1
|
Cefo L, Navarre K, Chicoski A, Wilhite M, Cox V, Feeney S. The Holistic Effect of Complementary Interventions in Reducing Stress in College Students. J Holist Nurs 2025:8980101241312288. [PMID: 39828936 DOI: 10.1177/08980101241312288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The purpose of this research was to examine the holistic effects of combined complementary therapies in reducing stress in college students. This convergent mixed-method study provided aromatherapy, massage, and meditation music sessions to college students (N = 50) just before finals week. Paired t-tests analyzed pre-session and post-session perceived stress and anxiety as well as objective physiological measures, including salivary cortisol, heart rate, and blood pressure. There was a significant difference in the scores for perceived stress before and after the sessions, t(49) = 4.72, p < .001, as well as pre-anxiety and post-anxiety, t(49) = 10.27, p < .001. Additionally, salivary cortisol levels significantly reduced from pre-session to post-session t(49) = 2.76, p = .008; and a significant reduction in heart rate from pre-session to post-session, t(49) = 3.73, p < .001. This study demonstrates that 20 min of brief complementary interventions can alter students' subjective holistic health perspectives, with objective physiological data confirming changes that promote health and wellbeing.
Collapse
Affiliation(s)
- Linda Cefo
- Cleveland State University College of Health, Cleveland, OH, USA
| | | | - Allyson Chicoski
- University of Akron College of Health and Human Services, Akron, OH, USA
| | | | | | | |
Collapse
|
2
|
Plowright RK, Ahmed AN, Coulson T, Crowther TW, Ejotre I, Faust CL, Frick WF, Hudson PJ, Kingston T, Nameer PO, O'Mara MT, Peel AJ, Possingham H, Razgour O, Reeder DM, Ruiz-Aravena M, Simmons NB, Srinivas PN, Tabor GM, Tanshi I, Thompson IG, Vanak AT, Vora NM, Willison CE, Keeley ATH. Ecological countermeasures to prevent pathogen spillover and subsequent pandemics. Nat Commun 2024; 15:2577. [PMID: 38531842 PMCID: PMC10965931 DOI: 10.1038/s41467-024-46151-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.
Collapse
Affiliation(s)
- Raina K Plowright
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14853, USA.
| | - Aliyu N Ahmed
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Imran Ejotre
- Department of Biology, Muni University, P.O. Box 725, Arua, Uganda
| | - Christina L Faust
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Winifred F Frick
- Bat Conservation International, Austin, TX, 78746, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Peter J Hudson
- Centre for Infectious Disease Dynamics, Pennsylvania State University, State College, PA, 16801, USA
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409-3131, USA
| | - P O Nameer
- College of Climate Change and Environmental Science, Kerala Agricultural University, Kerala, 680 656, India
| | | | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, 4111, Australia
| | - Hugh Possingham
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Orly Razgour
- Biosciences, University of Exeter, Exeter, EX4 4PS, UK
| | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, 17937, USA
| | - Manuel Ruiz-Aravena
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14853, USA
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, 4111, Australia
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York City, NY, 10024, USA
| | | | - Gary M Tabor
- Center for Large Landscape Conservation, Bozeman, MT, 59771, USA
| | - Iroro Tanshi
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Small Mammal Conservation Organization, Benin City, 300251, Nigeria
- Department of Animal and Environmental Biology, University of Benin, Benin City, 300000, Nigeria
| | | | - Abi T Vanak
- Centre for Policy Design, Ashoka Trust for Research in Ecology and the Environment, Bengaluru, Karnataka, 560064, India
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Neil M Vora
- Conservation International, Arlington, VA, 22202, USA
| | - Charley E Willison
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
3
|
Reiche ME, Poels K, Bosmans LA, Vos WG, Van Tiel CM, Gijbels MJJ, Aarts SABM, Den Toom M, Beckers L, Weber C, Atzler D, Rensen PCN, Kooijman S, Lutgens E. Adipocytes control hematopoiesis and inflammation through CD40 signaling. Haematologica 2023; 108:1873-1885. [PMID: 36475519 PMCID: PMC10316249 DOI: 10.3324/haematol.2022.281482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/30/2022] [Indexed: 08/18/2024] Open
Abstract
The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.
Collapse
Affiliation(s)
- Myrthe E Reiche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Department of Medical Cell Biology, Uppsala University, Uppsala
| | - Kikkie Poels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Winnie G Vos
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Claudia M Van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Marion J J Gijbels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Myrthe Den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands; Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany; German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany; German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, Munich
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany; German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Cardiovascular Medicine, Experimental CardioVascular Immunology Laboratory, Mayo Clinic, Rochester, MN.
| |
Collapse
|
4
|
Hardy E, Sarker H, Fernandez-Patron C. Could a Non-Cellular Molecular Interactome in the Blood Circulation Influence Pathogens' Infectivity? Cells 2023; 12:1699. [PMID: 37443732 PMCID: PMC10341357 DOI: 10.3390/cells12131699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
We advance the notion that much like artificial nanoparticles, relatively more complex biological entities with nanometric dimensions such as pathogens (viruses, bacteria, and other microorganisms) may also acquire a biomolecular corona upon entering the blood circulation of an organism. We view this biomolecular corona as a component of a much broader non-cellular blood interactome that can be highly specific to the organism, akin to components of the innate immune response to an invading pathogen. We review published supporting data and generalize these notions from artificial nanoparticles to viruses and bacteria. Characterization of the non-cellular blood interactome of an organism may help explain apparent differences in the susceptibility to pathogens among individuals. The non-cellular blood interactome is a candidate therapeutic target to treat infectious and non-infectious conditions.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center of Molecular Immunology, P.O. Box 16040, Havana 11600, Cuba
| | - Hassan Sarker
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
5
|
Zhang R, Chen X, Wang Y, Bai X, Yang Q, Zhong Y, Yu XQ, Jin F, Yang W. BmMD-2A responds to 20-hydroxyecdysone and regulates Bombyx mori silkworm innate immunity in larva-to-pupa metamorphosis. INSECT SCIENCE 2023; 30:411-424. [PMID: 35871306 DOI: 10.1111/1744-7917.13097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
20E-hydroxyecdysone (20E) plays important roles in larval molting and metamorphosis in insects and is also involved in the insect innate immune response. Insect metamorphosis is a highly successful strategy for environmental adaptation and is the most vulnerable stage during which the insect is susceptible to various pathogens. 20E regulates a series of antimicrobial peptides (AMPs) through the immunodeficiency (IMD) pathway activation in Drosophila; nevertheless, whether other immune pathways are involved in 20E-regulated insect immunity is unknown. Our previous studies showed that BmMD-2A is a member of the MD-2-related lipid recognition (ML) family of proteins that are involved in the Bombyx mori innate immunity Toll signaling pathway. In this study, we further demonstrate that BmMD-2A is also positively regulated by 20E, and the BmMD-2A neutralization experiment suggested that 20E activates some downstream immune effect factors, the AMP genes against Escherichia coli and Staphylococcus aureus, through the regulation of BmMD-2A in larval metamorphosis, implying that B. mori may use the Toll-ML signaling pathway to maintain innate immune balance in the larval-pupal metamorphosis stage, which is a different innate immunity pathway regulated by 20E compared to the IMD pathway in Drosophila.
Collapse
Affiliation(s)
- Ruonan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xu Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qiong Yang
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yangjin Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fengliang Jin
- Guangdong Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wanying Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Santoso AMM, Jansen F, Peeters CFW, Baatenburg de Jong RJ, Brakenhoff RH, Langendijk JA, Leemans CR, Takes RP, Terhaard CHJ, van Straten A, Verdonck-de Leeuw IM. Psychoneurological Symptoms and Biomarkers of Stress and Inflammation in Newly Diagnosed Head and Neck Cancer Patients: A Network Analysis. Curr Oncol 2022; 29:7109-7121. [PMID: 36290836 PMCID: PMC9600319 DOI: 10.3390/curroncol29100559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 01/13/2023] Open
Abstract
Psychoneurological symptoms are commonly reported by newly diagnosed head and neck cancer (HNC) patients, yet there is limited research on the associations of these symptoms with biomarkers of stress and inflammation. In this article, pre-treatment data of a multi-center cohort of HNC patients were analyzed using a network analysis to examine connections between symptoms (poor sleep quality, anxiety, depression, fatigue, and oral pain), biomarkers of stress (diurnal cortisol slope), inflammation markers (c-reactive protein [CRP], interleukin [IL]-6, IL-10, and tumor necrosis factor alpha [TNF-α]), and covariates (age and body mass index [BMI]). Three centrality indices were calculated: degree (number of connections), closeness (proximity of a variable to other variables), and betweenness (based on the number of times a variable is located on the shortest path between any pair of other variables). In a sample of 264 patients, poor sleep quality and fatigue had the highest degree index; fatigue and CRP had the highest closeness index; and IL-6 had the highest betweenness index. The model yielded two clusters: a symptoms-cortisol slope-CRP cluster and a IL-6-IL-10-TNF-α-age-BMI cluster. Both clusters were connected most prominently via IL-6. Our findings provide evidence that poor sleep quality, fatigue, CRP, and IL-6 play an important role in the interconnections between psychoneurological symptoms and biomarkers of stress and inflammation in newly diagnosed HNC patients.
Collapse
Affiliation(s)
- Angelina M. M. Santoso
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioral and Movement Sciences & Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
- Cancer Center Amsterdam Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Femke Jansen
- Cancer Center Amsterdam Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Department of Otolaryngology—Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Correspondence:
| | - Carel F. W. Peeters
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Mathematical & Statistical Methods Group (Biometris), Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Robert J. Baatenburg de Jong
- Department of Otolaryngology and Head and Neck Surgery, Erasmus Cancer Institute, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ruud H. Brakenhoff
- Cancer Center Amsterdam Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Department of Otolaryngology—Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands
| | - C. René Leemans
- Cancer Center Amsterdam Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Department of Otolaryngology—Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Robert P. Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, 6525 GA Nijmegen, The Netherlands
| | - Chris H. J. Terhaard
- Department of Radiotherapy, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Annemieke van Straten
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioral and Movement Sciences & Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Irma M. Verdonck-de Leeuw
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioral and Movement Sciences & Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
- Cancer Center Amsterdam Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Department of Otolaryngology—Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
7
|
Hardy E, Fernandez-Patron C. Could Endogenous Glucocorticoids Influence SARS-CoV-2 Infectivity? Cells 2022; 11:cells11192955. [PMID: 36230917 PMCID: PMC9562004 DOI: 10.3390/cells11192955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Endogenous glucocorticoids and their synthetic analogues, such as dexamethasone, stimulate receptor-mediated signal transduction mechanisms on target cells. Some of these mechanisms result in beneficial outcomes whereas others are deleterious in the settings of pathogen infections and immunological disorders. Here, we review recent studies by several groups, including our group, showing that glucocorticoids can directly interact with protein components on SARS-CoV-2, the causative agent of COVID-19. We postulate an antiviral defence mechanism by which endogenous glucocorticoids (e.g., cortisol produced in response to SARS-CoV-2 infection) can bind to multiple sites on SARS-CoV-2 surface protein, Spike, inducing conformational alterations in Spike subunit 1 (S1) that inhibit SARS-CoV-2 interaction with the host SARS-CoV-2 receptor, ACE2. We suggest that glucocorticoids-mediated inhibition of S1 interaction with ACE2 may, consequently, affect SARS-CoV-2 infectivity. Further, glucocorticoids interactions with Spike could protect against a broad spectrum of coronaviruses and their variants that utilize Spike for infection of the host. These notions may be useful for the design of new antivirals for coronavirus diseases.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center of Molecular Immunology, P.O. Box 16040, Havana 11600, Cuba
- Correspondence: (E.H.); (C.F.-P.)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence: (E.H.); (C.F.-P.)
| |
Collapse
|
8
|
Psychological intervention to treat distress: An emerging frontier in cancer prevention and therapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188665. [PMID: 34896258 DOI: 10.1016/j.bbcan.2021.188665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Psychological distress, such as chronic depression and anxiety, is a topical problem. In the context of cancer patients, prevalence rates of psychological distress are four-times higher than in the general population and often confer worse outcomes. In addition to evidence from epidemiological studies confirming the links between psychological distress and cancer progression, a growing body of cellular and molecular studies have also revealed the complex signaling networks which are modulated by psychological distress-derived chronic stress during cancer progression. In this review, aiming to uncover the intertwined networks of chronic stress-driven oncogenesis and progression, we summarize physiological stress response pathways, like the HPA, SNS, and MGB axes, that modulate the release of stress hormones with potential carcinogenic properties. Furthermore, we discuss in detail the mechanisms behind these chronic stimulations contributing to the initiation and progression of cancer through direct regulation of cancer hallmarks-related signaling or indirect promotion of cancer risk factors (including obesity, disordered circadian rhythms, and premature senescence), suggesting a novel research direction into cancer prevention and therapy on the basis of psychological interventions.
Collapse
|
9
|
Wang L, Chen W, Kang FB, Zhang YH, Qi LL, Zhang YZ. Blood transfusion practices affect CD4 + CD25 + FOXP3 + regulatory T cells/T helper-17 cells and the clinical outcome of geriatric patients with hip fracture. Aging (Albany NY) 2021; 13:21408-21420. [PMID: 34470917 PMCID: PMC8457583 DOI: 10.18632/aging.203479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/17/2021] [Indexed: 05/01/2023]
Abstract
Hip fracture (HF) is common among older individuals and associated with high mortality, poor vitality and functional impairment. HF patients suffer whole body immunological changes and that lead to severe consequences, including immobilization, physical impairment and a high risk of complications. The objective of this study was to decipher the pattern of dynamic immunological changes, especially in two major T cell subsets, CD4+ CD25+ FOXP3+ regulatory T (Treg) cells and T helper-17 (Th17) cells, and their balance, during the hospital stay and to observe whether blood transfusion could influence these cells and clinical patietns' prognosis. In this study, ninety-eight consecutive HF patients were initially enrolled, and finally fifty-one patients qualified for the study, and correlation analysis of their clinical parameters was carried out to predict the meaning of their distribution in clinical practice. Our results showed that the frequency of Tregs gradually decreased, while the frequency of Th17 cells slowly increased in HF patients who received blood transfusion. The Treg frequency was inversely correlated with the level of hemoglobin (Hb), and Th17 cell frequency was positively related to fluctuations in Hb levels in HF patients after trauma. HF patients with a better prognosis and survival time showed decreased a Treg frequency and a decreased Treg/Th17 ratio. Transfusion helped reverse the imbalance in the frequencies of Tregs and Th17 cells and the Treg/Th17 ratio and especially contributed to a better outcome in HF patients with moderate-to-severe anemia. In conclusion, a higher frequency of peripheral blood Tregs and a higher Treg/Th17 ratio may be associated with unfavorable outcomes in HF patients, and blood transfusion may benefit moderate-to-severe HF patients rebalance their immune response.
Collapse
Affiliation(s)
- Ling Wang
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Wei Chen
- Department of Orthopedic Trauma, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Fu-Biao Kang
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, PR China
| | - Ya-Hui Zhang
- Department of Orthopedic Trauma, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Li-Li Qi
- Department of Pathogenic biology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Ying-Ze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Department of Orthopedic Trauma, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| |
Collapse
|
10
|
Suzuki K, Shichita T. Introduction: Immuno-neural Connections Special Issue. Int Immunol 2020. [DOI: 10.1093/intimm/dxaa065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kazuhiro Suzuki
- WPI Immunology Frontier Research Center, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takashi Shichita
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|