1
|
Wu S, Yin Y, Du L. The bidirectional relationship of depression and disturbances in B cell homeostasis: Double trouble. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110993. [PMID: 38490433 DOI: 10.1016/j.pnpbp.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Major depressive disorder (MDD) is a recurrent, persistent, and debilitating neuropsychiatric syndrome with an increasing morbidity and mortality, representing the leading cause of disability worldwide. The dysregulation of immune systems (including innate and adaptive immune systems) has been identified as one of the key contributing factors in the progression of MDD. As the main force of the humoral immunity, B cells have an essential role in the defense against infections, antitumor immunity and autoimmune diseases. Several recent studies have suggested an intriguing connection between disturbances in B cell homeostasis and the pathogenesis of MDD, however, the B-cell-dependent mechanism of MDD remains largely unexplored compared to other immune cells. In this review, we provide an overview of how B cell abnormality regulates the progression of MMD and the potential consequence of the disruption of B cell homeostasis in patients with MDD. Abnormalities of B-cell homeostasis not only promote susceptibility to MDD, but also lead to an increased risk of developing infection, malignancy and autoimmune diseases in patients with MDD. A better understanding of the contribution of B cells underlying MDD would provide opportunities for identification of more targeted treatment approaches and might provide an overall therapeutic benefit to improve the long-term outcomes of patients with MDD.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
2
|
Acharya B, Dey S, Sahu PK, Behera A, Chowdhury B, Behera S. Perspectives on chick embryo models in developmental and reproductive toxicity screening. Reprod Toxicol 2024; 126:108583. [PMID: 38561097 DOI: 10.1016/j.reprotox.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Teratology, the study of congenital anomalies and their causative factors intersects with developmental and reproductive toxicology, employing innovative methodologies. Evaluating the potential impacts of teratogens on fetal development and assessing human risk is an essential prerequisite in preclinical research. The chicken embryo model has emerged as a powerful tool for understanding human embryonic development due to its remarkable resemblance to humans. This model offers a unique platform for investigating the effects of substances on developing embryos, employing techniques such as ex ovo and in ovo assays, chorioallantoic membrane assays, and embryonic culture techniques. The advantages of chicken embryonic models include their accessibility, cost-effectiveness, and biological relevance to vertebrate development, enabling efficient screening of developmental toxicity. However, these models have limitations, such as the absence of a placenta and maternal metabolism, impacting the study of nutrient exchange and hormone regulation. Despite these limitations, understanding and mitigating the challenges posed by the absence of a placenta and maternal metabolism are critical for maximizing the utility of the chick embryo model in developmental toxicity testing. Indeed, the insights gained from utilizing these assays and their constraints can significantly contribute to our understanding of the developmental impacts of various agents. This review underscores the utilization of chicken embryonic models in developmental toxicity testing, highlighting their advantages and disadvantages by addressing the challenges posed by their physiological differences from mammalian systems.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Sandip Dey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Prafulla Kumar Sahu
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Amulyaratna Behera
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Bimalendu Chowdhury
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Suchismeeta Behera
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Oluwagbenga EM, Fraley GS. Heat stress and poultry production: a comprehensive review. Poult Sci 2023; 102:103141. [PMID: 37852055 PMCID: PMC10591017 DOI: 10.1016/j.psj.2023.103141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
The impact of global warming on poultry production has gained significant attention over the years. However, our current knowledge and understanding of the mechanisms through which heat stress (HS) resulting from global warming affects the welfare, behavior, immune response, production performance, and even transgenerational effects in poultry are still incomplete. Further research is needed to delve deeper into these mechanisms to gain a comprehensive understanding. Numerous studies have investigated various biomarkers of stress in poultry, aiming to identify reliable markers that can accurately assess the physiological status and well-being of birds. However, there is a significant amount of variation and inconsistency in the results reported across different studies. This inconsistency highlights the need for more standardized methods and assays and a clearer understanding of the factors that influence these biomarkers in poultry. This review article specifically focuses on 3 main aspects: 1) the neuroendocrine and behavioral responses of poultry to HS, 2) the biomarkers of HS and 3) the impact of HS on poultry production that have been studied in poultry. By examining the neuroendocrine and behavioral changes exhibited by poultry under HS, we aim to gain insights into the physiological impact of elevated temperatures in poultry.
Collapse
Affiliation(s)
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, IN USA.
| |
Collapse
|
4
|
Oluwagbenga EM, Tetel V, Tonissen S, Karcher DM, Fraley GS. Chronic treatment with glucocorticoids does not affect egg quality but increases cortisol deposition into egg albumen and elicits changes to the heterophil to lymphocyte ratio in a sex-dependent manner. Front Physiol 2023; 14:1132728. [PMID: 37008003 PMCID: PMC10063882 DOI: 10.3389/fphys.2023.1132728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During chronic stress, there is an initial increase in glucocorticoid (GC) levels, but they then return to low, albeit not baseline, levels. Recent studies have renewed interest in cortisol in that it may also have important roles in the stress response. The purpose of our study was to test the hypothesis that chronic treatment with low levels of either corticosterone or cortisol would alter HLR and immune organ morphometrics. Further, we wanted to determine if chronic treatment with either GC would elicit an increase in cortisol levels in egg albumen. To test our hypotheses, we implanted silastic capsules that contained corticosterone, cortisol, or empty capsules as controls (N = 5/sex/treatment). Blood serum, smears, body weights, and egg quality data were collected. Ducks were then euthanized and body weight, weights of spleens, livers, and the number of active follicles were recorded. Albumen GC levels were assessed using mass spectrometry. Data were analyzed using a 2- or 3-way ANOVA as appropriate and post-hoc with Fishers PLSD. No treatment elicited differences in egg quality measures or body weight compared to controls. Corticosterone treatment did elicit an increase in serum corticosterone (p < 0.05), but not cortisol, levels compared to controls in both sexes. Both cortisol and corticosterone treatments increased (p < 0.05) serum levels of cortisol compared to controls. Relative spleen weights were higher (p < 0.05) in hens following corticosterone but not cortisol treatment. No other organs showed any differences among the treatment groups. Both GCs elicited an increase (p < 0.001) in HLR in hens at all time-points over the 2-week treatment period compared to controls. Cortisol, not corticosterone, only elicited an increase in HLR for drakes (p < 0.05) compared to controls but only at day 1 after implants. Chronic treatment with cortisol, but not corticosterone, elicited an increase (p < 0.01) in egg albumen cortisol levels compared to other groups. Corticosterone was not detected in any albumen samples. Our results suggest that glucocorticoids elicit differential effects and although corticosterone has been stated to be the predominant GC in avian species, cortisol may provide critical information to further understand bird welfare.
Collapse
|
5
|
Cyrino JC, de Figueiredo AC, Córdoba-Moreno MO, Gomes FR, Titon SCM. Day Versus Night Melatonin and Corticosterone Modulation by LPS in Distinct Tissues of Toads (Rhinella Icterica). Integr Comp Biol 2022; 62:1606-1617. [PMID: 35568500 DOI: 10.1093/icb/icac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/30/2022] [Indexed: 01/05/2023] Open
Abstract
Pathogen-associated molecular patterns modulate melatonin (MEL) production in the pineal and extra-pineal sites and corticosterone (CORT) synthesis in the adrenal/interrenal and other tissues. Both MEL and CORT play essential and complex immunomodulatory roles, controlling the inflammatory response. Given that most of what we know about these interactions is derived from mammalian studies, discovering how MEL and CORT are modulated following an immune challenge in anurans would increase understanding of how conserved these immune-endocrine interactions are in vertebrates. Herein, we investigated the modulation of MEL and CORT in plasma vs. local tissues of toads (Rhinella icterica) in response to an immune challenge with lipopolysaccharide (LPS; 2 mg/kg) at day and night. Blood samples were taken 2 hours after injection (noon and midnight), and individuals were killed for tissue collection (bone marrow, lungs, liver, and intestine). MEL and CORT were determined in plasma and tissue homogenates. LPS treatment increased MEL concentration in bone marrow during the day. Intestine MEL levels were higher at night than during the day, particularly in LPS-injected toads. Bone marrow and lungs showed the highest MEL levels among tissues. Plasma MEL levels were not affected by either the treatment or the phase. Plasma CORT levels increased in LPS-treated individuals, with an accentuated increase at night. Otherwise, CORT concentration in the tissues was not affected by LPS exposure. Modulation of MEL levels in bone marrow suggests this tissue may participate in the toad's inflammatory response assembly. Moreover, MEL and CORT levels were different in tissues, pointing to an independent modulation of hormonal concentration. Our results suggest an important role of immune challenge in modulating MEL and CORT, bringing essential insights into the hormone-immune interactions during anuran's inflammatory response.
Collapse
Affiliation(s)
- João Cunha Cyrino
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Marlina Olyissa Córdoba-Moreno
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | | |
Collapse
|
6
|
Oluwagbenga EM, Tetel V, Schober J, Fraley GS. Chronic heat stress part 1: Decrease in egg quality, increase in cortisol levels in egg albumen, and reduction in fertility of breeder pekin ducks. Front Physiol 2022; 13:1019741. [PMID: 36439270 PMCID: PMC9692011 DOI: 10.3389/fphys.2022.1019741] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 10/20/2023] Open
Abstract
Global warming poses detrimental effects on poultry production leading to substantial economic losses. The goal of our experiment was to test the hypothesis that heat stress (HS) would alter welfare and egg quality (EQ) of breeder ducks. Furthermore, we wanted to test if HS would increase cortisol levels in egg albumen. Adult Pekin ducks were randomly assigned to two different rooms at 85% lay with 60 hens and 20 drakes per room. Baseline data including body weight, body condition scores (BCS), and egg production/quality were collected the week preceding heat treatment. Ducks were subjected to cyclic HS of 35°C for 10h/day and 29.5°C for the remaining 14h/day for 3 weeks while the control room was maintained at 22°C. Eggs were collected daily and analyzed weekly for quality assessment, and for albumen glucocorticoid (GCs) levels using mass spectrometry. One week before the exposure to HS, 10 hens and 5 drakes were euthanized and the same number again after 3 weeks and birds necropsied. Data analyses were done by 1- or 2-way ANOVA as appropriate with a Tukey-Kramer post hoc test. BCS were analyzed using a chi-squared test. A p ≤ 0.05 was considered significant. Circulating levels of corticosterone were significantly (p < 0.01) elevated at week 1 only in the HS hens. The circulating levels of cortisol increased significantly at week 1 and 2 (p < 0.05), and week 3 (p < 0.01) in the hens and at weeks 2 and 3 only (p < 0.05) in the drakes. Feather quality scores (p < 0.01), feather cleanliness scores (p < 0.001) and footpad quality scores (p < 0.05) increased significantly in the HS group. HS elicited a significant (p < 0.001) decrease in egg production at weeks 1 and 3. Hens in the HS group showed significantly decreased BW (p < 0.001) and number of follicles (p < 0.05). Shell weight decreased significantly at week 1 only (p < 0.05) compared to controls. Yolk weight decreased significantly at week 3 (p < 0.01) compared to controls. HS elicited a significant increase in albumen cortisol levels at week 1 (p < 0.05) and week 3 (p < 0.05). Thus, cortisol may provide critical information to further understand and to improve welfare.
Collapse
Affiliation(s)
| | | | | | - G. S. Fraley
- Animal Sciences, Purdue University, West Lafayette, IN, UnitedStates
| |
Collapse
|
7
|
Tachibana T, Takahashi M, Khan S, Makino R, Cline MA. Poly I:C and R848 facilitate nitric oxide production via inducible nitric oxide synthase in chicks. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111211. [PMID: 35417747 DOI: 10.1016/j.cbpa.2022.111211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is a gaseous bioactive molecule associated with many physiological functions including vasodilation and neurotransmission. NO also plays an important role in immune responses during viral infections in mammals. However, there is a paucity of knowledge regarding the involvement of NO in viral infections in birds. Therefore, the purpose of the present study was to determine if intraperitoneal (IP) injection of poly I:C and R848 (resiquimod), which are analogues of virus component, affects NO production in chicks (Gallus gallus) as a bird model. The involvement of inducible NO synthase (iNOS) in poly I:C- and R848-induced anorexia and corticosterone release was also investigated. These virus analogues significantly increased plasma NO metabolites (NOx) concentrations. IP injection of poly I:C and R848 significantly increased iNOS mRNA expression in several organs including the liver. On the other hand, poly I:C and R848 significantly decreased mRNA expressions of endothelial NOS and neural NOS in several organs, indicating that induction of iNOS might be responsible for increased NOx levels in plasma. This finding was further confirmed by using a selective iNOS inhibitor, S-methylisothiourea sulfate (SMT), which abolished the poly I:C- and R848-induced increase in plasma NOx concentration. In addition, SMT partly attenuated the poly I:C- and R848-induced increase in plasma corticosterone concentration, suggesting that corticosterone release induced by these virus analogues may be partly mediated by iNOS. Collectively, the present results suggest that viral infections facilitate NO production by inducing iNOS. The liver would play an important role in the NO production because the response in iNOS mRNA expression to poly I:C and R848 was remarkable. The present results also suggest that NO is associated with corticosterone release in birds under viral infection.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| | - Maki Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA, United States
| |
Collapse
|
8
|
Salehzadeh M, Soma KK. Glucocorticoid production in the thymus and brain: Immunosteroids and neurosteroids. Brain Behav Immun Health 2021; 18:100352. [PMID: 34988497 PMCID: PMC8710407 DOI: 10.1016/j.bbih.2021.100352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Glucocorticoids (GCs) regulate a myriad of physiological systems, such as the immune and nervous systems. Systemic GC levels in blood are often measured as an indicator of local GC levels in target organs. However, several extra-adrenal organs can produce and metabolize GCs locally. More sensitive and specific methods for GC analysis (i.e., mass spectrometry) allow measurement of local GC levels in small tissue samples with low GC concentrations. Consequently, is it now apparent that systemic GC levels often do not reflect local GC levels. Here, we review the use of systemic GC measurements in clinical and research settings, discuss instances where systemic GC levels do not reflect local GC levels, and present evidence that local GC levels provide useful insights, with a focus on local GC production in the thymus (immunosteroids) and brain (neurosteroids). Lastly, we suggest key areas for further research, such as the roles of immunosteroids and neurosteroids in neonatal programming and the potential clinical relevance of local GC modulators.
Collapse
Affiliation(s)
- Melody Salehzadeh
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Abo-Al-Ela HG, El-Kassas S, El-Naggar K, Abdo SE, Jahejo AR, Al Wakeel RA. Stress and immunity in poultry: light management and nanotechnology as effective immune enhancers to fight stress. Cell Stress Chaperones 2021; 26:457-472. [PMID: 33847921 PMCID: PMC8065079 DOI: 10.1007/s12192-021-01204-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
The poultry industry plays a significant role in boosting the economy of several countries, particularly developing countries, and acts as a good, cheap, and affordable source of animal protein. A stress-free environment is the main target in poultry production. There are several stressors, such as cold stress, heat stress, high stocking density, and diseases that can affect birds and cause several deleterious changes. Stress reduces feed intake and growth, as well as impairs immune response and function, resulting in high disease susceptibility. These effects are correlated with higher corticosteroid levels that modulate several immune pathways such as cytokine-cytokine receptor interaction and Toll-like receptor signaling along with induction of excessive production of reactive oxygen species (ROS) and thus oxidative stress. Several approaches have been considered to boost bird immunity to overcome stress-associated effects. Of these, dietary supplementation of certain nutrients and management modifications, such as light management, are commonly considered. Dietary supplementations improve bird immunity by improving the development of lymphoid tissues and triggering beneficial immune modulators and responses. Since nano-minerals have higher bioavailability compared to inorganic or organic forms, they are highly recommended to be included in the bird's diet during stress. Additionally, light management is considered a cheap and safe approach to control stress. Changing light from continuous to intermittent and using monochromatic light instead of the normal light improve bird performance and health. Such changes in light management are associated with a reduction of ROS production and increased antioxidant production. In this review, we discuss the impact of stress on the immune system of birds and the transcriptome of oxidative stress and immune-related genes, in addition, how nano-minerals supplementations and light system modulate or mitigate stress-associated effects.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt.
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
10
|
Cortisol Metabolism in Carp Macrophages: A Role for Macrophage-Derived Cortisol in M1/M2 Polarization. Int J Mol Sci 2020; 21:ijms21238954. [PMID: 33255713 PMCID: PMC7728068 DOI: 10.3390/ijms21238954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are crucial not only for initiation of inflammation and pathogen eradication (classically polarized M1 macrophages), but also for inflammation inhibition and tissue regeneration (alternatively polarized M2 macrophages). Their polarization toward the M1 population occurs under the influence of interferon-γ + lipopolysaccharide (IFN-γ + LPS), while alternatively polarized M2 macrophages evolve upon, e.g., interlukin 4 (IL-4) or cortisol stimulation. This in vitro study focused on a possible role for macrophage-derived cortisol in M1/M2 polarization in common carp. We studied the expression of molecules involved in cortisol synthesis/conversion from and to cortisone like 11β-hydroxysteroid dehydrogenase type 2 and 3. (11β-HSD2 and 3) and 11β-hydroxylase (CYP11b), as well as the expression of glucocorticoid receptors (GRs) and proliferator-activated receptor gamma (PPARγ) in M1 and M2 macrophages. Lastly, we analyzed how inhibition of these molecules affect macrophage polarization. In M1 cells, upregulation of gene expression of GRs and 11β-HSD3 was found, while, in M2 macrophages, expression of 11β-hsd2 was upregulated. Moreover, blocking of cortisol synthesis/conversion and GRs or PPARγ induced changes in expression of anti-inflammatory interleukin 10 (IL-10). Consequently, our data show that carp monocytes/macrophages can convert cortisol. The results strongly suggest that cortisol, via intracrine interaction with GRs, is important for IL-10-dependent control of the activity of macrophages and for the regulation of M1/M2 polarization to finally determine the outcome of an infection.
Collapse
|
11
|
Campderrich I, Nazar FN, Wichman A, Marin RH, Estevez I, Keeling LJ. Environmental complexity: A buffer against stress in the domestic chick. PLoS One 2019; 14:e0210270. [PMID: 30640921 PMCID: PMC6331143 DOI: 10.1371/journal.pone.0210270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023] Open
Abstract
Birds kept in commercial production systems can be exposed to multiple stressors from early life and this alters the development of different morphological, immunological and behavioural indicators. We explore the hypothesis that provision of a complex environment during early life, better prepares birds to cope with stressful events as well as buffers them against future unpredictable stressful episodes. In this study, 96 one day old pullets were randomly distributed in eight pens (12 birds/pen). Half of the chicks (N = 48) were assigned to a Complex Environment (CENV: with perches, a dark brooder etc.) the others to a Simple Environment (SENV: without enrichment features). Half of the birds from each of these treatments were assigned to a No Stress (NSTR, 33°C) or to an acute Cold Stress (CSTR, 18–20°C) treatment during six hours on their second day of life. At four weeks of age, chicks with these four different backgrounds were exposed to an Intermittent Stressful Challenges Protocol (ISCP). In an immunological test indicative of pro-inflammatory status Phytohemagglutinin-P (PHA-P), the response of CSTR birds was ameliorated by rearing chicks in a CENV as they had a similar response to NSTR chicks and a significantly better pro-inflammatory response than those CSTR birds reared in a SENV (five days after the CSTR treatment was applied). A similar better response when coping with new challenges (the ISCP) was observed in birds reared in a CENV compared to those from a SENV. Birds reared in the CENV had a lower heterophil/lymphocyte ratio after the ISCP than birds reared in SENV, independently of whether or not they had been exposed to CSTR early in life. No effects of stress on general behaviour were detected, however, the provision of a CENV increased resting behaviour, which may have favoured stress recover. Additionally, we found that exposure to cold stress at an early age might have rendered birds more vulnerable to future stressful events. CSTR birds had lower humoral immune responses (sheep red blood cells induced antibodies) after the ISCP and started using elevated structures in the CENV later compared to their NSTR conspecifics. Our study reflects the importance of the early provision of a CENV in commercial conditions to reduce negative stress-related effects. Within the context of the theory of adaptive plasticity, our results suggest that the early experience of the birds had long lasting effects on the modulation of their phenotypes.
Collapse
Affiliation(s)
- Irene Campderrich
- Department of Animal Health, Neiker-Tecnalia Basque Institute for Agricultural Research and Development, Vitoria-Gasteiz, Spain
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Franco Nicolas Nazar
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba and Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Anette Wichman
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Raul Hector Marin
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba and Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Inma Estevez
- Department of Animal Health, Neiker-Tecnalia Basque Institute for Agricultural Research and Development, Vitoria-Gasteiz, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Linda J. Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
12
|
Mittelstadt PR, Taves MD, Ashwell JD. Cutting Edge: De Novo Glucocorticoid Synthesis by Thymic Epithelial Cells Regulates Antigen-Specific Thymocyte Selection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1988-1994. [PMID: 29440508 DOI: 10.4049/jimmunol.1701328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/11/2018] [Indexed: 12/30/2022]
Abstract
Glucocorticoid (GC) signaling in thymocytes counters negative selection and promotes the generation of a self-tolerant yet Ag-responsive T cell repertoire. Whereas circulating GC are derived from the adrenals, GC are also synthesized de novo in the thymus. The significance of this local production is unknown. In this study we deleted 11β-hydroxylase, the enzyme that catalyzes the last step of GC biosynthesis, in thymic epithelial cells (TEC) or thymocytes. Like GC receptor-deficient T cells, T cells from mice lacking TEC-derived but not thymocyte-derived GC proliferated poorly to alloantigen, had a reduced antiviral response, and exhibited enhanced negative selection. Strikingly, basal expression of GC-responsive genes in thymocytes from mice lacking TEC-derived GC was reduced to the same degree as in GC receptor-deficient thymocytes, indicating that at steady-state the majority of biologically active GC are paracrine in origin. These findings demonstrate the importance of extra-adrenal GC even in the presence of circulating adrenal-derived GC.
Collapse
Affiliation(s)
- Paul R Mittelstadt
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matthew D Taves
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
13
|
Tohidi R, Javanmard A, Idris I. Immunogenetics applied to control salmonellosis in chicken: a review. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2017.1301256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Reza Tohidi
- Department of Animal Science, Torbat-e Jam University of Agriculture, Torbat-e Jam, Iran
| | - Arash Javanmard
- Department of Animal Science, University of Tabriz, Tabriz, Iran
| | - Ismail Idris
- Department of Animal Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
14
|
Taves MD, Hamden JE, Soma KK. Local glucocorticoid production in lymphoid organs of mice and birds: Functions in lymphocyte development. Horm Behav 2017; 88:4-14. [PMID: 27818220 DOI: 10.1016/j.yhbeh.2016.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023]
Abstract
Circulating glucocorticoids (GCs) are powerful regulators of immunity. Stress-induced GC secretion by the adrenal glands initially enhances and later suppresses the immune response. GC targets include lymphocytes of the adaptive immune system, which are well known for their sensitivity to GCs. Less appreciated, however, is that GCs are locally produced in lymphoid organs, such as the thymus, where GCs play a critical role in selection of the T cell antigen receptor (TCR) repertoire. Here, we review the roles of systemic and locally-produced GCs in T lymphocyte development, which has been studied primarily in laboratory mice. By antagonizing TCR signaling in developing T cells, thymus-derived GCs promote selection of T cells with stronger TCR signaling. This results in increased T cell-mediated immune responses to a range of antigens. We then compare local and systemic GC patterns in mice to those in several bird species. Taken together, these studies suggest that a combination of adrenal and lymphoid GC production might function to adaptively regulate lymphocyte development and selection, and thus antigen-specific immune reactivity, to optimize survival under different environmental conditions. Future studies should examine how lymphoid GC patterns vary across other vertebrates, how GCs function in B lymphocyte development in the bone marrow, spleen, and the avian bursa of Fabricius, and whether GCs adaptively program immunity in free-living animals.
Collapse
Affiliation(s)
- Matthew D Taves
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Dept of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, Canada.
| | - Jordan E Hamden
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Dept of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada.
| | - Kiran K Soma
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Dept of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
15
|
Taves MD, Plumb AW, Korol AM, Van Der Gugten JG, Holmes DT, Abraham N, Soma KK. Lymphoid organs of neonatal and adult mice preferentially produce active glucocorticoids from metabolites, not precursors. Brain Behav Immun 2016; 57:271-281. [PMID: 27165988 DOI: 10.1016/j.bbi.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/22/2016] [Accepted: 05/07/2016] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) are circulating adrenal steroid hormones that coordinate physiology, especially the counter-regulatory response to stressors. While systemic GCs are often considered immunosuppressive, GCs in the thymus play a critical role in antigen-specific immunity by ensuring the selection of competent T cells. Elevated thymus-specific GC levels are thought to occur by local synthesis, but the mechanism of such tissue-specific GC production remains unknown. Here, we found metyrapone-blockable GC production in neonatal and adult bone marrow, spleen, and thymus of C57BL/6 mice. This production was primarily via regeneration of adrenal metabolites, rather than de novo synthesis from cholesterol, as we found high levels of gene expression and activity of the GC-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), but not the GC-synthetic enzyme CYP11B1. Furthermore, incubation with physiological concentrations of GC metabolites (11-dehydrocorticosterone, prednisone) induced 11β-HSD1- and GC receptor-dependent apoptosis (caspase activation) in both T and B cells, showing the functional relevance of local GC regeneration in lymphocyte GC signaling. Local GC production in bone marrow and spleen raises the possibility that GCs play a key role in B cell selection similar to their role in T cell selection. Our results also indicate that local GC production may amplify changes in adrenal GC signaling, rather than buffering against such changes, in the immune system.
Collapse
Affiliation(s)
- Matthew D Taves
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada.
| | - Adam W Plumb
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver V6T 1Z3, Canada.
| | - Anastasia M Korol
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada.
| | | | - Daniel T Holmes
- Department of Laboratory Medicine, St Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada.
| | - Ninan Abraham
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver V6T 1Z3, Canada.
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
16
|
Rensel MA, Schlinger BA. Determinants and significance of corticosterone regulation in the songbird brain. Gen Comp Endocrinol 2016; 227:136-42. [PMID: 26141145 PMCID: PMC4696926 DOI: 10.1016/j.ygcen.2015.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022]
Abstract
Songbirds exhibit significant adult neuroplasticity that, together with other neural specializations, makes them an important model system for neurobiological studies. A large body of work also points to the songbird brain as a significant target of steroid hormones, including corticosterone (CORT), the primary avian glucocorticoid. Whereas CORT positively signals the brain for many functions, excess CORT may interfere with natural neuroplasticity. Consequently, mechanisms may exist to locally regulate CORT levels in brain to ensure optimal concentrations. However, most studies in songbirds measure plasma CORT as a proxy for levels at target tissues. In this paper, we review literature concerning circulating CORT and its effects on behavior in songbirds, and discuss recent work suggesting that brain CORT levels are regulated independently of changes in adrenal secretion. We review possible mechanisms for CORT regulation in the avian brain, including corticosteroid-binding globulins, p-glycoprotein activity in the blood-brain barrier and CORT metabolism by the 11ß hydroxysteroid dehydrogenases. Data supporting a role for CORT regulation within the songbird brain have only recently begun to emerge, suggesting that this is an avenue for important future research.
Collapse
Affiliation(s)
- Michelle A Rensel
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Laboratory of Neuroendocrinology, Brain Research Institute, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Taves MD, Losie JA, Rahim T, Schmidt KL, Sandkam BA, Ma C, Silversides FG, Soma KK. Locally elevated cortisol in lymphoid organs of the developing zebra finch but not Japanese quail or chicken. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:116-125. [PMID: 26366679 DOI: 10.1016/j.dci.2015.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/28/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Glucocorticoids are important for production of functional lymphocytes and immunity. In altricial neonates, adrenal glands are unresponsive and local glucocorticoid synthesis in lymphoid organs may be necessary to support lymphocyte development. Precocial neonates, in contrast, have fully responsive adrenal glucocorticoid production, and lymphoid glucocorticoid synthesis may not be necessary. Here, we found that in altricial zebra finch hatchlings, lymphoid organs had dramatically elevated endogenous glucocorticoid (and precursor) levels compared to levels in circulating blood. Furthermore, while avian adrenals produce corticosterone, finch lymphoid organs had much higher levels of cortisol, an unexpected glucocorticoid in birds. In contrast, precocial Japanese quail and chicken offspring did not have locally elevated lymphoid glucocorticoid levels, nor did their lymphoid organs contain high proportions of cortisol. These results show that lymphoid glucocorticoids differ in identity, concentration, and possibly source, in hatchlings of three different bird species. Locally-regulated glucocorticoids might have species-specific roles in immune development.
Collapse
Affiliation(s)
- Matthew D Taves
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada; Dept. of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Jennifer A Losie
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Titissa Rahim
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kim L Schmidt
- Dept. of Biology, University of Western Ontario, London, ON, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Benjamin A Sandkam
- Department of Biological Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Chunqi Ma
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | | - Kiran K Soma
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada; Dept. of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Talaber G, Jondal M, Okret S. Local glucocorticoid production in the thymus. Steroids 2015; 103:58-63. [PMID: 26102271 DOI: 10.1016/j.steroids.2015.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 12/29/2022]
Abstract
Besides generating immunocompetent T lymphocytes, the thymus is an established site of de novo extra-adrenal glucocorticoid (GC) production. Among the compartments of the thymus, both stromal thymic epithelial cells (TECs) and thymocytes secrete biologically active GCs. Locally produced GCs secreted by the various thymic cellular compartments have been suggested to have different impact on thymic homeostasis. TEC-derived GCs may regulate thymocyte differentiation whereas thymocyte-derived GCs might regulate age-dependent involution. However the full biological significance of thymic-derived GCs is still not fully understood. In this review, we summarize and describe recent advances in the understanding of local GC production in the thymus and immunoregulatory steroid production by peripheral T cells and highlight the possible role of local GCs for thymus function.
Collapse
Affiliation(s)
- Gergely Talaber
- Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Huddinge, Sweden.
| | - Mikael Jondal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Insitutet, Stockholm, Sweden
| | - Sam Okret
- Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Huddinge, Sweden
| |
Collapse
|
19
|
Wu G, Liu L, Qi Y, Sun Y, Yang N, Xu G, Zhou H, Li X. Splenic gene expression profiling in White Leghorn layer inoculated with the Salmonella enterica serovar Enteritidis. Anim Genet 2015; 46:617-26. [PMID: 26358731 DOI: 10.1111/age.12341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 01/19/2023]
Abstract
Salmonella enterica serovar Enteritidis (SE) is a foodborne pathogen that can threaten human health through contaminated poultry products. Live poultry, chicken eggs and meat are primary sources of human salmonellosis. To understand the genetic resistance of egg-type chickens in response to SE inoculation, global gene expression in the spleen of 20-week-old White Leghorn was measured using the Agilent 4 × 44 K chicken microarray at 7 and 14 days following SE inoculation (dpi). Results showed that there were 1363 genes significantly differentially expressed between inoculated and non-inoculated groups at 7 dpi (I7/N7), of which 682 were up-regulated and 681 were down-regulated genes. By contrast, 688 differentially expressed genes were observed at 14 dpi (I14/N14), of which 371 were up-regulated genes and 317 were down-regulated genes. There were 33 and 28 immune-related genes significantly differentially expressed in the comparisons of I7/N7 and I14/N14 respectively. Functional annotation revealed that several Gene Ontology (GO) terms related to immunity were significantly enriched between the inoculated and non-inoculated groups at 14 dpi but not at 7 dpi, despite a similar number of immune-related genes identified between I7/N7 and I14/N14. The immune response to SE inoculation changes with different time points following SE inoculation. The complicated interaction between the immune system and metabolism contributes to the immune responses to SE inoculation of egg-type chickens at 14 dpi at the onset of lay. GC, TNFSF8, CD86, CD274, BLB1 and BLB2 play important roles in response to SE inoculation. The results from this study will deepen the current understanding of the genetic response of the egg-type chicken to SE inoculation at the onset of egg laying.
Collapse
Affiliation(s)
- Guixian Wu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yukai Qi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yu Sun
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ning Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, 271018, China
| |
Collapse
|
20
|
Taves MD, Plumb AW, Sandkam BA, Ma C, Van Der Gugten JG, Holmes DT, Close DA, Abraham N, Soma KK. Steroid profiling reveals widespread local regulation of glucocorticoid levels during mouse development. Endocrinology 2015; 156:511-22. [PMID: 25406014 DOI: 10.1210/en.2013-1606] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucocorticoids (GCs) are produced by the adrenal glands and circulate in the blood to coordinate organismal physiology. In addition, different tissues may independently regulate their local GC levels via local GC synthesis. Here, we find that in the mouse, endogenous GCs show tissue-specific developmental patterns, rather than mirroring GCs in the blood. Using solid-phase extraction, HPLC, and specific immunoassays, we quantified endogenous steroids and found that in tissues of female and male mice, (1) local GC levels can be much higher than systemic GC levels, (2) local GCs follow age-related patterns different from those of systemic GCs, and (3) local GCs have identities different from those of systemic GCs. For example, whereas corticosterone is the predominant circulating adrenal GC in mice, high concentrations of cortisol were measured in neonatal thymus, bone marrow, and heart. The presence of cortisol was confirmed with liquid chromatography-tandem mass spectrometry. In addition, gene expression of steroidogenic enzymes was detected across multiple tissues, consistent with local GC production. Our results demonstrate that local GCs can differ from GCs in circulating blood. This finding suggests that steroids are widely used as local (paracrine or autocrine) signals, in addition to their classic role as systemic (endocrine) signals. Local GC regulation may even be the norm, rather than the exception, especially during development.
Collapse
Affiliation(s)
- Matthew D Taves
- Departments of Psychology (M.D.T., C.M., K.K.S.), Zoology (M.D.T., D.A.C., N.A., K.K.S.), Microbiology and Immunology (A.W.P., N.A.), and Fisheries (D.A.C.) and Brain Research Centre (K.K.S.), University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Biological Sciences (B.A.S.), Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; and Department of Pathology and Laboratory Medicine (J.G.V.D.G., D.T.H.), St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Omidi M, Taherpour K, Cheraghi J, Ghasemi HA. Influence of cardamom essential oils and seeds on growth performance, blood characteristics and immunity of broilers. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an13404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the impact of dietary supplementation of cardamom essential oils (CEO) and powdered cardamom seeds (PCS) on the growth performance, plasma biochemistry, haematological characters, immune response and meat acceptability in broilers. In total, 300 day-old male broilers (Ross 308) were allocated to five treatments with six replicates. Dietary treatments included the basal diet as control, CEO-supplemented diets with an inclusion level of 50 (CEO1) or 100 (CEO2) mg/kg, and PCS-supplemented diets with an inclusion level of 3 (PCS1) or 6 (PCS2) g/kg. Feeding PCS1 diet improved (P < 0.05) bodyweight gain and feed conversion ratio (FCR) of broilers during the grower period (11–28 days). Moreover, broilers fed the CEO2 diet had the lowest (P < 0.05) FCR during the whole growth period (0–42 days). Higher bursa index (P < 0.05) was detected in chickens receiving CEO1 and CEO2 diets; additionally, higher spleen index (P < 0.05) was recorded in the CEO1 group at 42 days of age. Haematological parameters including red blood cell, white blood cell, haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration values were not influenced (P > 0.05) by diet. By contrast, CEO1 and CEO2 diets decreased (P < 0.05) the low-density lipoprotein cholesterol (LDL-C) concentrations compared with control diet. Plasma cholesterol level was also lower (P < 0.05) in the CEO1 group at 42 days of age. Sensory evaluation of meat samples indicated no differences (P > 0.05) among treatments for appearance, flavour, texture and overall acceptability. Our results suggest that the CEO2 diet was advantageous compared with control diet with respect to feed efficiency. Moreover, CEO1 had a positive effect on the blood cholesterol profile by decreasing the plasma cholesterol and LDL-C levels.
Collapse
|
22
|
Ghasemi HA, Ghasemi R, Torki M. Periodic usage of low-protein methionine-fortified diets in broiler chickens under high ambient temperature conditions: effects on performance, slaughter traits, leukocyte profiles and antibody response. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2014; 58:1405-1414. [PMID: 24122339 DOI: 10.1007/s00484-013-0741-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/23/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
This study was performed to evaluate the effects of adding methionine supplements to low-protein diets and subsequent re-feeding with a normal diet on the productive performance, slaughter parameters, leukocyte profiles and antibody response in broiler chickens reared under heat stress conditions.During the whole experimental period (6-49 days), the birds were raised in battery cages located in high ambient temperature in an open-sided housing system. A total of 360 6-day-old male chickens were divided into six treatments in six replicates with ten chicks each. Six isoenergetic diets, with similar total sulfur amino acids levels, were formulated to provide 100 and 100 (control), 85 and 100 (85S), 70 and 100 (70S), 85 and 85 (85SG), 70 and 85 (70S85G), and 70 and 70% (70SG) of National Research Council recommended levels for crude protein during the starter (6-21 day) and grower (22-42 day) periods, respectively. Subsequently, all groups received a diet containing the same nutrients during the finisher period (43-49 day). The results showed that, under heat stress conditions, average daily gain and feed conversion ratio and performance index from day 6 to 49, breast and thigh yields and antibody titer against Newcastle disease in the birds fed diets 85S, 70S and 85SG were similar to those of birds fed control diet, whereas feeding diets 70S85G and 70SG significantly decreased the values of above-mentioned parameters. Additionally, diets 85S, 70S and 85SG significantly decreased mortality rate and heterophil:lymphocyte ratio compared with the control diet. In conclusion, the results indicate that supplementation of methionine to diets 85S, 70S and 85SG, and then re-feeding with a conventional diet is an effective tool to maintain productive performance and to improve health indices and heat resistance in broilers under high ambient temperature conditions.
Collapse
|
23
|
Mirzaie Bavil F, Mohaddes G, Ebrahimi H, Keyhanmanesh R, Ghiyasi R, Alipour MR. Ghrelin increases lymphocytes in chronic normobaric hypoxia. Adv Pharm Bull 2014; 4:339-43. [PMID: 25436188 DOI: 10.5681/apb.2014.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/17/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Hypoxia is a condition of decreased availability of oxygen. To adapt hypoxia, some changes in blood cells occur in the body. The aim of this study was to evaluate the effect of ghrelin on different types of blood cell in normobaric hypoxia situation. METHODS Thirty-two animals were divided in 4 groups (n=8): control (C), ghrelin (G), hypoxia (H), and hypoxic animals that received ghrelin (H+G). Hypoxia (11%) was induced by an Environmental Chamber System GO2 Altitude. Animals in ghrelin groups received a subcutaneous injection of ghrelin (150 μg/kg/day) for 14 days. RESULTS Our results show that ghrelin significantly (p<0.05) increased RBC and Hct levels, whereas it significantly (p<0.05) decreased lymphocytes in the blood. RBC, Hct, Hb concentration, platelet and MCV increased significantly (p<0.05) in hypoxic conditions but lymphocytes, monocytes and Polymorphonuclears did not show any significant changes. Platelets had a significant (p<0.05) decrease in hypoxic conditions and ghrelin administration in hypoxic conditions could increase lymphocyte levels significantly (p<0.05). CONCLUSION Effect of ghrelin on blood cells could be related to blood oxygen level. Ghrelin in normal oxygen conditions increases RBC and Hct levels but decreases lymphocytes, whereas in hypoxic conditions, ghrelin increases blood lymphocytes.
Collapse
Affiliation(s)
- Fariba Mirzaie Bavil
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Ebrahimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafigheh Ghiyasi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, Hebenstreit D, Dingler FA, Moignard V, Göttgens B, Arlt W, McKenzie ANJ, Teichmann SA. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep 2014; 7:1130-42. [PMID: 24813893 PMCID: PMC4039991 DOI: 10.1016/j.celrep.2014.04.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 03/23/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
T helper 2 (Th2) cells regulate helminth infections, allergic disorders, tumor immunity, and pregnancy by secreting various cytokines. It is likely that there are undiscovered Th2 signaling molecules. Although steroids are known to be immunoregulators, de novo steroid production from immune cells has not been previously characterized. Here, we demonstrate production of the steroid pregnenolone by Th2 cells in vitro and in vivo in a helminth infection model. Single-cell RNA sequencing and quantitative PCR analysis suggest that pregnenolone synthesis in Th2 cells is related to immunosuppression. In support of this, we show that pregnenolone inhibits Th cell proliferation and B cell immunoglobulin class switching. We also show that steroidogenic Th2 cells inhibit Th cell proliferation in a Cyp11a1 enzyme-dependent manner. We propose pregnenolone as a “lymphosteroid,” a steroid produced by lymphocytes. We speculate that this de novo steroid production may be an intrinsic phenomenon of Th2-mediated immune responses to actively restore immune homeostasis. Differential upregulation of the steroid biosynthetic pathway during Th2 differentiation T helper cells produce the steroid pregnenolone in vitro and in vivo Steroidogenic Th2 cells suppress Th cell proliferation in a Cyp11a1-dependent manner Pregnenolone inhibits B cell immunoglobulin class switching in vitro
Collapse
Affiliation(s)
- Bidesh Mahata
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | - Xiuwei Zhang
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Valentina Proserpio
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liora Haim-Vilmovsky
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Angela E Taylor
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniel Hebenstreit
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Felix A Dingler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK
| | - Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK
| | - Sarah A Teichmann
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
25
|
Talabér G, Jondal M, Okret S. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis. Mol Cell Endocrinol 2013; 380:89-98. [PMID: 23707789 DOI: 10.1016/j.mce.2013.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/22/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022]
Abstract
Systemic glucocorticoids (GCs) mainly originate from de novo synthesis in the adrenal cortex under the control of the hypothalamus-pituitary-adrenal (HPA)-axis. However, research during the last 1-2 decades has revealed that additional organs express the necessary enzymes and have the capacity for de novo synthesis of biologically active GCs. This includes the thymus, intestine, skin and the brain. Recent research has also revealed that locally synthesized GCs most likely act in a paracrine or autocrine manner and have significant physiological roles in local homeostasis, cell development and immune cell activation. In this review, we summarize the nature, regulation and known physiological roles of extra-adrenal GC synthesis. We specifically focus on the thymus in which GC production (by both developing thymocytes and epithelial cells) has a role in the maintenance of proper immunological function.
Collapse
Affiliation(s)
- Gergely Talabér
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
26
|
Lattin CR, Waldron-Francis K, Romero LM. Intracellular glucocorticoid receptors in spleen, but not skin, vary seasonally in wild house sparrows (Passer domesticus). Proc Biol Sci 2013; 280:20123033. [PMID: 23407837 DOI: 10.1098/rspb.2012.3033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the short-term and at physiological doses, acute increases in corticosterone (CORT) titres can enhance immune function. There are predictable seasonal patterns in both circulating CORT and immune function across many animal species, but whether CORT receptor density in immune tissues varies seasonally is currently unknown. Using radioligand binding assays, we examined changes in concentrations of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in spleen and skin in wild-caught house sparrows in Massachusetts during six different life-history stages: moult, early winter, late winter, pre-egg-laying, breeding and late breeding. Splenic GR and MR binding were highest during the pre-laying period. This may help animals respond to immune threats through increased lymphocyte proliferation and/or an increase in delayed-type hypersensitivity reactions, both of which CORT can stimulate and in which spleen is involved. A decrease in splenic GR and MR during the late breeding period coincides with low baseline and stress-induced CORT, suggesting immune function in spleen may be relatively CORT-independent during this period. We saw no seasonal patterns in GR or MR in skin, suggesting skin's response to CORT is modulated primarily via changes in circulating CORT titres and/or via local production of CORT in response to wounding and other noxious stimuli.
Collapse
|
27
|
Fouad A, El-Senouse H, Yang X, Yao J. Role of Dietary L-Arginine in Poultry Production. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ijps.2012.718.729] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Nazar F, Magnoli A, Dalcero A, Marin R. Effect of feed contamination with aflatoxin B1 and administration of exogenous corticosterone on Japanese quail biochemical and immunological parameters. Poult Sci 2012; 91:47-54. [DOI: 10.3382/ps.2011-01658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Taves MD, Gomez-Sanchez CE, Soma KK. Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab 2011; 301:E11-24. [PMID: 21540450 PMCID: PMC3275156 DOI: 10.1152/ajpendo.00100.2011] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glucocorticoids and mineralocorticoids are steroid hormones classically thought to be secreted exclusively by the adrenal glands. However, recent evidence has shown that corticosteroids can also be locally synthesized in various other tissues, including primary lymphoid organs, intestine, skin, brain, and possibly heart. Evidence for local synthesis includes detection of steroidogenic enzymes and high local corticosteroid levels, even after adrenalectomy. Local synthesis creates high corticosteroid concentrations in extra-adrenal organs, sometimes much higher than circulating concentrations. Interestingly, local corticosteroid synthesis can be regulated via locally expressed mediators of the hypothalamic-pituitary-adrenal (HPA) axis or renin-angiotensin system (RAS). In some tissues (e.g., skin), these local control pathways might form miniature analogs of the pathways that regulate adrenal corticosteroid production. Locally synthesized glucocorticoids regulate activation of immune cells, while locally synthesized mineralocorticoids regulate blood volume and pressure. The physiological importance of extra-adrenal glucocorticoids and mineralocorticoids has been shown, because inhibition of local synthesis has major effects even in adrenal-intact subjects. In sum, while adrenal secretion of glucocorticoids and mineralocorticoids into the blood coordinates multiple organ systems, local synthesis of corticosteroids results in high spatial specificity of steroid action. Taken together, studies of these five major organ systems challenge the conventional understanding of corticosteroid biosynthesis and function.
Collapse
Affiliation(s)
- Matthew D Taves
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
30
|
Aita M, Benedetti F, Carafelli E, Caccia E, Romano N. Effects of hypophyseal or thymic allograft on thymus development in partially decerebrate chicken embryos: expression of PCNA and CD3 markers. Eur J Histochem 2010; 54:e37. [PMID: 20819775 PMCID: PMC3167313 DOI: 10.4081/ejh.2010.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022] Open
Abstract
Changes in chicken embryo thymus after partial decerebration (including the hypophysis) and after hypophyseal or thymic allograft were investigated. Chicken embryos were partially decerebrated at 36–40 h of incubation and on day 12 received a hypophysis or a thymus allograft from 18-day-old donor embryos. The thymuses of normal, sham-operated and partially decerebrate embryos were collected on day 12 and 18. The thymuses of the grafted embryos were collected on day 18. The samples were examined with histological method and tested for the anti-PCNA and anti-CD3 immune-reactions. After partial decerebration, the thymic cortical and medullary compartments diminished markedly in size. Anti-PCNA and anti-CD3 revealed a reduced immunereaction, verified also by statistical analysis. In hypophyseal or grafted embryos, the thymic morphological compartments improved, the anti-PCNA and anti-CD3 immune-reactions recovered much better after the thymic graft, probably due to the thymic growth factors and also by an emigration of thymocytes from the same grafted thymus.
Collapse
Affiliation(s)
- M Aita
- Department of Physiology and Pharmacology Vittorio Erspamer, Faculty of Medicine, University La Sapienza, Piazzale A. Moro 5, Rome, Italy.
| | | | | | | | | |
Collapse
|
31
|
Schmidt KL, Malisch JL, Breuner CW, Soma KK. Corticosterone and cortisol binding sites in plasma, immune organs and brain of developing zebra finches: intracellular and membrane-associated receptors. Brain Behav Immun 2010; 24:908-18. [PMID: 20219671 DOI: 10.1016/j.bbi.2010.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 01/13/2023] Open
Abstract
Glucocorticoids (GCs) affect the development of both the immune and nervous systems. To do so, GCs bind to intracellular receptors, mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). In addition, GCs bind to membrane-associated corticosteroid receptors (mCR). Two well-known GCs are corticosterone and cortisol. Whereas corticosterone is the primary GC in zebra finch plasma, cortisol is the primary GC in zebra finch lymphoid organs and is also present in the brain and plasma during development. Here, we characterized binding sites for corticosterone and cortisol in plasma, liver, lymphoid organs, and brain of developing zebra finches. In tissues, we examined both intracellular and membrane-associated binding sites. For intracellular receptors, there were MR-like sites and GR-like sites, which differentially bound corticosterone and cortisol in a tissue-specific manner. For mCR, we found little evidence for membrane-associated receptors in immune organs, but this could be due to the small size of immune organs. Interestingly, cortisol, but not corticosterone, showed a low amount of specific binding to bursa of Fabricius membranes. For neural membranes, corticosterone bound to one site with low affinity but a relatively high B(max), and in contrast, cortisol bound to one site with high affinity but a lower B(max). Our results indicate that intracellular and membrane-associated receptors differentially bind corticosterone and cortisol suggesting that corticosterone and cortisol might have different roles in immune and nervous system development.
Collapse
Affiliation(s)
- Kim L Schmidt
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
32
|
Costa B, Pini S, Gabelloni P, Da Pozzo E, Abelli M, Lari L, Preve M, Lucacchini A, Cassano GB, Martini C. The spontaneous Ala147Thr amino acid substitution within the translocator protein influences pregnenolone production in lymphomonocytes of healthy individuals. Endocrinology 2009; 150:5438-45. [PMID: 19846611 DOI: 10.1210/en.2009-0752] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The de novo production of steroids and neurosteroids begins in mitochondria by the conversion of cholesterol to pregnenolone through cytochrome P450 side-chain cleavage (CYP11A1) enzymatic activity. The C-terminal amino acid domain of the translocator protein (TSPO) has been demonstrated to bind cholesterol, thereby determining its mitochondrial translocation. The goal of the present study was to investigate the effect of the Ala147Thr single-nucleotide polymorphism localized in this TSPO region on pregnenolone production in healthy volunteers. Pregnenolone production was evaluated in a peripheral cell model, represented by circulating lymphomonocytes. First, CYP11A1 expression, both at mRNA and protein level, was demonstrated. Pregnenolone production varied among genotype groups. Comparison of pregnenolone mean values revealed that Thr147 homozygous or heterozygous individuals had significantly lower pregnenolone levels compared with Ala147 homozygous individuals. These findings suggested a dominant effect of the minor allelic variant Thr147 to produce this first metabolite of the steroidogenesis pathway. Interestingly, Ala147 homozygous individuals exhibited significant higher levels of circulating cholesterol-rich low-density lipoproteins with respect to heterozygous individuals. In conclusion, our results demonstrate that the Ala147Thr spontaneous amino acid substitution within TSPO is able to affect pregnenolone production; this should encourage further studies to investigate its potential role in polygenic dyslipidemias.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Human Morphology and Applied Biology, University of Pisa, 4-56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boldizsar F, Talaber G, Szabo M, Bartis D, Palinkas L, Nemeth P, Berki T. Emerging pathways of non-genomic glucocorticoid (GC) signalling in T cells. Immunobiology 2009; 215:521-6. [PMID: 19906460 DOI: 10.1016/j.imbio.2009.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 01/03/2023]
Abstract
In the last decade new glucocorticoid (GC)-signalling mechanisms have emerged. The evolving field of non-genomic GC actions was precipitated from two major directions: (i) some rapid/acute clinical GC applications could not be explained based on the relatively slowly appearing genomic GC action and (ii) accumulating evidence came to light about the discrepancy in the apoptosis sensitivity and GR expression of thymocytes and other lymphoid cell types. Herein, we attempt to sample the latest information in the field of non-genomic GC signalling in T cells, and correlate it with results from our laboratory. We discuss some aspects of the regulation of thymocyte apoptosis by GCs, paying special interest to the potential role(s) of mitochondrial GR signalling. The interplay between the T cell receptor (TcR) and glucocorticoid receptor (GR) signalling pathways is described in more detail, focusing on ZAP-70, which is a novel target of rapid GC action.
Collapse
Affiliation(s)
- Ferenc Boldizsar
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pecs, Pecs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Kaiser P, Wu Z, Rothwell L, Fife M, Gibson M, Poh TY, Shini A, Bryden W, Shini S. Prospects for understanding immune-endocrine interactions in the chicken. Gen Comp Endocrinol 2009; 163:83-91. [PMID: 18957294 DOI: 10.1016/j.ygcen.2008.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/30/2008] [Accepted: 09/30/2008] [Indexed: 11/28/2022]
Abstract
Despite occupying the same habitats as mammals, having similar ranges of body mass and longevity, and facing similar pathogen challenges, birds have a different repertoire of organs, cells, molecules and genes of the immune system when compared to mammals. In other words, birds are not "mice with feathers", at least not in terms of their immune systems. Here we discuss differences between immune gene repertoires of birds and mammals, particularly those known to play a role in immune-endocrine interactions in mammals. If we are to begin to understand immune-endocrine interactions in the chicken, we need to understand these repertoires and also the biological function of the proteins encoded by these genes. We also discuss developments in our ability to understand the function of dendritic cells in the chicken; the function of these professional antigen-presenting cells is affected by stress in mammals. With regard to the endocrine system, we describe relevant chicken pituitary-adrenal hormones, and review recent findings on the expression of their receptors, as these receptors play a crucial role in modulating immune-endocrine interactions. Finally, we review the (albeit limited) work that has been carried out to understand immune-endocrine interactions in the chicken in the post-genome era.
Collapse
Affiliation(s)
- Pete Kaiser
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schmidt KL, Chin EH, Shah AH, Soma KK. Cortisol and corticosterone in immune organs and brain of European starlings: developmental changes, effects of restraint stress, comparison with zebra finches. Am J Physiol Regul Integr Comp Physiol 2009; 297:R42-51. [DOI: 10.1152/ajpregu.90964.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glucocorticoids (GCs) are produced in the adrenal glands and also in extra-adrenal sites, including immune organs and brain. Here, we examined regulation of systemic GC levels in plasma and local GC levels in immune organs and brain during development. We conducted two studies and examined a total of 462 samples from 70 subjects. In study 1, we determined corticosterone and cortisol levels in the plasma, immune organs, and brain of wild European starlings on posthatch day 0 (P0) and P10 (at baseline and after 45 min of restraint). Baseline corticosterone and cortisol levels were low in the immune organs and brain at P0 and P10, providing little evidence for local GC synthesis in starlings. At P0, restraint had no significant effects on corticosterone or cortisol levels in the plasma or tissues; however, there was a trend for restraint to increase both corticosterone and cortisol in the immune organs. At P10, restraint increased corticosterone levels in the plasma and all tissues, but restraint increased cortisol levels in the plasma, thymus, and diencephalon only. In study 2, we directly compared GC levels in European starlings and zebra finches at P4. In zebra finches but not starlings, cortisol levels were higher in the immune organs than in plasma. This difference in immune GC levels might be due to evolutionary lineage, life history strategy, or experiential factors, such as parasite exposure. This is the first study to measure immune GC levels in wild animals and one of the first studies to measure local GC levels after restraint stress.
Collapse
|
37
|
Bellinger DL, Lubahn C, Lorton D. Maternal and early life stress effects on immune function: relevance to immunotoxicology. J Immunotoxicol 2009; 5:419-44. [PMID: 19404876 DOI: 10.1080/15476910802483415] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stress is triggered by a variety of unexpected environmental stimuli, such as aggressive behavior, fear, forced physical activity, sudden environmental changes, social isolation or pathological conditions. Stressful experiences during very early life (particularly, maternal stress during fetal ontogeny) can permanently alter the responsiveness of the nervous system, an effect called programming or imprinting. Programming affects the hypothalamic-pituitary-adrenocortical (HPA) axis, brain neurotransmitter systems, sympathetic nervous system (SNS), and the cognitive abilities of the offspring, which can alter neural regulation of immune function. Prenatal or early life stress may contribute to the maladaptive immune responses to stress that occur later in life. This review focuses on the effect of maternal and early life stress on immune function in the offspring across life span. It highlights potential mechanisms by which prenatal stress impacts immune functions over life span. The literature discussed in this review suggests that psychosocial stress during pre- and early postnatal life may increase the vulnerability of infants to the effects of immunotoxicants or immune-mediated diseases, with long-term consequences. Neural-immune interactions may provide an indirect route through which immunotoxicants affect the developing immune system. A developmental approach to understanding how immunotoxicants interact with maternal and early life stress-induced changes in immunity is needed, because as the body changes physiologically across life span so do the effects of stress and immunotoxicants. In early and late life, the immune system is more vulnerable to the effects of stress. Stress can mimic the effects of aging and exacerbate age-related changes in immune function. This is important because immune dysregulation in the elderly is more frequently and seriously associated with clinical impairment and death. Aging, exposure to teratogens, and psychological stress interact to increase vulnerability and put the elderly at the greatest risk for disease.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Human Anatomy and Pathology, Loma Linda University School of Medicine, Loma Linda, CA 92352, USA.
| | | | | |
Collapse
|
38
|
Mukhopadhyay R, Mishra MK, Basu A, Bishayi B. Modulation of steroidogenic enzymes in murine lymphoid organs after immune activation. Immunol Invest 2009; 38:14-30. [PMID: 19172483 DOI: 10.1080/08820130802480570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To study the effects of immune cell activation by a protein antigen or lymphoid tissue derived cytokines on peripheral steroidogenesis activities of 3beta HSD and 17beta HSD was measured in lymphoid organs of control and BSA immunized mice after 3 weeks treatment. We demonstrated the presence of 3betaHSD and 17betaHSD in the lymphoid organs after active immunization. We found elevated serum corticosterone after 3 weeks of antigen administration in presence of CFA and a higher serum IL-6 level that also alter lymphoid tissue cytokine responses like TNF-alpha, IL-12p70, and IL-6, among which IL-12p70 and TNF-alpha down-regulate the activity of steroidogenic enzymes in the thymus during an immune response.
Collapse
Affiliation(s)
- Rupanjan Mukhopadhyay
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, West Bengal, India
| | | | | | | |
Collapse
|
39
|
Schmidt KL, Soma KK. Cortisol and corticosterone in the songbird immune and nervous systems: local vs. systemic levels during development. Am J Physiol Regul Integr Comp Physiol 2008; 295:R103-10. [DOI: 10.1152/ajpregu.00002.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glucocorticoids (GCs) have profound effects on the immune and nervous systems during development. However, circulating GC levels are low neonatally and show little response to stressors. This paradox could be resolved if immune and neural tissues locally synthesize GCs. Here, we measured baseline corticosterone and cortisol levels in plasma, immune organs, and brain regions of developing zebra finches. Steroids were extracted using solid phase-extraction and quantified using specific immunoassays. As expected, corticosterone was the predominant GC in plasma and increased with age. In contrast, cortisol was the predominant GC in immune tissues (bursa of Fabricius, thymus, spleen) and decreased with age. Cortisol levels in immune tissues were higher than cortisol levels in plasma. In the brain, corticosterone and cortisol levels were similarly low, providing little evidence for local synthesis of GCs in the brain. This is the first study to measure 1) cortisol in the plasma of songbirds, 2) corticosterone or cortisol in the brain of songbirds, and 3) corticosterone or cortisol in the immune system of any species. Despite the prevailing dogma that corticosterone is the primary GC in birds, these results indicate that cortisol is the predominant GC in the immune system of developing zebra finches. These results raise the hypothesis that cortisol is synthesized de novo from cholesterol in the immune system as an “immunosteroid,” analogous to neurosteroids synthesized in the brain. Local production of GCs in immune tissues may allow GCs to regulate lymphocyte selection while avoiding the costs of high systemic GCs during development.
Collapse
|
40
|
Breuner C. Stressed tissue in a calm organism. Comments on “Cortisol and corticosterone in the songbird immune and nervous systems: local vs. systemic levels during development,” by Schmidt and Soma. Am J Physiol Regul Integr Comp Physiol 2008; 295:R101-2. [DOI: 10.1152/ajpregu.90387.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Schmidt KL, Pradhan DS, Shah AH, Charlier TD, Chin EH, Soma KK. Neurosteroids, immunosteroids, and the Balkanization of endocrinology. Gen Comp Endocrinol 2008; 157:266-74. [PMID: 18486132 DOI: 10.1016/j.ygcen.2008.03.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 03/14/2008] [Accepted: 03/26/2008] [Indexed: 12/12/2022]
Abstract
Traditionally, the production and regulation of steroid hormones has been viewed as a multi-organ process involving the hypothalamic-pituitary-gonadal (HPG) axis for sex steroids and the hypothalamic-pituitary-adrenal (HPA) axis for glucocorticoids. However, active steroids can also be synthesized locally in target tissues, either from circulating inactive precursors or de novo from cholesterol. Here, we review recent work demonstrating local steroid synthesis, with an emphasis on steroids synthesized in the brain (neurosteroids) and steroids synthesized in the immune system (immunosteroids). Furthermore, recent evidence suggests that other components of the HPG axis (luteinizing hormone and gonadotropin-releasing hormone) and HPA axis (adrenocorticotropic hormone and corticotropin-releasing hormone) are expressed locally in target tissues, potentially providing a mechanism for local regulation of neurosteroid and immunosteroid synthesis. The balance between systemic and local steroid signals depends critically on life history stage, species adaptations, and the costs of systemic signals. During particular life history stages, there can be a shift from systemic to local steroid signals. We propose that the shift to local synthesis and regulation of steroids within target tissues represents a "Balkanization" of the endocrine system, whereby individual tissues and organs may become capable of autonomously synthesizing and modulating local steroid signals, perhaps independently of the HPG and HPA axes.
Collapse
Affiliation(s)
- Kim L Schmidt
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Qiao S, Chen L, Okret S, Jondal M. Age-related synthesis of glucocorticoids in thymocytes. Exp Cell Res 2008; 314:3027-35. [PMID: 18638475 DOI: 10.1016/j.yexcr.2008.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 11/26/2022]
Abstract
Glucocorticoids (GCs) are primarily synthesized in the adrenal glands but an ectopic production has also been reported in the brain, the gastrointestinal tract and in thymic epithelial cells (TEC). Here we show that thymocytes express genes encoding for all enzymes required for de novo GC synthesis and produce the hormone as demonstrated by both a GC specific reporter assay and a corticosterone specific ELISA assay. Interestingly, GC synthesis is detectable in cells from young mice (4 weeks) and thereafter increases during aging (14-22 weeks) together with an increased gene expression of the rate-limiting enzymes StAR and CYP11A1. Hormone production occurred at a thymocyte differentiation stage characterized by being double positive for the CD4 and CD8 surface markers but was found to be unrelated to CD69 expression, a marker for thymocytes undergoing positive selection. No GC synthesis was found in resting or anti-CD3 activated CD4 and CD8 positive T cells isolated from the spleen. Thymocyte-derived GC had an anti-proliferative effect on a GR-transfected cell line and induced apoptosis in thymocytes. The age- and differentiation stage-related GC synthesis in thymocytes may play a role in the involution process that the thymus gland undergoes.
Collapse
Affiliation(s)
- Shengjun Qiao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
43
|
SHIN YH, YONEZAWA Y, ABE A, KONDO Y. Changes in estrogen receptor alpha expression in the bursa of Fabricius during chick embryonic development. Anim Sci J 2008. [DOI: 10.1111/j.1740-0929.2007.00503.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Nikolakopoulou AM, Dermon CR, Panagis L, Pavlidis M, Stewart MG. Passive avoidance training is correlated with decreased cell proliferation in the chick hippocampus. Eur J Neurosci 2007; 24:2631-42. [PMID: 17100851 DOI: 10.1111/j.1460-9568.2006.05133.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One-trial passive avoidance learning (PAL), where the aversive stimulus is the bitter-tasting substance methylanthranilate (MeA), affects neuronal and synaptic plasticity in learning-related areas of day-old domestic chicks (Gallus domesticus). Here, cell proliferation was examined in the chick forebrain by using 5-bromo-2-deoxyuridine (BrdU) at 24 h and 9 days after PAL. At 24 h post-BrdU injection, there was a significant reduction in labelling in MeA-trained chicks in both the dorsal hippocampus and area parahippocampalis, in comparison to controls. Moreover, double-immunofluorescence labelling for BrdU and the nuclear neuronal marker (NeuN) showed a reduction of neuronal cells in the dorsal hippocampus of the MeA-trained group compared with controls (35 and 49%, respectively). There was no difference in BrdU labelling in hippocampal regions between trained and control groups of chicks at 9 days post-BrdU injection; however, the number of BrdU-labelled cells was considerably lower than at 24 h post-BrdU injection, possibly due to migration of cells within the telencephalon rather than cell loss as apoptotic analyses at 24 h and 9 days post-BrdU injection did not demonstrate differences in cell death between treatment groups. Cortisol levels increased in the chick hippocampus of MeA-trained birds 20 min after PAL, suggesting the possibility of a stress-related mechanism of cell proliferation reduction in the hippocampus. In contrast to hippocampal areas, the olfactory bulb, an area strongly stimulated by the strong-smelling MeA, showed increased cell genesis in comparison to controls at both 24 h and 9 days post-training.
Collapse
|
45
|
Bartis D, Boldizsár F, Szabó M, Pálinkás L, Németh P, Berki T. Dexamethasone induces rapid tyrosine-phosphorylation of ZAP-70 in Jurkat cells. J Steroid Biochem Mol Biol 2006; 98:147-54. [PMID: 16406604 DOI: 10.1016/j.jsbmb.2005.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 07/12/2005] [Accepted: 09/19/2005] [Indexed: 12/18/2022]
Abstract
Steroid hormones are known to mediate rapid non-genomic effects occurring within minutes, besides the classical genomic actions mediated by the nuclear translocation of the cytoplasmic glucocorticoid receptor (GR). The glucocorticoid hormone (GC) has significant role in the regulation of T-cell activation; however, the cross-talk between the GC and T-cell receptor (TcR) signal transducing pathways are still to be elucidated. We examined the rapid effects of GC exposure on in vitro cultured human T-cells. Our results showed that Dexamethasone (DX), a GC analogue, when applied at high dose (10 microM), induced rapid (within 5 min) tyrosine-phosphorylation events in Jurkat cells. Short DX pre-treatment strongly inhibited the tyrosine-phosphorylation stimulated by CD3 cross-linking. Furthermore, we also investigated the phosphorylation status of ZAP-70, an important member of tyrosine kinase mediated signalling pathway of TcR-elicited T-cell activation. Here, we demonstrate that high dose DX induced a rapid ZAP-70 tyrosine-phosphorylation in Jurkat T-cells. DX-induced ZAP-70 phosphorylation could be inhibited by RU486 (GR antagonist), suggesting that this process was GR mediated. DX-induced ZAP-70 phosphorylation did not occur in the absence of active p56-lck as examined in the p56-lck kinase-deficient Jurkat cell line JCaM1.6. Our results show that DX, at a high dose, can rapidly influence the initial tyrosine-phosphorylation events of the CD3 signalling pathway in Jurkat cells, thereby modifying TcR-derived signals. Lck and ZAP-70 represent an important molecular link between the TcR and GC signalling pathways.
Collapse
Affiliation(s)
- Domokos Bartis
- University of Pécs, Faculty of Medicine, Department of Immunology and Biotechnology, Szigeti út 12, H-7643 Pécs, Hungary.
| | | | | | | | | | | |
Collapse
|
46
|
Erlacher M, Knoflach M, Stec IEM, Böck G, Wick G, Wiegers GJ. TCR signaling inhibits glucocorticoid-induced apoptosis in murine thymocytes depending on the stage of development. Eur J Immunol 2005; 35:3287-96. [PMID: 16224812 DOI: 10.1002/eji.200526279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Signaling by either the TCR or glucocorticoid receptor (GR) induces apoptosis in thymocytes. Interestingly, it has been shown previously that hybridoma T cells escape apoptosis induced by either TCR or GR when both of these receptors signal simultaneously. Whether such mutual antagonism is present in primary thymocytes was the subject of the present study. Both glucocorticoids (GC) and anti-TCR/CD28 (or anti-CD3/CD28) mAb induced apoptosis in total thymocytes. When these signals were present at the same time, GC-induced apoptosis was partially inhibited by TCR/CD3 signaling. Costimulation by anti-CD28 enhanced the inhibitory effects of anti-CD3 on GC-induced apoptosis about 30-fold. However, subset analysis revealed that most cells rescued from GC-induced apoptosis were mature CD4+ and CD8+ thymocytes, and these cells were resistant to TCR/CD3-induced apoptosis in the absence of GC. Similar results were obtained with mature splenic CD4+ and CD8+ T cells. TCR/CD3 signaling alone, while inducing apoptosis in CD4+(CD8+)TCRlow thymocytes, rescued a small subset of CD4+(CD8+)TCRlow thymocytes from GC-induced apoptosis. Thus, TCR signaling increasingly reverses GC-induced apoptosis as thymocyte development progresses. As GC are infinitely present in vivo, these findings support a model wherein TCR signaling may be required to prevent GC-induced apoptosis both under basal and immune challenging conditions.
Collapse
Affiliation(s)
- Miriam Erlacher
- Division of Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Austria
| | | | | | | | | | | |
Collapse
|
47
|
Pazirandeh A, Jondal M, Okret S. Conditional expression of a glucocorticoid receptor transgene in thymocytes reveals a role for thymic-derived glucocorticoids in thymopoiesis in vivo. Endocrinology 2005; 146:2501-7. [PMID: 15731366 DOI: 10.1210/en.2004-0943] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We and others have previously reported that thymic epithelial cells produce glucocorticoids (GCs). In vitro studies have also suggested that thymic-derived GCs play a role in the development of thymocytes. However, until now it has not yet been established whether thymic-derived GCs play a role in thymopoiesis in vivo. To investigate this, we conditionally overexpressed the GC receptor (GR) in thymocytes using transgenic mice with a tetracycline-inducible expression system. The influence of systemic GCs was excluded by adrenalectomizing the transgenic mice before the GR induction. Conditional expression of transgenic GR in the thymocytes of adrenalectomized transgenic mice led to a decrease in the thymocyte number. This was associated with increased thymocyte apoptosis. The effect of thymic-derived GCs on the thymocytes was confirmed after transgenic GR induction in a thymic organ culture system. Finally, the GR antagonist RU486 increased thymocyte number in adrenalectomized mice in vivo and prevented a reduction in thymocyte number in thymic organ culture after transgenic GR induction. These observations further confirmed a role for the thymic-derived GCs in regulating thymocyte homeostasis in vivo.
Collapse
Affiliation(s)
- Ahmad Pazirandeh
- Department of Medical Nutrition, Karolinska Institutet, Karolinska University Hospital Huddinge, Novum, SE-141 86 Huddinge, Sweden
| | | | | |
Collapse
|
48
|
D'Elia M, Patenaude J, Hamelin C, Garrel DR, Bernier J. Corticosterone binding globulin regulation and thymus changes after thermal injury in mice. Am J Physiol Endocrinol Metab 2005; 288:E852-60. [PMID: 15598670 DOI: 10.1152/ajpendo.00407.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal injury is extremely stressful, and data characterizing the systemic endocrine stress response to this injury are sparse. The objective of this study was to measure the effects of thermal injury on mice on corticosterone (Cort) levels in relation with corticosteroid-binding globulin (CBG) and thymus cell populations. The endocrine stress response was determined by measuring total Cort, free Cort, CBG binding capacity, liver CBG mRNA, and circulating CBG levels at 1, 2, 5, and 10 days postburn. Thymus cell populations were also analyzed. After thermal injury, a rapid increase of total Cort was observed in the first 48 h. This was associated with a decrease of hepatic CBG mRNA, protein levels, and binding capacity. Percentage of free Cort in the burn group peaked at day 2 postburn with a dramatic (+500%) increase. This correlated with a significant decrease of thymus cellularity (50% less). Phenotypic analyses showed that corticosensitive cells were significantly altered. After treatment (5 days), both endocrine and immune parameters returned to control levels. Our results demonstrate that, after a thermal injury, CBG is mainly responsible for Cort's action on corticosensitive immune cells.
Collapse
Affiliation(s)
- Michele D'Elia
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, 245 boul. Hymus, Pointe-Claire, Québec, Canada
| | | | | | | | | |
Collapse
|
49
|
Glucocorticoids and the immune response. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Purton J, Zhan Y, Liddicoat D, Hardy C, Lew AM, Cole T, Godfrey D. Glucocorticoid receptor deficient thymic and peripheral T cells develop normally in adult mice. Eur J Immunol 2002. [DOI: 10.1002/1521-4141(200212)32:12%3c3546::aid-immu3546%3e3.0.co;2-s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|