1
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
2
|
Zhang L, Lin Y, Hu L, Wang Y, Hu C, Shangguan X, Tang S, Chen J, Hu P, Chen ZS, Ke ZF, Chen Z. Transient intracellular expression of PD-L1 and VEGFR2 bispecific nanobody in cancer cells inspires long-term T cell activation and infiltration to combat tumor and inhibit cancer metastasis. Mol Cancer 2025; 24:119. [PMID: 40253320 PMCID: PMC12008900 DOI: 10.1186/s12943-025-02253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND PD-L1, an immune checkpoint inhibitor, and VEGFR2, essential for cancer metastasis, play pivotal roles in tumorigenesis. However, their miniature bispecific intracellular nanobodies for combining check-point blockade and anti-metastasis anticancer therapy remain underexplored. METHODS The intrabodies were developed using gene cloning technology. Specificity of the intrabodies was testified using Western blot, co-immunoprecipitation (co-IP) analysis, antibody competitive binding assay, flow cytometry analysis, etc. Checkpoint blockade was demonstrated using antibody-antigen competitive binding assay. Cancer cell migration was determined using scratch assay. Combined anti-cancer therapeutic efficacy of FAP1V2 was determined in vivo of mice models. The PD-1hi immune cells, TCR βhi and CD25hi T-cells were analyzed by flow cytometry, and cancer cell metastasis was performed using immune-fluorescence analysis on lung and liver tissues. Transcriptome analysis was performed to explore signaling pathways associated with the enhanced anticancer efficiency. RESULTS Bispecific intrabody FAP1V2 fused with antibody VH regions, was successfully developed and verified with its ability to target and block human and mouse PD-L1 and VEGFR2, inhibiting cancer cell binding to PD-1 and reducing their migratory capacity. Compared to the other treatment, two-rounds of transient FAP1V2 expression in LLC cells in experimental mice models achieved remarkable tumor inhibition, which brought about complete immune inhibition on growth of secondary-round of LLC tumor in 1/6 of the tested mice, inspired long-term activation of TCR βhi T cells and increased their infiltration to tumors, inhibited the emergence of PD-1hi immune cells, indicating prevented T cell depletion. The elevated CD25 expression also supported the success in enhancing immune response reported by elevated T cell activity in spleen. Transcriptome analysis identified critical intracellular pathways regulated by the concurrent blockade of PD-L1 and VEGFR2. CONCLUSION PD-L1 and VEGFR2- bispecific VH intracellular nanobody was highly biocompatible and showed the potential for combined anti-cancer therapy through long-term immune activation mediated by PD-L1/PD-1 checkpoint blockade and anti-metastasis mediated by VEGFR2 blockade.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yunfeng Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaohua Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyi Shangguan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuzhi Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
| | - Ping Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zun-Fu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, P.R. China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Liu S, Liu J, Mei Y, Zhang W. Gut microbiota affects PD-L1 therapy and its mechanism in melanoma. Cancer Immunol Immunother 2025; 74:169. [PMID: 40214675 PMCID: PMC11992302 DOI: 10.1007/s00262-025-04018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 blockade, have shown great success in treating melanoma. PD-L1 (B7-H1, CD274), a ligand of PD-1, binds to PD-1 on T cells, inhibiting their activation and proliferation through multiple pathways, thus dampening tumor-reactive T cell activity. Studies have linked PD-L1 expression in melanoma with tumor growth, invasion, and metastasis, making the PD-1/PD-L1 pathway a critical target in melanoma therapy. However, immune-related adverse events are common, reducing the effectiveness of anti-PD-L1 treatments. Recent evidence suggests that the gut microbiome significantly influences anti-tumor immunity, with the microbiome potentially reprogramming the tumor microenvironment and overcoming resistance to anti-PD-1 therapies in melanoma patients. This review explores the mechanisms of PD-1/PD-L1 in melanoma and examines how gut microbiota and its metabolites may help address resistance to anti-PD-1 therapy, offering new insights for improving melanoma treatment strategies.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiahui Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingwu Mei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wenjuan Zhang
- Beijing Life Science Academy (BLSA), Beijing, China.
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Arai Y, Miyai K, Hamamoto K, Furukawa Y, Asano T, Kobayashi H, Shinchi M, Tsujita Y, Kuroda K, Horiguchi A, Tsuda H, Ito K. Impact of tumor-infiltrating immune cells expressing PD-1 and those expressing PD-L1 on recurrence and prognosis in pathological T1b clear cell renal cell carcinoma. Jpn J Clin Oncol 2025:hyaf054. [PMID: 40183516 DOI: 10.1093/jjco/hyaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND The numbers of tumor-infiltrating immune cells (TIICs) expressing programmed death (PD)-1 or PD-ligand 1 (PD-L1) reportedly predict prognosis and resistance to targeted drugs in clear cell renal cell carcinoma (ccRCC). The impact of local tumor microenvironment based on immunosuppressive TIICs on recurrence and prognosis has not been fully investigated in localized ccRCC. METHODS A total of 105 patients with pT1b ccRCC were included. Immunostaining for PD-1 and PD-L1 were performed. PD-1-positive TIICs and PD-L1-positive TIICs were counted in the tumor periphery (TP) and the tumor nest (TN). RESULTS Patients with elevated PD-1-positive TIIC scores and those with elevated PD-L1-positive TIIC scores had significantly lower recurrence-free survival (RFS) rates than their counterparts (3-year RFS rates; patients with high vs. low PD-1-positive TIIC score of TN = 73.9% vs. 95.0%, those with high vs. low PD-1-positive TIIC score of TP = 73.8% vs. 93.8%, those with high vs. low PD-L1-positive TIIC score of TN = 70.9% vs. 93.0%, and those with high vs. low PD-L1-positive TIIC score of TP = 80.3% vs. 92.6%). Univariate analysis showed that high PD-1-positive scores, high PD-L1-positive scores, high PD-L1-positive tumor cell score, high-grade tumor, tumor necrosis, and lymphovascular invasion were significantly associated with RFS. Multivariate analysis revealed that tumor necrosis [hazard ratio (HR) = 2.841, P = .0269] and PD-1-positive TIIC score of TN (HR = 6.135, P = .0023) were independent risk factors for RFS. Risk stratification using the two factors efficiently predicts recurrence (3-year RFS rates: 96.4% with 0 factor, 83.8% with 1 factor, and 61.4% with 2 factors). CONCLUSION PD-1-positive TIIC score of TN and tumor necrosis may efficiently predict recurrence in pT1b ccRCC.
Collapse
Affiliation(s)
- Yuichi Arai
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
- Department of Laboratory Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Koetsu Hamamoto
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Yoshiyuki Furukawa
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroaki Kobayashi
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Masayuki Shinchi
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Yujiro Tsujita
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Kenji Kuroda
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akio Horiguchi
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
5
|
Srisawat W, Koonyosying P, Muenthaisong A, Sangkakam K, Varinrak T, Rittipornlertrak A, Nambooppha B, Apinda N, Sthitmatee N. mRNA and protein expression of programmed cell death-ligand-1 on canine mammary gland tumour in dogs of Chiang Mai, Thailand. Int J Vet Sci Med 2025; 13:1-11. [PMID: 40206791 PMCID: PMC11980185 DOI: 10.1080/23144599.2025.2483102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
Metastasis-related disease is a major cause of death in canine mammary tumours (CMTs). Immunotherapy has been investigated due to the less successful outcomes of systemic therapy. This study aims to examine the expression of Programmed Cell Death Ligand-1 (PD-L1) in canine mammary tumours in dogs of Chiang Mai, Thailand, and determine the relationship between the level of mRNA expression and clinicopathologic characteristics. A total of 28 CMT samples were collected at the Small Animal Hospital, Chiang Mai University. Quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot assays were performed. The results revealed that all CMTs in this study expressed PD-L1 mRNA and PD-L1 protein. The mean relative mRNA expression showed no significant differences between groups categorized by age, tumour size, or histopathological findings. However, the mean relative mRNA expression in tumours with a TNM stage >3 was significantly lower compared to those with TNM stage ≤2. In conclusion, this study investigates the expression of PD-L1 mRNA and PD-L1 protein, particularly in malignant CMTs. The findings strongly support the potential for developing effective immunotherapy methods targeting the PD-1/PD-L1 pathway for advanced CMTs in the future. For further conclusive assessment, future studies should focus on refining immunotherapy strategies for CMT cases expressing PD-L1.
Collapse
Affiliation(s)
- Wanwisa Srisawat
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Sangkakam
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanya Varinrak
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Chiang Mai University, Chiang Mai, Thailand
| | - Amarin Rittipornlertrak
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nisachon Apinda
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Veterinary Bioscience and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Shi F, Li GJ, Liu Y, Zhou HM, Zhang Y, Wei SY, Zan BJ, Gao M, Chen FS, Li BX, Wang BQ, Dong MY, Du RL, Zhang XD. USP19 deficiency enhances T-cell-mediated antitumor immunity by promoting PD-L1 degradation in colorectal cancer. Pharmacol Res 2025; 214:107668. [PMID: 40020887 DOI: 10.1016/j.phrs.2025.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Colorectal cancer (CRC) is characterized by a highly immunosuppressive tumor microenvironment, which limits the effectiveness of current immunotherapies. Identifying strategies to overcome this resistance is critical for improving treatment outcomes. In this study, we discovered that USP19 plays a pivotal role in regulating T-cell-mediated antitumor immunity through a CRISPR/Cas9 sgRNA library screen and co-culture assays with activated T cells. We demonstrated that USP19 deficiency significantly enhances the susceptibility to T cell-mediated cytotoxicity in CRC cells, organoids, and mouse models. Transcriptomic sequencing (RNA-seq) revealed activation of the PD-1 pathway in tumor with USP19-deficiency cells. Mechanistic investigations revealed that USP19 directly stabilizes PD-L1 by binding to its intracellular domain and preventing its degradation via K48-linked ubiquitination and proteasomal pathways. Clinically, USP19 expression was found to be significantly elevated in CRC tissues and was positively associated with PD-L1 levels, advanced tumor grade, poor differentiation, and TP53 mutations, highlighting its potential as a biomarker for aggressive CRC. Importantly, in vivo experiments demonstrated that targeting USP19, in combination with αPD-L1 therapy, synergistically suppressed CRC progression. This combination not only reduced PD-L1 levels but also enhanced CD8+ T-cell activation and GzmB infiltration, resulting in robust antitumor effects. These findings establish USP19 as a key driver of immune evasion in CRC and suggest that targeting USP19 could enhance the efficacy of immunotherapy, providing a promising new avenue for CRC treatment.
Collapse
Affiliation(s)
- Feng Shi
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Guang-Jing Li
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yi Liu
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hai-Meng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yue Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Si-Yi Wei
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Bo-Jun Zan
- Medical Laboratory College, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Meng Gao
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei-Shan Chen
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Bo-Xin Li
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Bai-Qi Wang
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ming-You Dong
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Run-Lei Du
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xiao-Dong Zhang
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Jensen G, Wang X, Kuempel J, Palaskas N, Chen Z, Yu W, Chen Y, Mohammad H, Luo W, Chang J. Immune checkpoint inhibitor-associated myocarditis: a historical and comprehensive review. Am J Physiol Heart Circ Physiol 2025; 328:H734-H751. [PMID: 39925096 DOI: 10.1152/ajpheart.00687.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025]
Abstract
The most fatal side effect associated with revolutionary immune checkpoint inhibitor (ICI) cancer therapies is myocarditis, a rare and devastating complication with a mortality rate approaching 40%. This review comprehensively examines the limited knowledge surrounding this recently recognized condition, emphasizing the absence of evidence-based therapeutic strategies, diagnostic modalities, and reliable biomarkers that hinder effective management. It explores advancements in preclinical models that are uncovering disease mechanisms and enabling the identification of therapeutic targets. These efforts have informed the design of early clinical trials aimed at reducing mortality. With the growing prevalence of ICI therapies in oncology, addressing critical gaps, such as long-term outcomes and risk stratification, has become increasingly urgent. By synthesizing current evidence, this work seeks to enhance understanding and guide the development of strategies to improve patient outcomes and ensure the continued safe use of ICIs in cancer care.
Collapse
Affiliation(s)
- Garrett Jensen
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Xinjie Wang
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Jacob Kuempel
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Nicolas Palaskas
- Department of Cardiology, MD Anderson Cancer Center, Houston, Texas, United States
| | - Zhishi Chen
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Wei Yu
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Yanping Chen
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Haseeb Mohammad
- Texas A&M University College of Medicine, Houston, Texas, United States
| | - Weijia Luo
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Jiang Chang
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
8
|
Mathews P, Wang X, Wu J, Jabbar S, Burcher K, Rein L, Kang Y. β-Arrestin 2 as a Prognostic Indicator and Immunomodulatory Factor in Multiple Myeloma. Cells 2025; 14:496. [PMID: 40214450 PMCID: PMC11987970 DOI: 10.3390/cells14070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
β-arrestin 2 (ARRB2) is involved in the desensitization and trafficking of G protein-coupled receptors (GPCRs) and plays a critical role in cell proliferation, apoptosis, chemotaxis, and immune response modulation. The role of ARRB2 in the pathogenesis of multiple myeloma (MM) has not been elucidated. This study addressed this question by evaluating the expression of ARRB2 in bone marrow (BM) samples from newly diagnosed MM patients and deriving correlations with key clinical outcomes. In light of recent trends towards the use of immune checkpoint inhibitors across malignancies, the effect of ARRB2 in the regulation of the PD-1/PD-L1 axis was also investigated. The expression of ARRB2 was significantly higher in MM patients resistant to proteosome inhibitor (bortezomib) treatment compared to those who responded. Higher ARRB2 expression in the BM of newly diagnosed MM patients was associated with inferior progression-free survival and overall survival. PD-1 expression was downregulated in CD3 T cells isolated from ARRB2 knockout (KO) mice. Furthermore, knockdown of ARRB2 with siRNA reduced PD-1 expression in murine CD3 T cells and PD-L1 expression in murine myeloid-derived suppressor cells. These findings suggest an important role of ARRB2 in MM pathogenesis, potentially mediated via modulation of immune checkpoints in the tumor microenvironment. Our study provides new evidence that ARRB2 may have non-canonical functions independent of GPCRs with relevance to the understanding of MM pathobiology as well as immunotherapy and checkpoint inhibitor escape/resistance more broadly.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (P.M.); (X.W.); (J.W.); (S.J.); (K.B.); (L.R.)
| |
Collapse
|
9
|
Ren X, Guo A, Geng J, Chen Y, Wang X, Zhou L, Shi L. Pan-cancer analysis of co-inhibitory molecules revealing their potential prognostic and clinical values in immunotherapy. Front Immunol 2025; 16:1544104. [PMID: 40196117 PMCID: PMC11973099 DOI: 10.3389/fimmu.2025.1544104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Background The widespread use of immune checkpoint inhibitors (anti-CTLA4 or PD-1) has opened a new chapter in tumor immunotherapy by providing long-term remission for patients. Unfortunately, however, these agents are not universally available and only a minority of patients respond to them. Therefore, there is an urgent need to develop novel therapeutic strategies targeting other co-inhibitory molecules. However, comprehensive information on the expression and prognostic value of co-inhibitory molecules, including co-inhibitory receptors and their ligands, in different cancers is not yet available. Methods We investigated the expression, correlation, and prognostic value of co-inhibitory molecules in different cancer types based on TCGA, UCSC Xena, TIMER, CellMiner datasets. We also examined the associations between the expression of these molecules and the extent of immune cell infiltration. Besides, we conducted a more in-depth study of VISTA. Result The results of differential expression analysis, correlation analysis, and drug sensitivity analysis suggest that CTLA4, PD-1, TIGIT, LAG3, TIM3, NRP1, VISTA, CD80, CD86, PD-L1, PD-L2, PVR, PVRL2, FGL1, LGALS9, HMGB1, SEMA4A, and VEGFA are associated with tumor prognosis and immune cell infiltration. Therefore, we believe that they are hopefully to serve as prognostic biomarkers for certain cancers. In addition, our analysis indicates that VISTA plays a complex role and its expression is related to TMB, MSI, cancer cell stemness, DNA/RNA methylation, and drug sensitivity. Conclusions These co-inhibitory molecules have the potential to serve as prognostic biomarkers and therapeutic targets for a broad spectrum of cancers, given their strong associations with key clinical metrics. Furthermore, the analysis results indicate that VISTA may represent a promising target for cancer therapy.
Collapse
Affiliation(s)
- Xiaoyu Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Anjie Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiahui Geng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yuling Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lian Zhou
- Department of Head&Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Chen P, Chen Z, Sui W, Han W. Recent advances in the mechanisms of PD-L1 expression in gastric cancer: a review. Biol Res 2025; 58:16. [PMID: 40091086 PMCID: PMC11912799 DOI: 10.1186/s40659-025-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
In the progression of gastric cancer (GC), various cell types in the tumor microenvironment (TME) exhibit upregulated expression of programmed death ligand 1 (PD-L1), leading to impaired T-cell function and evasion of immune surveillance. Infection with H. pylori and EBV leads to increased PD-L1 expression in various cell types within TME, resulting in immune suppression and facilitating immune escape of GC cells. In the TME, mesenchymal stem cells (MSCs), M1-like tumor-associated macrophages (MI-like TAM), and myeloid-derived suppressor cells (MDSCs) contribute to the upregulation of PD-L1 expression in GC cells. Conversely, mast cells, M2-like tumor-associated macrophages (M2-like TAM), and tumor-associated neutrophils (TANs) exhibit elevated levels of PD-L1 expression in response to the influence of GC cells. Together, these factors collectively contribute to the upregulation of PD-L1 expression in GC. This review aims to provide a comprehensive summary of the cellular expression patterns of PD-L1 in GC and the underlying molecular mechanisms. Understanding the complex regulatory pathways governing PD-L1 expression may offer novel insights for the development of effective immunotherapeutic interventions.
Collapse
Affiliation(s)
- Peifeng Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Wannian Sui
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Wenxiu Han
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China.
| |
Collapse
|
11
|
Hu Q, Shi Y, Wang H, Bing L, Xu Z. Post-translational modifications of immune checkpoints: unlocking new potentials in cancer immunotherapy. Exp Hematol Oncol 2025; 14:37. [PMID: 40087690 PMCID: PMC11907956 DOI: 10.1186/s40164-025-00627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Immunotherapy targeting immune checkpoints has gained traction across various cancer types in clinical settings due to its notable advantages. Despite this, the overall response rates among patients remain modest, alongside issues of drug resistance and adverse effects. Hence, there is a pressing need to enhance immune checkpoint blockade (ICB) therapies. Post-translational modifications (PTMs) are crucial for protein functionality. Recent research emphasizes their pivotal role in immune checkpoint regulation, directly impacting the expression and function of these key proteins. This review delves into the influence of significant PTMs-ubiquitination, phosphorylation, and glycosylation-on immune checkpoint signaling. By targeting these modifications, novel immunotherapeutic strategies have emerged, paving the way for advancements in optimizing immune checkpoint blockade therapies in the future.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huang Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuwen Bing
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China.
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
12
|
Yao Y, Yang X, Li J, Guo E, Wang H, Sun C, Hong Z, Zhang X, Jia J, Wang R, Ma J, Dai Y, Deng M, Yu C, Sun L, Xie L. Preclinical Characterization of Efficacy and Pharmacodynamic Properties of Finotonlimab, a Humanized Anti-PD-1 Monoclonal Antibody. Pharmaceuticals (Basel) 2025; 18:395. [PMID: 40143171 PMCID: PMC11946465 DOI: 10.3390/ph18030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Finotonlimab (SCTI10A) is a humanized anti-PD-1 antibody tested in Phase III trials for several solid tumor types. Methods: This study characterized the in vitro and in vivo efficacy, Fc-mediated effector function, and non-clinical PK/PD properties of finotonlimab. Results: The results demonstrated that finotonlimab is effective in stimulating human T cell function in vitro and exhibits marked antitumor efficacy in vivo using both PD-1-humanized and PBMC-reconstructed mouse models. Additionally, finotonlimab exhibited minimal impact on the activation of effector cells via Fc receptor-dependent pathways, potentially facilitating PD-1+ T cell killing. In cynomolgus monkeys, finotonlimab exhibited a nonlinear pharmacokinetic (PK) profile in a dose-dependent manner, and a receptor occupancy rate of approximately 90% was observed at 168 h following a single administration of 1 mg/kg. Finotonlimab's PK profile (especially Cmax) was better than that of marketed antibodies. Following a 13-week successive administration of finotonlimab, a pharmacodynamic analysis revealed that a sustained mean receptor occupancy of PD-1 molecules on circulating T cells remained at or above 93% for up to 8 weeks, even at a dose of 3 mg/kg, and that there were higher antibody accumulations in different dose groups. Conclusions: Taken together, the preclinical findings are promising and provide the groundwork for evaluating the efficacy and pharmacodynamic characteristics of finotonlimab in clinical trials.
Collapse
Affiliation(s)
- Yunqi Yao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Xiaoning Yang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Jing Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Erhong Guo
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Huiyu Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Chunyun Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Xiao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Jilei Jia
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Juan Ma
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Yaqi Dai
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Mingjing Deng
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Lingling Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
- Beijing Key Laboratory of Monoclonal Antibody Research and Development, Sino Biological Inc., Beijing 100176, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
13
|
Zang H, Liu T, Wang X, Cheng S, Zhu X, Huang C, Duan L, Zhao X, Guo F, Wang X, Zhang C, Yang F, Gu Y, Hu H, Gao S. PD-1 IR2 promotes tumor evasion via deregulating CD8 + T cell function. J Immunother Cancer 2025; 13:e010529. [PMID: 40050045 PMCID: PMC11887316 DOI: 10.1136/jitc-2024-010529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/22/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The programmed cell death 1 (PD-1) is an immune checkpoint that mediates immune evasion of tumors. Alternative splicing (AS) such as intron retention (IR) plays a crucial role in the immune-related gene processing and its function. However, it is not clear whether PDCD1 encoding PD-1 exists as an IR splicing isoform and what underlying function of such isoform plays in tumor evasion. METHODS An AS isoform of human PDCD1, characterized by the second IR and named PD-1IR2, was identified by reverse transcription-PCR (RT-PCR) and Sanger sequencing. The expression profile of PD1IR2 was assessed by quantitative RT-PCR and flow cytometry, while its function was evaluated through immune cell proliferation, cytokine interleukin 2 secretion, and tumor cell killing assays. PDCD1IR2 CKI mice which specifically conditional knock-in PDCD1IR2 in T cells and humanized peripheral blood mononuclear cells (PBMC)-NOG (NOD.Cg-PrkdcscidIL2rgtm1Sug/JicCrl) mice were utilized to further confirm the physiological function of PD-1IR2 in vivo. RESULTS PD-1IR2 is expressed in a variety of human leukemia cell lines and tumor-infiltrating lymphocytes. PD-1IR2 expression is induced on T cell activation and regulated by the RNA-binding protein hnRNPLL. PD-1IR2 negatively regulates the immune function of CD8+ T cells, indicated by inhibiting T cell proliferation, cytokine production, and tumor cell killing in vitro. PD-1IR2+ CD8+ T cells show impaired antitumor function, which consequently promote tumor evasion in a conditional knock-in mouse model and a PBMC-engrafted humanized NOG mouse model. PD-1IR2 mice exhibit resistance to anti-PD-L1 therapy compared with wild-type mice. CONCLUSIONS PD-1IR2 is a potential immune checkpoint that may mediate potential resistance to immune checkpoint therapy.
Collapse
Affiliation(s)
- Haojing Zang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi, China
| | - Tongfeng Liu
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical College, Guizhou University, Guiyang, Guizhou, China
| | - Xiaodong Wang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuwen Cheng
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaofeng Zhu
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical College, Guizhou University, Guiyang, Guizhou, China
| | - Chang Huang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical College, Guizhou University, Guiyang, Guizhou, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi, China
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Xujie Zhao
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Fang Guo
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
| | - Xuetong Wang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chang Zhang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Department of oncology, The Key Laboratory of Advanced Interdisciplinary Studies, First Affiliated Hospital of Guangzhou Medical University State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Facai Yang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Yinmin Gu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy and Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Gao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Braun DA, Moranzoni G, Chea V, McGregor BA, Blass E, Tu CR, Vanasse AP, Forman C, Forman J, Afeyan AB, Schindler NR, Liu Y, Li S, Southard J, Chang SL, Hirsch MS, LeBoeuf NR, Olive O, Mehndiratta A, Greenslade H, Shetty K, Klaeger S, Sarkizova S, Pedersen CB, Mossanen M, Carulli I, Tarren A, Duke-Cohan J, Howard AA, Iorgulescu JB, Shim B, Simon JM, Signoretti S, Aster JC, Elagina L, Carr SA, Leshchiner I, Getz G, Gabriel S, Hacohen N, Olsen LR, Oliveira G, Neuberg DS, Livak KJ, Shukla SA, Fritsch EF, Wu CJ, Keskin DB, Ott PA, Choueiri TK. A neoantigen vaccine generates antitumour immunity in renal cell carcinoma. Nature 2025; 639:474-482. [PMID: 39910301 PMCID: PMC11903305 DOI: 10.1038/s41586-024-08507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Personalized cancer vaccines (PCVs) can generate circulating immune responses against predicted neoantigens1-6. However, whether such responses can target cancer driver mutations, lead to immune recognition of a patient's tumour and result in clinical activity are largely unknown. These questions are of particular interest for patients who have tumours with a low mutational burden. Here we conducted a phase I trial (ClinicalTrials.gov identifier NCT02950766) to test a neoantigen-targeting PCV in patients with high-risk, fully resected clear cell renal cell carcinoma (RCC; stage III or IV) with or without ipilimumab administered adjacent to the vaccine. At a median follow-up of 40.2 months after surgery, none of the 9 participants enrolled in the study had a recurrence of RCC. No dose-limiting toxicities were observed. All patients generated T cell immune responses against the PCV antigens, including to RCC driver mutations in VHL, PBRM1, BAP1, KDM5C and PIK3CA. Following vaccination, there was a durable expansion of peripheral T cell clones. Moreover, T cell reactivity against autologous tumours was detected in seven out of nine patients. Our results demonstrate that neoantigen-targeting PCVs in high-risk RCC are highly immunogenic, capable of targeting key driver mutations and can induce antitumour immunity. These observations, in conjunction with the absence of recurrence in all nine vaccinated patients, highlights the promise of PCVs as effective adjuvant therapy in RCC.
Collapse
Affiliation(s)
- David A Braun
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Giorgia Moranzoni
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vipheaviny Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bradley A McGregor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eryn Blass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chloe R Tu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Allison P Vanasse
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cleo Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juliet Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander B Afeyan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nicholas R Schindler
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Yiwen Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuqiang Li
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jackson Southard
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven L Chang
- Harvard Medical School, Boston, MA, USA
- Department of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michelle S Hirsch
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicole R LeBoeuf
- Harvard Medical School, Boston, MA, USA
- Center for Cutaneous Oncology, Dana-Farber Brigham and Women's Cancer Center, Boston, MA, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Oriol Olive
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ambica Mehndiratta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haley Greenslade
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keerthi Shetty
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Christina B Pedersen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Center for Genomic Medicine, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthew Mossanen
- Harvard Medical School, Boston, MA, USA
- Department of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Isabel Carulli
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anna Tarren
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph Duke-Cohan
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexis A Howard
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - J Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bohoon Shim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jeremy M Simon
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jon C Aster
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ignaty Leshchiner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Lars R Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenneth J Livak
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sachet A Shukla
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward F Fritsch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Du S, Liu J, Zhang Y, Ge X, Gao S, Song J. PD-L1 peptides in cancer immunoimaging and immunotherapy. J Control Release 2025; 378:1061-1079. [PMID: 39742920 DOI: 10.1016/j.jconrel.2024.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
The interaction between programmed death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) constitutes a critical immune checkpoint pathway that leads to immune tolerance in cancer cells and impacts antitumor treatment. Monoclonal antibody blockade of the PD-L1 immunoinhibitory pathway has demonstrated significant and lasting clinical antitumor responses. Furthermore, PD-L1 serves as an important biomarker for predicting the effectiveness of immune checkpoint inhibitors (ICIs). To date, numerous studies based on monoclonal antibodies have been carried out to detect the expression levels of PD-L1 and predict the antitumor effectiveness of PD-L1 ICIs. However, due to the deficiencies of monoclonal antibodies, researches of PD-L1 peptides have received increasing attention. PD-L1 peptides present promising candidates due to their advantages, including reduced manufacturing costs, enhanced stability, decreased immunogenicity, faster clearance and improved tumor or organ penetration, thereby offering broad application prospects in cancer immunoimaging and immunotherapy. In this review, we analyze the existing evidence on PD-L1 peptides in cancer immunoimaging and immunotherapy. First, the design techniques of different types of PD-L1 targeting peptides and their strengths and weaknesses are briefly introduced. Second, the recent advancements in immunoimaging and the development trends in immunotherapy are summarized. Finally, the existing challenges and future directions in this field are comprehensively deliberated.
Collapse
Affiliation(s)
- Shiye Du
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Junzhi Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Youjia Zhang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Jibin Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
16
|
Tran S, Forrest N, Guggilla V, Perottino G, Johnson J, Sosman J, Roy I, Walunas T. Weight and Blood-Based Markers of Cachexia Predict Disability, Hospitalization and Worse Survival in Cancer Immunotherapy Patients. J Cachexia Sarcopenia Muscle 2025; 16:e13685. [PMID: 39817619 PMCID: PMC11736629 DOI: 10.1002/jcsm.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/05/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Cancer-associated cachexia can inhibit immune checkpoint inhibitor (ICI) therapy efficacy. Cachexia's effect on ICI therapy has not been studied in large cohorts of cancer patients aside from lung cancer. We studied associations between real-world routinely collected clinical cachexia markers and disability-free, hospitalization-free and overall survival of cancer patients. METHODS A retrospective study was conducted of electronic health records (EHR) of patients with lung, renal cell, melanoma and other cancers treated with ICI therapy at Northwestern Medicine of Chicago, IL, United States, between March 2011 and January 2022. Weight, body mass index, absolute neutrophil and lymphocyte counts, albumin and C-reactive protein (CRP) measures were analysed to calculate the Fearon consensus criteria for cachexia, weight loss grading system (WLGS) score, neutrophil-lymphocyte ratio (NLR), Prognostic Nutritional Index (PNI) and modified Glasgow Prognostic Score (mGPS) at ICI therapy initiation. Kaplan-Meier and Cox proportional hazards analyses were used to determine associations between these metrics and disability-free, hospitalization-free and overall survival. RESULTS EHR analysis uncovered 3285 cancer patients on ICI therapy (54% > 65 years of age, 50.7% male, 77.7% White). At ICI therapy initiation, 1282 (39.0%) patients had cachexia (consensus criteria), 1641 (50.0%) had a WLGS score ≥ 2, 1806 (55.0%) had an NLR > 3, 1087 (33.1%) had albumin < 3.5 g/dL and 1318 (40.1%) had a PNI < 44. Missing measurements included CRP missing for 98.2% and mGPS missing for 98.6% of patients. Disability-free (n = 1373), hospitalization-free (n = 2374) and overall survival (n = 1599) events were analysed with 1-year rates of 65% (64%-67%), 35% (34%-37%) and 65% (63%-66%), respectively. Multivariate Cox model analyses showed hazard ratios (HR) for cachexia at 1.58 (95% CI 1.38-1.80), 1.47 (95% CI 1.33-1.63) and 1.97 (95% CI 1.75-2.23) for disability, hospitalization and death, respectively. HRs for WLGS ≥ 2 were 1.45 (95% CI 1.28-1.66), 1.37 (95% CI 1.24-1.51) and 1.91 (95% CI 1.69-2.17). HRs for NLR > 3 were 1.57 (95% CI 1.35-1.83), 1.40 (95% CI 1.25-1.58) and 1.95 (95% CI 1.67-2.27). HRs for albumin < 3.5 g/dL were 1.33 (95% CI 1.15-1.54), 1.67 (95% CI 1.50-1.86) and 2.09 (95% CI 1.84-2.36). HRs for PNI < 44 were 1.60 (95% CI 1.39-1.84), 1.46 (95% CI 1.31-1.63) and 2.07 (95% CI 1.80-2.37). CONCLUSIONS Fearon consensus criteria, WLGS, NLR, albumin and PNI were routinely collected at ICI initiation in regular clinical practice and predictive of worse disability-free, hospitalization-free and overall survival in cancer patients receiving ICI therapy. These routine clinical measures may aid prognostication and decision-making in cancer patients with cachexia.
Collapse
Affiliation(s)
- Steven D. Tran
- Center for Health Information PartnershipsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Noah J. Forrest
- Center for Health Information PartnershipsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Vijeeth Guggilla
- Center for Health Information PartnershipsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | | | - Jodi L. Johnson
- Robert H Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoIllinoisUSA
- Departments of Pathology, Dermatology and Medical Social SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jeffrey Sosman
- Robert H Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoIllinoisUSA
- Department of Medicine, Division of OncologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ishan Roy
- Robert H Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoIllinoisUSA
- Shirley Ryan AbilityLabChicagoIllinoisUSA
- Department of Physical Medicine and RehabilitationNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Theresa L. Walunas
- Center for Health Information PartnershipsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Robert H Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoIllinoisUSA
- Department of Medicine, Division of General Internal MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
17
|
Asashima H, Akao S, Matsumoto I. Emerging roles of checkpoint molecules on B cells. Immunol Med 2025:1-12. [PMID: 39819449 DOI: 10.1080/25785826.2025.2454045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Immune checkpoint molecules, including both co-inhibitory molecules and co-stimulatory molecules, are known to play critical roles in regulating T-cell responses. During the last decades, immunotherapies targeting these molecules (such as programmed cell death 1 (PD-1), and lymphocyte activation gene 3 (LAG-3)) have provided clinical benefits in many cancers. It is becoming apparent that not only T cells, but also B cells have a capacity to express some checkpoint molecules. These were originally thought to be only the markers for regulatory B cells which produce IL-10, but recent studies suggest that these molecules (especially T-cell immunoglobulin and mucin domain 1 (TIM-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and PD-1) can regulate intrinsic B-cell activation and functions. Here, we focus on these molecules and summarize their characteristics, ligands, and functions on B cells.
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Akao
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Bhandarkar V, Dinter T, Spranger S. Architects of immunity: How dendritic cells shape CD8 + T cell fate in cancer. Sci Immunol 2025; 10:eadf4726. [PMID: 39823318 PMCID: PMC11970844 DOI: 10.1126/sciimmunol.adf4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8+ T cell fates in cancer, drawing on insights from acute and chronic viral infection models. We highlight the role of DCs in lymph nodes and tumors in maintaining stem-like CD8+ T cells, which are critical for durable antitumor immune responses. Understanding how CD8+ T cell fates are determined will enable the rational design of immunotherapies, particularly therapeutic cancer vaccines, that can modulate DC-T cell interactions to generate beneficial CD8+ T cell fates.
Collapse
Affiliation(s)
- Vidit Bhandarkar
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Teresa Dinter
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
19
|
Sasmal P, Prabitha P, Prashantha Kumar BR, Swetha BR, Babasahib SK, Raghavendra NM. Beyond peptides: Unveiling the design strategies, structure activity correlations and protein-ligand interactions of small molecule inhibitors against PD-1/PD-L1. Bioorg Chem 2025; 154:108036. [PMID: 39693923 DOI: 10.1016/j.bioorg.2024.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The landscape of cancer treatment has been transformed by the emergence of immunotherapy, especially through the use of antibodies that target the PD-1/PD-L1 pathway. Recently, there has been a notable increase in interest surrounding immune checkpoint inhibitors for cancer therapy. While antibody-based approaches have drawbacks like high costs and prolonged activity, the approval of monoclonal antibodies such as pembrolizumab and nivolumab has paved the way for a range of alternative therapies, including peptides, peptidomimetics, and small-molecule inhibitors. These smaller molecules, which target the PD-1/PD-L1 interaction, are seen as potential substitutes or supplements to monoclonal antibodies. Our focus in this article is primarily on exploring small molecules designed for PD-1/PD-L1 checkpoint pathway modulation in cancer immunotherapy, along with highlighting current advances in their structural and preclinical/clinical development. The pursuit of therapeutics based on small-molecule inhibitors of the PD-1/PD-L1 axis offers a promising yet intricate avenue for advancing cancer treatment.
Collapse
Affiliation(s)
- Pujan Sasmal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar - 160 062, Punjab, India; Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy (ABMRCP), Bengaluru 560 107, Karnataka, India.
| | - P Prabitha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - B R Swetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India
| | - Sajeev Kumar Babasahib
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India
| | - Nulgumnalli Manjunathaiah Raghavendra
- Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India; Department of Pharmaceutical Chemistry, R R College of Pharmacy, Bengaluru 560 090, Karnataka, India.
| |
Collapse
|
20
|
Feghali J, Jackson CM. Therapeutic implications for the PD-1 axis in cerebrovascular injury. Neurotherapeutics 2025; 22:e00459. [PMID: 39368872 PMCID: PMC11840351 DOI: 10.1016/j.neurot.2024.e00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Since the discovery and characterization of the PD-1/PD-L pathway, mounting evidence has emerged regarding its role in regulating neuroinflammation following cerebrovascular injury. Classically, PD-L1 on antigen-presenting cells or tissues binds PD-1 on T cell surfaces resulting in T cell inhibition. In myeloid cells, PD-1 stimulation induces polarization of microglia and macrophages into an anti-inflammatory, restorative phenotype. The therapeutic potential of PD-1 agonism in ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage-related vasospasm, and traumatic brain injury rests on the notion of harnessing the immunomodulatory function of immune checkpoint pathways to temper the harmful effects of immune overactivation and secondary injury while promoting repair and recovery. Immune checkpoint agonism has greater specificity than the wider and non-specific anti-inflammatory effects of other agents, such as steroids. PD-1 agonism has already demonstrated success in clinical trials for rheumatoid arthritis and is being tested in other chronic inflammatory diseases. Further investigation of PD-1 agonism as a therapeutic strategy in cerebrovascular injury can help clarify the mechanisms underlying clinical benefit, develop drugs with optimal pharmacodynamic and pharmacokinetic properties, and mitigate unwanted side effects.
Collapse
Affiliation(s)
- James Feghali
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
22
|
Hosseininejad-Chafi M, Eftekhari Z, Oghalaie A, Behdani M, Sotoudeh N, Kazemi-Lomedasht F. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy. Med Oncol 2024; 42:36. [PMID: 39719469 DOI: 10.1007/s12032-024-02588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection. Traditional antibodies, such as IgGs, have been widely used in immune therapies but are limited by their size and complexity. Nanobodies (Nbs), derived from camelid heavy-chain-only antibodies, offer a promising alternative. These small, stable antibody fragments retain the antigen-binding specificity of traditional antibodies but have enhanced solubility and the ability to target otherwise inaccessible epitopes. This review explores the use of Nbs as ICIs, emphasizing their potential in cancer immunotherapy and other immune-related treatments. Their unique structural properties and small size make Nbs highly effective tools for modulating immune responses, representing a novel approach in the evolving landscape of checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Nazli Sotoudeh
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
23
|
Sakai A, Tagami M, Misawa N, Haruna Y, Tomita M, Honda S. Serum PD-1 regulation and PD-1 expression of CD4+Foxp3+ regulatory T cells in patients in thyroid eye disease associated with immunosuppression treatment. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1491053. [PMID: 39736883 PMCID: PMC11683052 DOI: 10.3389/fopht.2024.1491053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
Purpose Thyroid eye disease (TED) primarily occurs in hyperthyroid patients, sometimes resulting in poor visual prognosis. Although other autoimmune diseases have been reported to be associated with serum programmed cell death 1 (PD-1), the relationship with TED remains unknown. This study investigated the relationship between TED and immune checkpoint molecules. Methods Serum immune checkpoint molecules were measured in TED and control patient blood samples. In TED patients, blood samples were compared before and 6 months after steroid pulse treatment. Cytometry analysis was additionally performed in TED and control patients to compare the expression of (PD-1) of T cells. Results Serum concentrations of PD-1 in TED and control patients were 163.49 ± 79.01 (pg/mL) and 123.58 ± 46.61 (pg/mL) (P = 0.03). Serum PD-L1 concentration in TED was 157.89 ± 55.34 (pg/mL), while 152.58 ± 22.70 (pg/mL) in control patients (P = 0.92). For flow cytometry analysis, the mean fluorescence intensity (MFI) ratio of PD-1 in Foxp3high CD45RA- of the CD4+ T cells and CD127-CD25high of the CD4+ T cells were higher in TED versus control patients (P = 0.04, P = 0.02). There was also a higher percentage of PD-1 expressions on CD4+ T cells and Foxp3high CD45- T cells in TED patients versus that for control patients (P < 0.001, P = 0.003). Conclusions PD-1 expression of CD4+Foxp3+ regulatory T cells appear to be associated with TED pathogenesis before and after treatment. Regulatory T cells expressed PD-1 have possibilities of clinical activity and autoimmune pathology of TED.
Collapse
|
24
|
Li J, Ma Y, Wu Q, Ping P, Li J, Xu X. The potential role of HPV oncoproteins in the PD-L1/PD-1 pathway in cervical cancer: new perspectives on cervical cancer immunotherapy. Front Oncol 2024; 14:1488730. [PMID: 39735605 PMCID: PMC11671370 DOI: 10.3389/fonc.2024.1488730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Cervical cancer (CC) is a common malignant tumour of the female reproductive system that is highly harmful to women's health. The efficacy of traditional surgery, radiotherapy and chemotherapy is limited, especially for recurrent and metastatic CC. With continuous progress in diagnostic and treatment technology, immunotherapy has become a new approach for treating CC and has become a new therapy for recurrent and metastatic CC. However, immunotherapy is not effective for all patients with CC. Therefore, factors related to immunotherapy efficacy in CC patients have become the focus of researchers. High-risk human papillomavirus (HPV) infection is an important factor that drives CC development and affects its progression and prognosis. Increasing attention has been given to the mechanism of the E5, E6 and E7 proteins, which are encoded by the HPV gene, in the occurrence and development of CC and their interaction with programmed cell death ligand-1/programmed cell death-1 (PD-L1/PD-1). Although some preliminary studies have been conducted on these topics, a comprehensive and systematic review of these topics is not available. This review comprehensively summarizes related articles from journals with impact factors greater than 3 and published in the past 5 years; it also reviews studies on the mechanism of HPV and CC, the mechanism of PD-L1/PD-1 axis regulation in CC, and the mechanism by which the interaction between HPV-related oncoproteins and the PD-L1/PD-1 pathway affects the development and prognosis of CC. This study provides theoretical support for the use of immunotherapies for CC, provides a basis for the selection of specific medications that target different HPV-related proteins, and provides a new perspective for the discovery of new immunotherapy targets for CC.
Collapse
Affiliation(s)
| | | | | | | | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical
University, Dalian, China
| | - Xiaoying Xu
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical
University, Dalian, China
| |
Collapse
|
25
|
Ogishi M, Kitaoka K, Good-Jacobson KL, Rinchai D, Zhang B, Wang J, Gies V, Rao G, Nguyen T, Avery DT, Khan T, Smithmyer ME, Mackie J, Yang R, Arias AA, Asano T, Ponsin K, Chaldebas M, Zhang P, Peel JN, Bohlen J, Lévy R, Pelham SJ, Lei WT, Han JE, Fagniez I, Chrabieh M, Laine C, Langlais D, Gruber C, Al Ali F, Rahman M, Aytekin C, Benson B, Dufort MJ, Domingo-Vila C, Moriya K, Shlomchik M, Uzel G, Gray PE, Suan D, Preece K, Chua I, Okada S, Chikuma S, Kiyonari H, Tree TI, Bogunovic D, Gros P, Marr N, Speake C, Oram RA, Béziat V, Bustamante J, Abel L, Boisson B, Korganow AS, Ma CS, Johnson MB, Chamoto K, Boisson-Dupuis S, Honjo T, Casanova JL, Tangye SG. Impaired development of memory B cells and antibody responses in humans and mice deficient in PD-1 signaling. Immunity 2024; 57:2790-2807.e15. [PMID: 39603236 PMCID: PMC11634639 DOI: 10.1016/j.immuni.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
T follicular helper (Tfh) cells abundantly express the immunoreceptor programmed cell death protein 1 (PD-1), and the impact of PD-1 deficiency on antibody (Ab)-mediated immunity in mice is associated with compromised Tfh cell functions. Here, we revisited the role of the PD-1-PD-L1 axis on Ab-mediated immunity. Individuals with inherited PD-1 or PD-L1 deficiency had fewer memory B cells and impaired Ab responses, similar to Pdcd1-/- and Cd274-/-Pdcd1lg2-/- mice. PD-1, PD-L1, or both could be detected on the surface of human naive B cells following in vitro activation. PD-1- or PD-L1-deficient B cells had reduced expression of the transcriptional regulator c-Myc and c-Myc-target genes in vivo, and PD-1 deficiency or neutralization of PD-1 or PD-L1 impeded c-Myc expression and Ab production in human B cells isolated in vitro. Furthermore, B cell-specific deletion of Pdcd1 prevented the physiological accumulation of memory B cells in mice. Thus, PD-1 shapes optimal B cell memory and Ab-mediated immunity through B cell-intrinsic and B cell-extrinsic mechanisms, suggesting that B cell dysregulation contributes to infectious and autoimmune complications following anti-PD-1-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; The David Rockefeller Graduate Program, Rockefeller University, New York, NY 10065, USA.
| | - Koji Kitaoka
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Baihao Zhang
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan; Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Jun Wang
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, Strasbourg University Hospital, INSERM UMR-S1109, 67000 Strasbourg, France
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Danielle T Avery
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Taushif Khan
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Megan E Smithmyer
- Center for Interventional Immunology, Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Andrés Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia; School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Khoren Ponsin
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Matthieu Chaldebas
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Iris Fagniez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Candice Laine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - David Langlais
- McGill University Genome Center, Montreal, QC, Canada; McGill Research Centre on Complex Traits, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Al Ali
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mahbuba Rahman
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Basilin Benson
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Clara Domingo-Vila
- Department of Immunobiology, School of Immunobiology & Microbial Sciences, Kings' College London, London WC2R 2LS, UK
| | - Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan
| | - Mark Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia; Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW 2010, Australia
| | - Daniel Suan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW 2010, Australia; Westmead Clinical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kahn Preece
- John Hunter Children's Hospital, Newcastle, NSW 2305, Australia
| | - Ignatius Chua
- Canterbury Health Laboratories, Christchurch 8140, New Zealand
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Timothy I Tree
- Department of Immunobiology, School of Immunobiology & Microbial Sciences, Kings' College London, London WC2R 2LS, UK
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Gros
- McGill Research Centre on Complex Traits, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Nico Marr
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Cate Speake
- Center for Interventional Immunology, Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA 98101, USA; Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Richard A Oram
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2ED, UK
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, Strasbourg University Hospital, INSERM UMR-S1109, 67000 Strasbourg, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW 2010, Australia
| | - Matthew B Johnson
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2ED, UK
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan; Department of Immuno-Oncology PDT, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
26
|
Kur IM, Weigert A. Phosphatidylserine externalization as immune checkpoint in cancer. Pflugers Arch 2024; 476:1789-1802. [PMID: 38573347 PMCID: PMC11582130 DOI: 10.1007/s00424-024-02948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.
Collapse
Affiliation(s)
- Ivan-Maximiliano Kur
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
27
|
Ouchaoui AA, Hadad SEE, Aherkou M, Fadoua E, Mouad M, Ramli Y, Kettani A, Bourais I. Unlocking Benzosampangine's Potential: A Computational Approach to Investigating, Its Role as a PD-L1 Inhibitor in Tumor Immune Evasion via Molecular Docking, Dynamic Simulation, and ADMET Profiling. Bioinform Biol Insights 2024; 18:11779322241298591. [PMID: 39564188 PMCID: PMC11574905 DOI: 10.1177/11779322241298591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The interaction between programmed cell death protein 1 (PD-1) and its ligand PD-L1 plays a crucial role in tumor immune evasion, presenting a critical target for cancer immunotherapy. Despite being effective, current monoclonal antibodies present some drawbacks such as high costs, toxicity, and resistance development. Therefore, the development of small-molecule inhibitors is necessary, especially those derived from natural sources. In this study, benzosampangine is predicted as a promising PD-L1 inhibitor, with potential applications in cancer immunotherapy. Utilizing the high-resolution crystal structure of human PD-L1 (PDB ID: 5O45), we screened 511 natural compounds, identifying benzosampangine as a top candidate with exceptional inhibitory properties. Molecular docking predicted that benzosampangine exhibits a strong binding affinity for PD-L1 (-9.4 kcal/mol) compared with established controls such as CA-170 (-6.5 kcal/mol), BMS-202 (-8.6 kcal/mol), and pyrvinium (-8.9 kcal/mol). The compound's predicted binding efficacy is highlighted by robust interactions with key amino acids (ILE54, TYR56, GLN66, MET115, ILE116, SER117, ALA121, ASP122) within the active site, notably forming 3 Pi-sulfur interactions with MET115-an interaction absents in control inhibitors. In addition, ADMET profiling suggests that over the control molecules, benzosampangine has several key advantages, including favorable solubility, permeability, metabolic stability, and low toxicity, while adhering to Lipinski's rule of five. Molecular dynamic simulations predict the stability of the benzosampangine-PD-L1 complex, reinforcing its potential to sustain inhibition of the PD-1/PD-L1 pathway. MMGBSA analysis calculated a binding free energy (ΔGbind) of -39.39 kcal/mol for the benzosampangine-PD-L1 complex, with significant contributions from Coulombic, lipophilic, and Van der Waals interactions, validating the predicted docking results. This study investigates in silico benzosampangine, predicting its better molecular interactions and pharmacokinetic profile compared with several already known PD-L1 inhibitors.
Collapse
Affiliation(s)
- Abderrahim Ait Ouchaoui
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
| | - Salah Eddine El Hadad
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
| | - Marouane Aherkou
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Elkamili Fadoua
- Rabat Medical and Pharmacy School, Mohammed Vth University, Rabat, Morocco
| | - Mkamel Mouad
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Anass Kettani
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'sik, Health and Biotechnology Research Center, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ilhame Bourais
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
28
|
Araki K, Maeda R. A Brief Chronicle of Antibody Research and Technological Advances. Antibodies (Basel) 2024; 13:90. [PMID: 39584990 PMCID: PMC11587137 DOI: 10.3390/antib13040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
This review briefly traces the historical development of antibody research and related technologies. The path from early perceptions of immunity to the emergence of modern immunotherapy has been marked by pivotal discoveries and technological advances. Early insights into immunity led to the development of vaccination and serotherapy. The elucidation of antibody structure and function paved the way for monoclonal antibody technology and its application in diagnosis and therapy. Breakthroughs in genetic engineering have enabled the production of humanized antibodies and the advances in Fc engineering, thereby increasing therapeutic efficacy. The discovery of immune checkpoints and cytokines revolutionized the treatment of cancer and autoimmune diseases. The field continues to evolve rapidly with the advent of antibody-drug conjugates, bispecific antibodies, and CAR T-cell therapies. As we face global health challenges, antibody research remains at the forefront of medical innovation and offers promising solutions for the future.
Collapse
Affiliation(s)
- Kazutaka Araki
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (Operando-Oil), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
| | - Ryota Maeda
- COGNANO Inc., 64-101 Kamitakano Higashiyama, Sakyo-ku, Kyoto 601-1255, Japan;
| |
Collapse
|
29
|
Vredevoogd DW, Apriamashvili G, Levy PL, Sinha S, Huinen ZR, Visser NL, de Bruijn B, Boshuizen J, van Hal-van Veen SE, Ligtenberg MA, Bleijerveld OB, Lin CP, Díaz-Gómez J, Sánchez SD, Markovits E, Simon Nieto J, van Vliet A, Krijgsman O, Markel G, Besser MJ, Altelaar M, Ruppin E, Peeper DS. TMED inhibition suppresses cell surface PD-1 expression and overcomes T cell dysfunction. J Immunother Cancer 2024; 12:e010145. [PMID: 39510795 PMCID: PMC11552591 DOI: 10.1136/jitc-2024-010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Blockade of the programmed cell death protein 1 (PD-1) immune checkpoint (ICB) is revolutionizing cancer therapy, but little is known about the mechanisms governing its expression on CD8 T cells. Because PD-1 is induced during activation of T cells, we set out to uncover regulators whose inhibition suppresses PD-1 abundance without adversely impacting on T cell activation. METHODS To identify PD-1 regulators in an unbiased fashion, we performed a whole-genome, fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in primary murine CD8 T cells. A dual-readout design using the activation marker CD137 allowed us to uncouple genes involved in PD-1 regulation from those governing general T cell activation. RESULTS We found that the inactivation of one of several members of the TMED/EMP24/GP25L/p24 family of transport proteins, most prominently TMED10, reduced PD-1 cell surface abundance, thereby augmenting T cell activity. Another client protein was cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which was also suppressed by TMED inactivation. Treatment with TMED inhibitor AGN192403 led to lysosomal degradation of the TMED-PD-1 complex and reduced PD-1 abundance in tumor-infiltrating CD8 T cells (TIL) in mice, thus reversing T cell dysfunction. Clinically corroborating these findings, single-cell RNA analyses revealed a positive correlation between TMED expression in CD8 TIL, and both a T cell dysfunction signature and lack of ICB response. Similarly, patients receiving a TIL product with high TMED expression had a shorter overall survival. CONCLUSION Our results uncover a novel mechanism of PD-1 regulation, and identify a pharmacologically tractable target whose inhibition suppresses PD-1 abundance and T cell dysfunction.
Collapse
Affiliation(s)
- David W Vredevoogd
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Georgi Apriamashvili
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Pierre L Levy
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Zowi R Huinen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Nils L Visser
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Julia Boshuizen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Susan E van Hal-van Veen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Maarten A Ligtenberg
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Onno B Bleijerveld
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Judit Díaz-Gómez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Santiago Duro Sánchez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Tel Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan Simon Nieto
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alex van Vliet
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michal J Besser
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maarten Altelaar
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Daniel S Peeper
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Martineau R, Susini S, Marabelle A. Fc Effector Function of Immune Checkpoint Blocking Antibodies in Oncology. Immunol Rev 2024; 328:334-349. [PMID: 39663733 PMCID: PMC11659940 DOI: 10.1111/imr.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Antagonistic monoclonal antibodies (mAbs) targeting inhibitory immune checkpoints have revolutionized the field of oncology. CTLA-4, PD-1, and LAG3 are three co-inhibitory receptors, which can be expressed by subsets of T cells and which play a role in the regulation of adaptive immune responses. Blocking these immune checkpoints receptors (or their ligands) with antagonistic antibodies can lead to tumor regressions and lasting remissions in some patients with cancer. Two anti-CTLA4, six anti-PD1, three anti-PD-L1, and one anti-LAG3 antibodies are currently approved by the FDA and EMA. Their mechanism of action, safety, and efficacy are linked to their affinity with Fc gamma receptors (FcγR) (so called "effector functions"). The anti-CTLA-4 antibodies ipilimumab (IgG1) and tremilimumab (IgG2a), and the anti-PD-L1 avelumab (IgG1) have isotypes with high affinity for activating FcγR and thereby can induce ADCC/ADCP. The effector function is required for the in vivo efficacy of anti-CTLA4 antibodies. For anti-PD(L)1 antibodies, where a pure antagonistic function ("checkpoint blockade") is sufficient, some mAbs are IgG1 but have been mutated in their Fc sequence (e.g., durvalumab and atezolizumab) or are IgG4 (e.g., nivolumab and pembrolizumab) to have low affinity for FcγR. Here, we review the impact of FcγR effector function on immune checkpoint blockers safety and efficacy in oncology.
Collapse
Affiliation(s)
- Romane Martineau
- Université Paris SaclayLe Kremlin‐BicetreFrance
- Centre d'Investigation Clinique BIOTHERIS, CIC 1428Institut National de la Santé et de la Recherche Médicale (INSERM)VillejuifFrance
| | - Sandrine Susini
- Centre d'Investigation Clinique BIOTHERIS, CIC 1428Institut National de la Santé et de la Recherche Médicale (INSERM)VillejuifFrance
- Translational Immunotherapy Research LaboratoryGustave RoussyVillejuifFrance
| | - Aurelien Marabelle
- Université Paris SaclayLe Kremlin‐BicetreFrance
- Centre d'Investigation Clinique BIOTHERIS, CIC 1428Institut National de la Santé et de la Recherche Médicale (INSERM)VillejuifFrance
- Translational Immunotherapy Research LaboratoryGustave RoussyVillejuifFrance
| |
Collapse
|
31
|
Connor A, Lyons P, Kilgallon A, Simpson J, Perry A, Lysaght J. Examining the evidence for immune checkpoint therapy in high-grade serous ovarian cancer. Heliyon 2024; 10:e38888. [PMID: 39640610 PMCID: PMC11620064 DOI: 10.1016/j.heliyon.2024.e38888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
The 5-year survival rate for ovarian cancer has remained relatively static over the past number of years, which can be attributed in part to the lack of new therapeutic strategies to target this disease. Although numerous other cancer types have benefited from the success of immune checkpoint inhibitors, their use in clinical trials targeting ovarian cancer has shown limited efficacy. Most clinical trials have focused on PD-1/PD-L1 immune checkpoint blockade, either as a monotherapy or in combination with chemotherapies, however inhibiting other pathways may potentially be more efficacious in treating ovarian cancer. For example, drugs targeting some emerging immune checkpoints (such as LAG-3, TIM-3, TIGIT and PVRIG), are entering into clinical trials, which could show improved success for ovarian cancer patients. Similarly, predictive biomarkers that have been approved for use with immune checkpoint inhibitors, such as PD-L1 expression, are limited, as only the presence or absence of PD-L1 is assessed. However, the development of next generation predictive biomarkers, which assesses density and location of tumour infiltrating lymphocytes, could be more beneficial for this heterogenous cancer. In this review we discuss the use of immune checkpoint inhibitors in ovarian cancer, with a focus on high-grade serous disease, and delve into what the future may hold for immunotherapy in this cancer type.
Collapse
Affiliation(s)
- A.E. Connor
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, University College Dublin, Dublin, Ireland
| | - P.M. Lyons
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - A.M. Kilgallon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - J.C. Simpson
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, University College Dublin, Dublin, Ireland
| | - A.S. Perry
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - J. Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Wang X, Liu T, Li Y, Ding A, Zhang C, Gu Y, Zhao X, Cheng S, Cheng T, Wu S, Duan L, Zhang J, Yin R, Shang M, Gao S. A splicing isoform of PD-1 promotes tumor progression as a potential immune checkpoint. Nat Commun 2024; 15:9114. [PMID: 39438489 PMCID: PMC11496882 DOI: 10.1038/s41467-024-53561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
The immune checkpoint receptor, programmed cell death 1 (PD-1, encoded by PDCD1), mediates the immune escape of cancer, but whether PD-1 splicing isoforms contribute to this process is still unclear. Here, we identify an alternative splicing isoform of human PD-1, which carries a 28-base pairs extension retained from 5' region of intron 2 (PD-1^28), is expressed in peripheral T cells and tumor infiltrating lymphocytes. PD-1^28 expression is induced on T cells upon activation and is regulated by an RNA binding protein, TAF15. Functionally, PD-1^28 inhibits T cell proliferation, cytokine production, and tumor cell killing in vitro. In vivo, T cell-specific exogenous expression of PD-1^28 promotes tumor growth in both a syngeneic mouse tumor model and humanized NOG mice inoculated with human lung cancer cells. Our study thus demonstrates that PD-1^28 functions as an immune checkpoint, and may contribute to resistance to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Xuetong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Tongfeng Liu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Medical School of Guizhou University, Guiyang, China
| | - Yifei Li
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ao Ding
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Zhang
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of medical oncology, The Key Laboratory of Advanced Interdisciplinary Studies Center, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| | - Yinmin Gu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xujie Zhao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Shuwen Cheng
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Tianyou Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Songzhe Wu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Jihang Zhang
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Medical School of Guizhou University, Guiyang, China
| | - Rong Yin
- Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Man Shang
- Nanjing Women and Children's Healthcare Institute, Women' s Hospital of Nanjing Medical University (Nanjing Women and Children' s Healthcare Hospital), Nanjing, China
| | - Shan Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China.
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China.
| |
Collapse
|
33
|
Groeger S, Meyle J. The role of programmed death receptor (PD-)1/PD-ligand (L)1 in periodontitis and cancer. Periodontol 2000 2024; 96:150-169. [PMID: 38351432 PMCID: PMC11579837 DOI: 10.1111/prd.12548] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 11/22/2024]
Abstract
The programmed-death-ligand-1 (PD-L1) is an immune-modulating molecule that is constitutively expressed on various immune cells, different epithelial cells and a multitude of cancer cells. It is a costimulatory molecule that may impair T-cell mediated immune response. Ligation to the programmed-death-receptor (PD)-1, on activated T-cells and further triggering of the related signaling pathways can induce T-cells apoptosis or anergy. The upregulation of PD-L1 in various cancer types, including oral squamous cell carcinomas, was demonstrated and has been linked to immune escape of tumors and poor prognosis. A bidirectional relationship exists between the increased PD-L1 expression and periodontitis as well as the epithelial-mesenchymal transition (EMT), a process of interconversion of epithelial cells to mesenchymal cells that may induce immune escape of tumors. Interaction between exosomal PD-L1 and PD-1 on T-cells may cause immunosuppression by blocking the activation and proliferation of T-cells. The efficacy and importance of treatment with PD-1/PD-L1 checkpoint inhibitors and their prognostic influence on human cancers was demonstrated. Regarding PD-1/PD-L1 checkpoint inhibitors, resistances exist or may develop, basing on various factors. Further investigations of the underlying mechanisms will help to overcome the therapeutic limitations that result from resistances and to develop new strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
- Department of Orthodontics, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of Periodontology, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
34
|
Dong L, Choi H, Budhu S, Schulze I, Verma S, Mangarin LM, Estrada Nevarro V, Mehanna N, Khan JF, Venkatesh D, Thach D, Rosen N, Wolchok JD, Merghoub T. Intermittent MEK Inhibition with GITR Costimulation Rescues T-cell Function for Increased Efficacy with CTLA-4 Blockade in Solid Tumor Models. Cancer Immunol Res 2024; 12:1392-1408. [PMID: 38885362 DOI: 10.1158/2326-6066.cir-23-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
MEK inhibitors (MEKi) have shown limited success as a treatment for MAPK/ERK pathway-dependent cancers due to various resistance mechanisms tumor cells can employ. CH5126766 (CKI27) is an inhibitor that binds to MEK and prevents release of RAF, reducing the relief of negative feedback commonly observed with other MEKis. We observed that CKI27 increased MHC expression in tumor cells and improved T cell-mediated killing. Yet, CKI27 also decreased T-cell proliferation, activation, and cytolytic activity by inhibiting the MAPK/ERK pathway that is activated downstream of T-cell receptor signaling. Therefore, we aimed to balance the positive and negative immunomodulatory effects of MEKis for optimal combination with immunotherapy. Intermittent administration of CKI27 allowed T cells to partially recover and costimulation via GITR and OX-40 agonist antibodies completely alleviated inhibition of function. In Kras mutant lung and colon tumor mouse models, intermittent CKI27 and anti-GITR significantly decreased tumor growth and prolonged survival when further combined with CTLA-4 immune checkpoint blockade. Moreover, this triple combination increased CD8+ and CD4+ T-cell proliferation, activation, and effector/memory subsets in the tumor-draining lymph nodes and tumors and led to intratumoral regulatory T-cell destabilization. These data, collectively, will allow for more informed decisions when optimizing combination regimens by overcoming resistance, reducing toxicity, and generating long-term immune responses.
Collapse
Affiliation(s)
- Lauren Dong
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Hyejin Choi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Sadna Budhu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Isabell Schulze
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Svena Verma
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Levi M Mangarin
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Valeria Estrada Nevarro
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Nezar Mehanna
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Jonathan F Khan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Divya Venkatesh
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Daniel Thach
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Neal Rosen
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jedd D Wolchok
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
35
|
Timilsina HP, Arya SP, Tan X. Biotechnological Advances Utilizing Aptamers and Peptides Refining PD-L1 Targeting. Front Biosci (Elite Ed) 2024; 16:28. [PMID: 39344385 DOI: 10.31083/j.fbe1603028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
While monoclonal antibodies have shown success in cancer immunotherapy, their limitations prompt exploration of alternative approaches such as aptamers and peptides targeting programmed death ligand 1 (PD-L1). Despite the significance of these biotechnological tools, a comprehensive review encompassing both aptamers and peptides for PD-L1 targeting is lacking. Addressing this gap is crucial for consolidating recent advancements and insights in this field. Biotechnological advances leveraging aptamers and peptides represent a cutting-edge approach in refining the targeting proteins. Our review aims to provide valuable guidance for researchers and clinicians, highlighting the biotechnological advances utilizing aptamers and peptides refining PD-L1 targeting.
Collapse
Affiliation(s)
- Hari Prasad Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
36
|
Pavelescu LA, Enache RM, Roşu OA, Profir M, Creţoiu SM, Gaspar BS. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors. Int J Mol Sci 2024; 25:9659. [PMID: 39273605 PMCID: PMC11395316 DOI: 10.3390/ijms25179659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
37
|
Xu X, Yan SL, Yo YT, Chiang P, Tsai CY, Lin LL, Qin A. A Novel Monoclonal Antibody against PD-1 for the Treatment of Viral Oncogene-Induced Tumors or Other Cancer. Cancers (Basel) 2024; 16:3052. [PMID: 39272910 PMCID: PMC11393876 DOI: 10.3390/cancers16173052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Programmed cell death 1 (PD-1) and programmed death-ligand 1 (PD-L1) interact to form an immune checkpoint fostering viral infection and viral oncogene-induced tumorigenesis. We generated a novel anti-human PD-1, humanized monoclonal antibody P1801 and investigated its pharmacologic, pharmacokinetic (PK), and pharmacodynamic properties. In vitro binding assays revealed that P1801 uniquely binds to human PD-1 and inhibits its interaction with PD-L1/2. It showed a minor effect on the induction of antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). P1801 significantly induced the release of IL-2 from activated T-cells but not from nonactivated T-cells. A dose-dependent linear PK profile was observed for the cynomolgus monkeys treated with repeated doses of P1801 at 5 mg/kg to 200 mg/kg once weekly. A four-week repeat-dose toxicity study revealed that P1801 given weekly was safe and well tolerated at doses ranging from 5 to 200 mg/kg/dose. No pathological abnormalities were noted. In humanized PD-1 mice harboring human PD-L1-expressing colon tumor cells, P1801 administered intraperitoneally twice per week at 12 mg/kg significantly inhibited tumor growth and prolonged mouse survival. P1801 displayed unique binding properties different from pembrolizumab and nivolumab. Therefore, it showed distinctive immunological reactions and significant antitumor activities. We are initiating a Phase 1 clinical study to test its combination use with ropeginterferon alfa-2b, which also has antiviral and antitumor activities, for the treatment of cancer.
Collapse
Affiliation(s)
- Xu Xu
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Shih-Long Yan
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Yi-Te Yo
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Peiyu Chiang
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Chan-Yen Tsai
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Lih-Ling Lin
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Albert Qin
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei 115, Taiwan
| |
Collapse
|
38
|
Agostini M, Traldi P, Hamdan M. Proteomic Investigation of Immune Checkpoints and Some of Their Inhibitors. Int J Mol Sci 2024; 25:9276. [PMID: 39273224 PMCID: PMC11395526 DOI: 10.3390/ijms25179276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Immune checkpoints are crucial molecules for the maintenance of antitumor immune responses. The activation or inhibition of these molecules is dependent on the interactions between receptors and ligands; such interactions can provide inhibitory or stimulatory signals to the various components of the immune system. Over the last 10 years, the inhibition of immune checkpoints, such as cytotoxic T lymphocyte antigen-4, programmed cell death-1, and programmed cell death ligand-1, has taken a leading role in immune therapy. This relatively recent therapy regime is based on the use of checkpoint inhibitors, which enhance the immune response towards various forms of cancer. For a subset of patients with specific forms of cancer, these inhibitors can induce a durable response to therapy; however, the medium response rate to such therapy remains relatively poor. Recent research activities have demonstrated that the disease response to this highly promising therapy resembles the response of many forms of cancer to chemotherapy, where an encouraging initial response is followed by acquired resistance to treatment and progress of the disease. That said, these inhibitors are now used as single agents or in combination with chemotherapies as first or second lines of treatment for about 50 types of cancer. The prevailing opinion regarding immune therapy suggests that for this approach of therapy to deliver on its promise, a number of challenges have to be circumvented. These challenges include understanding the resistance mechanisms to immune checkpoint blockade, the identification of more efficient inhibitors, extending their therapeutic benefits to a wider audience of cancer patients, better management of immune-related adverse side effects, and, more urgently the identification of biomarkers, which would help treating oncologists in the identification of patients who are likely to respond positively to the immune therapies and, last but not least, the prices of therapy which can be afforded by the highest number of patients. Numerous studies have demonstrated that understanding the interaction between these checkpoints and the immune system is essential for the development of efficient checkpoint inhibitors and improved immune therapies. In the present text, we discuss some of these checkpoints, their inhibitors, and some works in which mass spectrometry-based proteomic analyses were applied.
Collapse
Affiliation(s)
- Marco Agostini
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| | - Mahmoud Hamdan
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| |
Collapse
|
39
|
Sacristán C, Youngblood BA, Lu P, Bally APR, Xu JX, McGary K, Hewitt SL, Boss JM, Skok JA, Ahmed R, Dustin ML. Chronic viral infection alters PD-1 locus subnuclear localization in cytotoxic CD8 + T cells. Cell Rep 2024; 43:114547. [PMID: 39083377 PMCID: PMC11522508 DOI: 10.1016/j.celrep.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
During chronic infection, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) progressively lose their ability to mount effective antiviral responses. This "exhaustion" is coupled to persistent upregulation of inhibitory receptor programmed death-1 (PD-1) (Pdcd1)-key in suppressing antiviral CTL responses. Here, we investigate allelic Pdcd1 subnuclear localization and transcription during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Pdcd1 alleles dissociate from transcriptionally repressive chromatin domains (lamin B) in virus-specific exhausted CTLs but not in naive or effector CTLs. Relative to naive CTLs, nuclear positioning and Pdcd1-lamina dissociation in exhausted CTLs reflect loss of Pdcd1 promoter methylation and greater PD-1 upregulation, although a direct correlation is not observed in effector cells, 8 days post-infection. Genetic deletion of B lymphocyte-induced maturation protein 1 (Blimp-1) enhances Pdcd1-lamina dissociation in effector CTLs, suggesting that Blimp-1 contributes to maintaining Pdcd1 localization to repressive lamina. Our results identify mechanisms governing Pdcd1 subnuclear localization and the broader role of chromatin dynamics in T cell exhaustion.
Collapse
Affiliation(s)
- Catarina Sacristán
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Ben A Youngblood
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Peiyuan Lu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Alexander P R Bally
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jean Xiaojin Xu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katelyn McGary
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jeremy M Boss
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Rafi Ahmed
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
41
|
Porreca I, Blassberg R, Harbottle J, Joubert B, Mielczarek O, Stombaugh J, Hemphill K, Sumner J, Pazeraitis D, Touza JL, Francescatto M, Firth M, Selmi T, Collantes JC, Strezoska Z, Taylor B, Jin S, Wiggins CM, van Brabant Smith A, Lambourne JJ. An aptamer-mediated base editing platform for simultaneous knockin and multiple gene knockout for allogeneic CAR-T cells generation. Mol Ther 2024; 32:2692-2710. [PMID: 38937969 PMCID: PMC11405993 DOI: 10.1016/j.ymthe.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/25/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Gene editing technologies hold promise for enabling the next generation of adoptive cellular therapies. In conventional gene editing platforms that rely on nuclease activity, such as clustered regularly interspaced short palindromic repeats CRISPR-associated protein 9 (CRISPR-Cas9), allow efficient introduction of genetic modifications; however, these modifications occur via the generation of DNA double-strand breaks (DSBs) and can lead to unwanted genomic alterations and genotoxicity. Here, we apply a novel modular RNA aptamer-mediated Pin-point base editing platform to simultaneously introduce multiple gene knockouts and site-specific integration of a transgene in human primary T cells. We demonstrate high editing efficiency and purity at all target sites and significantly reduced frequency of chromosomal translocations compared with the conventional CRISPR-Cas9 system. Site-specific knockin of a chimeric antigen receptor and multiplex gene knockout are achieved within a single intervention and without the requirement for additional sequence-targeting components. The ability to perform complex genome editing efficiently and precisely highlights the potential of the Pin-point platform for application in a range of advanced cell therapies.
Collapse
Affiliation(s)
| | | | | | - Bronwyn Joubert
- Revvity, 8100 Cambridge Research Park, Cambridge CB25 9TL, UK
| | - Olga Mielczarek
- Revvity, 8100 Cambridge Research Park, Cambridge CB25 9TL, UK
| | | | | | - Jonathan Sumner
- AstraZeneca, Discovery Sciences, R&D, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, UK
| | - Deividas Pazeraitis
- AstraZeneca, Discovery Sciences, R&D, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, UK
| | - Julia Liz Touza
- AstraZeneca, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Margherita Francescatto
- AstraZeneca, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Mike Firth
- AstraZeneca, Discovery Sciences, R&D, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, UK
| | - Tommaso Selmi
- Revvity, 8100 Cambridge Research Park, Cambridge CB25 9TL, UK
| | - Juan Carlos Collantes
- Departamento de Biotecnología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Campus Cumbayá, Casilla Postal 17-1200-841, Quito 170901, Ecuador
| | | | - Benjamin Taylor
- AstraZeneca, Discovery Sciences, R&D, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, UK
| | - Shengkan Jin
- Pharmacology Department, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ceri M Wiggins
- Revvity, 8100 Cambridge Research Park, Cambridge CB25 9TL, UK
| | | | | |
Collapse
|
42
|
Chen H, Wei J, Zhu Z, Hou Y. Multifaceted roles of PD-1 in tumorigenesis: From immune checkpoint to tumor cell-intrinsic function. Mol Carcinog 2024; 63:1436-1448. [PMID: 38751009 DOI: 10.1002/mc.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Programmed cell death 1 (PD-1), a key immune checkpoint receptor, has been extensively studied for its role in regulating immune responses in cancer. However, recent research has unveiled a complex and dual role for PD-1 in tumorigenesis. While PD-1 is traditionally associated with immune cells, this article explores its expression in various cancer cells and its impact on cancer progression. PD-1's functions extend beyond immune regulation, as it has been found to both promote and suppress tumor growth, depending on the cancer type. These findings have significant implications for the future of cancer treatment and our understanding of the immune response in the context of cancer. This article calls for further research into the multifaceted roles of PD-1 to optimize its therapeutic potential and improve patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jiayu Wei
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhen Zhu
- Zhenjiang Stomatological Hospital, Zhenjiang, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Liao KL, Wieler AJ, Gascon PML. Mathematical modeling and analysis of cancer treatment with radiation and anti-PD-L1. Math Biosci 2024; 374:109218. [PMID: 38797473 DOI: 10.1016/j.mbs.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In cancer treatment, radiation therapy (RT) induces direct tumor cell death due to DNA damage, but it also enhances the deaths of radiosensitive immune cells and is followed by local relapse and up-regulation of immune checkpoint ligand PD-L1. Since the binding between PD-1 and PD-L1 curtails anti-tumor immunities, combining RT and PD-L1 inhibitor, anti-PD-L1, is a potential method to improve the treatment efficacy by RT. Some experiments support this hypothesis by showing that the combination of ionizing irradiation (IR) and anti-PD-L1 improves tumor reduction comparing to the monotherapy of IR or anti-PD-L1. In this work, we create a simplified ODE model to study the order of tumor growths under treatments of IR and anti-PD-L1. Our synergy analysis indicates that both IR and anti-PD-L1 improve the tumor reduction of each other, when IR and anti-PD-L1 are given simultaneously. When giving IR and anti-PD-L1 separately, a high dosage of IR should be given first to efficiently reduce tumor load and then followed by anti-PD-L1 with strong efficacy to maintain the tumor reduction and slow down the relapse. Increasing the duration of anti-PD-L1 improves the tumor reduction, but it cannot prolong the duration that tumor relapses to the level of the control case. Under some simplification, we also prove that the model has an unstable tumor free equilibrium and a locally asymptotically stable tumor persistent equilibrium. Our bifurcation diagram reveals a transition from tumor elimination to tumor persistence, as the tumor growth rate increases. In the tumor persistent case, both anti-PD-L1 and IR can reduce tumor amount in the long term.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Adam J Wieler
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Pedro M Lopez Gascon
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
44
|
Ong CEB, Lyons AB, Woods GM, Flies AS. Generation of Devil Facial Tumour Cells Co-Expressing MHC With CD80, CD86 or 41BBL to Enhance Tumour Immunogenicity. Parasite Immunol 2024; 46:e13062. [PMID: 39313933 DOI: 10.1111/pim.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
The major histocompatibility complex (MHC) molecules play an integral role in the adaptive immune response to transmissible cancers through tumour antigen presentation and recognition of allogeneic MHC molecules. The transmissible devil facial tumours 1 and 2 (DFT1 and DFT2) modulate MHC-I antigen presentation to evade host immune responses and facilitate transmission of tumours cells to new Tasmanian devil (Sarcophilus harrisii) hosts. To enhance T-cell-driven tumour immunogenicity for vaccination and immunotherapy, DFT1 and DFT2 cells were co-transfected with (i) NLRC5 for MHC-I expression or CIITA for MHC-I and MHC-II expression, and (ii) a co-stimulatory molecule, either CD80, CD86 or 41BBL. The co-transfected DFT cells presented enhanced expression of MHC-I and/or MHC-II. As few devil-specific monoclonal antibodies exist, we used recombinant CTLA4 and 41BB fused to a fluorescent protein to confirm expression of cell surface CD80, CD86 and 41BBL. The capacity for these cells to induce T-cell responses including PD1 and IFNG expression was evaluated in in vitro co-culture assays with captive devil peripheral blood mononuclear cells (PBMCs). Although PBMC viability had increased, there was no evidence of enhanced T-cell activation. This system can be used to identify additional factors required to promote activation of naïve devil T-cells in vitro.
Collapse
Affiliation(s)
- Chrissie E B Ong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
45
|
Park H, Song J, Jeong HW, Grönloh MLB, Koh BI, Bovay E, Kim KP, Klotz L, Thistlethwaite PA, van Buul JD, Sorokin L, Adams RH. Apelin modulates inflammation and leukocyte recruitment in experimental autoimmune encephalomyelitis. Nat Commun 2024; 15:6282. [PMID: 39060233 PMCID: PMC11282314 DOI: 10.1038/s41467-024-50540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Demyelination due to autoreactive T cells and inflammation in the central nervous system are principal features of multiple sclerosis (MS), a chronic and highly disabling human disease affecting brain and spinal cord. Here, we show that treatment with apelin, a secreted peptide ligand for the G protein-coupled receptor APJ/Aplnr, is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Apelin reduces immune cell entry into the brain, delays the onset and reduces the severity of EAE. Apelin affects the trafficking of leukocytes through the lung by modulating the expression of cell adhesion molecules that mediate leukocyte recruitment. In addition, apelin induces the internalization and desensitization of its receptor in endothelial cells (ECs). Accordingly, protection against EAE major outcomes of apelin treatment are phenocopied by loss of APJ/Aplnr function, achieved by EC-specific gene inactivation in mice or knockdown experiments in cultured primary endothelial cells. Our findings highlight the importance of the lung-brain axis in neuroinflammation and indicate that apelin targets the transendothelial migration of immune cells into the lung during acute inflammation.
Collapse
Affiliation(s)
- Hongryeol Park
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Max L B Grönloh
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Bong Ihn Koh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Esther Bovay
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Kee-Pyo Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Luisa Klotz
- Department of Neurology, University of Münster, Münster, Germany
| | | | - Jaap D van Buul
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| |
Collapse
|
46
|
Arya SP, Thennakoon SKS, Phuoc CMT, Silwal AP, Jahan R, Postema RM, Timilsina H, Reynolds AM, Tan X. Aptamer-assisted phage display: enhancing checkpoint inhibition with a peptide and an aptamer targeting distinct sites on a single PD-L1 protein. Chem Commun (Camb) 2024; 60:7570-7573. [PMID: 38940673 DOI: 10.1039/d4cc02132k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Utilizing a novel approach known as aptamer-assisted phage display (APD), we identified an anti-PD-L1 peptide, NV Pep, capable of simultaneous binding to PD-L1 alongside the DNA aptamer MJ5C. Combined inhibition using NV Pep and MJ5C demonstrated significant enhancement compared to individual ligands against the PD-1/PD-L1 interaction.
Collapse
Affiliation(s)
- Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | | | - Chien Minh Tran Phuoc
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Achut Prasad Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Raunak Jahan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Rick Mason Postema
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Hari Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Andrew Michael Reynolds
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
47
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
48
|
Gao Y, Duan JL, Wang CC, Yuan Y, Zhang P, Wang ZH, Sun B, Zhou J, Du X, Dang X, Bai RT, Zhang H, Xie T, Ye XY. Novel Bifunctional Conjugates Targeting PD-L1/PARP7 as Dual Immunotherapy for Potential Cancer Treatment. J Med Chem 2024; 67:10848-10874. [PMID: 38912753 DOI: 10.1021/acs.jmedchem.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Bifunctional conjugates targeting PD-L1/PARP7 were designed, synthesized, and evaluated for the first time. Compounds B3 and C6 showed potent activity against PD-1/PD-L1 interaction (IC50 = 0.426 and 0.342 μM, respectively) and PARP7 (IC50 = 2.50 and 7.05 nM, respectively). They also displayed excellent binding affinity with hPD-L1, approximately 100-200-fold better than that of hPD-1. Both compounds restored T-cell function, leading to the increase of IFN-γ secretion. In the coculture assay, B3 and C6 enhanced the killing activity of MDA-MB-231 cells by Jurkat T cells in a concentration-dependent manner. Furthermore, B3 and C6 displayed significant in vivo antitumor efficacy in a melanoma B16-F10 tumor mouse model, more than 5.3-fold better than BMS-1 (a PD-L1 inhibitor) and RBN-2397 (a PARP7i clinical candidate) at the dose of 25 mg/kg, without observable side effects. These results provide valuable insight and understanding for developing bifunctional conjugates for potential anticancer therapy.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Ji-Long Duan
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Chen-Chen Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
| | - Yinghui Yuan
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Pengpeng Zhang
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Zong-Hao Wang
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Bowen Sun
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Jiawei Zhou
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Xiaoli Du
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Xiawen Dang
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Rui-Ting Bai
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Hang Zhang
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| |
Collapse
|
49
|
Denlinger N, Song NJ, Zhang X, Jeon H, Peterson C, Wang Y, Reynolds K, Bolz RM, Miao J, Song C, Wu D, Chan WK, Bezerra E, Epperla N, Voorhees TJ, Brammer J, Kittai AS, Bond DA, Sawalha Y, Sigmund A, Reneau JC, Rubinstein MP, Hanel W, Christian B, Baiocchi RA, Maddocks K, Alinari L, Vasu S, de Lima M, Chung D, Jaglowski S, Li Z, Huang X, Yang Y. Postinfusion PD-1+ CD8+ CAR T cells identify patients responsive to CD19 CAR T-cell therapy in non-Hodgkin lymphoma. Blood Adv 2024; 8:3140-3153. [PMID: 38607381 PMCID: PMC11222947 DOI: 10.1182/bloodadvances.2023012073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment for relapsed/refractory B-cell non-Hodgkin lymphoma (NHL). Robust biomarkers and a complete understanding of CAR T-cell function in the postinfusion phase remain limited. Here, we used a 37-color spectral flow cytometry panel to perform high dimensional single-cell analysis of postinfusion samples in 26 patients treated with CD28 costimulatory domain containing commercial CAR T cells for NHL and focused on computationally gated CD8+ CAR T cells. We found that the presence of postinfusion Programmed cell death protein 1 (PD-1)+ CD8+ CAR T cells at the day 14 time point highly correlated with the ability to achieve complete response (CR) by 6 months. Further analysis identified multiple subtypes of CD8+ PD-1+ CAR T cells, including PD-1+ T cell factor 1 (TCF1)+ stem-like CAR T cells and PD-1+ T-cell immunoglobulin and mucin-domain containing-3 (TIM3)+ effector-like CAR T cells that correlated with improved clinical outcomes such as response and progression-free survival. Additionally, we identified a subset of PD-1+ CD8+ CAR+ T cells with effector-like function that was increased in patients who achieved a CR and was associated with grade 3 or higher immune effector cell-associated neurotoxicity syndrome. Here, we identified robust biomarkers of response to CD28 CAR T cells and highlight the importance of PD-1 positivity in CD8+ CAR T cells after infusion in achieving CR.
Collapse
Affiliation(s)
- Nathan Denlinger
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - No-Joon Song
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH
| | - Hyeongseon Jeon
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH
| | - Chelsea Peterson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Kelsi Reynolds
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Robert M. Bolz
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jessica Miao
- Department of Neuroscience, The Ohio State University, Columbus, OH
| | - Chunhua Song
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Dayong Wu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Evandro Bezerra
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Narendranath Epperla
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Timothy J. Voorhees
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jonathan Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Adam S. Kittai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - David A. Bond
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Yazeed Sawalha
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Audrey Sigmund
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - John C. Reneau
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Mark P. Rubinstein
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Walter Hanel
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Beth Christian
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Kami Maddocks
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Sumithira Vasu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Marcos de Lima
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Dongjun Chung
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH
| | | | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Xiaopei Huang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Yiping Yang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
50
|
Yang Y, Wang N, Yan F, Shi Z, Feng S. Metal-organic frameworks as candidates for tumor sonodynamic therapy: Designable structures for targeted multifunctional transformation. Acta Biomater 2024; 181:67-97. [PMID: 38697383 DOI: 10.1016/j.actbio.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Sonodynamic therapy (SDT), utilizing ultrasound (US) as the trigger, has gained popularity recently as a therapeutic approach with significant potential for treating various diseases. Metal-organic frameworks (MOFs), characterized by structural flexibility, are prominently emerging in the SDT realm as an innovative type of sonosensitizer, offering functional tunability and biocompatibility. However, due to the inherent limitations of MOFs, such as low reactivity to reactive oxygen species and challenges posed by the complex tumor microenvironment, MOF-based sonosensitizers with singular functions are unable to demonstrate the desired therapeutic efficacy and may pose risks of toxicity, limiting their biological applications to superficial tissues. MOFs generally possess distinctive crystalline structures and properties, and their controlled coordination environments provide a flexible platform for exploring structure-effect relationships and guiding the design and development of MOF-based nanomaterials to unlock their broader potential in biological fields. The primary focus of this paper is to summarize cases involving the modification of different MOF materials and the innovative strategies developed for various complex conditions. The paper outlines the diverse application areas of functionalized MOF-based sonosensitizers in tumor synergistic therapies, highlighting the extensive prospects of SDT. Additionally, challenges confronting SDT are briefly summarized to stimulate increased scientific interest in the practical application of MOFs and the successful clinical translation of SDT. Through these discussions, we strive to foster advancements that lead to early-stage clinical benefits for patients. STATEMENT OF SIGNIFICANCE: 1. An overview for the progresses in SDT explored from a novel and fundamental perspective. 2. Different modification strategies to improve the MOFs-mediated SDT efficacy are provided. 3. Guidelines for the design of multifunctional MOFs-based sonosensitizers are offered. 4. Powerful tumor ablation potential is reflected in SDT-led synergistic therapies. 5. Future challenges in the field of MOFs-based SDT in clinical translation are suggested.
Collapse
Affiliation(s)
- Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|