a novel mechanism of adjuvanticity.
Collapse
Affiliation(s)
- Seham El-Kassas
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, 1200 Montgomery Road, Tuskegee, AL 36088, USA; Kafrelshikh University, College of Veterinary Medicine, Kafrelsheikh, Egypt
| | - Rawah Faraj
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, 1200 Montgomery Road, Tuskegee, AL 36088, USA; Middle Technical University, Institute of Medical Technology, Department of Community Health, Baghdad, Iraq
| | - Karmarcha Martin
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, 1200 Montgomery Road, Tuskegee, AL 36088, USA
| | - George Hajishengallis
- Pennsylvania School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA
| | - Terry D Connell
- The Department of Microbiology & Immunology and The Witebsky Center for Microbial Pathogenesis and Immunology, School of Medicine and Biomedical Sciences, 138 Farber Hall, 3435 Main St., University at Buffalo, NY 14214, USA
| | - Toufic Nashar
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, 1200 Montgomery Road, Tuskegee, AL 36088, USA.
| |
Collapse
|
15
|
Qi Y, Kang H, Zheng X, Wang H, Gao Y, Yang S, Xia X. Incorporation of membrane-anchored flagellin or Escherichia coli heat-labile enterotoxin B subunit enhances the immunogenicity of rabies virus-like particles in mice and dogs. Front Microbiol 2015; 6:169. [PMID: 25784906 PMCID: PMC4347500 DOI: 10.3389/fmicb.2015.00169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 01/20/2023] Open
Abstract
Rabies remains an important worldwide public health threat, so safe, effective, and affordable vaccines are still being sought. Virus-like particle-based vaccines targeting various viral pathogens have been successfully produced, licensed, and commercialized. Here, we designed and constructed two chimeric rabies virus-like particles (cRVLPs) containing rabies virus (RABV) glycoprotein (G), matrix (M) protein, and membrane-anchored flagellin (EVLP-F) or Escherichia coli heat-labile enterotoxin B subunit (EVLP-L) as molecular adjuvants to enhance the immune response against rabies. The immunogenicity and potential of cRVLPs as novel rabies vaccine were evaluated by intramuscular vaccination in mouse and dog models. Mouse studies demonstrated that both EVLP-F and EVLP-L induced faster and larger virus-neutralizing antibodies (VNAs) responses and elicited greater numbers of CD4+ and CD8+ T cells secreting IFN-γ or IL-4 compared with a standard rabies VLP (sRVLP) containing only G and M. Moreover, cRVLPs recruited and/or activated more B cells and dendritic cells in inguinal lymph nodes. EVLP-F induced a strong, specific IgG2a response but not an IgG1 response, suggesting the activation of Th1 class immunity; in contrast, Th2 class immunity was observed with EVLP-L. The significantly enhanced humoral and cellular immune responses induced by cRVLPs provided complete protection against lethal challenge with RABV. Most importantly, dogs vaccinated with EVLP-F or EVLP-L exhibited increased VNA titers in sera and enhanced IFN-γ and IL-4 secretion from peripheral blood mononuclear cells. Taken together, these results illustrate that when incorporated into sRVLP, membrane-anchored flagellin, and heat-labile enterotoxin B subunit possess strong adjuvant activity. EVLP-F and EVLP-L induce significantly enhanced RABV-specific humoral and cellular immune responses in both mouse and dog. Therefore, these cRVLPs may be developed as safe and more efficacious rabies vaccine candidate for animals.
Collapse
Affiliation(s)
- Yinglin Qi
- College of Veterinary Medicine, Jilin University Changchun, China ; Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Hongtao Kang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China ; College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Xuexing Zheng
- Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Hualei Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Songtao Yang
- College of Veterinary Medicine, Jilin University Changchun, China ; Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University Changchun, China ; Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| |
Collapse
|
16
|
Sharma M, Dixit A. Identification and immunogenic potential of B cell epitopes of outer membrane protein OmpF of Aeromonas hydrophila in translational fusion with a carrier protein. Appl Microbiol Biotechnol 2015; 99:6277-91. [DOI: 10.1007/s00253-015-6398-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 01/10/2023]
|
17
|
Ricca E, Baccigalupi L, Cangiano G, De Felice M, Isticato R. Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microb Cell Fact 2014; 13:115. [PMID: 25112405 PMCID: PMC4249717 DOI: 10.1186/s12934-014-0115-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/31/2014] [Indexed: 01/23/2023] Open
Abstract
Development of mucosal vaccines strongly relies on an efficient delivery system and, over the years, a variety of approaches based on phages, bacteria or synthetic nanoparticles have been proposed to display and deliver antigens. The spore of Bacillus subtilis displaying heterologous antigens has also been considered as a mucosal vaccine vehicle, and shown able to conjugate some advantages of live microrganisms with some of synthetic nanoparticles. Here we review the use of non-recombinant spores of B. subtilis as a delivery system for mucosal immunizations. The non-recombinant display is based on the adsorption of heterologous molecules on the spore surface without the need of genetic manipulations, thus avoiding all concerns about the use and environmental release of genetically modified microorganisms. In addition, adsorbed molecules are stabilized and protected by the interaction with the spore, suggesting that this system could reduce the rapid degradation of the antigen, often observed with other delivery systems and identified as a major drawback of mucosal vaccines.
Collapse
|
18
|
Nashar TO. The Quest for an HIV-1 Vaccine Adjuvant: Bacterial Toxins as New Potential Platforms. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5. [PMID: 27375924 PMCID: PMC4929853 DOI: 10.4172/2155-9899.1000225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While tremendous efforts are undergoing towards finding an effective HIV-1 vaccine, the search for an HIV-1 vaccine adjuvant lags behind and is understudied. More recently, however, efforts have focused on testing adjuvant formulations that can boost the immune response and generate broadly neutralizing antibodies to HIV-1 ENV (gp160). Despite this, there remain a number of challenges towards achieving this goal. These include safety of adjuvant formulations; stability of the incorporated antigens; maintenance of ENV immunogenicity; optimal inoculation sites; the effective combination of adjuvants; stability of ENV neutralizing epitopes in some adjuvant formulations; mucosal immunity; and long-term maintenance of the immune response. A new class of adjuvants for HIV-1 proteins is suggested to overcome many of the limitations of some other adjuvants. Type 1 (LT-I) and type 2 (LT-II) human E. coli enterotoxins (HLTs) and their non-toxic B-subunits derivatives are strong systemic and mucosal adjuvants and effective carriers for other proteins and epitopes. Their stable molecular structure in the presence of fused proteins and epitopes, and their ability to target surface receptors on antigen presenting cells make them ideal for the delivery of HIV-1 ENV or HIV other proteins. Importantly, unlike some other adjuvants, HLTs and derivatives have well-defined modes of immune system activation. The challenges in finding optimal HIV-1 vaccine adjuvant formulation and the important properties of HLTs are discussed.
Collapse
Affiliation(s)
- Toufic O Nashar
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
19
|
Isticato R, Sirec T, Treppiccione L, Maurano F, De Felice M, Rossi M, Ricca E. Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact 2013; 12:98. [PMID: 24168229 PMCID: PMC3816304 DOI: 10.1186/1475-2859-12-98] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucosal infections are a major global health problem and it is generally accepted that mucosal vaccination strategies, able to block infection at their entry site, would be preferable with respect to other prevention approaches. However, there are still relatively few mucosal vaccines available, mainly because of the lack of efficient delivery systems and of mucosal adjuvants. Recombinant bacterial spores displaying a heterologous antigen have been shown to induce protective immune responses and, therefore, proposed as a mucosal delivery system. A non-recombinant approach has been recently developed and tested to display antigens and enzymes. RESULTS We report that the binding subunit of the heat-labile toxin (LTB) of Escherichia coli efficiently adsorbed on the surface of Bacillus subtilis spores. When nasally administered to groups of mice, spore-adsorbed LTB was able to induce a specific immune response with the production of serum IgG, fecal sIgA and of IFN-γ in spleen and mesenteric lymph nodes (MLN) of the immunized animals. Dot blotting experiments showed that the non-recombinant approach was more efficient than the recombinant system in displaying LTB and that the efficiency of display could be further increased by using mutant spores with an altered surface. In addition, immunofluorescence microscopy experiments showed that only when displayed on the spore surface by the non-recombinant approach LTB was found in its native, pentameric form. CONCLUSION Our results indicate that non-recombinant spores displaying LTB pentamers can be administered by the nasal route to induce a Th1-biased, specific immune response. Mutant spores with an altered coat are more efficient than wild type spores in adsorbing the antigen, allowing the use of a reduced number of spores in immunization procedures. Efficiency of display, ability to display the native form of the antigen and to induce a specific immune response propose this non-recombinant delivery system as a powerful mucosal vaccine delivery approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy.
| |
Collapse
|
20
|
Martin K, Nashar TO. E. coli Heat-labile Enterotoxin B Subunit as a Platform for the Delivery of HIV Gag p24 Antigen. ACTA ACUST UNITED AC 2013; 4. [PMID: 27375923 PMCID: PMC4929988 DOI: 10.4172/2155-9899.1000140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiple vaccination strategies have been devised against HIV-1 including delivery of HIV moieties in attenuated or replication defective recombinant microbial agents alone or in combination with priming agents in form of soluble proteins or naked DNA. For the priming agents to be effective, adjuvants might be essential in directing the immune response to a desired outcome. E. coli enterotoxin B subunit (LTB) is an effective adjuvant and carrier for other proteins and epitopes. Here we show that conjugation of HIV gag p24 to LTB enhances the T cell response to gag p24 by increasing rate of T cell division compared to other treatments. Because HIV vaccines are likely to be multivalent, we further investigated whether gag p24 inhibits antigen presentation of an unrelated antigen, OVA. Addition of gag p24 to OVA-responsive DO.11.10 cell culture did not have adverse effects on antigen presentation. Interestingly, the presence of LTB in these cultures significantly increased proliferation of DO.11.10 cells. In all, the results suggest the use of LTB to boost immune responses against HIV gag p24 in systemic priming regimens with oral recombinant HIV vaccines.
Collapse
Affiliation(s)
- Karmarcha Martin
- College of Veterinary Medicine, Nursing and Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Toufic O Nashar
- College of Veterinary Medicine, Nursing and Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
21
|
Wang X, Liu J, Wu X, Yu L, Chen H, Guo H, Zhang M, Li H, Liu X, Sun S, Zhao L, Zhang X, Gao L, Liu M. Oral immunisation of mice with a recombinant rabies virus vaccine incorporating the heat-labile enterotoxin B subunit of Escherichia coli in an attenuated Salmonella strain. Res Vet Sci 2011; 93:675-81. [PMID: 22019192 DOI: 10.1016/j.rvsc.2011.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/08/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022]
Abstract
To investigate effective new rabies vaccines, a fusion protein consisting of the rabies virus (RV) glycoprotein and the heat-labile enterotoxin B subunit of Escherichia coli (LTB) was successfully constructed and delivered in a live attenuated Salmonella strain LH430. Mice were immunised with LH430 carrying pVAX1-G, pVAX1-G-LTB or pVAX1-ori-G-LTB. The antibody titres of mice immunised with oral LH430 carrying pVAX1-G-LTB or pVAX1-ori-G-LTB were significantly higher than those of pVAX1-G-immunised mice. The results of the challenge with the rabies virus standard strain (CVS-11) showed that the LH430 strain carrying the G-LTB gene induced immunity and elevated IL-2 levels in immunised mice ((∗∗)P<0.01), whereas LH430 carrying pVAX1-G did not contribute to protection. These results show that LH430 carrying recombinant G-LTB could provide overall immunity against challenge with CVS-11 and should be considered to be a potential rabies vaccine.
Collapse
Affiliation(s)
- Xuelin Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute for Zoonosis, Jilin University, 5333 Xian Road, 130062 Changchun, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
da Hora VP, Conceição FR, Dellagostin OA, Doolan DL. Non-toxic derivatives of LT as potent adjuvants. Vaccine 2011; 29:1538-44. [DOI: 10.1016/j.vaccine.2010.11.091] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/10/2010] [Accepted: 11/30/2010] [Indexed: 12/21/2022]
|
23
|
Effective CD8+ T cell priming and tumor protection by enterotoxin B subunit-conjugated peptides targeted to dendritic cells. Vaccine 2009; 27:5252-8. [DOI: 10.1016/j.vaccine.2009.06.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/08/2009] [Accepted: 06/14/2009] [Indexed: 11/21/2022]
|
24
|
Cholera toxin and Escherichia coli heat-labile enterotoxin, but not their nontoxic counterparts, improve the antigen-presenting cell function of human B lymphocytes. Infect Immun 2009; 77:1924-35. [PMID: 19223474 DOI: 10.1128/iai.01559-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes play an important role in the immune response induced by mucosal adjuvants. In this study we investigated the in vitro antigen-presenting cell (APC) properties of human B cells upon treatment with cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) and nontoxic counterparts of these toxins, such as the B subunit of CT (CT-B) and the mutant of LT lacking ADP ribosyltransferase activity (LTK63). Furthermore, forskolin (FSK), a direct activator of adenylate cyclase, and cyclic AMP (cAMP) analogues were used to investigate the role of the increase in intracellular cAMP caused by the A subunit of CT and LT. B lymphocytes were cultured with adjuvants and polyclonal stimuli necessary for activation of B cells in the absence of CD4 T cells. Data indicated that treatment with CT, LT, FSK, or cAMP analogues, but not treatment with CT-B or LTK63, upregulated surface activation markers on B cells, such as CD86 and HLA-DR, and induced inhibition of the proliferation of B cells at early time points, while it increased cell death in long-term cultures. Importantly, B cells treated with CT, LT, or FSK were able to induce pronounced proliferation of both CD4(+) and CD8(+) allogeneic T cells compared with untreated B cells and B cells treated with CT-B and LTK63. Finally, only treatment with toxins or FSK induced antigen-specific T-cell proliferation in Mycobacterium tuberculosis purified protein derivative or tetanus toxoid responder donors. Taken together, these results indicated that the in vitro effects of CT and LT on human B cells are mediated by cAMP.
Collapse
|
25
|
Donaldson DS, Williams NA. Bacterial toxins as immunomodulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:1-18. [PMID: 20054971 DOI: 10.1007/978-1-4419-1601-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial toxins are the causative agent at pathology in a variety of diseases. Although not always the primary target of these toxins, many have been shown to have potent immunomodulatory effects, for example, inducing immune responses to co-administered antigens and suppressing activation of immune cells. These abilities of bacterial toxins can be harnessed and used in a therapeutic manner, such as in vaccination or the treatment of autoimmune diseases. Furthermore, the ability of toxins to gain entry to cells can be used in novel bacterial toxin based immuno-therapies in order to deliver antigens into MHC Class I processing pathways. Whether the immunomodulatory properties of these toxins arose in order to enhance bacterial survival within hosts, to aid spread within the population or is pure serendipity, it is interesting to think that these same toxins potentially hold the key to preventing or treating human disease.
Collapse
Affiliation(s)
- David S Donaldson
- Department of Cellular and Molecular Medicine, School of Medicine Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
26
|
Connell TD. Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev Vaccines 2007; 6:821-34. [PMID: 17931161 PMCID: PMC2849181 DOI: 10.1586/14760584.6.5.821] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The heat-labile enterotoxins expressed by Vibrio cholerae (cholera toxin) and Escherichia coli (LT-I, LT-IIa and LT-IIb) are potent systemic and mucosal adjuvants. Coadministration of the enterotoxins with a foreign antigen produces an augmented immune response to that antigen. Although each enterotoxin has potent adjuvant properties, the means by which the enterotoxins induce various immune responses are distinctive for each adjuvant. Various mutants have been engineered to dissect the functions of the enterotoxins required for their adjuvanticity. The capacity to strongly bind to one or more specific ganglioside receptors appears to drive the distinctive immunomodulatory properties associated with each enterotoxin. Mutant enterotoxins with ablated or altered ganglioside-binding affinities have been employed to investigate the role of gangliosides in enterotoxin-dependent immunomodulation.
Collapse
Affiliation(s)
- Terry D Connell
- School of Medicine and Biomedical Sciences, Department of Microbiology and Immunology, 138 Farber Hall, 3435 Main St, Buffalo, NY 14214, USA.
| |
Collapse
|
27
|
Fingerut E, Gutter B, Goldway M, Eliahoo D, Pitcovski J. B subunit of E. coli enterotoxin as adjuvant and carrier in oral and skin vaccination. Vet Immunol Immunopathol 2006; 112:253-63. [PMID: 16701905 DOI: 10.1016/j.vetimm.2006.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 02/26/2006] [Accepted: 03/14/2006] [Indexed: 02/01/2023]
Abstract
Mucosal sites are one of the main natural ports of entry into the body. Stimulation of a local response by antibodies as the systemic protection may enhance the efficacy of non-living vaccines, and allow for vaccination by subunit vaccines without the need for injection. Mucosal or skin vaccination necessitates a suitable adjuvant and carrier. Escherichia coli heat-labile enterotoxin (LT) and its B subunit (LTB) have been found to be effective adjuvants. The aim of this study was to efficiently produce and purify recombinant LTB (brLTB), and examine its adjuvant and carrier properties. The gene encoding LTB was cloned and expressed in E. coli, and the product was found to have a pentameric form with the ability to bind the cell receptor, GM1 ganglioside. A one-step method for efficient purification and concentration of brLTB was developed. Both oral and intramuscular vaccination with purified brLTB yielded high antibody titers, which detected the whole toxin. In an attempt to test its adjuvant characteristics, brLTB was mixed with either BSA or a recombinant protein (rKnob of egg drop syndrome adenovirus) and delivered intramuscularly, orally or transcutaneously. The addition of brLTB significantly elevated the antibody response in groups vaccinated orally and transcutaneously, but had no influence in injected groups. Vaccination with another recombinant protein, (viral protein 2 of infectious bursal disease virus) supplemented with brLTB did not elevate the antibody response, as compared to vaccination with the antigen alone. These results demonstrate that the addition of brLTB makes oral and transcutaneous vaccination with protein antigens possible.
Collapse
Affiliation(s)
- E Fingerut
- Migal, P.O. Box 831, Kiryat Shmona 11016, Israel
| | | | | | | | | |
Collapse
|
28
|
Kim JH, Cramer L, Mueller H, Wilson B, Vilen BJ. Independent trafficking of Ig-alpha/Ig-beta and mu-heavy chain is facilitated by dissociation of the B cell antigen receptor complex. THE JOURNAL OF IMMUNOLOGY 2005; 175:147-54. [PMID: 15972641 PMCID: PMC3895480 DOI: 10.4049/jimmunol.175.1.147] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The BCR relays extracellular signals and internalizes Ag for processing and presentation. We have previously demonstrated that ligation of the BCR destabilizes Ig-alpha/Ig-beta (Ig-alphabeta) from mu-H chain (mum). In this study we report that receptor destabilization represents a physical separation of mum from Ig-alphabeta. Sucrose gradient fractionation localized Ig-alphabeta to G(M1)-containing lipid microdomains in the absence of mum. Confocal and electron microscopy studies revealed the colocalization of unsheathed mum with clathrin-coated vesicles. Furthermore, mum failed to associate with clathrin-coated vesicles when receptor destabilization was inhibited, suggesting that unsheathing of mum is required for clathrin-mediated endocytosis. In summary, we found that Ag stimulation physically separates Ig-alphabeta from mum, facilitating concomitant signal transduction and Ag delivery to the endocytic compartment.
Collapse
Affiliation(s)
- Jin-Hyang Kim
- Department of Microbiology/Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Lorraine Cramer
- Department of Microbiology/Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Heather Mueller
- Department of Microbiology/Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Bridget Wilson
- Department of Pathology and the Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Barbara J. Vilen
- Department of Microbiology/Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Address correspondence and reprint requests to Dr. Barbara Vilen, University of North Carolina, CB No. 7290, Chapel Hill, NC 27599.
| |
Collapse
|
29
|
Isomura I, Yasuda Y, Tsujimura K, Takahashi T, Tochikubo K, Morita A. Recombinant cholera toxin B subunit activates dendritic cells and enhances antitumor immunity. Microbiol Immunol 2005; 49:79-87. [PMID: 15665457 DOI: 10.1111/j.1348-0421.2005.tb03632.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of dendritic cells (DC) is crucial for priming of cytotoxic T lymphocytes (CTL), which have a critical role in tumor immunity, and it is considered that adjuvants are necessary for activation of DC and for enhancement of cellular immunity. In this study, we examined an adjuvant capacity of recombinant cholera toxin B subunit (rCTB), which is non-toxic subunit of cholera toxin, on maturation of murine splenic DC. After the in vitro incubation of DC with rCTB, the expression of MHC class II and B7-2 on DC was upregulated and the secretion of IL-12 from DC was enhanced. In addition, larger DC with longer dendrites were observed. These data suggest that rCTB induced DC maturation. Subsequently, we examined the induction of tumor immunity by rCTB-treated DC by employing Meth A tumor cells in mice. Pretreatment with subcutaneous injection of rCTB-treated DC pulsed with Meth A tumor lysate inhibited the growth of the tumor cells depending on the number of DC. Moreover, intratumoral injection of rCTB-treated DC pulsed with tumor lysate had therapeutic effect against established Meth A tumor. Immunization with DC activated by rCTB and the tumor lysate increased number of CTL precursor recognizing Meth A tumor. The antitumor immune response was significantly inhibited in CD8+ T cell-depleted mice, although substantial antitumor effect was observed in CD4+ T cell-depleted mice. These results indicated that rCTB acts as an adjuvant to enhance antitumor immunity through DC maturation and that CD8+ T cells play a dominant role in the tumor immunity. Being considered to be safe, rCTB may be useful as an effective adjuvant to raise immunity for a tumor in clinical application.
Collapse
Affiliation(s)
- Iwao Isomura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Bone H, Eckholdt S, Williams NA. Modulation of B lymphocyte signalling by the B subunit of Escherichia coli heat-labile enterotoxin. Int Immunol 2002; 14:647-58. [PMID: 12039916 DOI: 10.1093/intimm/dxf029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The non-toxic B subunit of Escherichia coli heat-labile enterotoxin (EtxB) is a potent mucosal adjuvant and immunomodulator capable of blocking autoimmune disease. These effects are linked with its ability to modulate lymphocyte populations--a feature that is dependent on binding to ubiquitously expressed cell surface receptors. Here, we demonstrate that EtxB can trigger up-regulated expression of class II MHC and CD25 on purified populations of B lymphocytes, suggesting that EtxB can directly activate biochemical signalling pathways in these cells. The nature of the intracellular signalling events was investigated. B cells cultured with EtxB, but not a non-receptor binding mutant protein, EtxB(G33D), caused the activation of the extracellular signal-regulated kinase (Erk) forms of mitogen-activated protein (MAP) kinase in a process that was dependent on MAPK/Erk kinase (MEK), phosphoinositide 3-kinase (PI3-kinase) and protein kinase C (PKC), as determined by the use of specific inhibitors. PI3-kinase was critical not only in the activation of MAP kinase but also in the up-regulation of both class II and CD25. However, MEK inhibition only partially abrogated the EtxB-mediated up-regulation of MHC class II expression and did not affect CD25 expression--findings suggesting that additional pathways downstream of PI3-kinase are involved. A role for PKC in these processes was suggested by the finding that inhibitors of PKC completely blocked EtxB-mediated CD25 up-regulation. Thus, we have shown that receptor binding by EtxB triggers multiple signalling pathways in B cells that regulate the expression of key cell surface molecules.
Collapse
Affiliation(s)
- Heather Bone
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
31
|
Nashar TO, Betteridge ZE, Mitchell RN. Antigen binding to GM1 ganglioside results in delayed presentation: minimal effects of GM1 on presentation of antigens internalized via other pathways. Immunology 2002; 106:60-70. [PMID: 11972633 PMCID: PMC1782691 DOI: 10.1046/j.1365-2567.2002.01397.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plasma membrane rafts are sphingolipid- and cholesterol-rich patches that function as membrane trafficking and surface signalling regions. Ganglioside GM1 is an integral component of these microdomains, and Escherichia coli enterotoxin B subunit (EtxB) is a pentamer that binds with high affinity to GM1 resulting in GM1 cross-linking. We previously demonstrated that antigen coupled directly to EtxB resulted in enhanced presentation relative to antigen taken up by fluid-phase endocytosis. Here we demonstrate a new role for GM1 in antigen presentation by examining the effects of cross-linking GM1 on the kinetics of presentation and processing of antigen by the B-cell receptor (BCR), fluid-phase endocytosis and GM1-targeted antigen. EtxB bound to B cells does not augment the subsequent kinetics or magnitude of presentation of either BCR-internalized antigen or soluble antigen. Moreover, presentation of GM1-bound antigen is significantly slower than antigen presentation following BCR-mediated uptake. In contrast to the rapid internalization of BCR-bound antigen (which has a half life of 60 min), the majority of EtxB-bound antigen forms a plasma membrane depot detectable for many hours after initial incubation (and with a half life of 12 hr). We conclude that cross-linking of GM1 by EtxB minimally affects the processing and presentation of antigens internalized via other pathways. Nevertheless, binding of antigens to GM1 results in delayed presentation that has important implications for in vivo immunization using GM1-targeted adjuvants.
Collapse
Affiliation(s)
- Toufic O Nashar
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
32
|
Monzavi-Karbassi B, Cunto-Amesty G, Luo P, Shamloo S, Blaszcyk-Thurin M, Kieber-Emmons T. Immunization with a carbohydrate mimicking peptide augments tumor-specific cellular responses. Int Immunol 2001; 13:1361-71. [PMID: 11675368 DOI: 10.1093/intimm/13.11.1361] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The metastatic potential of some tumor cells is associated with the expression of the neolactoseries antigens sialyl-Lewis x (sLex) and sialyl-Lewis a (sLea) as they are ligands for selectins. We have recently shown that peptide mimetics of these antigens can potentiate IgG2a antibodies, which are associated with a Th1-type cellular response. As L-selectin is preferentially expressed on CD4+ Th1 and CD8+ T cell populations, specific induction of these phenotypes could augment a response to L-selectin ligand-expressing tumor cells. Here we demonstrate that immunization with a multiple antigen peptide (MAP) mimetic of sugar constituents of neolactoseries antigens induces a MHC-dependent peptide-specific cellular response that triggers IFN-gamma production upon peptide stimulation, correlating with IgG2a induction. Surprisingly, T lymphocytes from peptide-immunized animals were activated in vitro by sLex, also triggering IFN-gamma production in a MHC-dependent manner. Stimulation by peptide or carbohydrate resulted in loss of L-selectin on CD4+ T cells confirming a Th1 phenotype. We also observed an enhancement in cytotoxic T lymphocyte (CTL) activity in vitro against sLex-expressing Meth A cells using effector cells from Meth A-primed/peptide-boosted animals. CTL activity was inhibited by both anti-MHC class I and anti-L-selectin antibodies. These results further support a role for L-selectin in tumor rejection along with the engagement by the TCR for most likely processed tumor-associated glycopeptides, focusing on peptide mimetics as a means to induce carbohydrate reactive cellular responses.
Collapse
Affiliation(s)
- B Monzavi-Karbassi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|