1
|
Burke Ó, Zeden MS, O’Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 PMCID: PMC11178275 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Ruffier d’Epenoux L, Barbier P, Fayoux E, Guillouzouic A, Lecomte R, Deschanvres C, Nich C, Bémer P, Grégoire M, Corvec S. Dalbavancin-resistant Staphylococcus epidermidis in vivo selection following a prosthetic joint infection: phenotypic and genomic characterization. JAC Antimicrob Resist 2024; 6:dlae163. [PMID: 39429235 PMCID: PMC11487905 DOI: 10.1093/jacamr/dlae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Background Dalbavancin is a lipoglycopeptide antibiotic with a wide spectrum of activity against Gram-positive bacteria, including MDR isolates. Its pharmacokinetic properties and administration patterns could be useful for the treatment of bone and joint infections, especially prosthetic joint infections (PJIs). Introduction We report the case of an 80-year-old man who experienced an acute periprosthetic joint infection of his right total knee arthroplasty (TKA). A DAIR procedure was done with tissue sampling, which allowed identification of a linezolid-resistant MDR S. epidermidis (LR-MDRSE) strain. The patient was then treated with dalbavancin (four injections). Methods We studied the phenotypic and genomic evolution of the strains and plasma through concentrations of dalbavancin at different points in time. Results After four injections (1500 mg IV) of dalbavancin over a 6 month period, the dalbavancin MIC increased 4-fold. Calculated fAUC0-24/MIC ratios were 945, 1239 and 766.5, respectively, at Days 49, 71 and 106, assuming an MIC of 0.032 mg/L. The PFGE dendrogram revealed 97% similarity among all the isolates. These results suggest acquisition by the S. epidermidis strain of dalbavancin resistance when the patient underwent dalbavancin treatment. A 4-amino-acid deletion in the walK gene coinciding with the emergence of phenotypic resistance was revealed by WGS without any other relevant indels. Conclusions Despite dalbavancin treatment with pharmacokinetic management, emerging dalbavancin resistance in S. epidermidis was observed, resulting in treatment failure. This outcome led to a prosthesis revision and long-term suppressive antibiotic therapy, with no recurrence of PJI after an 18 month follow-up.
Collapse
Affiliation(s)
- L Ruffier d’Epenoux
- Institut de Biologie des Hôpitaux de Nantes, Service de Bactériologie et des Contrôles Microbiologiques, CHU de Nantes, 9 quai Moncousu, 44093 Nantes Cedex 01, France
- INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
- Membre du CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest), Nantes, France
| | - P Barbier
- Institut de Biologie des Hôpitaux de Nantes, Service de Bactériologie et des Contrôles Microbiologiques, CHU de Nantes, 9 quai Moncousu, 44093 Nantes Cedex 01, France
| | - E Fayoux
- Institut de Biologie des Hôpitaux de Nantes, Service de Bactériologie et des Contrôles Microbiologiques, CHU de Nantes, 9 quai Moncousu, 44093 Nantes Cedex 01, France
| | - A Guillouzouic
- Institut de Biologie des Hôpitaux de Nantes, Service de Bactériologie et des Contrôles Microbiologiques, CHU de Nantes, 9 quai Moncousu, 44093 Nantes Cedex 01, France
| | - R Lecomte
- Membre du CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest), Nantes, France
- Service des Maladies Infectieuses, Hôtel-Dieu, Centre Hospitalier Universitaire, Nantes, France
- Centre d’Investigation Clinique Unité d’Investigation Clinique, Centre Hospitalier Universitaire, Nantes, France
| | - C Deschanvres
- Membre du CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest), Nantes, France
- Service des Maladies Infectieuses, Hôtel-Dieu, Centre Hospitalier Universitaire, Nantes, France
- Centre d’Investigation Clinique Unité d’Investigation Clinique, Centre Hospitalier Universitaire, Nantes, France
| | - C Nich
- Membre du CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest), Nantes, France
- Nantes Université, CHU Nantes, Clinique Chirurgicale Orthopédique et Traumatologique, F-44000 Nantes, France
- Nantes Université, INSERM, UMRS 1229, Regeneration Medicine and Skeleton (RMeS), ONIRIS, F-44042 Nantes, France
| | - P Bémer
- Institut de Biologie des Hôpitaux de Nantes, Service de Bactériologie et des Contrôles Microbiologiques, CHU de Nantes, 9 quai Moncousu, 44093 Nantes Cedex 01, France
- Membre du CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest), Nantes, France
| | - M Grégoire
- Service de Pharmacologie, CHU Nantes, Nantes, France
- UMR Inserm 1235, The Enteric Nervous System in Gut and Brain Disorders, Nantes Université, Nantes, France
| | - S Corvec
- Institut de Biologie des Hôpitaux de Nantes, Service de Bactériologie et des Contrôles Microbiologiques, CHU de Nantes, 9 quai Moncousu, 44093 Nantes Cedex 01, France
- INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
- Membre du CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest), Nantes, France
- ESGIAI (ESCMID Study Group for Implant-Associated Infections) Member
| |
Collapse
|
3
|
Lépine N, Bras-Cachinho J, Couratin E, Lemaire C, Chaufour L, Junchat A, Lartigue MF. Investigation of a linezolid-resistant Staphylococcus epidermidis outbreak in a French hospital: phenotypic, genotypic, and clinical characterization. Front Microbiol 2024; 15:1455945. [PMID: 39323891 PMCID: PMC11422107 DOI: 10.3389/fmicb.2024.1455945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose We aimed to retrospectively investigate an outbreak of linezolid-resistant Staphylococcus epidermidis (LRSE), at Tours University Hospital between 2017 and 2021. Methods Twenty of the 34 LRSE isolates were included in the study. Antimicrobial susceptibility testing was performed using the disk diffusion method and MICs of last-resort antibiotics were determined using broth microdilution or Etest®. Seventeen of the 20 resistant strains were sent to the French National Reference Centre for Staphylococci to determine the mechanism of resistance to linezolid. The clonal relationship between LRSE strains was assessed by PFGE and the sequence type determined by MLST. We retrospectively evaluated a new typing tool, IR-Biotyper®, and compared its results to PFGE to evaluate its relevance for S. epidermidis typing. Medical records were reviewed, and antibiotic consumption was determined. Search for a cross transmission was performed. Results All LRSE strains showed high levels of resistance to linezolid (MICs ≥ 256 mg/L) and were multi-drug resistant. Linezolid resistance was associated with the 23S rRNA G2576T mutation and none of the 17 strains analyzed carried the cfr gene. Ninety-five percent of the 20 LRSE studied strains were genetically related and belonged to sequence-type ST2. The dendrogram obtained from IR-Biotyper® showed 87% congruence with the PFGE analysis. Prior to isolation of the LRSE strain, 70% of patients received linezolid. No patients stayed successively in the same room. Conclusion Linezolid exposure may promote the survival and spread of LRSE strains. At Tours University Hospital, acquisition of the resistant clone may also have been triggered by hand-to-hand transmission by healthcare workers. In addition, IR-Biotyper® is a promising typing tool for the study of clonal outbreaks due to its low cost and short turnaround time, although further studies are needed to assess the optimal analytical parameters for routine use.
Collapse
Affiliation(s)
- Nadège Lépine
- Service de Bactériologie-Virologie-Hygiène, Centre Hospitalier Universitaire de Tours, Tours, France
- ISP, UMR1282, Université de Tours, INRAe, Tours, France
| | - José Bras-Cachinho
- Service de Bactériologie-Virologie-Hygiène, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Eva Couratin
- Equipe Opérationnelle d'Hygiène, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Coralie Lemaire
- Service de Bactériologie-Virologie-Hygiène, Centre Hospitalier Universitaire de Tours, Tours, France
- ISP, UMR1282, Université de Tours, INRAe, Tours, France
| | - Laura Chaufour
- Service de Bactériologie-Virologie-Hygiène, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Armelle Junchat
- Equipe Opérationnelle d'Hygiène, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Marie-Frédérique Lartigue
- Service de Bactériologie-Virologie-Hygiène, Centre Hospitalier Universitaire de Tours, Tours, France
- ISP, UMR1282, Université de Tours, INRAe, Tours, France
| |
Collapse
|
4
|
Tessier E, Ruffier d'Epenoux L, Lartigue MF, Chaufour L, Plouzeau-Jayle C, Chenouard R, Guérin F, Tandé D, Lamoureux C, Bémer P, Corvec S. Comparison of the in vitro activities of delafloxacin and comparators against Staphylococcus epidermidis clinical strains involved in osteoarticular infections: a CRIOGO multicentre retrospective study. J Antimicrob Chemother 2024; 79:1045-1050. [PMID: 38507272 DOI: 10.1093/jac/dkae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVES Staphylococcus epidermidis bone and joint infections (BJIs) on material are often difficult to treat. The activity of delafloxacin has not yet been studied on S. epidermidis in this context. The aim of this study was to assess its in vitro activity compared with other fluoroquinolones, against a large collection of S. epidermidis clinical strains. METHODS We selected 538 S. epidermidis strains isolated between January 2015 and February 2023 from six French teaching hospitals. One hundred and fifty-two strains were ofloxacin susceptible and 386 were ofloxacin resistant. Identifications were performed by MS and MICs were determined using gradient concentration strips for ofloxacin, levofloxacin, moxifloxacin and delafloxacin. RESULTS Ofloxacin-susceptible strains were susceptible to all fluoroquinolones. Resistant strains had higher MICs of all fluoroquinolones. Strains resistant to ofloxacin (89.1%) still showed susceptibility to delafloxacin when using the Staphylococcus aureus 2021 CA-SFM/EUCAST threshold of 0.25 mg/L. In contrast, only 3.9% of the ofloxacin-resistant strains remained susceptible to delafloxacin with the 0.016 mg/L S. aureus breakpoint according to CA-SFM/EUCAST guidelines in 2022. The MIC50 was 0.094 mg/L and the MIC90 was 0.38 mg/L. CONCLUSIONS We showed low delafloxacin MICs for ofloxacin-susceptible S. epidermidis strains and a double population for ofloxacin-resistant strains. Despite the absence of breakpoints for S. epidermidis, delafloxacin may be an option for the treatment of complex BJI, including strains with MICs of ≤0.094 mg/L, leading to 64% susceptibility. This study underlines the importance for determining specific S. epidermidis delafloxacin breakpoints for the management of BJI on material.
Collapse
Affiliation(s)
- E Tessier
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - L Ruffier d'Epenoux
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
- INSERM, INCIT U1302, CHU Nantes, Université de Nantes, Nantes F-44000, France
| | - M F Lartigue
- Service de Bactériologie-Virologie-Hygiène, CHU Tours, Tours, France
- ISP, UMR1282, Université de Tours, INRAe, Tours, France
| | - L Chaufour
- Service de Bactériologie-Virologie-Hygiène, CHU Tours, Tours, France
| | - C Plouzeau-Jayle
- Service de Bactériologie et d'Hygiène hospitalière, CHU Poitiers, Poitiers, France
| | - R Chenouard
- Service de Bactériologie, CHU Angers, Angers, France
| | - F Guérin
- Service de Bactériologie-Hygiène hospitalière & CNR de la résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU Rennes, Rennes, France
| | - D Tandé
- Unité de Bactériologie, Pôle de Biologie-Pathologie CHU Brest, Brest, France
| | - C Lamoureux
- Unité de Bactériologie, Pôle de Biologie-Pathologie CHU Brest, Brest, France
| | - P Bémer
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - S Corvec
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
- INSERM, INCIT U1302, CHU Nantes, Université de Nantes, Nantes F-44000, France
| |
Collapse
|
5
|
Sadidi R, Ajoudanifar H, Ghasem Zadeh-Moghadam H, Azimian A. The Emergence of Linezolid-Resistant Staphylococcus Epidermidis in the COVID-19 Hospitalized Intubated Patients in North Khorasan, Iran. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:332-338. [PMID: 38751870 PMCID: PMC11091267 DOI: 10.30476/ijms.2024.99744.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/22/2023] [Indexed: 05/18/2024]
Abstract
The present study aimed to investigate secondary bacterial infections among patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Coagulase-negative Staphylococci can infect immunocompromised patients. Linezolid resistance among Staphylococcus epidermidis is one of the most critical issues. In 2019, 185 SARS-CoV-2-positive patients who were admitted to North Khorasan Province Hospital (Bojnurd, Iran), were investigated. Patients having positive SARS-CoV-2 reverse transcriptase real-time polymerase chain reaction (RT-PCR) test results, who had a history of intubation, mechanical ventilation, and were hospitalized for more than 48 hours were included. After microbiological evaluation of pulmonary samples, taken from intubated patients with clinical manifestation of pneumonia, co-infections were found in 11/185 patients (5.94%) with S. epidermidis, Staphylococcus aureus, and Acinetobacter baumani, respectively. Remarkably, seven out of nine S. epidermidis isolates were linezolid resistant. Selected isolates were characterized using antimicrobial resistance patterns and molecular methods, such as Staphylococcal cassette chromosome mec (SCCmec) typing, and gene detection for ica, methicillin resistance (mecA), vancomycin resistance (vanA), and chloramphenicol-florfenicol resistance (cfr) genes. All of the isolates were resistant to methicillin, and seven isolates were resistant to linezolid. Nine out of 11 isolated belonged to the SCCmec I, while two belonged to the SCCmec IV. It should be noted that all patients had the underlying disease, and six patients had already passed away. The increasing linezolid resistance in bacterial strains becomes a real threat to patients, and monitoring such infections, in conjunction with surveillance and infection prevention programs, is very critical for reducing the number of linezolid-resistant Staphylococcal strains. A preprint of this study was published at https://europepmc.org/article/ppr/ppr417742.
Collapse
Affiliation(s)
- Roya Sadidi
- Department of Biology, College of Basic Sciences, Damghan Branch, Islamic Azad University, Damgan, Iran
| | - Hatef Ajoudanifar
- Department of Biology, College of Basic Sciences, Damghan Branch, Islamic Azad University, Damgan, Iran
| | - Hamed Ghasem Zadeh-Moghadam
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
6
|
Beck C, Krusche J, Elsherbini AMA, Du X, Peschel A. Phage susceptibility determinants of the opportunistic pathogen Staphylococcus epidermidis. Curr Opin Microbiol 2024; 78:102434. [PMID: 38364502 DOI: 10.1016/j.mib.2024.102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
Staphylococcus epidermidis is a common member of the human skin and nose microbiomes and a frequent cause of invasive infections. Transducing phages accomplish the horizontal transfer of resistance and virulence genes by mispackaging of mobile-genetic elements, contributing to severe, therapy-refractory S. epidermidis infections. Lytic phages on the other hand can be interesting candidates for new anti-S. epidermidis phage therapies. Despite the importance of phages, we are only beginning to unravel S. epidermidis phage interactions. Recent studies shed new light on S. epidermidis phage diversity, host range, and receptor specificities. Modulation of cell wall teichoic acids, the major phage receptor structures, along with other phage defense mechanisms, are crucial determinants for S. epidermidis susceptibility to different phage groups.
Collapse
Affiliation(s)
- Christian Beck
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Janes Krusche
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Ahmed M A Elsherbini
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Xin Du
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
André C, Van Camp AG, Ung L, Gilmore MS, Bispo PJM. Characterization of the resistome and predominant genetic lineages of Gram-positive bacteria causing keratitis. Antimicrob Agents Chemother 2024; 68:e0124723. [PMID: 38289077 PMCID: PMC10916405 DOI: 10.1128/aac.01247-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/03/2023] [Indexed: 02/04/2024] Open
Abstract
Bacterial keratitis is a vision-threatening infection mainly caused by Gram-positive bacteria (GPB). Antimicrobial therapy is commonly empirical using broad-spectrum agents with efficacy increasingly compromised by the emergence of antimicrobial resistance. We used a combination of phenotypic tests and genome sequencing to identify the predominant lineages of GPB causing keratitis and to characterize their antimicrobial resistance patterns. A total of 161 isolates, including Staphylococcus aureus (n = 86), coagulase-negative staphylococci (CoNS; n = 34), Streptococcus spp. (n = 34), and Enterococcus faecalis (n = 7), were included. The population of S. aureus isolates consisted mainly of clonal complex 5 (CC5) (30.2%). Similarly, the population of Staphylococcus epidermidis was homogenous with most of them belonging to CC2 (78.3%). Conversely, the genetic population of Streptococcus pneumoniae was highly diverse. Resistance to first-line antibiotics was common among staphylococci, especially among CC5 S. aureus. Methicillin-resistant S. aureus was commonly resistant to fluoroquinolones and azithromycin (78.6%) and tobramycin (57%). One-third of the CoNS were resistant to fluoroquinolones and 53% to azithromycin. Macrolide resistance was commonly caused by erm genes in S. aureus, mphC and msrA in CoNS, and mefA and msr(D) in streptococci. Aminoglycoside resistance in staphylococci was mainly associated with genes commonly found in mobile genetic elements and that encode for nucleotidyltransferases like ant(4')-Ib and ant(9)-Ia. Fluroquinolone-resistant staphylococci carried from 1 to 4 quinolone resistance-determining region mutations, mainly in the gyrA and parC genes. We found that GPB causing keratitis are associated with strains commonly resistant to first-line topical therapies, especially staphylococcal isolates that are frequently multidrug-resistant and associated with major hospital-adapted epidemic lineages.
Collapse
Affiliation(s)
- Camille André
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew G. Van Camp
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S. Gilmore
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Paulo J. M. Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Cuny C, Layer-Nicolaou F, Werner G, Witte W. A look at staphylococci from the one health perspective. Int J Med Microbiol 2024; 314:151604. [PMID: 38367509 DOI: 10.1016/j.ijmm.2024.151604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Staphylococcus aureus and other staphylococcal species are resident and transient multihost colonizers as well as conditional pathogens. Especially S. aureus represents an excellent model bacterium for the "One Health" concept because of its dynamics at the human-animal interface and versatility with respect to host adaptation. The development of antimicrobial resistance plays another integral part. This overview will focus on studies at the human-animal interface with respect to livestock farming and to companion animals, as well as on staphylococci in wildlife. In this context transmissions of staphylococci and of antimicrobial resistance genes between animals and humans are of particular significance.
Collapse
Affiliation(s)
- Christiane Cuny
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer-Nicolaou
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | | |
Collapse
|
9
|
Cinthi M, Coccitto SN, Pocognoli A, Zeni G, Mazzariol A, Di Gregorio A, Vignaroli C, Brenciani A, Giovanetti E. Persistence and evolution of linezolid- and methicillin-resistant Staphylococcus epidermidis ST2 and ST5 clones in an Italian hospital. J Glob Antimicrob Resist 2024; 36:358-364. [PMID: 38331029 DOI: 10.1016/j.jgar.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVES Staphylococcus epidermidis is a member of the human skin microbiome. However, in recent decades, multidrug-resistant and hospital-adapted S. epidermidis clones are increasingly involved in severe human infections associated with medical devices and in immunocompromised patients. In 2016, we reported that a linezolid- and methicillin-resistant S. epidermidis ST2 clone, bearing the G2576T mutation, was endemic in an Italian hospital since 2004. This study aimed to retrospectively analyse 34 linezolid- and methicillin-resistant S. epidermidis (LR-MRSE) strains collected from 2018 to 2021 from the same hospital. METHODS LR-MRSE were typed by Pulsed-Field Gel Electrophoresis and multilocus sequence typing and screened for transferable linezolid resistance genes. Representative LR-MRSE were subjected to whole-genome sequencing (WGS) and their resistomes, including the presence of ribosomal mechanisms of linezolid resistance and of rpoB gene mutations conferring rifampin resistance, were investigated. RESULTS ST2 lineage was still prevalent (19/34; 55.9%), but, over time, ST5 clone has been widespread too (15/34; 44.1%). Thirteen of the 34 isolates (38.2%) were positive for the cfr gene. Whole-genome sequencing analysis of relevant LR-MRSE displayed complex resistomes for the presence of several acquired antibiotic resistance genes, including the SCCmec type III (3A) and SCCmec type IV (2B) in ST2 and ST5 isolates, respectively. Bioinformatics and polymerase chain reaction (PCR) mapping also showed a plasmid-location of the cfr gene and the occurrence of previously undetected mutations in L3 (ST2 lineage) and L4 (ST3 lineage) ribosomal proteins and substitutions in the rpoB gene. CONCLUSION The occurrence of LR-MRSE should be carefully monitored in order to prevent the spread of this difficult-to-treat pathogen and to preserve the efficacy of linezolid.
Collapse
Affiliation(s)
- Marzia Cinthi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sonia Nina Coccitto
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Antonella Pocognoli
- Clinical Microbiology Laboratory, Azienda Ospedaliero-Universitaria, 'Ospedali Riuniti', Ancona, Italy
| | - Guido Zeni
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Alessandra Di Gregorio
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
10
|
André C, Lebreton F, Van Tyne D, Cadorette J, Boody R, Gilmore MS, Bispo PJM. Microbiology of Eye Infections at the Massachusetts Eye and Ear: An 8-Year Retrospective Review Combined With Genomic Epidemiology. Am J Ophthalmol 2023; 255:43-56. [PMID: 37343741 PMCID: PMC10592486 DOI: 10.1016/j.ajo.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE Ocular bacterial infections are important causes of morbidity and vision loss. Early antimicrobial therapy is necessary to save vision, but their efficacy is increasingly compromised by antimicrobial resistance (AMR). We assessed the etiology of ocular bacterial infections seen at Massachusetts Eye and Ear and investigated the molecular epidemiology and AMR profiles of contemporary isolates. DESIGN Laboratory investigation. METHODS We used a combination of phenotypic tests and genome sequencing to identify the predominant lineages of leading ocular pathogens and their AMR profiles. RESULTS A total of 1601 isolates were collected from 2014 to 2021, with Staphylococcus aureus (n = 621), coagulase-negative staphylococci (CoNS) (n = 234), Pseudomonas aeruginosa (n = 213), Enterobacteriaceae (n = 167), and Streptococcus pneumoniae (n = 95) being the most common. Resistance was high among staphylococci, with methicillin resistance (MR) detected in 28% of S aureus and 39.8% of CoNS isolates. Multidrug resistance (MDR) was frequent among MR staphylococci (MRSA 60%, MRCoNS 76.1%). The population of S aureus isolates consisted mainly of 2 clonal complexes (CCs): CC8 (26.1%) and CC5 (24.1%). CC5 strains carried a variety of AMR markers, resulting in high levels of resistance to first-line therapies. Similarly, the population of ocular Staphylococcus epidermidis was homogenous with most belonging to CC2 (85%), which were commonly MDR (48%). Conversely, ocular S pneumoniae, P aeruginosa, and Enterobacteriaceae were often susceptible to first-line therapies and grouped into highly diverse genetic populations. CONCLUSION Our data showed that ocular bacterial infections in our patient population are disproportionately caused by strains that are resistant to clinically relevant antibiotics and are associated with major epidemic genotypes with both community and hospital associations.
Collapse
Affiliation(s)
- Camille André
- From the Department of Ophthalmology (C.A., F.L., D.V., J.C., R.B., M.S.G., P.J.M.B.), Massachusetts Eye and Ear Infirmary
| | - François Lebreton
- From the Department of Ophthalmology (C.A., F.L., D.V., J.C., R.B., M.S.G., P.J.M.B.), Massachusetts Eye and Ear Infirmary; Department of Microbiology and Immunology (F.L., D.V., M.S.G.), Harvard Medical School, Boston, Massachusetts, USA
| | - Daria Van Tyne
- From the Department of Ophthalmology (C.A., F.L., D.V., J.C., R.B., M.S.G., P.J.M.B.), Massachusetts Eye and Ear Infirmary; Department of Microbiology and Immunology (F.L., D.V., M.S.G.), Harvard Medical School, Boston, Massachusetts, USA
| | - James Cadorette
- From the Department of Ophthalmology (C.A., F.L., D.V., J.C., R.B., M.S.G., P.J.M.B.), Massachusetts Eye and Ear Infirmary
| | - Rick Boody
- From the Department of Ophthalmology (C.A., F.L., D.V., J.C., R.B., M.S.G., P.J.M.B.), Massachusetts Eye and Ear Infirmary
| | - Michael S Gilmore
- From the Department of Ophthalmology (C.A., F.L., D.V., J.C., R.B., M.S.G., P.J.M.B.), Massachusetts Eye and Ear Infirmary; Department of Microbiology and Immunology (F.L., D.V., M.S.G.), Harvard Medical School, Boston, Massachusetts, USA
| | - Paulo J M Bispo
- From the Department of Ophthalmology (C.A., F.L., D.V., J.C., R.B., M.S.G., P.J.M.B.), Massachusetts Eye and Ear Infirmary.
| |
Collapse
|
11
|
Torabi M, Faghri J, Poursina F. Detection of Genes Related to Linezolid Resistance ( poxtA, cfr, and optrA) in Clinical Isolates of Enterococcus spp. from Humans: A First Report from Iran. Adv Biomed Res 2023; 12:205. [PMID: 37694234 PMCID: PMC10492618 DOI: 10.4103/abr.abr_74_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Enterococci may develop resistance to linezolid through chromosomal mutations that involve specific linezolid resistance genes, such as cfr, optrA, and poxtA. The objective of this study was to evaluate the antibiotic susceptibility of enterococcal isolates and identify cfr, optrA, and poxtA genes in MDR isolates. Materials and Methods Enterococcal isolates were collected from various clinical specimens at Al-Zahra, Amin, and Khorshid Hospitals in Isfahan. The Enterococcus isolates were identified as belonging to the E. faecalis and E. faecium species by using specific gene (D alanine D alanine ligase ddl) sets in PCR. To detect cfr, optrA, and poxtA genes among the species, a multiplex-PCR assay was performed. Results Out of 175 isolates, E. faecalis predominated 129/175 (73.7%). Furthermore, the prevalence of vancomycin-resistant Enterococci (VRE) and linezolid-resistant Enterococci (LRE) was 29.7% and 4%, respectively. The overall prevalence of MDR was 91.1%, 68.9%, and 66.6% of E. faecium, E. faecalis, and other Enterococcus spp., respectively. Interestingly, the frequency of optrA (71.4%) in E. faecium and poxtA and crf (42.8%) in E. faecalis were detected among LRE species. A statistically significant relationship (P < 0.05) was found between the presence of the three genes and the occurrence of LRE. Conclusion This is the first study to report the detection of linezolid resistance genes (cfr, optrA, and poxtA) in clinical Enterococcus spp. isolates from Iran, conducted at Isfahan University of Medical Sciences hospitals. The emergence of enterococcal strains that resist linezolid is concerning as it can lead to the spread of resistant strains among patients, resulting in treatment failure.
Collapse
Affiliation(s)
- Majid Torabi
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Faghri
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farkhondeh Poursina
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Campmann F, Tönnies H, Böing C, Schuler F, Mellmann A, Schwierzeck V. Molecular Characterization of Clinical Linezolid-Resistant Staphylococcus epidermidis in a Tertiary Care Hospital. Microorganisms 2023; 11:1805. [PMID: 37512978 PMCID: PMC10383320 DOI: 10.3390/microorganisms11071805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Staphylococcus epidermidis (S. epidermidis) is part of the human skin flora but can also cause nosocomial infections, such as device-associated infections, especially in vulnerable patient groups. Here, we investigated clinical isolates of linezolid-resistant S. epidermidis (LRSE) collected from blood cultures at the University Hospital Münster (UHM) during the period 2020-2022. All detected isolates were subjected to whole genome sequencing (WGS) and the relatedness of the isolates was determined using core genome multilocus sequence typing (cgMLST). The 15 LRSE isolates detected were classified as multilocus sequence type (ST) 2 carrying the staphylococcal cassette chromosome mec (SCCmec) type III. All isolates showed high-level resistance for linezolid by gradient tests. However, no isolate carried the cfr gene that is often associated with linezolid resistance. Analysis of cgMLST data sets revealed a cluster of six closely related LRSE isolates, suggesting a transmission event on a hematological/oncological ward at our hospital. Among the included patients, the majority of patients affected by LRSE infections had underlying hematological malignancies. This confirms previous observations that this patient group is particularly vulnerable to LRSE infection. Our data emphasize that the surveillance of LRSE in the hospital setting is a necessary step to prevent the spread of multidrug-resistant S. epidermidis among vulnerable patient groups, such as patients with hematological malignancies, immunosuppression or patients in intensive care units.
Collapse
Affiliation(s)
- Florian Campmann
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
| | - Hauke Tönnies
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
| | - Christian Böing
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
| | - Franziska Schuler
- Institute for Medical Microbiology, University Hospital Münster, 48149 Münster, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
| | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
13
|
Coustillères F, Renault V, Corvec S, Dupieux C, Simões PM, Lartigue MF, Plouzeau-Jayle C, Tande D, Lamoureux C, Lemarié C, Chenouard R, Laurent F, Lemaignen A, Bémer P, the CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest) Study Team. Clinical, Bacteriological, and Genetic Characterization of Bone and Joint Infections Involving Linezolid-Resistant Staphylococcus epidermidis: a Retrospective Multicenter Study in French Reference Centers. Microbiol Spectr 2023; 11:e0419022. [PMID: 37133395 PMCID: PMC10269892 DOI: 10.1128/spectrum.04190-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/09/2023] [Indexed: 05/04/2023] Open
Abstract
The choice of the best probabilistic postoperative antibiotics in bone and joint infections (BJIs) is still challenging. Since the implementation of protocolized postoperative linezolid in six French referral centers, linezolid-resistant multidrug-resistant Staphylococcus epidermidis (LR-MDRSE) strains were isolated in patients with BJI. We aimed here to describe clinical, microbiological, and molecular patterns associated with these strains. All patients with at least one intraoperative specimen positive for LR-MDRSE between 2015 and 2020 were included in this retrospective multicenter study. Clinical presentation, management, and outcome were described. LR-MDRSE strains were investigated by MIC determination for linezolid and other anti-MRSA antibiotics, characterization of genetic determinants of resistance, and phylogenetic analysis. Forty-six patients (colonization n = 10, infection n = 36) were included in five centers, 45 had prior exposure to linezolid, 33 had foreign devices. Clinical success was achieved for 26/36 patients. Incidence of LR-MDRSE increased over the study period. One hundred percent of the strains were resistant to oxazolidinones, gentamicin, clindamycin, ofloxacin, rifampicin, ceftaroline, and ceftobiprole, and susceptible to cyclins, daptomycin, and dalbavancin. Susceptibility to delafloxacin was bimodal. Molecular analysis was performed for 44 strains, and the main mutation conferring linezolid resistance was the 23S rRNA G2576T mutation. All strains belonged to the sequence type ST2 or its clonal complex, and phylogenetic analysis showed emergence of five populations corresponding geographically to the centers. We showed the emergence of new clonal populations of highly linezolid-resistant S. epidermidis in BJIs. Identifying patients at risk for LR-MDRSE acquisition and proposing alternatives to systematic postoperative linezolid use are essential. IMPORTANCE The manuscript describes the emergence of clonal linezolid-resistant strains of Staphylococcus epidermidis (LR-MDRSE) isolated from patients presenting with bone and joint infections. Incidence of LR-MDRSE increased over the study period. All strains were highly resistant to oxazolidinones, gentamicin, clindamycin, ofloxacin, rifampicin, ceftaroline, and ceftobiprole, but were susceptible to cyclins, daptomycin, and dalbavancin. Susceptibility to delafloxacin was bimodal. The main mutation conferring linezolid resistance was the 23S rRNA G2576T mutation. All strains belonged to the sequence type ST2 or its clonal complex, and phylogenetic analysis showed emergence of five populations corresponding geographically to the centers. LR-MDRSE bone and joint infections seem to be accompanied by an overall poor prognosis related to comorbidities and therapeutic issues. Identifying patients at risk for LR-MDRSE acquisition and proposing alternatives to systematic postoperative linezolid use become essential, with a preference for parenteral drugs such as lipopeptids or lipoglycopeptids.
Collapse
Affiliation(s)
- François Coustillères
- Service des Maladies Infectieuses, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
| | - Victor Renault
- Service de Bactériologie et des Contrôles microbiologiques, Hôtel-Dieu, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Nantes, France
| | - Stéphane Corvec
- Service de Bactériologie et des Contrôles microbiologiques, Hôtel-Dieu, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Nantes, France
| | - Céline Dupieux
- Hospices Civils de Lyon, Institut des Agents Infectieux, Service de Bactériologie, Centre National de Référence des Staphylocoques, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOAC Lyon), France
| | - Patricia Martins Simões
- Hospices Civils de Lyon, Institut des Agents Infectieux, Service de Bactériologie, Centre National de Référence des Staphylocoques, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOAC Lyon), France
| | - Marie Frédérique Lartigue
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
| | - Chloé Plouzeau-Jayle
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Poitiers, France
| | - Didier Tande
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Brest, France
| | - Claudie Lamoureux
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Brest, France
| | - Carole Lemarié
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Angers, France
| | - Rachel Chenouard
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Angers, France
| | - Frédéric Laurent
- Hospices Civils de Lyon, Institut des Agents Infectieux, Service de Bactériologie, Centre National de Référence des Staphylocoques, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOAC Lyon), France
| | - Adrien Lemaignen
- Service des Maladies Infectieuses, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
| | - Pascale Bémer
- Service de Bactériologie et des Contrôles microbiologiques, Hôtel-Dieu, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Nantes, France
| | - the CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest) Study Team
- Service des Maladies Infectieuses, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
- Service de Bactériologie et des Contrôles microbiologiques, Hôtel-Dieu, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Nantes, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Service de Bactériologie, Centre National de Référence des Staphylocoques, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOAC Lyon), France
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Régional Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Tours, France
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Poitiers, France
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Brest, France
- Service de Bactériologie et d’Hygiène, Centre Hospitalier Universitaire, Centre Régional de Référence pour la prise en charge des IOA complexes (CRIOGO), Angers, France
| |
Collapse
|
14
|
Siciliano V, Passerotto RA, Chiuchiarelli M, Leanza GM, Ojetti V. Difficult-to-Treat Pathogens: A Review on the Management of Multidrug-Resistant Staphylococcus epidermidis. Life (Basel) 2023; 13:life13051126. [PMID: 37240771 DOI: 10.3390/life13051126] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Multidrug-resistant Staphylococcus epidermidis (MDRSE) is responsible for difficult-to-treat infections in humans and hospital-acquired-infections. This review discusses the epidemiology, microbiology, diagnosis, and treatment of MDRSE infection and identifies knowledge gaps. By using the search term "pan resistant Staphylococcus epidermidis" OR "multi-drug resistant Staphylococcus epidermidis" OR "multidrug-resistant lineages of Staphylococcus epidermidis", a total of 64 records have been identified from various previously published studies. The proportion of methicillin resistance in S. epidermidis has been reported to be as high as 92%. Several studies across the world have aimed to detect the main phylogenetic lineages and antibiotically resistant genes through culture, mass spectrometry, and genomic analysis. Molecular biology tools are now available for the identification of S. epidermidis and its drug resistance mechanisms, especially in blood cultures. However, understanding the distinction between a simple colonization and a bloodstream infection (BSI) caused by S. epidermidis is still a challenge for clinicians. Some important parameters to keep in mind are the number of positive samples, the symptoms and signs of the patient, the comorbidities of the patient, the presence of central venous catheter (CVC) or other medical device, and the resistance phenotype of the organism. The agent of choice for empiric parenteral therapy is vancomycin. Other treatment options, depending on different clinical settings, may include teicoplanin, daptomycin, oxazolidinones, long-acting lipoglycopeptides, and ceftaroline. For patients with S. epidermidis infections associated with the presence of an indwelling device, assessment regarding whether the device warrants removal is an important component of management. This study provides an overview of the MDRSE infection. Further studies are needed to explore and establish the most correct form of management of this infection.
Collapse
Affiliation(s)
- Valentina Siciliano
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Rosa Anna Passerotto
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Marta Chiuchiarelli
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Gabriele Maria Leanza
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Veronica Ojetti
- Dipartimento di Emergenza e Accettazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
15
|
Zhang W, Ran J, Shang L, Zhang L, Wang M, Fei C, Chen C, Gu F, Liu Y. Niclosamide as a repurposing drug against Gram-positive bacterial infections. J Antimicrob Chemother 2022; 77:3312-3320. [PMID: 36173387 DOI: 10.1093/jac/dkac319] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Niclosamide is commonly used as an antiparasitic drug in veterinary clinics. The objectives of this study were to evaluate the efficacy of niclosamide against resistant Gram-positive bacteria in vitro and in an in vivo experimental model of topical bacterial infection. Moreover, to study the antibacterial mechanism of niclosamide to Staphylococcus aureus. METHODS A mouse topical infection model was established to detect the antibacterial activity of niclosamide in vivo. The antimicrobial mechanism was probed by visualizing the bacterial morphologies using scanning electron microscopy and transmission electron microscopy. Moreover, the haemolytic assay and western blotting analysis were performed to evaluate whether niclosamide could inhibit the secretion of alpha-haemolysin (α-HL) from S. aureus. RESULTS The MICs of niclosamide were below 0.5 mg/L for Gram-positive bacteria, showing excellent antibacterial activity in vitro. The in vivo antibacterial activity results indicated that niclosamide treatment at 10 mg/kg of body weight caused a significant reduction in the abscess area and the number of S. aureus cells. Moreover, the antibacterial mechanism of niclosamide showed that the surface morphology of S. aureus displayed noticeable shrinkage, with an increasing number of small vacuole-like structures observed as the drug concentration increased. Intracellular ATP levels were found to decrease in a niclosamide dose-dependent manner. Haemolysis and western blotting analyses revealed that niclosamide inhibited the haemolytic activity of S. aureus by inhibiting α-HL expression under subinhibitory concentration conditions. CONCLUSIONS Niclosamide has significant potential for development into drugs that prevent and treat diseases caused by Gram-positive bacteria such as Staphylococcus and Streptococcus.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Jinxin Ran
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| |
Collapse
|
16
|
Clinical Prevalence, Antibiogram Profiling and Gompertz Growth Kinetics of Resistant Staphylococcus epidermidis Treated with Nanoparticles of Rosin Extracted from Pinus roxburghii. Antibiotics (Basel) 2022; 11:antibiotics11091270. [PMID: 36140049 PMCID: PMC9495812 DOI: 10.3390/antibiotics11091270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The rise of methicillin-resistant Staphylococcus epidermidis (MRSE) makes it difficult to treat infections that increase morbidity and mortality rates in various parts of the world. The study’s objectives include identifying the clinical prevalence, antibiogram profile, and Gompertz growth kinetics of MRSE treated with synthetically created nanoparticles of rosin obtained from Pinus roxburghii. A total of 64 of 200 clinical isolates of S. epidermidis (32% of the total) displayed sensitivity (40.62%) and resistance (59.37%) to seven different antibiotic classes. The most sensitive patterns of antibiotic resistance were seen in 20 (78.95%) and 24 (94.74%) isolates of MRSE against piperacillin/tazobactam and cephradine, respectively. Fosfomycine was found to be the most effective antibiotic against MRSE in 34 (89.47%) isolates, followed by amoxicillin. Successfully produced, described, and used against MRSE were rosin maleic anhydride nanoparticles with a size range of 250 nm to 350 nm. Five different concentrations of 25, 50, 75, 100, and 150 mg mL−1 rosin maleic anhydride nanoparticles were investigated to treat MRSE resistance. According to Gompertz growth kinetics, the maximal growth response was 32.54% higher and the lag phase was also 10.26% longer compared to the control when the amount of rosin maleic anhydride nanoparticles was increased in the MRSE. Following the application of rosin maleic anhydride nanoparticles, the growth period is extended from 6 to 8 h. A potential mechanism for cell disintegration and distortion is put forth. This investigation came to the conclusion that rosin maleic anhydride nanoparticles better interfere with the surface of MRSE and demonstrated a preferred bacteriostatic action.
Collapse
|
17
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|