1
|
Lospinoso Severini F, Falco G, Notarangelo T. Role of Soluble Cytokine Receptors in Gastric Cancer Development and Chemoresistance. Int J Mol Sci 2025; 26:2534. [PMID: 40141175 PMCID: PMC11942508 DOI: 10.3390/ijms26062534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Gastric cancer is among the top five most important malignancies in the world due to the high burden of the disease and its lethality. Indeed, it is the fourth most common cause of death worldwide, characterized by a poor prognosis and low responsiveness to chemotherapy. Multidrug resistance limits the clinical management of the patient. Among these, the role of chronic activation of inflammatory pathways underlying gastric tumorigenesis should be highlighted. Furthermore, the gastric immunosuppressive TME influences the response to therapy. This review discusses the role of soluble cytokine receptors in the development and chemoresistance of gastric cancer, considered as a molecular marker and target of strategies to overcome resistance.
Collapse
Affiliation(s)
- Francesca Lospinoso Severini
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, PZ, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80138 Napoli, NA, Italy
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, AV, Italy
| | - Tiziana Notarangelo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, PZ, Italy
| |
Collapse
|
2
|
Sheng F, Li M, Yu JM, Yang SY, Zou L, Yang GJ, Zhang LL. IL-33/ST2 axis in diverse diseases: regulatory mechanisms and therapeutic potential. Front Immunol 2025; 16:1533335. [PMID: 39925809 PMCID: PMC11802536 DOI: 10.3389/fimmu.2025.1533335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Interleukin-33 (IL-33) is a nuclear factor and member of the IL-1 cytokine family. IL-33 is mainly expressed by epithelial and endothelial cells and exerts its function through interaction with various immune cells, and binding to its receptor can form the IL-33/Suppression of tumorigenicity 2 (ST2) signaling pathway. While most cytokines are actively synthesized within cells, IL-33 is produced passively in response to tissue damage or cell necrosis, indicating its role as a signaling molecule following cellular infection, stress, or trauma. IL-33/ST2 signaling pathway has been proved to play diverse role in the pathological process of central nervous system disorders, cancer, fibrosis, autoimmune diseases, etc. Although research on the IL-33/ST2 signaling pathway has deepened recently, relevant treatment strategies have been proposed, and even targeted drugs are in the preclinical stage; further research on the effect of the IL-33/ST2 signaling pathway in different diseases is still necessary, to provide a clearer understanding of the different roles of IL-33/ST2 in disease progression and to develop new drugs and treatment strategies. Because IL-33/ST2 plays an important role in the occurrence and progression of diseases, the study of therapeutic drugs targeting this pathway is also necessary. This review focused on recent studies on the positive or negative role of IL-33/ST2 in different diseases, as well as the current related drugs targeting IL-33/ST2 in the preclinical and clinical stage. The mechanism of IL-33/ST2 in different diseases and its mediating effect on different immune cells have been summarized, as well as the antibody drugs targeting IL-33 or ST2, natural compounds with a mediating effect, and small molecule substances targeting relative pathway. We aim to provide new ideas and treatment strategies for IL-33/ST2-related drugs to treat different diseases.
Collapse
Affiliation(s)
- Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Jia-Mei Yu
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Si-Yu Yang
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro−Products, Ningbo University, Ningbo, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| |
Collapse
|
3
|
Schettini N, Pacetti L, Corazza M, Borghi A. The Role of OX40-OX40L Axis in the Pathogenesis of Atopic Dermatitis. Dermatitis 2025; 36:28-36. [PMID: 38700255 DOI: 10.1089/derm.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
OX40 is a co-stimulatory immune checkpoint molecule that promotes the activation and the effector function of T lymphocytes through interaction with its ligand (OX40L) on antigen-presenting cells. OX40-OX40L axis plays a crucial role in Th1 and Th2 cell expansion, particularly during the late phases or long-lasting response. Atopic dermatitis is characterized by an immune dysregulation of Th2 activity and by an overproduction of proinflammatory cytokines such as interleukin (IL)-4 and IL-13. Other molecules involved in its pathogenesis include thymic stromal lymphopoietin, IL-33, and IL-25, which contribute to the promotion of OX40L expression on dendritic cells. Lesional skin in atopic dermatitis exhibits a higher level of OX40L+-presenting cells compared with other dermatologic diseases or normal skin. Recent clinical trials using antagonizing anti-OX40 or anti-OX40L antibodies have shown symptom improvement and cutaneous manifestation alleviation in patients with atopic dermatitis. These findings suggest the relevance of the OX40-OX40L axis in atopic dermatitis pathogenesis.
Collapse
Affiliation(s)
- Natale Schettini
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Lucrezia Pacetti
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Corazza
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Borghi
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Kotas ME, Gordon ED. Innovation through imitation: IL-33 decoys show promise in pulmonary fibrosis. J Pharmacol Exp Ther 2025; 392:100035. [PMID: 39893003 DOI: 10.1016/j.jpet.2024.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 02/04/2025] Open
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Erin D Gordon
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
5
|
Wu S, Jiao J, Wang N, He N, Wu Y, Jiang H, Fang Z, Chen R, Liu Y, Liu Y, Chen L, Zheng X, Jiang J. Tregs ST2 deficiency enhances the abscopal anti-tumor response induced by microwave ablation. Int Immunopharmacol 2024; 143:113330. [PMID: 39423663 DOI: 10.1016/j.intimp.2024.113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Thermal ablation (TA), including radiofrequency ablation (RFA) and Microwave ablation (MWA) could reduce tumor burden and can stimulate an immune response, but it cannot maintain a lasting immune response. The alarming cytokine IL-33 is constitutively expressed by epithelial cells, endothelial cells, and fibroblasts, but is released during tissue injury to alert the immune system. The presence of ST2+Tregs in TME may act as a barrier contributing to this phenomenon. METHODS In this study, we explored the impact of RFA on the expression of ST2 (also known as IL1RL1) in tumor-infiltrating lymphocytes (TILs). Subsequently, we constructed a Treg cell-specific deletion ST2 mouse model (Foxp3CreIl1rl1fl/fl) and evaluated the genetic phenotypes by flow cytometry. A bilateral dorsal tumor-bearing model was established in Foxp3Cre and Foxp3CreIl1rl1fl/fl mice to explore the anti-tumor effect of MWA. Finally, we used flow cytometry and single-cell transcriptome sequencing (scRNA-seq) to profile CD45+ immune cells within TME. RESULTS Our findings suggest that ablation upregulates ST2 expression in Tregs within the contralateral TME. Compared with Foxp3Cre mice, MWA significantly inhibited the growth of contralateral tumors in Foxp3CreIl1rl1fl/fl mice. Its mechanisms include reducing the proportion of Tregs, enhancing the infiltration and effector function of CD8+T cells, increasing the proportion of Effector CD8+T cells, reducing the proportion of Exhausted CD8+T cells, increasing MHC-I molecules in mDC cells and monocytes, and reducing the expression of TAM2 inhibitory molecules and chemokines. CONCLUSIONS Blocking IL-33/ST2 pathway in Tregs offers a new strategy for MWA in clinical studies of metastatic cancer.
Collapse
Affiliation(s)
- Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jing Jiao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Nuo Wang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Ningning He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - You Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Yingting Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Yungang Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213011 Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
6
|
Dobrican-Băruța CT, Deleanu DM, Iancu M, Muntean IA, Nedelea I, Bălan RG, Procopciuc LM, Filip GA. Exploring the Impact of IL-33 Gene Polymorphism ( rs1929992) on Susceptibility to Chronic Spontaneous Urticaria and Its Association with Serum Interleukin-33 Levels. Int J Mol Sci 2024; 25:13709. [PMID: 39769469 PMCID: PMC11677185 DOI: 10.3390/ijms252413709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/05/2025] Open
Abstract
Urticaria is a debilitating skin condition affecting up to 20% of the global population, characterized by erythematous, maculopapular lesions and significant quality of life impairment. This study focused on the role of interleukin 33 (IL-33) and its polymorphisms, particularly SNP rs1929992, in chronic spontaneous urticaria (CSU). Using demographic, clinical, and laboratory data from CSU patients and controls, we estimated allele and genotype frequencies, Hardy-Weinberg equilibrium condition, and serum IL-33 levels, using unconditional binomial logistic regression for association analysis. Results revealed that CSU patients had significantly higher frequencies of the minor allele of IL-33 rs1929992 compared to controls (31.25% vs. 17.35%, p = 0.024), and carriers of the GA genotype exhibited increased odds of CSU (adjusted OR = 2.208, p ≤ 0.001). Additionally, serum IL-33 levels were markedly elevated in CSU patients, particularly those with the GA genotype. The findings suggest that the IL-33 SNP is associated with an increased susceptibility to CSU, emphasizing its potential as a diagnostic and therapeutic biomarker. This study underscores the genetic and immunological underpinnings of CSU, paving the way for personalized treatment approaches.
Collapse
Affiliation(s)
- Carmen-Teodora Dobrican-Băruța
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Diana Mihaela Deleanu
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Mihaela Iancu
- Medical Informatics and Biostatistics, Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Adriana Muntean
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Irena Nedelea
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Radu-Gheorghe Bălan
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Lucia Maria Procopciuc
- Department of Biochemistry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Gabriela Adriana Filip
- Department of Anatomy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
7
|
Obata‐Ninomiya K, Jayaraman T, Ziegler SF. From the bench to the clinic: basophils and type 2 epithelial cytokines of thymic stromal lymphopoietin and IL-33. Clin Transl Immunology 2024; 13:e70020. [PMID: 39654685 PMCID: PMC11626414 DOI: 10.1002/cti2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 epithelial cytokines, including thymic stromal lymphopoietin and IL-33, play central roles in modulation of type 2 immune cells, such as basophils. Basophils are a small subset of granulocytes within the leukocyte population that predominantly exist in the blood. They have non-redundant roles in allergic inflammation in peripheral tissues such as the lung, skin and gut, where they increase and accumulate at inflammatory lesions and exclusively produce large amounts of IL-4, a type 2 cytokine. These inflammatory reactions are known to be, to some extent, phenocopies of infectious diseases of ticks and helminths. Recently, biologics related to both type 2 epithelial cytokines and basophils have been approved by the US Food and Drug Administration for treatment of allergic diseases. We summarised the roles of Type 2 epithelial cytokines and basophils in basic science to translational medicine, including recent findings.
Collapse
Affiliation(s)
| | | | - Steven F Ziegler
- Center of Fundamental ImmunologyBenaroya Research InstituteSeattleWAUSA
- Department of ImmunologyUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
8
|
Kowitt C, Zhang Q. Interleukin-33 and Obesity-Related Inflammation and Cancer. ENCYCLOPEDIA 2024; 4:1770-1789. [PMID: 40236667 PMCID: PMC11999627 DOI: 10.3390/encyclopedia4040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Interleukin-33 (IL-33) is a cytokine belonging to the IL-1 family. It is primarily associated with type 2 immune responses. It interacts with a receptor complex on immune cells in reaction to tissue damage or cellular injury. IL-33 is crucial in immune responses and is involved in various autoimmune and inflammatory diseases. Obesity is marked by chronic inflammation and is a known risk factor for several types of cancer. Recent studies have shown that IL-33 and its receptor complex are expressed in adipose (fat) tissue, suggesting they may play a role in obesity. While inflammation connects obesity and cancer, it is not yet clear whether IL-33 contributes to cancer associated with obesity. Depending on the cellular context, inflammatory environment, expression levels, and bioactivity, IL-33 can exhibit both protumorigenic and antitumorigenic effects. This review will explore the various functions of IL-33 in the inflammation linked to obesity and its relationship with cancer.
Collapse
Affiliation(s)
- Cameron Kowitt
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Liu X, Li D, Zhang Y, Liu H, Chen P, Zhao Y, Ruscitti P, Zhao W, Dong G. Identifying Common Genetic Etiologies Between Inflammatory Bowel Disease and Related Immune-Mediated Diseases. Biomedicines 2024; 12:2562. [PMID: 39595128 PMCID: PMC11592296 DOI: 10.3390/biomedicines12112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) have an increased risk of developing immune-mediated diseases. However, the genetic basis of IBD is complex, and an integrated approach should be used to elucidate the complex genetic relationship between IBD and immune-mediated diseases. METHODS The genetic relationship between IBD and 16 immune-mediated diseases was examined using linkage disequilibrium score regression. GWAS data were synthesized from two IBD databases using the METAL, and multi-trait analysis of genome-wide association studies was performed to enhance statistical robustness and identify novel genetic associations. Independent risk loci were meticulously examined using conditional and joint genome-wide multi-trait analysis, multi-marker analysis of genomic annotation, and functional mapping and annotation of significant genetic loci, integrating the information of quantitative trait loci and different methodologies to identify risk-related genes and proteins. RESULTS The results revealed four immune-mediated diseases (AS, psoriasis, iridocyclitis, and PsA) with a significant relationship with IBD. The multi-trait analysis revealed 909 gene loci of statistical significance. Of these loci, 28 genetic variants were closely related to IBD, and 7 single-nucleotide polymorphisms represented novel independent risk loci. In addition, 14 genes and 514 proteins were found to be associated with susceptibility to immune-mediated diseases. Notably, IL1RL1 emerged as a key player, present within pleiotropic genes across multiple protein databases, highlighting its potential as a therapeutic target. CONCLUSIONS This study suggests that the common polygenic determinants between IBD and immune-mediated diseases are widely distributed across the genome. The findings not only support a shared genetic relationship between IBD and immune-mediated diseases but also provide novel therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Xianqiang Liu
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yue Zhang
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
| | - Hao Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Wen Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guanglong Dong
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
10
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
11
|
Zhou Z, Xu J, Liu S, Lv Y, Zhang R, Zhou X, Zhang Y, Weng S, Xu H, Ba Y, Zuo A, Han X, Liu Z. Infiltrating treg reprogramming in the tumor immune microenvironment and its optimization for immunotherapy. Biomark Res 2024; 12:97. [PMID: 39227959 PMCID: PMC11373505 DOI: 10.1186/s40364-024-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Immunotherapy has shown promising anti-tumor effects across various tumors, yet it encounters challenges from the inhibitory tumor immune microenvironment (TIME). Infiltrating regulatory T cells (Tregs) are important contributors to immunosuppressive TIME, limiting tumor immunosurveillance and blocking effective anti-tumor immune responses. Although depletion or inhibition of systemic Tregs enhances the anti-tumor immunity, autoimmune sequelae have diminished expectations for the approach. Herein, we summarize emerging strategies, specifically targeting tumor-infiltrating (TI)-Tregs, that elevate the capacity of organisms to resist tumors by reprogramming their phenotype. The regulatory mechanisms of Treg reprogramming are also discussed as well as how this knowledge could be utilized to develop novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jiaxin Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Human Anatomy, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
12
|
Poto R, Cristinziano L, Criscuolo G, Strisciuglio C, Palestra F, Lagnese G, Di Salvatore A, Marone G, Spadaro G, Loffredo S, Varricchi G. The JAK1/JAK2 inhibitor ruxolitinib inhibits mediator release from human basophils and mast cells. Front Immunol 2024; 15:1443704. [PMID: 39188724 PMCID: PMC11345246 DOI: 10.3389/fimmu.2024.1443704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The Janus kinase (JAK) family includes four cytoplasmic tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine receptors. JAKs phosphorylate downstream signal transducers and activators of transcription (STAT). JAK-STAT5 pathways play a critical role in basophil and mast cell activation. Previous studies have demonstrated that inhibitors of JAK-STAT pathway blocked the activation of mast cells and basophils. Methods In this study, we investigated the in vitro effects of ruxolitinib, a JAK1/2 inhibitor, on IgE- and IL-3-mediated release of mediators from human basophils, as well as substance P-induced mediator release from skin mast cells (HSMCs). Results Ruxolitinib concentration-dependently inhibited IgE-mediated release of preformed (histamine) and de novo synthesized mediators (leukotriene C4) from human basophils. Ruxolitinib also inhibited anti-IgE- and IL-3-mediated cytokine (IL-4 and IL-13) release from basophils, as well as the secretion of preformed mediators (histamine, tryptase, and chymase) from substance P-activated HSMCs. Discussion These results indicate that ruxolitinib, inhibiting the release of several mediators from human basophils and mast cells, is a potential candidate for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
13
|
Ogiji ED, Aboheimed N, Ross K, Voller C, Siner R, Jensen RL, Jolly CE, Carr DF. Greater mechanistic understanding of the cutaneous pathogenesis of Stevens-Johnson syndrome/toxic epidermal necrolysis can shed light on novel therapeutic strategies: a comprehensive review. Curr Opin Allergy Clin Immunol 2024; 24:218-227. [PMID: 38753537 PMCID: PMC11213502 DOI: 10.1097/aci.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
PURPOSE OF REVIEW Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) are severe cutaneous adverse drug reactions (SCARs) characterized by widespread epithelial detachment and blistering, which affects the skin and mucocutaneous membranes. To date, therapeutic interventions for SJS/TEN have focused on systematic suppression of the inflammatory response using high-dose corticosteroids or intravenous immunoglobulin G (IgG), for example. No targeted therapies for SJS/TEN currently exist. RECENT FINDINGS Though our understanding of the pathogenesis of SJS/TEN has advanced from both an immunological and dermatological perspective, this knowledge is yet to translate into the development of new targeted therapies. SUMMARY Greater mechanistic insight into SJS/TEN would potentially unlock new opportunities for identifying or repurposing targeted therapies to limit or even prevent epidermal injury and blistering.
Collapse
Affiliation(s)
- Emeka D. Ogiji
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Department of Pharmacology and Therapeutics, Ebonyi State University, Abakaliki, Nigeria
| | - Nourah Aboheimed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Department of Pharmacy Practice, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University
| | - Calum Voller
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Ryan Siner
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Rebecca L. Jensen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Carol E. Jolly
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Daniel F. Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Jebbawi F, Chemnitzer A, Dietrich M, Pantelyushin S, Lam J, Rhiner T, Keller G, Waldern N, Canonica F, Fettelschoss-Gabriel A. Cytokines and chemokines skin gene expression in correlation with immune cells in blood and severity in equine insect bite hypersensitivity. Front Immunol 2024; 15:1414891. [PMID: 39076967 PMCID: PMC11284025 DOI: 10.3389/fimmu.2024.1414891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Background Insect bite hypersensitivity (IBH) is the most frequent skin allergy of horses and is highly debilitating, especially in the chronic phase. IBH is caused by IgE-mediated hypersensitivity reactions to culicoides midge bites and an imbalanced immune response that reduces the welfare of affected horses. Objective In the present study, we investigated the pathological mechanisms of IBH, aiming to understand the immune cell modulation in acute allergic skin lesions of IBH horses with the goal of finding possible biomarkers for a diagnostic approach to monitor treatment success. Methods By qPCR, we quantified the gene expression of cytokines, chemokines, and immune receptors in skin punch biopsies of IBH with different severity levels and healthy horses simultaneously in tandem with the analysis of immune cell counts in the blood. Results Our data show an increase in blood eosinophils, monocytes, and basophils with a concomitant, significant increase in associated cytokine, chemokine, and immune cell receptor mRNA expression levels in the lesional skin of IBH horses. Moreover, IL-5Ra, CCR5, IFN-γ, and IL-31Ra were strongly associated with IBH severity, while IL-31 and IL-33 were rather associated with a milder form of IBH. In addition, our data show a strong correlation of basophil cell count in blood with IL-31Ra, IL-5, IL-5Ra, IFN-γ, HRH2, HRH4, CCR3, CCR5, IL-12b, IL-10, IL-1β, and CCL26 mRNA expression in skin punch biopsies of IBH horses. Conclusion In summary, several cytokines and chemokines have been found to be associated with disease severity, hence contributing to IBH pathology. These molecules can be used as potential biomarkers to monitor the onset and progression of the disease or even to evaluate and monitor the efficacy of new therapeutic treatments for IBH skin allergy. To our knowledge, this is the first study that investigated immune cells together with a large set of genes related to their biological function, including correlation to disease severity, in a large cohort of healthy and IBH horses.
Collapse
Affiliation(s)
- Fadi Jebbawi
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Alex Chemnitzer
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Macsmeila Dietrich
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Stanislav Pantelyushin
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Juwela Lam
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Tanya Rhiner
- Evax AG, Guntershausen, Switzerland
- Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Giulia Keller
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | | | - Fabia Canonica
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Antonia Fettelschoss-Gabriel
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| |
Collapse
|
15
|
Abdul-Wahab GA, Alwan AM, Al-Karawi SI. Evaluation of Serum Interleukin-33 Level in Iraqi Patients with and without Periodontal Disease. Clin Cosmet Investig Dent 2024; 16:201-207. [PMID: 38854628 PMCID: PMC11162615 DOI: 10.2147/ccide.s464951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Periodontitis is a multifactorial inflammatory illness characterized by periodic tissue support deterioration. Interleukin-33 has recently been discovered as a new pro-inflammatory cytokine implicated in the pathogenesis of periodontitis. The objective of this case control study is to compare IL-33 levels among periodontitis patients and healthy volunteers using serum samples and investigate the potential association with clinical periodontal parameters. Materials and Methods A total of 100 subjects (50 patients with periodontal disease and 50 healthy individuals) were included in this case control study. Clinical plaque index (PLI), gingival index (GI), bleeding on probing (BOP), probing pocket depth (PPD) and clinical attachment loss (CAL) were assessed. Serum was extracted from the venous blood that was collected. Serum IL-33 values were measured using an enzyme-linked immunosorbent assay (ELISA). Results Serum levels of interleukin-33 showed considerably elevated level in the patient's group than in the healthy control group (P<0.01). There was a strong correlation between the blood levels of IL-33 and PLI, GI, and BOP (P≤ 0.05). While PPD and CAL demonstrated a non-significant relationship (P˃0.05). Conclusion The results of this study suggested that IL-33 may be used as a potential indicator of the inflammation associated with periodontitis and might have a role in the development of the disease. Further studies with large sample sizes are needed to improve knowledge about the role of IL-33 in periodontal health and disease. Clinical Significance Owing to the noticeable role that IL-33 plays in the pathogenicity of periodontitis as a local waring clue for the periodontal tissue breakdown, tissue-specific therapeutic strategies may improve.
Collapse
Affiliation(s)
- Ghasaq Asim Abdul-Wahab
- Department of Oral Surgery and Periodontology, College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| | - Alyamama Mahmood Alwan
- Department of Oral Surgery and Periodontology, College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| | - Sarah Ihsan Al-Karawi
- Department of Oral Surgery and Periodontology, College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
16
|
Reis RA, Stolf CS, de Carvalho Sampaio HA, da Costa Silva BY, Özlü T, Kenger EB, Miguel MMV, Santamaria MP, Monteiro MDF, Casati MZ, Casarin RCV. Impact of dietary inflammatory index on gingival health. J Periodontol 2024; 95:550-562. [PMID: 38152036 DOI: 10.1002/jper.23-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Periodontal disease is a biofilm-dependent chronic inflammatory condition triggered by a host response. Several factors impact systemic inflammation and could lead to changes in disease pathogenesis. Recently, studies have assessed the influence of nutritional patterns on the development of periodontitis. In the present cross-sectional study, we evaluated the dietary inflammatory profile on periodontal conditions, focusing on clinical, subgingival microbial, and cytokine assessment of individuals with periodontal health or gingivitis. METHODS One hundred patients with periodontal health or gingivitis were included. Plaque index (PI), Bleeding on probing (BoP), the probing depth (PD), and the clinical attachment level (CAL) for each patient were assessed. Nutritional data and the Dietary Inflammatory Index (DII) were recorded by two 24-h food recalls on non-consecutive days. Biofilm and gingival crevicular fluid (GCF) to assess the microbiome profile and inflammatory biomarkers were collected. Multiple regressions focused on the DII, age, and sex as predictors of periodontal conditions were done. RESULTS Age and moderate DII scores increased the risk of gingivitis by 1.64 and 3.94 times, respectively. Males with an elevated DII score had 27.15 times higher odds of being diagnosed with gingivitis and BoP (β = 6.54; p = 0.03). Elderly patients with a moderate or high DII score were less prone to gingivitis and increased BoP (p < 0.04) compared with younger subjects. Considering the DII, there were no differences in microbial alpha and beta diversity; however, distinct species abundance and a higher concentration of monocyte-chemoattractant protein-1 and interleukin 33 were seen in patients with a higher DII. CONCLUSION A pro-inflammatory diet significantly contributes to periodontal inflammation, modulating inflammatory biomarkers and affecting the subgingival microbial community in healthy individuals.
Collapse
Affiliation(s)
- Roberta Andrade Reis
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Camila Schmidt Stolf
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | | | - Bruna Yhang da Costa Silva
- Federal Institute of Education, Science and Technology of Ceará, Limoeiro do Norte, Fortaleza, CE, Brazil
| | - Tuğçe Özlü
- Nutrition and Dietetics, Faculty of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Emre Batuhan Kenger
- Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Bilgi University, Istanbul, Turkey
| | - Manuela Maria Vianal Miguel
- Division of Periodontics, Department of Diagnosis and Surgery, Institute of Science and Technology - São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Mauro Pedrine Santamaria
- Division of Periodontics, Department of Diagnosis and Surgery, Institute of Science and Technology - São Paulo State University (Unesp), São José dos Campos, SP, Brazil
- Division of Periodontology, Center of Oral Health Research, College of Dentistry - University of Kentucky (UK), Lexington, Kentucky, USA
| | - Mabelle de Freitas Monteiro
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Marcio Zaffalon Casati
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Renato Corrêa Viana Casarin
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Laky K, Frischmeyer-Guerrerio PA. Development and dysfunction of structural cells in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:1485-1499. [PMID: 38849184 PMCID: PMC11626564 DOI: 10.1016/j.jaci.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Eosinophilic esophagitis (EoE) is a disorder characterized by dysfunction and chronic local inflammation of the esophagus. The incidence and prevalence of EoE are increasing worldwide. The mechanisms responsible are poorly understood, and effective treatment options are limited. From the lumen outward, the esophagus comprises stratified squamous epithelium, lamina propria, and muscle. The tissue-specific nature of EoE strongly suggests that structural cells in the esophagus are involved in the EoE diathesis. Epithelial basal cell hyperplasia and dilated intercellular spaces are cardinal features of EoE. Some patients with EoE develop lamina propria fibrosis, strictures, or esophageal muscle dysmotility. Clinical symptoms of EoE are only weakly correlated with peak eosinophil count, implying that other cell types contribute to EoE pathogenesis. Epithelial, endothelial, muscle, and fibroblast cells can each initiate inflammation and repair, regulate tissue resident immune cells, recruit peripheral leukocytes, and tailor adaptive immune cell responses. A better understanding of how structural cells maintain tissue homeostasis, respond to cell-intrinsic and cell-extrinsic stressors, and exacerbate and/or resolve inflammatory responses in the esophagus is needed. This knowledge will facilitate the development of more efficacious treatment strategies for EoE that can restore homeostasis of both hematopoietic and structural elements in the esophagus.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
18
|
Arrizabalaga L, Risson A, Ezcurra-Hualde M, Aranda F, Berraondo P. Unveiling the multifaceted antitumor effects of interleukin 33. Front Immunol 2024; 15:1425282. [PMID: 38881897 PMCID: PMC11176530 DOI: 10.3389/fimmu.2024.1425282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Interleukin 33 (IL-33), once predominantly recognized for its pro-tumoral activities, has emerged as a multifunctional cytokine with antitumor properties. IL-33 pleiotropic activities include activation of Th1 CD4+ T cells, CD8+ T cells, NK cells, dendritic cells, eosinophils, as well as type 2 innate lymphoid cells. Regarding this immunomodulatory activity, IL-33 demonstrates synergistic interactions with various cancer therapies, including immune checkpoint blockade and chemotherapy. Combinatorial treatments leveraging IL-33 exhibit enhanced antitumor efficacy across different tumor models, promising novel avenues for cancer therapy. Despite its antitumor effects, the complex interplay of IL-33 within the tumor microenvironment underscores the need for further investigation. Understanding the mechanisms underlying IL-33's dual role as both a promoter and inhibitor of tumor progression is essential for refining therapeutic strategies and fully realizing its potential in cancer immunotherapy. This review delves into the intricate landscape of IL-33 effects within the tumor microenvironment, highlighting its pivotal role in orchestrating immune responses against cancer.
Collapse
Affiliation(s)
- Leire Arrizabalaga
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Aline Risson
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Miriam Ezcurra-Hualde
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Fernando Aranda
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Pedro Berraondo
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
19
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|
20
|
Liang Y, Wang H, Sun K, Sun J, Soong L. Lack of the IFN-γ signal leads to lethal Orientia tsutsugamushi infection in mice with skin eschar lesions. PLoS Pathog 2024; 20:e1012020. [PMID: 38743761 PMCID: PMC11125519 DOI: 10.1371/journal.ppat.1012020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/24/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-β. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hui Wang
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Keer Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
21
|
Tian C, Liu Q, Zhang X, Li Z. Blocking group 2 innate lymphoid cell activation and macrophage M2 polarization: potential therapeutic mechanisms in ovalbumin-induced allergic asthma by calycosin. BMC Pharmacol Toxicol 2024; 25:30. [PMID: 38650035 PMCID: PMC11036756 DOI: 10.1186/s40360-024-00751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Calycosin, a flavonoid compound extracted from Astragalus membranaceus, has shown anti-asthma benefits in house dust mite-induced asthma. Recent studies have suggested that innate-type cells, including group 2 innate lymphoid cells (ILC2s) and macrophages, serve as incentives for type 2 immunity and targets for drug development in asthma. This work focuses on the effects of calycosin on the dysregulated ILC2s and macrophages in allergic asthma. METHODS In vivo, the asthmatic mouse model was established with ovalbumin (OVA) sensitization and challenge, and calycosin was intraperitoneally administered at doses of 20 and 40 mg/kg. In vivo, mouse primary ILC2s were stimulated with interleukin (IL)-33 and mouse RAW264.7 macrophages were stimulated with IL-4 and IL-13 to establish the cell models. Cells were treated with calycosin at doses of 5 and 10 µM. RESULTS In vivo, we observed significantly reduced numbers of eosinophils, neutrophils, monocyte macrophages and lymphocytes in the bronchoalveolar lavage fluid (BALF) of OVA-exposed mice with 40 mg/kg calycosin. Histopathological assessment showed that calycosin inhibited the airway inflammation and remodeling caused by OVA. Calycosin markedly decreased the up-regulated IL-4, IL-5, IL-13, IL-33, and suppression tumorigenicity 2 (ST2) induced by OVA in BALF and/or lung tissues of asthmatic mice. Calycosin repressed the augment of arginase 1 (ARG1), IL-10, chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1) levels in the lung tissues of asthmatic mice. In vivo, calycosin inhibited the IL-33-induced activation as well as the increase of IL-4, IL-5, IL-13 and ST2 in ILC2s. Calycosin also repressed the increase of ARG1, IL-10, YM1 and MRC1 induced by IL-4 and IL-13 in RAW264.7 macrophages. In addition, we found that these changes were more significant in 40 mg/kg calycosin treatment than 20 mg/kg calycosin. CONCLUSIONS Collectively, this study showed that calycosin might attenuate OVA-induced airway inflammation and remodeling in asthmatic mice via preventing ILC2 activation and macrophage M2 polarization. Our study might contribute to further study of asthmatic therapy.
Collapse
Affiliation(s)
- Chunyan Tian
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Graduate, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Liu
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Zhang
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhuying Li
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
22
|
Kim HY, Jeong D, Kim JH, Chung DH. Innate Type-2 Cytokines: From Immune Regulation to Therapeutic Targets. Immune Netw 2024; 24:e6. [PMID: 38455467 PMCID: PMC10917574 DOI: 10.4110/in.2024.24.e6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
The intricate role of innate type-2 cytokines in immune responses is increasingly acknowledged for its dual nature, encompassing both protective and pathogenic dimensions. Ranging from defense against parasitic infections to contributing to inflammatory diseases like asthma, fibrosis, and obesity, these cytokines intricately engage with various innate immune cells. This review meticulously explores the cellular origins of innate type-2 cytokines and their intricate interactions, shedding light on factors that amplify the innate type-2 response, including TSLP, IL-25, and IL-33. Recent advancements in therapeutic strategies, specifically the utilization of biologics targeting pivotal cytokines (IL-4, IL-5, and IL-13), are discussed, offering insights into both challenges and opportunities. Acknowledging the pivotal role of innate type-2 cytokines in orchestrating immune responses positions them as promising therapeutic targets. The evolving landscape of research and development in this field not only propels immunological knowledge forward but also holds the promise of more effective treatments in the future.
Collapse
Affiliation(s)
- Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
| | - Dongjin Jeong
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
23
|
Wang Y, Ge WL, Wang SJ, Liu YY, Zhang ZH, Hua Y, Zhang XF, Zhang JJ. MiR-548t-5p regulates pancreatic ductal adenocarcinoma metastasis through an IL-33-dependent crosstalk between cancer cells and M2 macrophages. Cell Cycle 2024; 23:169-187. [PMID: 38267823 PMCID: PMC11037285 DOI: 10.1080/15384101.2024.2309026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
IL-33 has been associated with pro- and anticancer functions in cancer. However, its role in pancreatic cancer metastasis remains unknown. This study aimed to explore the role of miR-548t-5p/IL-33 axis in the metastasis of pancreatic cancer. Luciferase activity assay, qRT-PCR, Western blot and ELISA were performed to prove whether IL-33 is the target of miR-548t-5p. In vivo metastasis assay and cellular transwell assay were performed to explore the role of miR-548t-5p/IL-33 axis in the invasion and metastasis of pancreatic cancer. Co-culture experiments and immunohistochemistry were performed to observe whether IL-33 affects cell invasion and metastasis dependent on the involvement of M2 macrophages. THP-1 cell induction experiment and flow cytometry were performed to explore the effect of IL-33 on macrophage polarization. CCK-8, colony formation, cell apoptosis, cell cycle, cell wound healing and transwell assay were performed to investigate the effect of IL-33 induced M2 macrophages on cell malignant biological behavior by coculturing pancreatic cancer cells with the conditioned medium (CM) from macrophages. We found that miR-548t-5p regulated the expression and secretion of IL-33 in pancreatic cancer cells by directly targeting IL-33 mRNA. IL-33 secreted by cancer cells promoted the recruitment and activation of macrophages to a M2-like phenotype. In turn, IL-33 induced M2 macrophages promoted the migration and invasion of cancer cells. Moreover, IL-33 affected pancreatic cancer cell invasion dependent on the involvement of M2 macrophages in the co-culture system. Thus, our study suggested that manipulation of this IL-33-dependent crosstalk has a therapeutic potential for the treatment of pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, China
| | - Wan-Li Ge
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-Jun Wang
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Yong Liu
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Han Zhang
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Hua
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiong-Fei Zhang
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Chatterton C, Romero R, Jung E, Gallo DM, Suksai M, Diaz-Primera R, Erez O, Chaemsaithong P, Tarca AL, Gotsch F, Bosco M, Chaiworapongsa T. A biomarker for bacteremia in pregnant women with acute pyelonephritis: soluble suppressor of tumorigenicity 2 or sST2. J Matern Fetal Neonatal Med 2023; 36:2183470. [PMID: 36997168 PMCID: PMC10352993 DOI: 10.1080/14767058.2023.2183470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 02/15/2023] [Indexed: 04/01/2023]
Abstract
Objective: Sepsis is a leading cause of maternal death, and its diagnosis during the golden hour is critical to improve survival. Acute pyelonephritis in pregnancy is a risk factor for obstetrical and medical complications, and it is a major cause of sepsis, as bacteremia complicates 15-20% of pyelonephritis episodes in pregnancy. The diagnosis of bacteremia currently relies on blood cultures, whereas a rapid test could allow timely management and improved outcomes. Soluble suppression of tumorigenicity 2 (sST2) was previously proposed as a biomarker for sepsis in non-pregnant adults and children. This study was designed to determine whether maternal plasma concentrations of sST2 in pregnant patients with pyelonephritis can help to identify those at risk for bacteremia.Study design: This cross-sectional study included women with normal pregnancy (n = 131) and pregnant women with acute pyelonephritis (n = 36). Acute pyelonephritis was diagnosed based on a combination of clinical findings and a positive urine culture. Patients were further classified according to the results of blood cultures into those with and without bacteremia. Plasma concentrations of sST2 were determined by a sensitive immunoassay. Non-parametric statistics were used for analysis.Results: The maternal plasma sST2 concentration increased with gestational age in normal pregnancies. Pregnant patients with acute pyelonephritis had a higher median (interquartile range) plasma sST2 concentration than those with a normal pregnancy [85 (47-239) ng/mL vs. 31 (14-52) ng/mL, p < .001]. Among patients with pyelonephritis, those with a positive blood culture had a median plasma concentration of sST2 higher than that of patients with a negative blood culture [258 (IQR: 75-305) ng/mL vs. 83 (IQR: 46-153) ng/mL; p = .03]. An elevated plasma concentration of sST2 ≥ 215 ng/mL had a sensitivity of 73% and a specificity of 95% (area under the receiver operating characteristic curve, 0.74; p = .003) with a positive likelihood ratio of 13.8 and a negative likelihood ratio of 0.3 for the identification of patients who had a positive blood culture.Conclusion: sST2 is a candidate biomarker to identify bacteremia in pregnant women with pyelonephritis. Rapid identification of these patients may optimize patient care.
Collapse
Affiliation(s)
- Carolyn Chatterton
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
25
|
O'Grady SM, Kita H. ATP functions as a primary alarmin in allergen-induced type 2 immunity. Am J Physiol Cell Physiol 2023; 325:C1369-C1386. [PMID: 37842751 PMCID: PMC10861152 DOI: 10.1152/ajpcell.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.
Collapse
Affiliation(s)
- Scott M O'Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hirohito Kita
- Division of Allergy, Asthma and Immunology, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
26
|
Wang Z, Tang N. Unpacking the complexity of nuclear IL-33 (nIL-33): a crucial regulator of transcription and signal transduction. J Cell Commun Signal 2023:10.1007/s12079-023-00788-1. [PMID: 37878185 DOI: 10.1007/s12079-023-00788-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Interleukin-33 (IL-33) (NF-HEV), a chromatin-associated nuclear cytokine, is a member of the IL-1 family. IL-33 possesses a nuclear localization signal and a homeodomain (a structure resembling a helix-turn-helix) that can bind to nuclear chromatin. Research has revealed that IL-33 can function as a nuclear factor to regulate various biological processes. This review discusses the cellular localization, functional effects, and immune regulation of full length IL-33 (FLIL-33), cytokine IL-33 (sIL-33) and nuclear IL-33 (nIL-33). In addition, the post-translational modifications of nIL-33 and the hypothesis of using nIL-33 as a treatment method were also summarized. A multidisciplinary approach is required which integrates methods and techniques from genomics, proteomics, cell biology and immunology to provide comprehensive insights into the function and therapeutic potential of nIL-33.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
27
|
Jia Z, Guo M, Ge X, Chen F, Lei P. IL-33/ST2 Axis: A Potential Therapeutic Target in Neurodegenerative Diseases. Biomolecules 2023; 13:1494. [PMID: 37892176 PMCID: PMC10605306 DOI: 10.3390/biom13101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Interleukin 33 (IL-33) belongs to the IL-1 family and is localized in the nucleus. IL-33 is primarily composed of three distinct domains, namely the N-terminal domain responsible for nuclear localization, the intermediate sense protease domain, and the C-terminal cytokine domain. Its specific receptor is the suppression of tumorigenicity 2 (ST2), which is detected in serum-stimulated fibroblasts and oncogenes. While most other cytokines are actively produced in cells, IL-33 is passively produced in response to tissue damage or cell necrosis, thereby suggesting its role as an alarm following cell infection, stress, or trauma. IL-33 plays a crucial role in congenital and acquired immunity, which assists in the response to environmental stress and maintains tissue homeostasis. IL-33/ST2 interaction further produces many pro-inflammatory cytokines. Moreover, IL-33 is crucial for central nervous system (CNS) homeostasis and the pathogenic mechanisms underlying CNS degenerative disorders. The present work summarizes the structure of IL-33, its fundamental activities, and its role in immunoregulation and neurodegenerative diseases. Therefore, this work proposes that IL-33 may play a role in the pathogenic mechanism of diseases and can be used in the development of treatment strategies.
Collapse
Affiliation(s)
- Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100054, China;
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
28
|
Zheng P, Xiu Y, Chen Z, Yuan M, Li Y, Wang N, Zhang B, Zhao X, Li M, Liu Q, Shi FD, Jin WN. Group 2 innate lymphoid cells resolve neuroinflammation following cerebral ischaemia. Stroke Vasc Neurol 2023; 8:424-434. [PMID: 37072337 PMCID: PMC10647866 DOI: 10.1136/svn-2022-001919] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/02/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Acute brain ischaemia elicits pronounced inflammation, which aggravates neural injury. However, the mechanisms governing the resolution of acute neuroinflammation remain poorly understood. In contrast to regulatory T and B cells, group 2 innate lymphoid cells (ILC2s) are immunoregulatory cells that can be swiftly mobilised without antigen presentation; whether and how these ILC2s participate in central nervous system inflammation following brain ischaemia is still unknown. METHODS Leveraging brain tissues from patients who had an ischaemic stroke and a mouse model of focal ischaemia, we characterised the presence and cytokine release of brain-infiltrating ILC2s. The impact of ILC2s on neural injury was evaluated through antibody depletion and ILC2 adoptive transfer experiments. Using Rag2-/-γc-/- mice receiving passive transfer of IL-4-/- ILC2s, we further assessed the contribution of interleukin (IL)-4, produced by ILC2s, in ischaemic brain injury. RESULTS We demonstrate that ILC2s accumulate in the areas surrounding the infarct in brain tissues of patients with cerebral ischaemia, as well as in mice subjected to focal cerebral ischaemia. Oligodendrocytes were a major source of IL-33, which contributed to ILC2s mobilisation. Adoptive transfer and expansion of ILC2s reduced brain infarction. Importantly, brain-infiltrating ILC2s reduced the magnitude of stroke injury severity through the production of IL-4. CONCLUSIONS Our findings revealed that brain ischaemia mobilises ILC2s to curb neuroinflammation and brain injury, expanding the current understanding of inflammatory networks following stroke.
Collapse
Affiliation(s)
- Pei Zheng
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuwhen Xiu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhili Chen
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Yuan
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ningning Wang
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bohao Zhang
- Department of Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhao
- Department of Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minshu Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei-Na Jin
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Kumar V, Hertz M, Agro A, Byrne AJ. Type 1 invariant natural killer T cells in chronic inflammation and tissue fibrosis. Front Immunol 2023; 14:1260503. [PMID: 37818376 PMCID: PMC10561218 DOI: 10.3389/fimmu.2023.1260503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Chronic tissue inflammation often results in fibrosis characterized by the accumulation of extracellular matrix components remodeling normal tissue architecture and function. Recent studies have suggested common immune mechanisms despite the complexity of the interactions between tissue-specific fibroblasts, macrophages, and distinct immune cell populations that mediate fibrosis in various tissues. Natural killer T (NKT) cells recognizing lipid antigens bound to CD1d molecules have been shown to play an important role in chronic inflammation and fibrosis. Here we review recent data in both experimental models and in humans that suggest a key role of type 1 invariant NKT (iNKT) cell activation in the progression of inflammatory cascades leading to recruitment of neutrophils and activation of the inflammasome, macrophages, fibroblasts, and, ultimately, fibrosis. Emerging evidence suggests that iNKT-associated mechanisms contribute to type 1, type 2 and type 3 immune pathways mediating tissue fibrosis, including idiopathic pulmonary fibrosis (IPF). Thus, targeting a pathway upstream of these immune mechanisms, such as the inhibition of iNKT activation, may be important in modulating various fibrotic conditions.
Collapse
Affiliation(s)
- Vipin Kumar
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego, La Jolla, CA, United States
- GRI Bio, La Jolla, CA, United States
| | | | | | - Adam J. Byrne
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- School of Medicine and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Stojanovic B, Gajovic N, Jurisevic M, Stojanovic MD, Jovanovic M, Jovanovic I, Stojanovic BS, Milosevic B. Decoding the IL-33/ST2 Axis: Its Impact on the Immune Landscape of Breast Cancer. Int J Mol Sci 2023; 24:14026. [PMID: 37762328 PMCID: PMC10531367 DOI: 10.3390/ijms241814026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin-33 (IL-33) has emerged as a critical cytokine in the regulation of the immune system, showing a pivotal role in the pathogenesis of various diseases including cancer. This review emphasizes the role of the IL-33/ST2 axis in breast cancer biology, its contribution to cancer progression and metastasis, its influence on the tumor microenvironment and cancer metabolism, and its potential as a therapeutic target. The IL-33/ST2 axis has been shown to have extensive pro-tumorigenic features in breast cancer, starting from tumor tissue proliferation and differentiation to modulating both cancer cells and anti-tumor immune response. It has also been linked to the resistance of cancer cells to conventional therapeutics. However, the role of IL-33 in cancer therapy remains controversial due to the conflicting effects of IL-33 in tumorigenesis and anti-tumor response. The possibility of targeting the IL-33/ST2 axis in tumor immunotherapy, or as an adjuvant in immune checkpoint blockade therapy, is discussed.
Collapse
Affiliation(s)
- Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
| | - Milena Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Otorinolaringology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| |
Collapse
|
31
|
Dounce-Cuevas CA, Flores-Flores A, Bazán MS, Portales-Rivera V, Morelos-Ulíbarri AA, Bazán-Perkins B. Asthma and COVID-19: a controversial relationship. Virol J 2023; 20:207. [PMID: 37679779 PMCID: PMC10485988 DOI: 10.1186/s12985-023-02174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection induces a spectrum of clinical manifestations that depend on the immune response of the patient, i.e., from an asymptomatic form to an inflammatory response with multiorgan deterioration. In some cases, severe cases of SARS-CoV-2 are characterized by an excessive, persistent release of inflammatory mediators known as a cytokine storm. This phenomenon arises from an ineffective T helper (Th)-1 response, which is unable to control the infection and leads to a reinforcement of innate immunity, causing tissue damage. The evolution of the disease produced by SARS-CoV2, known as COVID-19, has been of interest in several research fields. Asthma patients have been reported to present highly variable outcomes due to the heterogeneity of the disease. For example, the Th2 response in patients with allergic asthma is capable of decreasing Th1 activation in COVID-19, preventing the onset of a cytokine storm; additionally, IL-33 released by damaged epithelium in the context of COVID-19 potentiates either Th1 or T2-high responses, a process that contributes to poor outcomes. IL-13, a T2-high inflammatory cytokine, decreases the expression of angiotensin converting enzyme-2 (ACE2) receptor, hindering SARS-CoV-2 entry; finally, poor outcomes have been observed in COVID-19 patients with severe neutrophilic asthma. In other contexts, the COVID-19 lockdown has had interesting effects on asthma epidemiology. The incidence of asthma in the most populated states in Mexico, including Tamaulipas, which has the highest asthma incidence in the country, showed similar tendencies independent of how strict the lockdown measures were in each state. As described worldwide for various diseases, a decrease in asthma cases was observed during the COVID-19 lockdown. This decrease was associated with a drop in acute respiratory infection cases. The drop in cases of various diseases, such as diabetes, hypertension or depression, observed in 2020 was restored in 2022, but not for asthma and acute respiratory infections. There were slight increases in asthma cases when in-person classes resumed. In conclusion, although many factors were involved in asthma outcomes during the pandemic, it seems that acute respiratory infection is intimately linked to asthma cases. Social distancing during remote learning, particularly school lockdown, appears to be an important cause of the decrease in cases.
Collapse
Affiliation(s)
- Carlos A Dounce-Cuevas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico
| | - Angélica Flores-Flores
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080, Mexico City, Mexico
| | - Mariana S Bazán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico
| | - Victor Portales-Rivera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico
| | | | - Blanca Bazán-Perkins
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico.
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080, Mexico City, Mexico.
| |
Collapse
|
32
|
Duan S, Wang J, Lou X, Chen D, Shi P, Jiang H, Wang Z, Li W, Qian F. A novel anti-IL-33 antibody recognizes an epitope FVLHN of IL-33 and has a therapeutic effect on inflammatory diseases. Int Immunopharmacol 2023; 122:110578. [PMID: 37423158 DOI: 10.1016/j.intimp.2023.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
As a crucial member of the Interleukin-1 (IL-1) family, IL-33 plays an indispensable role in modulating inflammatory responses. Here, we developed an effective anti-human IL-33 monoclonal antibody (mAb) named 5H8. Importantly, we have identified an epitope (FVLHN) of IL-33 protein as a recognition sequence for 5H8, which plays an important role in mediating the biological activity of IL-33. We observed that 5H8 significantly suppressed IL-33-induced IL-6 expression in bone marrow cells and mast cells in a dose-dependent manner in vitro. Furthermore, 5H8 effectively relievedHDM-induced asthma and PR8-induced acute lung injury in vivo. These findings indicate that targeting the FVLHN epitope is critical for inhibiting IL-33 function. In addition, wedetected that the Tm value of 5H8 was 66.47℃ and the KD value was 173.0 pM, which reflected that 5H8 had good thermal stability and high affinity. Taken together, our data suggest that our newly developed 5H8 antibody has potential as a therapeutic antibody for treating inflammatory diseases.
Collapse
Affiliation(s)
- Shixin Duan
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Xiamen Innovax Biotech Co, Xiamen, Fujian 361005, PR China
| | - Xinyi Lou
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Dongxin Chen
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Peiyunfeng Shi
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hongchao Jiang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhiming Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wen Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Feng Qian
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
33
|
Udomsinprasert W. Interleukin-1 family cytokines in liver cell death: a new therapeutic target for liver diseases. Expert Opin Ther Targets 2023; 27:1125-1143. [PMID: 37975716 DOI: 10.1080/14728222.2023.2285763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Liver cell death represents a basic biological process regulating the progression of liver diseases via distinct mechanisms. Accumulating evidence has uncovered participation of interleukin (IL)-1 family cytokines in liver cell death. Upon activation of cell death induced by hepatotoxic stimuli, IL1 family cytokines released by hepatic dead cells stimulate recruitment of immune cells, which in turn influence inflammation and subsequent liver injury, thus highlighting their potential as therapeutic targets in liver diseases. Enhancing our comprehension of mechanisms underlying IL1 family cytokine signaling in cell death responses could pave the way for novel therapeutic interventions aimed at addressing liver cell death-related liver pathologies. AREAS COVERED This review summarizes the recent findings reported in preclinical and clinical studies on mechanisms of liver cell death, alongside participation of IL1 family members consisting of IL1α, ILβ, IL18, and IL33 in liver cell death and their significant implications in liver diseases. EXPERT OPINION Discovery of new and innovative therapeutic approaches for liver diseases will need close cooperation between fundamental and clinical scientists to better understand the multi-step processes behind IL1 family cytokines' contributions to liver cell death.
Collapse
|
34
|
Kang MH, Hong J, Lee J, Cha MS, Lee S, Kim HY, Ha SJ, Lim YT, Bae YS. Discovery of highly immunogenic spleen-resident FCGR3 +CD103 + cDC1s differentiated by IL-33-primed ST2 + basophils. Cell Mol Immunol 2023; 20:820-834. [PMID: 37246159 PMCID: PMC10310784 DOI: 10.1038/s41423-023-01035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/25/2023] [Indexed: 05/30/2023] Open
Abstract
Recombinant interleukin-33 (IL-33) inhibits tumor growth, but the detailed immunological mechanism is still unknown. IL-33-mediated tumor suppression did not occur in Batf3-/- mice, indicating that conventional type 1 dendritic cells (cDC1s) play a key role in IL-33-mediated antitumor immunity. A population of CD103+ cDC1s, which were barely detectable in the spleens of normal mice, increased significantly in the spleens of IL-33-treated mice. The newly emerged splenic CD103+ cDC1s were distinct from conventional splenic cDC1s based on their spleen residency, robust effector T-cell priming ability, and surface expression of FCGR3. DCs and DC precursors did not express Suppressor of Tumorigenicity 2 (ST2). However, recombinant IL-33 induced spleen-resident FCGR3+CD103+ cDC1s, which were found to be differentiated from DC precursors by bystander ST2+ immune cells. Through immune cell fractionation and depletion assays, we found that IL-33-primed ST2+ basophils play a crucial role in the development of FCGR3+CD103+ cDC1s by secreting IL-33-driven extrinsic factors. Recombinant GM-CSF also induced the population of CD103+ cDC1s, but the population neither expressed FCGR3 nor induced any discernable antitumor immunity. The population of FCGR3+CD103+ cDC1s was also generated in vitro culture of Flt3L-mediated bone marrow-derived DCs (FL-BMDCs) when IL-33 was added in a pre-DC stage of culture. FL-BMDCs generated in the presence of IL-33 (FL-33-DCs) offered more potent tumor immunotherapy than control Flt3L-BMDCs (FL-DCs). Human monocyte-derived DCs were also more immunogenic when exposed to IL-33-induced factors. Our findings suggest that recombinant IL-33 or an IL-33-mediated DC vaccine could be an attractive protocol for better tumor immunotherapy.
Collapse
Affiliation(s)
- Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - JungHyub Hong
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Jinjoo Lee
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Min-Suk Cha
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Hye-Young Kim
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong Taik Lim
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
- Department of Nano Engineering and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea.
| |
Collapse
|
35
|
Jou E. Type 1 and type 2 cytokine-mediated immune orchestration in the tumour microenvironment and their therapeutic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:474-497. [PMID: 37455828 PMCID: PMC10345208 DOI: 10.37349/etat.2023.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Eric Jou
- Queens’ College, University of Cambridge, CB3 9ET Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
36
|
England E, Rees DG, Scott IC, Carmen S, Chan DTY, Chaillan Huntington CE, Houslay KF, Erngren T, Penney M, Majithiya JB, Rapley L, Sims DA, Hollins C, Hinchy EC, Strain MD, Kemp BP, Corkill DJ, May RD, Vousden KA, Butler RJ, Mustelin T, Vaughan TJ, Lowe DC, Colley C, Cohen ES. Tozorakimab (MEDI3506): an anti-IL-33 antibody that inhibits IL-33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction. Sci Rep 2023; 13:9825. [PMID: 37330528 PMCID: PMC10276851 DOI: 10.1038/s41598-023-36642-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Interleukin (IL)-33 is a broad-acting alarmin cytokine that can drive inflammatory responses following tissue damage or infection and is a promising target for treatment of inflammatory disease. Here, we describe the identification of tozorakimab (MEDI3506), a potent, human anti-IL-33 monoclonal antibody, which can inhibit reduced IL-33 (IL-33red) and oxidized IL-33 (IL-33ox) activities through distinct serum-stimulated 2 (ST2) and receptor for advanced glycation end products/epidermal growth factor receptor (RAGE/EGFR complex) signalling pathways. We hypothesized that a therapeutic antibody would require an affinity higher than that of ST2 for IL-33, with an association rate greater than 107 M-1 s-1, to effectively neutralize IL-33 following rapid release from damaged tissue. An innovative antibody generation campaign identified tozorakimab, an antibody with a femtomolar affinity for IL-33red and a fast association rate (8.5 × 107 M-1 s-1), which was comparable to soluble ST2. Tozorakimab potently inhibited ST2-dependent inflammatory responses driven by IL-33 in primary human cells and in a murine model of lung epithelial injury. Additionally, tozorakimab prevented the oxidation of IL-33 and its activity via the RAGE/EGFR signalling pathway, thus increasing in vitro epithelial cell migration and repair. Tozorakimab is a novel therapeutic agent with a dual mechanism of action that blocks IL-33red and IL-33ox signalling, offering potential to reduce inflammation and epithelial dysfunction in human disease.
Collapse
Affiliation(s)
| | - D Gareth Rees
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Ian Christopher Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sara Carmen
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Kirsty F Houslay
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Teodor Erngren
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mark Penney
- Early Oncology DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jayesh B Majithiya
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Laura Rapley
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dorothy A Sims
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Claire Hollins
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Elizabeth C Hinchy
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Dominic J Corkill
- Bioscience In Vivo, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Richard D May
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - David C Lowe
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
37
|
Robin A, Mackowiak C, Bost R, Dujardin F, Barbarin A, Thierry A, Hauet T, Pellerin L, Gombert JM, Salamé E, Herbelin A, Barbier L. Early activation and recruitment of invariant natural killer T cells during liver ischemia-reperfusion: the major role of the alarmin interleukin-33. Front Immunol 2023; 14:1099529. [PMID: 37228593 PMCID: PMC10203422 DOI: 10.3389/fimmu.2023.1099529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Over the past thirty years, the complexity of the αβ-T cell compartment has been enriched by the identification of innate-like T cells (ITCs), which are composed mainly of invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells. Based on animal studies using ischemia-reperfusion (IR) models, a key role has been attributed to iNKT cells in close connection with the alarmin/cytokine interleukin (IL)-33, as early sensors of cell-stress in the initiation of acute sterile inflammation. Here we have investigated whether the new concept of a biological axis of circulating iNKT cells and IL-33 applies to humans, and may be extended to other ITC subsets, namely MAIT and γδ-T cells, in the acute sterile inflammation sequence occurring during liver transplant (LT). From a prospective biological collection of recipients, we reported that LT was accompanied by an early and preferential activation of iNKT cells, as attested by almost 40% of cells having acquired the expression of CD69 at the end of LT (i.e. 1-3 hours after portal reperfusion), as opposed to only 3-4% of conventional T cells. Early activation of iNKT cells was positively correlated with the systemic release of the alarmin IL-33 at graft reperfusion. Moreover, in a mouse model of hepatic IR, iNKT cells were activated in the periphery (spleen), and recruited in the liver in WT mice, as early as the first hour after reperfusion, whereas this phenomenon was virtually missing in IL-33-deficient mice. Although to a lesser degree than iNKT cells, MAIT and γδ-T cells also seemed targeted during LT, as attested by 30% and 10% of them acquiring CD69 expression, respectively. Like iNKT cells, and in clear contrast to γδ-T cells, activation of MAIT cells during LT was closely associated with both release of IL-33 immediately after graft reperfusion and severity of liver dysfunction occurring during the first three post-operative days. All in all, this study identifies iNKT and MAIT cells in connection with IL-33 as new key cellular factors and mechanisms of acute sterile inflammation in humans. Further investigations are required to confirm the implication of MAIT and iNKT cell subsets, and to precisely assess their functions, in the clinical course of sterile inflammation accompanying LT.
Collapse
Affiliation(s)
- Aurélie Robin
- Centre Hospitalier Universitaire de Poitiers, Institut National de la Santé Et de la Recherche Médicale, Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation, Université de Poitiers, Poitiers, France
| | - Claire Mackowiak
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, Poitiers, France
| | - Romain Bost
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, Poitiers, France
| | - Fanny Dujardin
- Centre Hospitalier Universitaire (CHU) Trousseau, Pathology, Tours, France
| | - Alice Barbarin
- Centre Hospitalier Universitaire de Poitiers, Institut National de la Santé Et de la Recherche Médicale, Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation, Université de Poitiers, Poitiers, France
| | - Antoine Thierry
- Université de Poitiers, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Centre Hospitalier Universitaire (CHU) de Poitiers, Nephrology, Poitiers, France
| | - Thierry Hauet
- Université de Poitiers, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Centre Hospitalier Universitaire (CHU) de Poitiers, Biochemistry, Poitiers, France
| | - Luc Pellerin
- Université de Poitiers, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Centre Hospitalier Universitaire (CHU) de Poitiers, Biochemistry, Poitiers, France
| | - Jean-Marc Gombert
- Université de Poitiers, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Centre Hospitalier Universitaire (CHU) de Poitiers, Immunology, Poitiers, France
| | - Ephrem Salamé
- Université de Tours, Centre Hospitalier Universitaire (CHU) Trousseau, Digestive Surgery and Liver Transplantation, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Tours, France
| | - André Herbelin
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, Poitiers, France
| | - Louise Barbier
- Université de Tours, Centre Hospitalier Universitaire (CHU) Trousseau, Digestive Surgery and Liver Transplantation, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Tours, France
| |
Collapse
|
38
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
39
|
Barker KH, Higham JP, Pattison LA, Chessell IP, Welsh F, Smith ESJ, Bulmer DC. Sensitization of colonic nociceptors by IL-13 is dependent on JAK and p38 MAPK activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G250-G261. [PMID: 36749569 PMCID: PMC10010921 DOI: 10.1152/ajpgi.00280.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.
Collapse
Affiliation(s)
- Katie H Barker
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Iain P Chessell
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Fraser Welsh
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Tacrolimus improved the pregnancy outcomes of patients with refractory recurrent spontaneous abortion and immune bias disorders: a randomized controlled trial. Eur J Clin Pharmacol 2023; 79:627-634. [PMID: 36912957 DOI: 10.1007/s00228-023-03473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
OBJECTIVE To investigate the effect of tacrolimus treatment on refractory recurrent spontaneous abortion (RSA) patients with elevated serum IL-33/ST2 levels. METHODS This study was a randomized controlled trial (RCT) of refractory RSA patients with elevated peripheral blood IL-33/ST2 levels or an elevated Th1/Th2 cell ratio. A total of 149 women were enrolled, each of whom had had at least 3 serial miscarriages and was confirmed to have elevated peripheral blood IL-33/ST2 levels or an elevated Th1/Th2 cell ratio. These women were randomly divided into two groups. The tacrolimus group (n = 75) received basic therapy with the addition of tacrolimus (Prograf). Tacrolimus was administered at a dose of 0.05 ~ 0.1 mg/kg/day from the end of the menstrual period to the beginning of the next menstrual period or to the 10th week of pregnancy. In contrast, basic therapy with the addition of placebo was given to the placebo group (n = 74). The main study outcome was the delivery of healthy newborns without deformities. RESULTS A total of 60 (80.00%) patients in the tacrolimus group and 47 (63.51%) patients in the placebo group delivered healthy newborns [P = 0.03, odds ratio = 2.30; 95% confidence interval (1.10 ~ 4.81)]. The peripheral blood IL-33/ST2 levels and Th1/Th2 cell ratio of the tacrolimus group were much lower than those of the placebo group (P < 0.05). CONCLUSION We validated our previous finding that serum IL-33 and sST2 concentrations are related to RSA. Immunosuppressive treatment with tacrolimus was demonstrated to be a promising method to treat refractory RSA with immune bias disorders.
Collapse
|
41
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
42
|
A CpG-Oligodeoxynucleotide Suppresses Th2/Th17 Inflammation by Inhibiting IL-33/ST2 Signaling in Mice from a Model of Adoptive Dendritic Cell Transfer of Smoke-Induced Asthma. Int J Mol Sci 2023; 24:ijms24043130. [PMID: 36834541 PMCID: PMC9962992 DOI: 10.3390/ijms24043130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Tobacco smoke exposure is a major environmental risk factor that facilitates the development and progression of asthma. Our previous study showed that CpG oligodeoxynucleotide (CpG-ODN) inhibits thymic stromal lymphopoietin (TSLP)-dendritic cells (DCs) to reduce Th2/Th17-related inflammatory response in smoke-related asthma. However, the mechanism underlying CpG-ODN -downregulated TSLP remains unclear. A combined house dust mite (HDM)/cigarette smoke extract (CSE) model was used to assess the effects of CpG-ODN on airway inflammation, Th2/Th17 immune response, and amount of IL-33/ST2 and TSLP in mice with smoke-related asthma induced by adoptive transfer of bone-marrow-derived dendritic cells (BMDCs) and in the cultured human bronchial epithelium (HBE) cells administered anti-ST2, HDM, and/or CSE. In vivo, compared to the HDM alone model, the combined HDM/CSE model had aggravated inflammatory responses, while CpG-ODN attenuated airway inflammation, airway collagen deposition, and goblet cell hyperplasia and reduced the levels of IL-33/ST2, TSLP, and Th2/Th17-cytokines in the combined model. In vitro, IL-33/ST2 pathway activation promoted TSLP production in HBE cells, which could be inhibited by CpG-ODN. CpG-ODN administration alleviated Th2/Th17 inflammatory response, decreased the infiltration of inflammatory cells into the airway, and improved the remodeling of smoke-related asthma. The underlying mechanism may be that CpG-ODN inhibits the TSLP-DCs pathway by downregulating the IL-33/ST2 axis.
Collapse
|
43
|
Akinseye C, Crim C, Newlands A, Fairman D. Efficacy and safety of GSK3772847 in participants with moderate-to-severe asthma with allergic fungal airway disease: A phase IIa randomized, multicenter, double-blind, sponsor-open, comparative trial. PLoS One 2023; 18:e0281205. [PMID: 36735745 PMCID: PMC9897512 DOI: 10.1371/journal.pone.0281205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Current treatments for allergic fungal airway disease are not specific for asthma and are associated with limited efficacy or safety concerns. This Phase IIa randomized, multicenter, double-blind, sponsor-open, comparative trial assessed the efficacy and safety of GSK3772847, an anti-interleukin-33 receptor monoclonal antibody, in moderate-to-severe asthma patients with allergic fungal airway disease (ClinicalTrials.gov: NCT03393806). METHODS Key inclusion criteria required participants of ≥18 years of age with a documented diagnosis of moderate-to-severe asthma (≥12 months) treated with inhaled corticosteroid and long-acting β2-agonist (≥4 months); evidence of allergic fungal airway disease (fungal sensitization to Aspergillus fumigatus [>0.35 KU/L] or Penicillium chrysogenum [>0.35 KU/L] and no history of concurrent respiratory disease/recurrent or ongoing non-pulmonary infections. Participants were randomized (1:1) to GSK3772847 (10 mg/kg) or matching placebo intravenously administered at Weeks 0, 4, and 8, in addition to standard of care. Randomization was based on systemic anti-fungal treatment status at screening. Primary endpoints were change from baseline (Week 0) to Week 12 in blood eosinophils and fractional exhaled nitric oxide. RESULTS Participants (n = 17) were randomized to GSK3772847 (n = 8) or placebo (n = 9) for 12 weeks and included in efficacy and safety analyses. This study was terminated early due to the high rate of screen failure, low enrollment, and unlikely feasibility of timely study completion. There were no differences observed in blood eosinophils or fractional exhaled nitric oxide between treatment arms. Target engagement was demonstrated by reductions in free soluble suppressor of tumorigenicity 2 levels in the GSK3772847 arm throughout the treatment period. No deaths occurred and no new safety signals were identified. CONCLUSIONS Lack of clinical benefits with GSK3772847 was likely due to the small sample size, highlighting the need for larger prospective studies.
Collapse
Affiliation(s)
- Chika Akinseye
- Medicines Research Centre, GSK, Stevenage, Hertfordshire, United Kingdom
- * E-mail:
| | - Courtney Crim
- Clinical Sciences–Respiratory, GSK, Research Triangle Park, North Carolina, United States of America
| | - Amy Newlands
- Respiratory Medicines Development Centre, GSK, Brentford, Middlesex, United Kingdom
| | - David Fairman
- Clinical Pharmacology Modelling and Simulation, GSK, Stevenage, Hertfordshire, United Kingdom
| |
Collapse
|
44
|
Balakrishnan B, Kulkarni UP, Pai AA, Illangeswaran RSS, Mohanan E, Mathews V, George B, Balasubramanian P. Biomarkers for early complications post hematopoietic cell transplantation: Insights and challenges. Front Immunol 2023; 14:1100306. [PMID: 36817455 PMCID: PMC9932777 DOI: 10.3389/fimmu.2023.1100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Hematopoietic cell transplantation is an established curative treatment option for various hematological malignant, and non-malignant diseases. However, the success of HCT is still limited by life-threatening early complications post-HCT, such as Graft Versus Host Disease (GVHD), Sinusoidal Obstruction Syndrome (SOS), and transplant-associated microangiopathy, to name a few. A decade of research in the discovery and validation of novel blood-based biomarkers aims to manage these early complications by using them for diagnosis or prognosis. Advances in this field have also led to predictive biomarkers to identify patients' likelihood of response to therapy. Although biomarkers have been extensively evaluated for different complications, these are yet to be used in routine clinical practice. This review provides a detailed summary of various biomarkers for individual early complications post-HCT, their discovery, validation, ongoing clinical trials, and their limitations. Furthermore, this review also provides insights into the biology of biomarkers and the challenge of obtaining a universal cut-off value for biomarkers.
Collapse
Affiliation(s)
- Balaji Balakrishnan
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
45
|
Gauvreau GM, Bergeron C, Boulet LP, Cockcroft DW, Côté A, Davis BE, Leigh R, Myers I, O'Byrne PM, Sehmi R. Sounding the alarmins-The role of alarmin cytokines in asthma. Allergy 2023; 78:402-417. [PMID: 36463491 PMCID: PMC10108333 DOI: 10.1111/all.15609] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022]
Abstract
The alarmin cytokines thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 are epithelial cell-derived mediators that contribute to the pathobiology and pathophysiology of asthma. Released from airway epithelial cells exposed to environmental triggers, the alarmins drive airway inflammation through the release of predominantly T2 cytokines from multiple effector cells. The upstream positioning of the alarmins is an attractive pharmacological target to block multiple T2 pathways important in asthma. Blocking the function of TSLP inhibits allergen-induced responses including bronchoconstriction, airway hyperresponsiveness, and inflammation, and subsequent clinical trials of an anti-TSLP monoclonal antibody, tezepelumab, in asthma patients demonstrated improvements in lung function, airway responsiveness, inflammation, and importantly, a reduction in the rate of exacerbations. Notably, these improvements were observed in patients with T2-high and with T2-low asthma. Clinical trials blocking IL-33 and its receptor ST2 have also shown improvements in lung function and exacerbation rates; however, the impact of blocking the IL-33/ST2 axis in T2-high versus T2-low asthma is unclear. To date, there is no evidence that IL-25 blockade is beneficial in asthma. Despite the considerable overlap in the cellular functions of IL-25, IL-33, and TSLP, they appear to have distinct roles in the immunopathology of asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Celine Bergeron
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Donald W Cockcroft
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andréanne Côté
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth E Davis
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irvin Myers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
46
|
Andoh A, Nishida A. Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease. J Gastroenterol 2023; 58:69-78. [PMID: 36376594 DOI: 10.1007/s00535-022-01936-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Interleukin-33 (IL-33), IL-36, and IL-38 are members of the IL-1 cytokine family. The expression of each cytokine has been reported to be increased in the inflamed mucosa of patients with inflammatory bowel disease (IBD). IL-33 and IL-36 have been studied for pro- and anti-inflammatory functions, and IL-38 has been characterized as an anti-inflammatory cytokine by antagonizing the IL-36 receptor (IL-36R). IL-33 is a nuclear cytokine constitutively expressed by certain cell types such as epithelial, endothelial, and fibroblast-like cells and released on necrotic cell death. IL-33 mainly induces type 2 immune response through its receptor suppression tumorigenicity 2 (ST2) from Th2 cells and type 2 innate lymphoid cells (ILC2s), but also by stimulating Th1 cells, regulatory T cells, and CD8+ T cells. IL-36 cytokines consist of three agonists: IL-36α, IL-36β, and IL-36γ, and two receptor antagonists: IL-36R antagonist (IL-36Ra) and IL-38. All IL-36 cytokines bind to the IL-36R complex and exert various functions through NF-κB and mitogen-activated protein kinase (MAPK) pathways in inflammatory settings. IL-33 and IL-36 also play a crucial role in intestinal fibrosis characteristic manifestation of CD. In this review, we focused on the current understanding of the pro- and anti-inflammatory roles of IL-33, IL-36, and IL38 in experimental colitis and IBD patients.
Collapse
Affiliation(s)
- Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
47
|
Calderon AA, Dimond C, Choy DF, Pappu R, Grimbaldeston MA, Mohan D, Chung KF. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur Respir Rev 2023; 32:32/167/220144. [PMID: 36697211 PMCID: PMC9879340 DOI: 10.1183/16000617.0144-2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
Interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) are alarmins that are released upon airway epithelial injury from insults such as viruses and cigarette smoke, and play critical roles in the activation of immune cell populations such as mast cells, eosinophils and group 2 innate lymphoid cells. Both cytokines were previously understood to primarily drive type 2 (T2) inflammation, but there is emerging evidence for a role for these alarmins to additionally mediate non-T2 inflammation, with recent clinical trial data in asthma and COPD cohorts with non-T2 inflammation providing support. Currently available treatments for both COPD and asthma provide symptomatic relief with disease control, improving lung function and reducing exacerbation rates; however, there still remains an unmet need for further improving lung function and reducing exacerbations, particularly for those not responsive to currently available treatments. The epithelial cytokines/alarmins are involved in exacerbations; biologics targeting TSLP and IL-33 have been shown to reduce exacerbations in moderate-to-severe asthma, either in a broad population or in specific subgroups, respectively. For COPD, while there is clinical evidence for IL-33 blockade impacting exacerbations in COPD, clinical data from anti-TSLP therapies is awaited. Clinical data to date support an acceptable safety profile for patients with airway diseases for both anti-IL-33 and anti-TSLP antibodies in development. We examine the roles of IL-33 and TSLP, their potential use as drug targets, and the evidence for target patient populations for COPD and asthma, together with ongoing and future trials focused on these targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Divya Mohan
- Genentench, Inc., San Francisco, CA, USA,Corresponding author: Divya Mohan ()
| | - Kian Fan Chung
- National Heart and Lung institute, Imperial College London, London, UK
| |
Collapse
|
48
|
Jin J, Wan Y, Shu Q, Liu J, Lai D. Knowledge mapping and research trends of IL-33 from 2004 to 2022: a bibliometric analysis. Front Immunol 2023; 14:1158323. [PMID: 37153553 PMCID: PMC10157155 DOI: 10.3389/fimmu.2023.1158323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Background IL-33 has been studied widely but its comprehensive and systematic bibliometric analysis is yet available. The present study is to summarize the research progress of IL-33 through bibliometric analysis. Methods The publications related to IL-33 were identified and selected from the Web of Science Core Collection (WoSCC) database on 7 December 2022. The downloaded data was analyzed with bibliometric package in R software. CiteSpace and VOSviewer were used to conduct IL-33 bibliometric and knowledge mapping analysis. Results From 1 January 2004 to 7 December 2022, 4711 articles on IL-33 research published in 1009 academic journals by 24652 authors in 483 institutions from 89 countries were identified. The number of articles had grown steadily over this period. The United States of America(USA) and China are the major contributors in the field of research while University of Tokyo and University of Glasgow are the most active institutions. The most prolific journal is Frontiers in Immunology, while the Journal of Immunity is the top 1 co-cited journal. Andrew N. J. Mckenzie published the most significant number of articles and Jochen Schmitz was co-cited most. The major fields of these publications are immunology, cell biology, and biochemistry & molecular biology. After analysis, the high-frequency keywords of IL-33 research related to molecular biology (sST2, IL-1), immunological effects (type 2 immunity, Th2 cells), and diseases (asthma, cancer, cardiovascular diseases). Among these, the involvement of IL-33 in the regulation of type 2 inflammation has strong research potential and is a current research hotspot. Conclusion The present study quantifies and identifies the current research status and trends of IL-33 using bibliometric and knowledge mapping analysis. This study may offer the direction of IL-33-related research for scholars.
Collapse
Affiliation(s)
- Jingyi Jin
- Department of Neonatal Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Dengming Lai, ; Jinghua Liu,
| | - Dengming Lai
- Department of Neonatal Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Dengming Lai, ; Jinghua Liu,
| |
Collapse
|
49
|
Aggeletopoulou I, Tsounis EP, Triantos C. Molecular Mechanisms Underlying IL-33-Mediated Inflammation in Inflammatory Bowel Disease. Int J Mol Sci 2022; 24:ijms24010623. [PMID: 36614065 PMCID: PMC9820409 DOI: 10.3390/ijms24010623] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Interleukin-33 (IL-33) is a cytokine defined by its pleiotropic function, acting either as a typical extracellular cytokine or as a nuclear transcription factor. IL-33 and its receptor, suppression of tumorigenicity 2 (ST2), interact with both innate and adaptive immunity and are considered critical regulators of inflammatory disorders. The IL-33/ST2 axis is involved in the maintenance of intestinal homeostasis; on the basis of their role as pro- or anti-inflammatory mediators of first-line innate immunity, their expression is of great importance in regard to mucosal defenses. Mucosal immunity commonly presents an imbalance in inflammatory bowel disease (IBD). This review summarizes the main cellular and molecular aspects of IL-33 and ST2, mainly focusing on the current evidence of the pro- and anti-inflammatory effects of the IL-33/ST2 axis in the course of ulcerative colitis and Crohn's disease, as well as the molecular mechanisms underlying the association of IL-33/ST2 signaling in IBD pathogenesis. Although IL-33 modulates and impacts the development, course, and recurrence of the inflammatory response, the exact role of this molecule is elusive, and it seems to be associated with the subtype of the disease or the disease stage. Unraveling of IL-33/ST2-mediated mechanisms involved in IBD pathology shows great potential for clinical application as therapeutic targets in IBD treatment.
Collapse
|
50
|
The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int J Mol Sci 2022; 24:ijms24010132. [PMID: 36613575 PMCID: PMC9820098 DOI: 10.3390/ijms24010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recurrent pregnancy losses (RPL) is a common reproductive disorder with various underlying etiologies. In recent years, rapid progress has been made in exploring the immunological mechanisms for RPL. A propensity toward Th2 over Th1 and regulatory T (Treg) over Th17 immune responses may be advantageous for reproductive success. In women with RPL and animals prone to abortion, an inordinate expression of cytokines associated with implantation and early embryo development is present in the endometrium or decidua secreted from immune and non-immune cells. Hence, an adverse cytokine milieu at the maternal-fetal interface assaults immunological tolerance, leading to fetal rejection. Similar to T cells, NK cells can be categorized based on the characteristics of cytokines they secrete. Decidual NK (dNK) cells of RPL patients exhibited an increased NK1/NK2 ratio (IFN-γ/IL-4 producing NK cell ratios), leading to pro-inflammatory cytokine milieu and increased NK cell cytotoxicity. Genetic polymorphism may be the underlying etiologies for Th1 and Th17 propensity since it alters cytokine production. In addition, various hormones participate in cytokine regulations, including progesterone and estrogen, controlling cytokine balance in favor of the Th2 type. Consequently, the intricate regulation of cytokines and hormones may prevent the RPL of immune etiologies. Local or systemic administration of cytokines or their antagonists might help maintain adequate cytokine milieu, favoring Th2 over Th1 response or Treg over Th17 immune response in women with RPL. Herein, we provided an updated comprehensive review regarding the immune-regulatory role of pro- and anti-inflammatory cytokines in RPL. Understanding the roles of cytokines involved in RPL might significantly advance the early diagnosis, monitoring, and treatment of RPL.
Collapse
|