1
|
Wang C, Zhang Y, Lu Y, Huang X, Jiang H, Chen G, Shao Y, Savelkoul HFJ, Jansen CA, Liu G. TGF-β1 impairs IgA class switch recombination and production in porcine Peyer's patches B cells. Eur J Immunol 2024; 54:e2350704. [PMID: 38973082 DOI: 10.1002/eji.202350704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Secretory IgA is crucial for preventing the invasion of entero-pathogens via intestinal mucosa. While it is well-established that Transforming growth factor β1 (TGF-β1) regulates IgA production in human and mouse B cells, our previous investigation revealed different functions of TGF-β1 in IgA generation in pigs compared with humans and mice, with the underlying mechanism remaining elusive. In this study, IgM+ B cells from porcine Peyer's patches (PPs) were isolated and stimulated with recombinant porcine TGF-β1 to evaluate the effect of TGF-β1 on pigs. The results showed that antibody production from B cells of PPs was impaired by TGF-β1 ex vivo. Furthermore, TGF-β1 treatment led to a decrease in the expression of germ-line transcript αand postswitch transcript α. Moreover, we observed that TGF-β1 predominantly inhibited the phosphorylation of p38-mitogen-activated protein kinases (MAPK), confirming the involvement of the p38-MAPK pathway in porcine IgA generation and IgA class switch recombination. The application of p38-MAPK inhibitor resulted in decreased B-cell differentiation levels. Collectively, this study demonstrates that exogenous TGF-β1 restrains the production and class switch recombination of IgA antibodies by inhibiting p38-MAPK signaling in porcine PPs B cells, which may constitute a component of TGF-β1-mediated inhibition of B-cell activation.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yue Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xin Huang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huazheng Jiang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guohui Chen
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongheng Shao
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Guangliang Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
2
|
Casali P, Li S, Morales G, Daw CC, Chupp DP, Fisher AD, Zan H. Epigenetic Modulation of Class-Switch DNA Recombination to IgA by miR-146a Through Downregulation of Smad2, Smad3 and Smad4. Front Immunol 2021; 12:761450. [PMID: 34868004 PMCID: PMC8635144 DOI: 10.3389/fimmu.2021.761450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
IgA is the predominant antibody isotype at intestinal mucosae, where it plays a critical role in homeostasis and provides a first line of immune protection. Dysregulation of IgA production, however, can contribute to immunopathology, particularly in kidneys in which IgA deposition can cause nephropathy. Class-switch DNA recombination (CSR) to IgA is directed by TGF-β signaling, which activates Smad2 and Smad3. Activated Smad2/Smad3 dimers are recruited together with Smad4 to the IgH α locus Iα promoter to activate germline Iα-Cα transcription, the first step in the unfolding of CSR to IgA. Epigenetic factors, such as non-coding RNAs, particularly microRNAs, have been shown to regulate T cells, dendritic cells and other immune elements, as well as modulate the antibody response, including CSR, in a B cell-intrinsic fashion. Here we showed that the most abundant miRNA in resting B cells, miR-146a targets Smad2, Smad3 and Smad4 mRNA 3'UTRs and keeps CSR to IgA in check in resting B cells. Indeed, enforced miR-146a expression in B cells aborted induction of IgA CSR by decreasing Smad levels. By contrast, upon induction of CSR to IgA, as directed by TGF-β, B cells downregulated miR-146a, thereby reversing the silencing of Smad2, Smad3 and Smad4, which, once expressed, led to recruitment of Smad2, Smad3 and Smad4 to the Iα promoter for activation of germline Iα-Cα transcription. Deletion of miR-146a in miR-146a-/- mice significantly increased circulating levels of steady state total IgA, but not IgM, IgG or IgE, and heightened the specific IgA antibody response to OVA. In miR-146a-/- mice, the elevated systemic IgA levels were associated with increased IgA+ B cells in intestinal mucosae, increased amounts of fecal free and bacteria-bound IgA as well as kidney IgA deposition, a hallmark of IgA nephropathy. Increased germline Iα-Cα transcription and CSR to IgA in miR-146a-/- B cells in vitro proved that miR-146a-induced Smad2, Smad3 and Smad4 repression is B cell intrinsic. The B cell-intrinsic role of miR-146a in the modulation of CSR to IgA was formally confirmed in vivo by construction and OVA immunization of mixed bone marrow μMT/miR-146a-/- chimeric mice. Thus, by inhibiting Smad2, Smad3 and Smad4 expression, miR-146a plays an important and B cell intrinsic role in modulation of CSR to IgA and the IgA antibody response.
Collapse
Affiliation(s)
- Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, United States
| | | | | | | | | | | | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, United States
| |
Collapse
|
3
|
Malhotra N, Kang J. SMAD regulatory networks construct a balanced immune system. Immunology 2013; 139:1-10. [PMID: 23347175 DOI: 10.1111/imm.12076] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/17/2022] Open
Abstract
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
4
|
The Ets-1 transcription factor is required for Stat1-mediated T-bet expression and IgG2a class switching in mouse B cells. Blood 2012; 119:4174-81. [PMID: 22438254 DOI: 10.1182/blood-2011-09-378182] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In response to antigens and cytokines, mouse B cells undergo class-switch recombination (CSR) and differentiate into Ig-secreting cells. T-bet, a T-box transcription factor that is up-regulated in lymphocytes by IFN-γ or IL-27, was shown to regulate CSR to IgG2a after T cell-independent B-cell stimulations. However, the molecular mechanisms controlling this process remain unclear. In the present study, we show that inactivation of the Ets-1 transcription factor results in a severe decrease in IgG2a secretion in vivo and in vitro. No T-bet expression was observed in Ets-1-deficient (Ets-1(-/-)) B cells stimulated with IFN-γ and lipopolysaccharide, and forced expression of T-bet in these cells rescued IgG2a secretion. Furthermore, we identified a transcriptional enhancer in the T-bet locus with an activity in B cells that relies on ETS-binding sites. After IFN-γ stimulation of Ets-1(-/-) B cells, activated Stat1, which forms a complex with Ets-1 in wild-type cells, no longer binds to the T-bet enhancer or promotes histone modifications at this site. These results demonstrate that Ets-1 is critical for IgG2a CSR and acts as an essential cofactor for Stat1 in the regulation of T-bet expression in B cells.
Collapse
|
5
|
Arita K, Endo S, Kaifu T, Kitaguchi K, Nakamura A, Ohmori H, Kohu K, Satake M, Takai T. Transcriptional Activation of thePirbGene in B Cells by PU.1 and Runx3. THE JOURNAL OF IMMUNOLOGY 2011; 186:7050-9. [DOI: 10.4049/jimmunol.1001302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Pinaud E, Marquet M, Fiancette R, Péron S, Vincent-Fabert C, Denizot Y, Cogné M. The IgH locus 3' regulatory region: pulling the strings from behind. Adv Immunol 2011; 110:27-70. [PMID: 21762815 DOI: 10.1016/b978-0-12-387663-8.00002-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antigen receptor gene loci are among the most complex in mammals. The IgH locus, encoding the immunoglobulin heavy chain (IgH) in B-lineage cells, undergoes major transcription-dependent DNA remodeling events, namely V(D)J recombination, Ig class-switch recombination (CSR), and somatic hypermutation (SHM). Various cis-regulatory elements (encompassing promoters, enhancers, and chromatin insulators) recruit multiple nuclear factors in order to ensure IgH locus regulation by tightly orchestrated physical and/or functional interactions. Among major IgH cis-acting regions, the large 3' regulatory region (3'RR) located at the 3' boundary of the locus includes several enhancers and harbors an intriguing quasi-palindromic structure. In this review, we report progress insights made over the past decade in order to describe in more details the structure and functions of IgH 3'RRs in mouse and human. Generation of multiple cellular, transgenic and knock-out models helped out to decipher the function of the IgH 3' regulatory elements in the context of normal and pathologic B cells. Beside its interest in physiology, the challenge of elucidating the locus-wide cross talk between distant cis-regulatory elements might provide useful insights into the mechanisms that mediate oncogene deregulation after chromosomal translocations onto the IgH locus.
Collapse
Affiliation(s)
- Eric Pinaud
- UMR CNRS 6101, Centre National de la Recherche Scientifique, Université de Limoges, Limoges, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Yang J, Yang W, Hirankarn N, Ye DQ, Zhang Y, Pan HF, Mok CC, Chan TM, Wong RWS, Mok MY, Lee KW, Wong SN, Leung AMH, Li XP, Avihingsanon Y, Rianthavorn P, Deekajorndej T, Suphapeetiporn K, Shotelersuk V, Baum L, Kwan P, Lee TL, Ho MHK, Lee PPW, Wong WHS, Zeng S, Zhang J, Wong CM, Ng IOL, Garcia-Barceló MM, Cherny SS, Tam PKH, Sham PC, Lau CS, Lau YL. ELF1 is associated with systemic lupus erythematosus in Asian populations. Hum Mol Genet 2010; 20:601-7. [PMID: 21044949 DOI: 10.1093/hmg/ddq474] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic involvement. The susceptibility genes identified so far can only explain a small proportion of disease heritability. Through a genome-wide association in a Hong Kong Chinese cohort and subsequent replication in two other Asian populations, with a total of 3164 patients and 4482 matched controls, we identified association of ELF1 (E74-like factor 1) with SLE (rs7329174, OR = 1.26, joint P= 1.47 × 10(-8)). ELF1 belongs to the ETS family of transcription factors and is known to be involved in T cell development and function. Database analysis revealed transcripts making use of three alternative exon1s for this gene. Near equivalent expression levels of distinct transcripts initiated from alternative exon1s were detected in peripheral blood mononuclear cells from both SLE patients and healthy controls. Although a direct association of rs7329174 with the three forms of transcripts for this gene was not detected, these findings support an important role of ELF1 in SLE susceptibility and suggest a potentially tight regulation for the expression of this gene.
Collapse
Affiliation(s)
- Jing Yang
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, LKS Faculty of Medicine,The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The past 20 years have seen a growing interest over the control of adaptive immune responses by the innate immune system. In particular, considerable attention has been paid to the mechanisms by which antigen-primed dendritic cells orchestrate the differentiation of T cells. Additional studies have elucidated the pathways followed by T cells to initiate immunoglobulin responses in B cells. In this review, we discuss recent advances on the mechanisms by which intestinal bacteria, epithelial cells, dendritic cells, and macrophages cross talk with intestinal T cells and B cells to induce frontline immunoglobulin A class switching and production.
Collapse
Affiliation(s)
- Alejo Chorny
- Department of Medicine, The Immunology Institute, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
9
|
Seo GY, Park SR, Kim PH. Analyses of TGF-β1-inducible Ig germ-line γ2b promoter activity: Involvement of Smads and NF-κB. Eur J Immunol 2009; 39:1157-66. [DOI: 10.1002/eji.200838732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Javelaud D, Alexaki VI, Mauviel A. Transforming growth factor-beta in cutaneous melanoma. Pigment Cell Melanoma Res 2008; 21:123-32. [PMID: 18426405 DOI: 10.1111/j.1755-148x.2008.00450.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta (TGF-beta) plays a complex role during carcinogenesis. It may either act as a tumor suppressor through its broad antiproliferative potential or as a tumor promoter either via direct effects on tumor cell aggressiveness or indirectly by modulating stromal responses, angiogenesis and immune surveillance. Increased production of TGF-beta by cancer cells is often associated with tumor grade. Melanoma cells largely escape cell cycle arrest normally induced by TGF-beta in normal melanocytes, yet produce active TGF-beta and are capable of efficient transcriptional responses to the growth factor. In this review, we summarize the current knowledge about the role played by TGF-beta in melanoma progression and hypothesize about the appropriateness of targeting TGF-beta signaling for therapeutic intervention.
Collapse
|
11
|
Abstract
IgA class switching is the process whereby B cells acquire the expression of IgA, the most abundant antibody isotype in mucosal secretions. IgA class switching occurs via both T-cell-dependent and T-cell-independent pathways, and the antibody targets both pathogenic and commensal microorganisms. This Review describes recent advances indicating that innate immune recognition of microbial signatures at the epithelial-cell barrier is central to the selective induction of mucosal IgA class switching. In addition, the mechanisms of IgA class switching at follicular and extrafollicular sites within the mucosal environment are summarized. A better understanding of these mechanisms may help in the development of more effective mucosal vaccines.
Collapse
|
12
|
Zhu S, Wang W, Clarke DC, Liu X. Activation of Mps1 Promotes Transforming Growth Factor-β-independent Smad Signaling. J Biol Chem 2007; 282:18327-18338. [PMID: 17452325 DOI: 10.1074/jbc.m700636200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primary intracellular mediators of TGF-beta signaling are the Smad proteins. Phosphorylation of R-Smad at the C-terminal SSXS motif by the activated TGF-beta type I receptor kinase triggers a conformation change in R-Smad and facilitates complex formation between R-Smad and Smad4, which shuttle into the nucleus where they interact with DNA and other transcription factors to regulate gene expression. In an attempt to identify proteins interacting with activated Smad signaling complex, we discovered that Mps1, a protein kinase that plays important roles in normal mitotic progression and mitotic checkpoint signaling, co-purifies with this complex. We demonstrated that Smad2 and Smad3 but not Smad4 are substrates of Mps1 in vitro and in vivo. Mps1 phosphorylates Smad2 and Smad3 at the SSXS motif in their C-terminal regions in vitro and in vivo. Disruption of microtubule networks by nocodazole activates Mps1 and promotes TGF-beta-independent activation of Smad signaling. We found that Mps1 is involved in turning on Smad signaling by phosphorylating R-Smads. Our results reveal a novel functional link between Mps1 and Smads in a non-canonical Smad signaling pathway.
Collapse
Affiliation(s)
- Songcheng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - David C Clarke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309.
| |
Collapse
|
13
|
Zheng H, Li M, Ren W, Zeng L, Liu HD, Hu D, Deng X, Tang M, Shi Y, Gong J, Cao Y. Expression and secretion of immunoglobulin alpha heavy chain with diverse VDJ recombinations by human epithelial cancer cells. Mol Immunol 2006; 44:2221-7. [PMID: 17174398 DOI: 10.1016/j.molimm.2006.11.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/30/2006] [Accepted: 11/06/2006] [Indexed: 12/13/2022]
Abstract
Generally, only B lymphocytes express immunoglobulin. Recently, we found the expression of Ig alpha heavy chain in human epithelial cancer cells unexpectedly. We first detected Ig VDJ-Calpha and Ialpha-Calpha transcripts in multiple cancer cell lines. Further, the configuration of the Ig heavy chain genomic locus was analyzed in human cancer cells. We found that cancer cells have the recombination VDJ region, but bear Ig Salpha region in germline configuration, which is different from Ig expression pattern in B cells. And human epithelial cancers possess the essential effectors including RAG-1 and RAG-2, but not activation induced cytidine deaminase (AID) protein. These provide further proofs for Ig alpha expression. In addition, we found that human cancer cells not only express the protein of Ig alpha chain, but also secrete the protein in secretory IgA (SIgA) pattern. Importantly, diverse CDR3 recombinations were found in human cancer cells of different epithelial origin. Since IgA is the key immunoglobulin which contributes to local immunity of mucous membrane, the aberrant expression of Ig alpha heavy chain might increase our further comprehension to development and immunity of cancers.
Collapse
Affiliation(s)
- Hui Zheng
- Cancer Research Institute, Xiangya Medicine School, Central South University, Xiangya Road 110, Changsha, Hunan 410078, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Katabami K, Mizuno H, Sano R, Saito Y, Ogura M, Itoh S, Tsuji T. Transforming growth factor-beta1 upregulates transcription of alpha3 integrin gene in hepatocellular carcinoma cells via Ets-transcription factor-binding motif in the promoter region. Clin Exp Metastasis 2006; 22:539-48. [PMID: 16475024 DOI: 10.1007/s10585-005-5260-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 11/17/2005] [Indexed: 12/23/2022]
Abstract
The invasive and metastatic potentials of hepatocellular carcinoma (HCC) are positively correlated with the expression level of alpha3beta1 integrin, a high-affinity adhesion receptor for laminin isoforms. Transforming growth factor (TGF)-beta1 stimulates non-invasive HCC cells to acquire invasive phenotypes in association with the enhanced expression of alpha3 integrin. In this study, we investigated the molecular mechanism underlying the upregulation of alpha3beta1 integrin by TGF-beta1 in non-invasive HepG2 HCC cells. The treatment of HepG2 cells with TGF-beta1 induced the expression of alpha3 integrin and potentiated these cells to adhere to laminin-5 and to migrate through laminin-5-coated membranes. The promoter activity was measured by luciferase assay with a series of deletion constructs of the 5'-flanking region of the mouse alpha3 integrin gene, and the results showed that the -260/-119 region (relative to the major transcription start site) contained elements responsive to TGF-beta1 stimulation. The introduction of mutations into the putative consensus binding sequence for the Ets-family of transcription factors located at -133 greatly decreased the promoter activity responding to TGF-beta1 stimulation. The nuclear proteins extracted from TGF-beta1-stimulated HepG2 cells yielded a larger amount of DNA-nuclear protein complexes than did those extracted from unstimulated cells, as determined by an electrophoretic mobility shift assay using an oligonucleotide containing the Ets-site as a probe. These results suggest that TGF-beta1 stimulates HepG2 cells to express a higher level of alpha3 integrin by transcriptional upregulation via Ets transcription factors and to exhibit a more invasive phenotype.
Collapse
Affiliation(s)
- Kouji Katabami
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Chen HC, Byrd JC, Muthusamy N. Differential Role for Cyclic AMP Response Element Binding Protein-1 in Multiple Stages of B Cell Development, Differentiation, and Survival. THE JOURNAL OF IMMUNOLOGY 2006; 176:2208-18. [PMID: 16455977 DOI: 10.4049/jimmunol.176.4.2208] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CREB-1 is expressed in the bone marrow and in developing B cells. To determine the role of CREB-1 in developing B cells in the bone marrow, several lines of transgenic (Tg) mice overexpressing a dominant-negative Ser(119-ala) phosphomutant CREB-1 in the bone marrow were generated. Analysis of RNA and protein revealed expression of the transgene in the bone marrow. Flow cytometric analysis of bone marrow cells from Tg mice revealed approximately 70% increase in pre-B1 (CD43(+)B220(+)CD24(+(int))) and approximately 60% decreased pre-BII (CD43(+)B220(+)CD24(++(high))) cells, indicating a developmental block in pre-BI to pre-BII transition. Consistent with this, the Tg mice showed approximately 4-fold decrease in immature and mature B cells in the bone marrow. RT-PCR analysis of RNA from Tg mice revealed increased JunB and c-Jun in pre-BII cells associated with decreased S-phase entry. Adoptive transfer of bone marrow cells into RAG-2(-/-) mice resulted in reconstitution of non-Tg but not Tg bone marrow-derived CD43(+)B220(+)CD24(high) population that is normally absent in RAG-2(-/-) mice. In the periphery, the Tg mice exhibited decreased CD21(dim)CD23(high)IgM(+) follicular B cells in the spleen and increased B1a and B1b B cells in the peritoneum. While exhibiting normal Ab responses to T-independent Ags and primary response to the T-dependent Ag DNP-keyhole limpet hemocyanin, the Tg mice exhibited severely impaired secondary Ab responses. These studies provide the first evidence for a differential role for CRE-binding proteins in multiple stages of B cell development, functional maturation, and B1 and B2 B cells.
Collapse
Affiliation(s)
- Hui-Chen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, 43210, USA
| | | | | |
Collapse
|
16
|
Brandtzaeg P, Johansen FE. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 2005; 206:32-63. [PMID: 16048541 DOI: 10.1111/j.0105-2896.2005.00283.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mucosal antibody defense depends on a complex cooperation between local B cells and secretory epithelia. Mucosa-associated lymphoid tissue gives rise to B cells with striking J-chain expression that are seeded to secretory effector sites. Such preferential homing constitutes the biological basis for local production of polymeric immunoglobulin A (pIgA) and pentameric IgM with high affinity to the epithelial pIg receptor that readily can export these antibodies to the mucosal surface. This ultimate functional goal of mucosal B-cell differentiation appears to explain why the J chain is also expressed by IgG- and IgD-producing plasma cells (PCs) occurring at secretory tissue sites; these immunocytes may be considered as 'spin-offs' from early effector clones that through class switch are on their way to pIgA production. Abundant evidence supports the notion that intestinal PCs are largely derived from B cells initially activated in gut-associated lymphoid tissue (GALT). Nevertheless, insufficient knowledge exists concerning the relative importance of M cells, major histocompatibility complex class II-expressing epithelial cells, and professional antigen-presenting cells for the uptake, processing, and presentation of luminal antigens in GALT to accomplish the extensive and sustained priming and expansion of mucosal B cells. Likewise, it is unclear how the germinal center reaction in GALT so strikingly can promote class switch to IgA and expression of J chain. Although B-cell migration from GALT to the intestinal lamina propria is guided by rather well-defined adhesion molecules and chemokines/chemokine receptors, the cues directing preferential homing to different segments of the gut require better definition. This is even more so for the molecules involved in homing of mucosal B cells to secretory effector sites beyond the gut, and in this respect, the role of Waldever's ring (including the palatine tonsils and adenoids) as a regional inductive tissue needs further characterization. Data suggest a remarkable compartmentalization of the mucosal immune system that must be taken into account in the development of effective local vaccines to protect specifically the airways, eyes, oral cavity, small and large intestines, and urogenital tract.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Institute and Department of Pathology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway.
| | | |
Collapse
|
17
|
Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V, Garcia JGN, Verin AD. Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J Cell Physiol 2005; 204:934-47. [PMID: 15828024 DOI: 10.1002/jcp.20359] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a cytokine critically involved in acute lung injury and endothelial cell (EC) barrier dysfunction. We have studied TGF-beta1-mediated signaling pathways and examined a role of microtubule (MT) dynamics in TGF-beta1-induced actin cytoskeletal remodeling and EC barrier dysfunction. TGF-beta1 (0.1-50 ng/ml) induced dose-dependent decrease in transendothelial electrical resistance (TER) in bovine pulmonary ECs, which was linked to increased actin stress fiber formation, myosin light chain (MLC) phosphorylation, EC retraction, and gap formation. Inhibitor of TGF-beta1 receptor kinase RI (5 microM) abolished TGF-beta1-induced TER decline, whereas inhibitor of caspase-3 zVAD (10 microM) was without effect. TGF-beta1-induced EC barrier dysfunction was linked to partial dissolution of peripheral MT meshwork and decreased levels of stable (acetylated) MT pool, whereas MT stabilization by taxol (5 microM) attenuated TGF-beta1-induced barrier dysfunction and actin remodeling. TGF-beta1 induced sustained activation of small GTPase Rho and its effector Rho-kinase; phosphorylation of myosin binding subunit of myosin specific phosphatase; MLC phosphorylation; EC contraction; and gap formation, which was abolished by inhibition of Rho and Rho-kinase, and by MT stabilization with taxol. Finally, elevation of intracellular cAMP induced by forskolin (50 microM) attenuated TGF-beta1-induced barrier dysfunction, MLC phosphorylation, and protected the MT peripheral network. These results suggest a novel role for MT dynamics in the TGF-beta1-mediated Rho regulation, EC barrier dysfunction, and actin remodeling.
Collapse
Affiliation(s)
- Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Park SR, Seo GY, Choi AJ, Stavnezer J, Kim PH. Analysis of transforming growth factor-beta1-induced Ig germ-line gamma2b transcription and its implication for IgA isotype switching. Eur J Immunol 2005; 35:946-56. [PMID: 15688346 DOI: 10.1002/eji.200425848] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transforming growth factor (TGF)-beta1 directs class switch recombination (CSR) to IgG2b as well as to IgA. Smad3/4, Runx3 and p300 mediate TGF-beta1-induced germ-line (GL) alpha transcription leading to IgA expression. However, the molecular mechanisms by which TGF-beta1 induces IgG2b CSR are unknown. We used luciferase reporter plasmids to investigate how TGF-beta1 regulates the activity of the promoter for GL transcripts of IgG2b constant gene (GLgamma2b promoter). Similarly to the GLalpha promoter, overexpression of Smad3/4 and Runx3 enhances TGF-beta1-induced GLgamma2b promoter activity. Mutation analysis of the promoter identified likely Smad- and Runx3-binding sites. Also similar to the GLalpha promoter, overexpression of p300 enhances Smad3/4-mediated promoter activity, whereas E1A represses promoter activity. Since these regulation mechanisms underlying both GLalpha and GLgamma2b transcription are similar, we explored the possibility that TGF-beta1 induces IgA CSR via transitional IgG2b CSR. TGF-beta1 enhances the expression of both Ialpha-Cmu and Ialpha-Cgamma2b circle transcripts, indicative of direct (Smu-->Salpha) and sequential CSR (Smu-->Sgamma2b-->Salpha).
Collapse
Affiliation(s)
- Seok-Rae Park
- Department of Microbiology, College of Natural Sciences, Kangwon National University, Chunchon, S.Korea
| | | | | | | | | |
Collapse
|
19
|
|
20
|
McKarns SC, Letterio JJ, Kaminski NE. Concentration-dependent bifunctional effect of TGF-beta 1 on immunoglobulin production: a role for Smad3 in IgA production in vitro. Int Immunopharmacol 2004; 3:1761-74. [PMID: 14636827 DOI: 10.1016/j.intimp.2003.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Injury to the liver results in rapid induction of transforming growth factor-beta1 (TGF-beta(1)) consistent with a role for TGF-beta(1) in repairing damaged tissue. In addition to its ubiquitous role in injury repair, TGF-beta(1) is also well established as a critical regulator of immune homeostasis; however, its mechanisms of action remain enigmatic. We have previously demonstrated that the hepatotoxic chlorinated hydrocarbon, carbon tetrachloride, suppresses helper T-lymphocyte function in a TGF-beta(1)-dependent manner. Here, we report that, in opposition to its immunosuppressive effects at picomolar concentrations, femtomolar concentrations of TGF-beta(1) augment T cell-dependent anti-sRBC IgM antibody forming cell (AFC) and T cell-independent DNP-Ficoll-induced AFC responses. These data support a concentration-dependent bifunctional effect by TGF-beta(1) on humoral immune responses in vitro. We further investigated a putative mechanistic role for Smad3, an intracellular mediator of TGF-beta(1) signaling, in propagating the inhibitory effects of TGF-beta(1) on humoral immune responses. Relative to wild type littermates, splenocytes from mice homologous for a null mutation in the gene encoding the TGF-beta receptor-activated Smad3 (Smad3(Exon8-/-)) were less sensitive to inhibition by TGF-beta(1) following anti-sRBC- and LPS-sensitization in vitro. In agreement, inhibition of IgM protein production by TGF-beta(1) was also dampened in LPS-sensitized Smad3(Exon8-/-) splenic B cells. Moreover, stimulation of IgA by TGF-beta(1) was abrogated in LPS-sensitized Smad3(Exon8-/-) splenocytes suggesting an additional role for Smad3 in regulating IgA production in vitro. Our results suggest that the effects of TGF-beta(1) on humoral immune responses fundamentally differ in a concentration-dependent manner and are mediated, in part, through Smad3 signaling.
Collapse
Affiliation(s)
- Susan C McKarns
- Department of Pharmacology and Toxicology, 315 National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
21
|
|
22
|
Takeshita F, Suzuki K, Sasaki S, Ishii N, Klinman DM, Ishii KJ. Transcriptional Regulation of the Human TLR9 Gene. THE JOURNAL OF IMMUNOLOGY 2004; 173:2552-61. [PMID: 15294971 DOI: 10.4049/jimmunol.173.4.2552] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To clarify the molecular basis of human TLR9 (hTLR9) gene expression, the activity of the hTLR9 gene promoter was characterized using the human myeloma cell line RPMI 8226. Reporter gene analysis and EMSA demonstrated that hTLR9 gene transcription was regulated via four cis-acting elements, cAMP response element, 5'-PU box, 3'-PU box, and a C/EBP site, that interacted with the CREB1, Ets2, Elf1, Elk1, and C/EBPalpha transcription factors. Other members of the C/EBP family, such as C/EBPbeta, C/EBPdelta, and C/EBPepsilon, were also important for TLR9 gene transcription. CpG DNA-mediated suppression of TLR9 gene transcription led to decreased binding of the trans-acting factors to their corresponding cis-acting elements. It appeared that suppression was mediated via c-Jun and NF-kappaB p65 and that cooperation among CREB1, Ets2, Elf1, Elk1, and C/EBPalpha culminated in maximal transcription of the TLR9 gene. These findings will help to elucidate the mechanism of TLR9 gene regulation and to provide insight into the process by which TLR9 evolved in the mammalian immune system.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Western
- CCAAT-Enhancer-Binding Proteins/immunology
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cell Line, Tumor
- Cloning, Molecular
- CpG Islands/genetics
- CpG Islands/immunology
- Cyclic AMP Response Element-Binding Protein/immunology
- Cyclic AMP Response Element-Binding Protein/metabolism
- Gene Expression Regulation/immunology
- Genes, Reporter/genetics
- Genes, Reporter/immunology
- Genes, jun/immunology
- Humans
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/immunology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Toll-Like Receptor 9
- Toll-Like Receptors
- Transcription Factors/immunology
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
- Transcriptional Activation/immunology
- Transfection
Collapse
Affiliation(s)
- Fumihiko Takeshita
- Section of Retroviral Immunology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Johansen FE, Brandtzaeg P. Transcriptional regulation of the mucosal IgA system. Trends Immunol 2004; 25:150-7. [PMID: 15036043 DOI: 10.1016/j.it.2004.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Finn-Eirik Johansen
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Institute and Department of Pathology, Rikshospitalet University Hospital, N-0027 Oslo, Norway.
| | | |
Collapse
|
24
|
Yang N, Zhang L, Zhang Y, Kazazian HH. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res 2003; 31:4929-40. [PMID: 12907736 PMCID: PMC169909 DOI: 10.1093/nar/gkg663] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
LINE-1s (long interspersed nuclear elements-1) are abundant non-LTR retrotransposons that comprise 17% of the human genome. The 5' untranslated region (5'UTR) of human L1 (L1Hs) houses a poorly understood internal promoter. Here we report that mutations at a putative runt-domain transcription factor (RUNX) site (+83 to +101) in the 5'UTR decreased L1Hs transcription and retrotransposition in cell culture-based assays. Exogenous expression of RUNX3, but not the other two RUNX family members, RUNX1 and RUNX2, increased L1Hs transcription and retrotransposition, which were otherwise decreased by siRNAs targeting RUNX3 and a dominant negative RUNX. Further more, the specific interaction between RUNX3 and its binding site was demonstrated by an electrophoretic mobility shift assay (EMSA) using an anti-RUNX3 antibody. Interestingly, RUNX3 may also regulate the antisense promoter activity of L1Hs 5'UTR via another putative RUNX site (+526 to +508), as revealed by site-directed mutations and exogenous expression of RUNX factors. Our results indicate an important role for RUNX3 in L1Hs retrotransposition as well as transcription from its 5'UTR in both sense and antisense directions, and they should contribute to our understanding of the mechanism underlying L1Hs retrotransposition and its impact on the expression of adjacent cellular genes.
Collapse
Affiliation(s)
- Nuo Yang
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
25
|
Austin AS, Haas KM, Naugler SM, Bajer AA, Garcia-Tapia D, Estes DM. Identification and characterization of a novel regulatory factor: IgA-inducing protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1336-42. [PMID: 12874223 DOI: 10.4049/jimmunol.171.3.1336] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IgA is the predominant Ig isotype in mucosal secretions and thus plays a pivotal role in host defense. The mechanisms by which IgA expression is regulated may differ among species and involve multiple pathways. Various cytokines and costimulators have been identified which regulate expression of this isotype, including IL-10, IL-2, vasoactive intestinal peptide, and TGF-beta. We have tested a wide array of known factors, but only under very limited conditions do these factors mediate substantial IgA production in vitro from bovine B cells. In response to these findings, we generated a cDNA library in a mammalian expression vector from activated cells derived from bovine gut-associated lymphoid tissues (Peyer's patch and mesenteric lymph node cells) as a source of soluble factor(s) that may regulate IgA production. We have identified a novel factor, IgA-inducing protein, which stimulates relatively high levels of IgA production in vitro following CD40 stimulation in coculture with IL-2. Our data suggest that IgA-inducing protein regulates IgA by acting as a switch or differentiation factor and is expressed in a variety of lymphoid and nonlymphoid tissues.
Collapse
Affiliation(s)
- Amy S Austin
- Departments of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
26
|
O'Reilly D, Quinn CM, El-Shanawany T, Gordon S, Greaves DR. Multiple Ets factors and interferon regulatory factor-4 modulate CD68 expression in a cell type-specific manner. J Biol Chem 2003; 278:21909-19. [PMID: 12676954 DOI: 10.1074/jbc.m212150200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD68 is a transmembrane glycoprotein expressed in all cells of the mononuclear phagocyte lineage including monocytes and tissue resident macrophages. Deletion analysis of the 5'-flanking sequences of the gene demonstrated that the proximal -150-bp sequence of the CD68 promoter exhibits high level promoter activity in macrophages. Mutations that abolish Ets factor binding at positions -106 and -89 reduce promoter activity in macrophages to 12 and 30%, respectively. Band shift experiments show that PU.1 associates with the -89 site whereas, Elf-1 preferentially binds the -106 Ets binding site and enhances CD68 activity in vitro. Furthermore, chromatin immunoprecipitation experiments confirm that Elf-1 and PU.1 associate with the CD68 proximal promoter in vivo in THP-1 cells. PU.1 does not bind to the CD68 promoter alone but instead forms heterocomplexes with members of the interferon regulatory factor family (IRF) including IRF-4 and IRF-8. IRF-4 and IRF-8 typically mediate transcriptional activation when associated with PU.1 on composite elements. However, our data show that PU.1/IRF-4 and IRF-8 heterocomplexes down-regulate CD68 promoter activity in macrophages and repression is dependent on the integrity of both the IRF and PU.1 half-sites of this composite element. Chromatin immunoprecipitation data reveal that neither IRF-4 nor IRF-8 associate with the CD68 proximal promoter in macrophages in vivo but IRF-4 is associated with the promoter in B lymphocytes. We propose that expression of CD68 in myeloid cells requires the Ets transcription factors Elf-1 and PU.1 and CD68 expression is down-regulated in lymphoid cells by combinatorial interactions between PU.1 and IRF-4.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- B-Lymphocytes/metabolism
- Base Sequence
- Binding Sites
- Blotting, Western
- COS Cells
- Cell Line
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Genes, Reporter
- Genetic Vectors
- HL-60 Cells
- Humans
- Interferon Regulatory Factors
- Lymphocytes/metabolism
- Macrophages/metabolism
- Mice
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Nuclear Proteins
- Plasmids/metabolism
- Polymerase Chain Reaction
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/metabolism
- Repressor Proteins/metabolism
- Time Factors
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Tumor Cells, Cultured
- U937 Cells
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Dennler S, Goumans M, ten Dijke P. Transforming growth factor β signal transduction. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Sylviane Dennler
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marie‐José Goumans
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter ten Dijke
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Spieker-Polet H, Yam PC, Knight KL. Functional analysis of I alpha promoter regions of multiple IgA heavy chain genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3360-8. [PMID: 11907093 DOI: 10.4049/jimmunol.168.7.3360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 13 nonallelic IgA H chain genes of rabbit are differentially expressed in vivo. They can be grouped into those expressed at high levels (Calpha4, Calpha5, Calpha6, Calpha9, Calpha10, Calpha12, and Calpha13), those expressed at low levels (Calpha1, Calpha2, Calpha7, and Calpha11), and those that are not expressed (Calpha3 and Calpha8). We tested whether the differential in vivo expression is due to differential responses of the Ialpha promoters to TGF-beta stimulation. We stimulated the rabbit B cell line 55D1 with TGF-beta and, using single-cell RT-PCR, found that expression of germline (GL) transcripts of alpha3 and alpha8 could not be induced. By luciferase reporter gene assay and EMSA we found that the promoters of the unexpressed isotypes Calpha3 and Calpha8 are defective, thereby explaining the absence of IgA3 and IgA8 in vivo. When comparing the promoter activities of the other isotypes we found that the activities did not reflect the degree of in vivo expression. Instead, the promoters of the isotypes expressed at high or low levels promoted expression of the luciferase gene to a similar degree, except for the Ialpha4 promoter, which had much higher activity. Also the degree to which TGF-beta induced GL expression of the various isotypes in 55D1 B cells did not reflect in vivo expression. However, most of the TGF-beta-stimulated cells expressed GL mRNA of multiple isotypes; no isotype was expressed preferentially. These results suggest that the final switch to a single isotype is regulated in a step subsequent to GL transcription, rather than by induction of GL transcripts by the Ialpha promoter.
Collapse
Affiliation(s)
- Helga Spieker-Polet
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | |
Collapse
|