1
|
Takahashi Y, Fee EL, Takahashi T, Usuda H, Ikeda H, Carter SW, Saito Y, Sato S, Mochii N, Chemtob S, Olson DM, Keelan JA, Kumagai Y, Choolani MA, Illanes SE, Saito M, Kemp MW. Interleukin-1 Receptor Antagonists Partially Inhibited Histological Injury but Not Tissue Inflammation in a Sheep Model of Pregnancy. Reprod Sci 2025; 32:1213-1227. [PMID: 39953369 DOI: 10.1007/s43032-024-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/27/2024] [Indexed: 02/17/2025]
Abstract
Intrauterine inflammation is a significant cause of early preterm birth and fetal injury. There is a lack of effective interventions for intrauterine inflammation. This study aimed to determine whether direct fetal treatment with IL-1 receptor antagonists (IL-1RA), specifically anakinra (competitive IL-1RA) or rytvela (allosteric IL-1RA), could reduce intrauterine inflammation caused by intraamniotic injection of E. coli lipopolysaccharides (LPS) in a sheep model of pregnancy. We hypothesized the fetal intramuscular administration of IL1-RA therapy would comprehensively resolve intrauterine inflammation caused by LPS in the pregnant sheep model. Date-mated Merino ewes carrying single fetuses were randomized into four groups: LPS Group (10 mg intraamniotic LPS injection followed by saline), RYTVELA Group (10 mg LPS injection followed by 5 mg rytvela), ANAKINRA Group (LPS injection followed by 100 mg anakinra), and SALINE Group (saline injection followed by saline). All LPS-exposed fetuses had elevated bilirubin levels, leukopenia, and increased inflammatory mediators IL-1β, IL-8, tumour necrosis factor alpha (TNFα), and monocyte chemoattractant protein 1 (MCP-1) in amniotic fluid and lung tissue. Both anakinra and rytvela treatments reduced immunocyte infiltration in chorioamniotic membranes and lungs, and microglial staining, and increased the oligodendrocyte staining, but did not significantly resolve overall inflammation compared to the SALINE Group. In conclusion, fetal intramuscular administration of anakinra and rytvela did not effectively resolve intrauterine inflammation but showed potential in reducing tissue invasion and brain injury markers. These findings suggest that modest inflammation reduction may protect against brain injury and preterm birth, though no additional benefit was observed compared to intraamniotic IL-1RA treatment.
Collapse
Affiliation(s)
- Yuki Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan.
- Department of Obstetrics, Tohoku University, 1-1 Seiryomachi Aobaku, Sendai, Miyagi, Japan.
| | - Erin L Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Tsukasa Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Hideyuki Ikeda
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sean W Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuya Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Sato
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Noriyoshi Mochii
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sylvain Chemtob
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Alberta, Canada
| | - Jeffrey A Keelan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Yusaku Kumagai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics, Tohoku University, 1-1 Seiryomachi Aobaku, Sendai, Miyagi, Japan
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sebastian E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, University of the Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Masatoshi Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Obstetrics, Tohoku University, 1-1 Seiryomachi Aobaku, Sendai, Miyagi, Japan
| | - Matthew W Kemp
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- Women and Infants Research Foundation, Level 2, Carson House, King Edward Memorial Hospital, Perth, Australia
| |
Collapse
|
2
|
Alotaibi N, Alesawy A, Alalshaikh M, Aljofi FE, Aldossary N, Alzahrani N, Omar O, Madi M. Effects of combined cyclosporin and azithromycin treatment on human mononuclear cells under lipopolysaccharide challenge. FRONTIERS IN ORAL HEALTH 2025; 6:1544821. [PMID: 40182222 PMCID: PMC11965928 DOI: 10.3389/froh.2025.1544821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Objective To evaluate the combined effects of azithromycin and varying concentrations of cyclosporin on peripheral blood mononuclear cells (PBMCs) under lipopolysaccharide (LPS) stimulation. Materials and methods PBMCs were isolated from four healthy donors and treated with cyclosporin at concentrations of (50, 200, and 1,000 ng/ml) either alone or in combination with azithromycin (0.4 µg/ml), with and without 100 ng ml LPS derived from Porphyromonas gingivalis. Total cell count, cell viability, and lactate dehydrogenase (LDH) activity were assessed at day 1 and 3. While the inflammatory mediators, including IL-6, IL-1β, IL-18, and IgA levels were assessed by ELISA at day 3. Statistical analysis included two-way ANOVA to analyze the effects of the drugs and the presence of LPS (the two independent variables), followed by Tukey's HSD post-hoc test. Multiple linear regression models evaluating treatment effects, LPS exposure, and time points, with assessment of two-way interactions. Models were adjusted for relevant covariates and verified for statistical assumptions, with significance set at p < 0.05. Results Lower cyclosporin concentrations (50 and 200 ng/ml) combined with azithromycin maintained higher cell counts and showed reduced cytotoxicity compared to 1,000 ng/ml under LPS exposure. The 200 ng/ml cyclosporin-azithromycin combination demonstrated optimal results, reducing IL-6 and IL-1β levels while maintaining cell viability. Higher concentrations elevated IgA levels, particularly with LPS stimulation, suggesting enhanced immune response modulation. Conclusion The combination of azithromycin with moderate cyclosporin concentrations (200 ng/ml) provides optimal immunomodulatory effects while maintaining cell viability. Higher cyclosporin doses (1,000 ng/ml) showed increased cytotoxicity despite enhanced immunomodulation.
Collapse
Affiliation(s)
- Norah Alotaibi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aminah Alesawy
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Marwa Alalshaikh
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal E. Aljofi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nada Aldossary
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nada Alzahrani
- Blood Bank, Laboratory Medicine, King Fahad University Hospital, Al Khobar, Saudi Arabia
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Marwa Madi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Carnevale Neto F, Vessecchi R. Structural elucidation of 14-membered ring macrolide antibiotics using electrospray ionization tandem mass spectrometry and density functional theory calculations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9913. [PMID: 39448384 DOI: 10.1002/rcm.9913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024]
Abstract
RATIONALE Macrolides are critical antibiotics featuring a macrocyclic lactone core with deoxy sugars. Understanding their gas-phase fragmentation is challenging but essential for improving structural elucidation in mass spectrometry, which has implications for drug discovery and development. METHODS We used electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS) combined with quantum chemical calculations to investigate the fragmentation pathways of erythromycin A and roxithromycin. This approach helps elucidate the preferred fragmentation routes influenced by protonation sites. RESULTS Macrolides showed similar fragmentation patterns, including sequential losses of saccharide or amino sugar units and dehydration from the macrocycle core. Multiple competitive pathways were observed, influenced by protonation sites. Computational studies confirmed the most favorable protonation sites and their impact on fragmentation, providing insights into key diagnostic product ions. Subsequent fragments involved rearrangement pathways such as alkene formation and cleavages via remote hydrogen transfers and pericyclic reactions. CONCLUSIONS Our integrated approach offers a comprehensive understanding of macrolide fragmentation, enhancing structural elucidation and potential applications in drug development. This study advances mass spectrometry analysis of macrolides, contributing to pharmaceutical research by integrating orthogonal annotation methods and fragmentation studies.
Collapse
Affiliation(s)
- Fausto Carnevale Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Ricardo Vessecchi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Sansone NMS, Boschiero MN, Marson FAL. Efficacy of Ivermectin, Chloroquine/Hydroxychloroquine, and Azithromycin in Managing COVID-19: A Systematic Review of Phase III Clinical Trials. Biomedicines 2024; 12:2206. [PMID: 39457519 PMCID: PMC11505156 DOI: 10.3390/biomedicines12102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
Background: During the coronavirus disease (COVID)-19 pandemic several drugs were used to manage the patients mainly those with a severe phenotype. Potential drugs were used off-label and major concerns arose from their applicability to managing the health crisis highlighting the importance of clinical trials. In this context, we described the mechanisms of the three repurposed drugs [Ivermectin-antiparasitic drug, Chloroquine/Hydroxychloroquine-antimalarial drugs, and Azithromycin-antimicrobial drug]; and, based on this description, the study evaluated the clinical efficacy of those drugs published in clinical trials. The use of these drugs reflects the period of uncertainty that marked the beginning of the COVID-19 pandemic, which made them a possible treatment for COVID-19. Methods: In our review, we evaluated phase III randomized controlled clinical trials (RCTs) that analyzed the efficacy of these drugs published from the COVID-19 pandemic onset to 2023. We included eight RCTs published for Ivermectin, 11 RCTs for Chloroquine/Hydroxychloroquine, and three RCTs for Azithromycin. The research question (PICOT) accounted for P-hospitalized patients with confirmed or suspected COVID-19; I-use of oral or intravenous Ivermectin OR Chloroquine/Hydroxychloroquine OR Azithromycin; C-placebo or no placebo (standard of care); O-mortality OR hospitalization OR viral clearance OR need for mechanical ventilation OR clinical improvement; and T-phase III RCTs. Results: While studying these drugs' respective mechanisms of action, the reasons for which they were thought to be useful became apparent and are as follows: Ivermectin binds to insulin-like growth factor and prevents nuclear transportation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), therefore preventing cell entrance, induces apoptosis, and osmotic cell death and disrupts viral replication. Chloroquine/Hydroxychloroquine blocks the movement of SARS-CoV-2 from early endosomes to lysosomes inside the cell, also, this drug blocks the binding between SARS-CoV-2 and Angiotensin-Converting Enzyme (ACE)-2 inhibiting the interaction between the virus spike proteins and the cell membrane and this drug can also inhibit SARS-CoV-2 viral replication causing, ultimately, the reduction in viral infection as well as the potential to progression for a higher severity phenotype culminating with a higher chance of death. Azithromycin exerts a down-regulating effect on the inflammatory cascade, attenuating the excessive production of cytokines and inducing phagocytic activity, and acts interfering with the viral replication cycle. Ivermectin, when compared to standard care or placebo, did not reduce the disease severity, need for mechanical ventilation, need for intensive care unit, or in-hospital mortality. Only one study demonstrated that Ivermectin may improve viral clearance compared to placebo. Individuals who received Chloroquine/Hydroxychloroquine did not present a lower incidence of death, improved clinical status, or higher chance of respiratory deterioration compared to those who received usual care or placebo. Also, some studies demonstrated that Chloroquine/Hydroxychloroquine resulted in worse outcomes and side-effects included severe ones. Adding Azithromycin to a standard of care did not result in clinical improvement in hospitalized COVID-19 participants. In brief, COVID-19 was one of the deadliest pandemics in modern human history. Due to the potential health catastrophe caused by SARS-CoV-2, a global effort was made to evaluate treatments for COVID-19 to attenuate its impact on the human species. Unfortunately, several countries prematurely justified the emergency use of drugs that showed only in vitro effects against SARS-CoV-2, with a dearth of evidence supporting efficacy in humans. In this context, we reviewed the mechanisms of several drugs proposed to treat COVID-19, including Ivermectin, Chloroquine/Hydroxychloroquine, and Azithromycin, as well as the phase III clinical trials that evaluated the efficacy of these drugs for treating patients with this respiratory disease. Conclusions: As the main finding, although Ivermectin, Chloroquine/Hydroxychloroquine, and Azithromycin might have mechanistic effects against SARS-CoV-2 infection, most phase III clinical trials observed no treatment benefit in patients with COVID-19, underscoring the need for robust phase III clinical trials.
Collapse
Affiliation(s)
- Nathália Mariana Santos Sansone
- Laboratory of Molecular Biology and Genetics, Laboratory of Clinical and Molecular Microbiology, LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (N.M.S.S.); (M.N.B.)
| | - Matheus Negri Boschiero
- Laboratory of Molecular Biology and Genetics, Laboratory of Clinical and Molecular Microbiology, LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (N.M.S.S.); (M.N.B.)
- São Paulo Hospital, Federal University of São Paulo, São Paulo 04023-062, SP, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Molecular Biology and Genetics, Laboratory of Clinical and Molecular Microbiology, LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (N.M.S.S.); (M.N.B.)
| |
Collapse
|
5
|
Elmeazawy R, Elniny A. Refractory type 1 plastic bronchitis in a child; case report. BMC Pediatr 2024; 24:443. [PMID: 38987742 PMCID: PMC11234694 DOI: 10.1186/s12887-024-04893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Plastic bronchitis (PB) is a rare pediatric pulmonary condition characterized by the production of branching bronchial casts that cause partial or total obstruction of the bronchial lumen. CASE PRESENTATION We describe a 13-year-old boy with a history of bronchial asthma and left lower lobectomy, with persistent cough and left-sided chest pain when he went to the emergency room. Chest radiography showed complete left lung opacity denoting total left lung collapse, and flexible bronchoscopy revealed cohesive casts totally occluding the left bronchus, with frequent recurrence that finally ended with left pneumonectomy. CONCLUSION Plastic bronchitis is a rare, fatal disease in children that requires a high index of suspicion for both diagnosis and treatment. Although bronchoscopic removal of the bronchial casts together with the medical treatment are the main lines of treatment, cases with recurrent formation of casts are at high risk for surgical intervention in the form of either lobectomy or pneumonectomy.
Collapse
Affiliation(s)
- Rehab Elmeazawy
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Ahmed Elniny
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Alblowi JA, Farid ZS, Attia MS. Comparative Study of Azithromycin Versus Doxycycline Effect on the Resistin Level in Periodontitis Patients With Type 2 Diabetes: A Randomized Controlled Clinical Trial. Cureus 2024; 16:e54849. [PMID: 38533160 PMCID: PMC10964125 DOI: 10.7759/cureus.54849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
AIM The present study aimed to determine if azithromycin (AZM) and doxycycline therapy, as an adjunct to scaling and root planning (SRP), modulate host response and improve clinical outcomes in periodontitis patients with type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS Forty-five periodontal sites in 15 periodontitis patients with T2DM received nonsurgical periodontal therapy (NSPT). In Group I, patients were placebo (not receiving any medication), Group II patients received systemic AZM therapy (AZM 250 mg/day for five days), and Group III patients received doxycycline (20 mg twice per day for three months. The resistin level was collected and measured by enzyme-linked immunosorbent assay (ELISA). Gingival index (GI), probing depth (PD), and clinical attachment level (CAL) were recorded at baseline, one-month, and three-month intervals. RESULTS All groups showed improvement in clinical parameters and resistin levels throughout the study. The mean resistin level at three months was the highest in Group I and the lowest in Group III. Patients in Group II showed a larger decrease in mean PD than those in Group I and III. Group III had the highest gain in mean CAL, with an increase of 1.78 mm in attachment. CONCLUSION Resistin might be a useful indicator of current disease status. In addition, benefits from adjunctive systemic use of AZM and doxycycline have been administered with non-surgical periodontal therapy.
Collapse
Affiliation(s)
- Jazia A Alblowi
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Zienab S Farid
- Department of Oral Medicine, Periodontology, Diagnosis and Radiology, Faculty of Dental Medicine, Al-Azhar University (Girls Branch), Cairo, EGY
| | - Mai S Attia
- Department of Oral Medicine, Periodontology, Diagnosis and Radiology, Faculty of Dental Medicine, Al-Azhar University (Girls Branch), Cairo, EGY
- Department of Oral Medicine, Periodontology, Diagnosis and Radiology, Faculty of Dental Medicine, Misr International University, Cairo, EGY
| |
Collapse
|
7
|
Shim SR, Lee Y, In SM, Lee KI, Kim I, Jeong H, Shin J, Kim JY. Increased risk of hearing loss associated with macrolide use: a systematic review and meta-analysis. Sci Rep 2024; 14:183. [PMID: 38167873 PMCID: PMC10762137 DOI: 10.1038/s41598-023-50774-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The increased risk of hearing loss with macrolides remains controversial. We aimed to systematically review and meta-analyze data on the clinical risk of hearing loss, tinnitus, and ototoxicity following macrolide use. A systematic search was conducted across PubMed, MEDLINE, Cochrane, and Embase databases from database inception to May 2023. Medical Subject Heading (MeSH) terms and text keywords were utilized, without any language restrictions. In addition to the electronic databases, two authors manually and independently searched for relevant studies in the US and European clinical trial registries and Google Scholar. Studies that involved (1) patients who had hearing loss, tinnitus, or ototoxicity after macrolide use, (2) intervention of use of macrolides such as azithromycin, clarithromycin, erythromycin, fidaxomicin, roxithromycin, spiramycin, and/or telithromycin, (3) comparisons with specified placebos or other antibiotics, (4) outcomes measured as odds ratio (OR), relative risk (RR), hazard ratio (HR), and mean difference for ototoxicity symptoms using randomized control trial (RCT)s and observational studies (case-control, cross-section, and cohort studies) were included. Data extraction was performed independently by two extractors, and a crosscheck was performed to identify any errors. ORs along with their corresponding 95% confidence intervals (CIs) were estimated using random-effects models. The Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guidelines for RCTs and Meta-Analysis of Observational Studies in Epidemiology guidelines for observational studies were followed. We assessed the hearing loss risk after macrolide use versus controls (placebos and other antibiotics). Based on data from 13 studies including 1,142,021 patients (n = 267,546 for macrolide and n = 875,089 for controls), the overall pooled OR was 1.25 (95% CI 1.07-1.47). In subgroup analysis by study design, the ORs were 1.37 (95% CI 1.08-1.73) for RCTs and 1.33 (95% CI 1.24-1.43) for case-control studies, indicating that RCT and case-control study designs showed a statistically significant higher risk of hearing loss. The group with underlying diseases such as multiple infectious etiologies (OR, 1.16 [95% CI 0.96-1.41]) had a statistically significant lower risk than the group without (OR, 1.53 [95% CI 1.38-1.70] P = .013). The findings from this systematic review and meta-analysis suggest that macrolide antibiotics increase the risk of hearing loss and that healthcare professionals should carefully consider this factor while prescribing macrolides.
Collapse
Affiliation(s)
- Sung Ryul Shim
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Republic of Korea
- Konyang Medical data Research group-KYMERA, Konyang University Hospital, Daejeon, Republic of Korea
| | - YungJin Lee
- Konyang Medical data Research group-KYMERA, Konyang University Hospital, Daejeon, Republic of Korea
- Department of Rehabilitation Medicine, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Seung Min In
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Ki-Il Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Ikhee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hyoyeon Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jieun Shin
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Republic of Korea.
- Konyang Medical data Research group-KYMERA, Konyang University Hospital, Daejeon, Republic of Korea.
| | - Jong-Yeup Kim
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Republic of Korea.
- Konyang Medical data Research group-KYMERA, Konyang University Hospital, Daejeon, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Parnham MJ, Norris V, Kricker JA, Gudjonsson T, Page CP. Prospects for macrolide therapy of asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:83-110. [PMID: 37524493 DOI: 10.1016/bs.apha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Macrolide compounds, many of which are derived from natural sources, all share a lactone ring structure, but of varying sizes. Their biological activities differ with structure and size but tend to overlap. Marketed macrolide drugs include immunosuppressives and antibiotics. Some of the latter have been shown to exert anti-inflammatory activities, due to direct effects on inflammatory cells and processes when used for respiratory infections. Consequently, azithromycin is included in clinical guidelines for COPD and asthma treatment, though it has the disadvantage, as an antibiotic, of increasing bacterial resistance. COPD and asthma, however, like several chronic inflammatory diseases involving other organs, are driven to a large extent by epithelial barrier dysfunction. Recently, azithromycin was shown to directly enhance epithelial barrier function and a new class of derivatives, barriolides, is under development with the lead indication COPD. It is thus likely that by circumventing antibiosis and acting on a crucial etiological disease process, this type of agent will open up a new, safer approach to COPD and asthma therapy with macrolides.
Collapse
Affiliation(s)
- Michael J Parnham
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany.
| | | | - Jennifer A Kricker
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland
| | - Clive P Page
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Prasanth DSNBK, Murahari M, Chandramohan V, Guntupalli C, Atmakuri LR. Computational study for identifying promising therapeutic agents of hydroxychloroquine analogues against SARS-CoV-2. J Biomol Struct Dyn 2022; 40:11822-11836. [PMID: 34396938 DOI: 10.1080/07391102.2021.1965027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydroxychloroquine (HCQ) and its derivatives have recently gained tremendous attention as a probable medicinal agent in the COVID-19 outbreak caused by SARS-CoV-2. An efficient agent to act directly in inhibiting the SARS-CoV-2 replication is yet to be achieved. Thus, the goal is to investigate the dynamic nature of HCQ derivatives against SARS-CoV-2 main protease and spike proteins. Molecular docking studies were also performed to understand their binding affinity in silico methods using the vital protein domains and enzymes involved in replicating and multiplying SARS-CoV-2, which were the main protease and spike protein. Molecular Dynamic simulations integrated with MM-PBSA calculations have identified In silico potential inhibitors ZINC05135012 and ZINC59378113 against the main protease with -185.171 ± 16.388, -130.759 ± 15.741 kJ/mol respectively, ZINC16638693 and ZINC59378113 against spike protein -141.425 ± 22.447, -129.149 ± 11.449 kJ/mol. Identified Hit molecules had demonstrated Drug Likeliness features, PASS values and ADMET predictions with no violations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- D S N B K Prasanth
- Pharmacognosy Research Division, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Chakravarthi Guntupalli
- Pharmacognosy Research Division, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Lakshmana Rao Atmakuri
- Department of Pharmaceutical Analysis, V. V. Institute of Pharmaceutical Sciences, Gudlavalleru, India
| |
Collapse
|
10
|
Guo X, Lin H, Guo D, Luo Q. Azithromycin use prior to ICU admission is associated with a lower short-term mortality for critically ill acute exacerbations of chronic obstructive pulmonary disease patients: A retrospective cohort study. Chron Respir Dis 2022; 19:14799731221140797. [PMID: 36409005 PMCID: PMC9685141 DOI: 10.1177/14799731221140797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Azithromycin was thought to prevent acute exacerbations of chronic obstructive pulmonary disease (AECOPDs) by anti-microbial and anti-inflammatory effects. However, it's value in the treatment of critically ill patients with AECOPD before ICU admission remains unclear. Our study aimed to find whether azithromycin use prior to ICU admission leads to better clinical outcomes for those individuals. 533 critically ill patients with AECOPD from the MIMIC-IV database were included. Univariate followed multivariate logistic regression was used to select risk factors for short-term mortality. The multivariable logistic regression models were implemented to investigate the association between azithromycin use before ICU admission and short-term mortality. Lower short-term mortality was observed in the azithromycin group (p = .021), independent of differences in demographic data and other clinical outcomes (p>.05). Azithromycin use before ICU admission was proved to have a decreased short-term mortality by multivariable logistic regression (p<.05). The results remained consistent after being stratified by age, SOFA scores, pH, and cancer diagnosis. Azithromycin use prior to ICU admission was associated with lower short-term mortality for critically ill AECOPD patients.
Collapse
Affiliation(s)
- Xuequn Guo
- Department of Respiratory Medicine,
Quanzhou
First Hospital Affiliated to Fujian Medical
University, Quanzhou, China,Xuequn Guo, Department of Respiratory
Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University,
No.250 East Street, Quanzhou 362000, China.
| | - Hongsheng Lin
- Department of Respiratory Medicine,
Quanzhou
First Hospital Affiliated to Fujian Medical
University, Quanzhou, China
| | - Donghao Guo
- Department of Medicine and
Therapeutics, Faculty of Medicine, The Chinese University of Hong
Kong, Hong Kong, China
| | - Qiu Luo
- Department of Emergency Medicine,
Quanzhou
First Hospital Affiliated to Fujian Medical
University, Quanzhou, China
| |
Collapse
|
11
|
Gao J, Hu X, Xu C, Guo M, Li S, Yang F, Pan X, Zhou F, Jin Y, Bai F, Cheng Z, Wu Z, Chen S, Huang X, Wu W. Neutrophil-mediated delivery of the combination of colistin and azithromycin for the treatment of bacterial infection. iScience 2022; 25:105035. [PMID: 36117992 PMCID: PMC9474925 DOI: 10.1016/j.isci.2022.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Novel treatment strategies are in urgent need to deal with the rapid development of antibiotic-resistant superbugs. Combination therapies and targeted drug delivery have been exploited to promote treatment efficacies. In this study, we loaded neutrophils with azithromycin and colistin to combine the advantages of antibiotic combinations, targeted delivery, and immunomodulatory effect of azithromycin to treat infections caused by Gram-negative pathogens. Delivery of colistin into neutrophils was mediated by fusogenic liposome, while azithromycin was directly taken up by neutrophils. Neutrophils loaded with the drugs maintained the abilitity to generate reactive oxygen species and migrate. In vitro assays demonstrated enhanced bactericidal activity against multidrug-resistant pathogens and reduced inflammatory cytokine production by the drug-loaded neutrophils. A single intravenous administration of the drug-loaded neutrophils effectively protected mice from Pseudomonas aeruginosa infection in an acute pneumonia model. This study provides a potential effective therapeutic approach for the treatment of bacterial infections. Neutrophils are loaded with colistin and azithromycin in vitro The loaded drugs enhance the bactericidal effect and reduce the inflammatory response Drug-loaded neutrophils conferred effective protection against bacterial infection
Collapse
Affiliation(s)
- Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingming Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fangyu Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuiping Chen
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Zhang Y, Bala V, Chhonker YS, Aldhafiri W, John LN, Bjerum CM, King CL, Mitja O, Marks M, Murry DJ. A simple, high-throughput and validated LC-MS/MS method for determination of azithromycin in human plasma and its application to a clinical pharmacokinetic study. Biomed Chromatogr 2022; 36:e5443. [PMID: 35789011 PMCID: PMC9539494 DOI: 10.1002/bmc.5443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022]
Abstract
A sensitive, specific and rapid liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed and validated to quantify azithromycin concentrations in human plasma. Azithromycin (AZI) is the most common outpatient prescribed antibiotic in the US and clinical studies have demonstrated the efficacy and safety of AZI in many bacterial infections. To support a clinical study, we developed a high throughput LC-MS/MS method to process up to 250 samples per day to quantify AZI in human plasma. Samples were prepared by solid phase extraction. Separation was achieved with an ACE C18 column (2.1 x 100 mm, 1.7 μm) equipped with a C18 guard column. The mobile phase consisted of 0.1% formic acid and methanol/acetonitrile (1:1, v/v) at a flow rate of 0.25 mL/min. The ionization was optimized with positive electrospray source using multiple reaction monitoring transition, m/z 749.50>591.45 for AZI and m/z 754.50>596.45 for AZI-d5. Extraction recoveries were approximately 90% for AZI. The assay was linear from 0.5 to 2000 ng/mL and required only 100 μL of plasma with total analysis time of 4.5 minutes. The method was successfully applied to pharmacokinetic studies of a weight-based dosing protocol for AZI.
Collapse
Affiliation(s)
- Yuning Zhang
- Clinical Pharmacology Laboratory. Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Veenu Bala
- Clinical Pharmacology Laboratory. Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yashpal S Chhonker
- Clinical Pharmacology Laboratory. Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wafaa Aldhafiri
- Clinical Pharmacology Laboratory. Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pharmaceutical Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lucy N John
- National Department of Health, Port Moresby, Papua New Guinea.,University of Barcelona, Barcelona, Spain.,School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Catherine M Bjerum
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA.,Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Oriol Mitja
- University of Barcelona, Barcelona, Spain.,School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Michael Marks
- London School of Hygiene and Tropical Medicine, London, United Kingdom.,Hospital for Tropical Diseases, London, United Kingdom.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Daryl J Murry
- Clinical Pharmacology Laboratory. Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
13
|
Prathapan P. A determination of pan-pathogen antimicrobials? MEDICINE IN DRUG DISCOVERY 2022; 14:100120. [PMID: 35098103 PMCID: PMC8785259 DOI: 10.1016/j.medidd.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/01/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
While antimicrobial drug development has historically mitigated infectious diseases that are known, COVID-19 revealed a dearth of 'in-advance' therapeutics suitable for infections by pathogens that have not yet emerged. Such drugs must exhibit a property that is antithetical to the classical paradigm of antimicrobial development: the ability to treat infections by any pathogen. Characterisation of such 'pan-pathogen' antimicrobials requires consolidation of drug repositioning studies, a new and growing field of drug discovery. In this review, a previously-established system for evaluating repositioning studies is used to highlight 4 therapeutics which exhibit pan-pathogen properties, namely azithromycin, ivermectin, niclosamide, and nitazoxanide. Recognition of the pan-pathogen nature of these antimicrobials is the cornerstone of a novel paradigm of antimicrobial development that is not only anticipatory of pandemics and bioterrorist attacks, but cognisant of conserved anti-infective mechanisms within the host-pathogen interactome which are only now beginning to emerge. Ultimately, the discovery of pan-pathogen antimicrobials is concomitantly the discovery of a new class of antivirals, and begets significant implications for pandemic preparedness research in a world after COVID-19.
Collapse
Affiliation(s)
- Praveen Prathapan
- New Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
14
|
Sub-Antimicrobial Dosage Scheme of Doxycycline for the Chronic Treatment of Bronchiectasis in a Dog. Vet Sci 2022; 9:vetsci9030137. [PMID: 35324864 PMCID: PMC8954054 DOI: 10.3390/vetsci9030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
A 9-month-old German shepherd dog was examined because of a chronic cough, exercise intolerance and labored breathing, as well as recurrent episodes of lethargy with anorexia. Multifocal severe bronchiectasis and neutrophilic bronchitis was found with thoracic computed tomography and cytology of bronchoalveolar lavage fluid, respectively. While oral azithromycin was administered, clinical signs were absent. However, stopping azithromycin lead repeatedly to presumed bacterial pneumonia within 1–2 months. With sub-antimicrobial dosed oral doxycycline (initially 1.5 mg/kg once daily for 3 months, then 0.7–0.5 mg/kg once daily for 6 months), the dog remained free from clinical signs. Bronchiectasis is characterized by marked irreversible bronchial dilation. Accumulation of intraluminal mucopurulent material and neutrophilic inflammation cause chronic cough and recurrent bacterial pneumonia. For therapy, life-long oral antibiotics are recommended. Chronic antibiotic administration, however, can select resistant bacterial strains. Though both azithromycin and doxycycline possess anti-inflammatory effects, doxycycline has these off-target properties at a sub-antimicrobial dose. In this report, a chronic sub-antimicrobial dose of doxycycline resulted in the resolution of chronic cough, exercise intolerance and labored breathing, and prevented recurrence of suspected bacterial pneumonia in the long-term in a dog with severe bronchiectasis. Beneficial effect of doxycycline is probably related to its anti-inflammatory effects rather than its antimicrobial properties.
Collapse
|
15
|
A rabbit model to study antibiotic penetration at the site of infection for non-tuberculous mycobacterial lung disease: macrolide case study. Antimicrob Agents Chemother 2022; 66:e0221221. [PMID: 35099272 DOI: 10.1128/aac.02212-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics, and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic rather than pharmacokinetic factors. Our results pave the way towards the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multi-drug combinations, to enable the prioritization of promising regimens for clinical trials.
Collapse
|
16
|
Tebbe W, Wittkowski H, Tebbe J, Hülskamp G. Case report: Idiopathic subglottic stenosis in a girl; successful treatment with macrolides. Front Pediatr 2022; 10:888282. [PMID: 36061399 PMCID: PMC9434006 DOI: 10.3389/fped.2022.888282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
An 8-year-old girl presented with treatment-refractory cough and inspiratory stridor. Bronchoscopies showed progressive scarring leading to narrowing of the proximal trachea (Myer-Cotton Grade 2) and epithelial metaplasia of the tracheal and bronchial mucosa. After excluding other causes of congenital and acquired tracheal stenosis, an idiopathic subglottic tracheal stenosis (iSGS) was diagnosed. Because of the patient's young age, a judicious therapeutic approach seemed appropriate. Therapy with azithromycin, followed by roxithromycin, was started. Symptoms almost completely subsided, spirometry normalized, and endoscopic and histologic findings improved considerably. Therapy has been continued for more than 3 years with normal lung function values, and no compromise on physical activities and development. In instances of iSGS, therapy with macrolides is worth considering before more invasive procedures such as dilatation, laser, intralesional injections, or surgical resection are performed.
Collapse
Affiliation(s)
- Wolfgang Tebbe
- Pädiatrische Pneumologie, Klinik für Kinder - und Jugendmedizin, Clemenshospital, Münster, Germany
| | - Helmut Wittkowski
- Pädiatrische Rheumatologie und ImmunologieKlinik für Kinder - und Jugendmedizin, Universitätsklinikum Münster (UKM), Münster, Germany
| | - Johannes Tebbe
- Allgemeine Pädiatrie, Pädiatrische Pneumologie, Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Münster (UKM), Münster, Germany
| | - Georg Hülskamp
- Pädiatrische Pneumologie, Klinik für Kinder - und Jugendmedizin, Clemenshospital, Münster, Germany
| |
Collapse
|
17
|
Lai LJ, Chen VCH, Yang YH, Kao KL, Chen KJ, Wang YC, Wu SI. Mycoplasma infection and ocular surface diseases: a nationwide cohort study. Sci Rep 2021; 11:22680. [PMID: 34811377 PMCID: PMC8608996 DOI: 10.1038/s41598-021-01941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 11/02/2021] [Indexed: 11/08/2022] Open
Abstract
Whether patients with Mycoplasma infection have an increased risk of ocular surface ulcers. Using a nation-wide database, we identified patients with a new diagnosis of Mycoplasma infection between 1997 and 2013, and compared them with age-, sex-, and index year-matched subjects without the infection. Cox proportional regression was performed to compare the risk of corneal diseases between the two cohorts. The incidence of corneal diseases was significantly higher in the 4223 patients with Mycoplasma infection than in the 16,892 patients without (7.28 vs. 5.94 per 1000 person-years, P < 0.01). The adjusted hazard ratio for the risk of corneal diseases in the study cohort was 1.21 times higher (95% CI 1.02-1.44) than that in the comparison cohort. Mycoplasma infection might be a predisposing factor for patients with keratitis.
Collapse
Affiliation(s)
- Li-Ju Lai
- University Eye Center, Chia-Yi, Taiwan, ROC
| | - Vincent Chin-Hung Chen
- Department of Psychiatry/Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chia-Yi, Taiwan, ROC
- Department of Psychiatry, Chang Gung University, Tao-Yuan city, Taiwan, ROC
| | - Yao-Hsu Yang
- Department of Traditional Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chia-Yi, Taiwan, ROC
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chia-Yi, Taiwan, ROC
| | - Kai-Liang Kao
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Ko-Jung Chen
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chia-Yi, Taiwan, ROC
| | - Ying-Ching Wang
- Department of Ophthalmology, Taipei City Hospital, Renai Branch, Taipei, Taiwan, ROC
| | - Shu-I Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC.
- Department of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
18
|
Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol Rev 2021; 73:233-262. [PMID: 34716226 DOI: 10.1124/pharmrev.121.000300] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrolides are among the most widely prescribed broad spectrum antibacterials, particularly for respiratory infections. It is now recognized that these drugs, in particular azithromycin, also exert time-dependent immunomodulatory actions that contribute to their therapeutic benefit in both infectious and other chronic inflammatory diseases. Their increased chronic use in airway inflammation and, more recently, of azithromycin in COVID-19, however, has led to a rise in bacterial resistance. An additional crucial aspect of chronic airway inflammation, such as chronic obstructive pulmonary disease, as well as other inflammatory disorders, is the loss of epithelial barrier protection against pathogens and pollutants. In recent years, azithromycin has been shown with time to enhance the barrier properties of airway epithelial cells, an action that makes an important contribution to its therapeutic efficacy. In this article, we review the background and evidence for various immunomodulatory and time-dependent actions of macrolides on inflammatory processes and on the epithelium and highlight novel nonantibacterial macrolides that are being studied for immunomodulatory and barrier-strengthening properties to circumvent the risk of bacterial resistance that occurs with macrolide antibacterials. We also briefly review the clinical effects of macrolides in respiratory and other inflammatory diseases associated with epithelial injury and propose that the beneficial epithelial effects of nonantibacterial azithromycin derivatives in chronic inflammation, even given prophylactically, are likely to gain increasing attention in the future. SIGNIFICANCE STATEMENT: Based on its immunomodulatory properties and ability to enhance the protective role of the lung epithelium against pathogens, azithromycin has proven superior to other macrolides in treating chronic respiratory inflammation. A nonantibiotic azithromycin derivative is likely to offer prophylactic benefits against inflammation and epithelial damage of differing causes while preserving the use of macrolides as antibiotics.
Collapse
Affiliation(s)
- Jennifer A Kricker
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Clive P Page
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Fridrik Runar Gardarsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Olafur Baldursson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Michael J Parnham
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| |
Collapse
|
19
|
Ntiamoah P, Mukhopadhyay S, Ghosh S, Mehta AC. Recycling plastic: diagnosis and management of plastic bronchitis among adults. Eur Respir Rev 2021; 30:210096. [PMID: 34407979 PMCID: PMC9489172 DOI: 10.1183/16000617.0096-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/26/2021] [Indexed: 11/05/2022] Open
Abstract
Plastic bronchitis is a rare, underdiagnosed and potentially fatal condition. It is characterised by the formation and expectoration of branching gelatinous plugs that assume the shape of the airways. These airway plugs differ from the allergic mucin that characterises allergic bronchopulmonary aspergillosis and mucoid impaction of the bronchi. Plastic bronchitis is most often encountered in the paediatric population following corrective cardiac surgery, such as the Fontan procedure. It also occurs in adults. Plastic bronchitis in adults is rare, heterogeneous in its aetiology, and can lead to respiratory distress or even life-threatening airway obstruction. Plastic bronchitis in adulthood should not be overlooked, particularly in patients with chronic inflammatory lung diseases. This review presents current understanding of the presentation, aetiology, pathogenesis, pathology and management of plastic bronchitis in adults.
Collapse
Affiliation(s)
- Prince Ntiamoah
- Dept of Pulmonary and Critical Care Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Subha Ghosh
- Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Atul C Mehta
- Dept of Pulmonary and Critical Care Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
20
|
Karki K, Sigdel S, Kafle S. Is it Worth Adding Systemic Antibiotics to Inhalational Tobramycin Therapy to Treat Pseudomonas Infections in Cystic Fibrosis? Cureus 2021; 13:e17326. [PMID: 34567873 PMCID: PMC8451513 DOI: 10.7759/cureus.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa (PA), a gram-negative rod-shaped bacterium, is one of the most common pathogens causing colonization and infection of the respiratory tract and lungs in patients with cystic fibrosis (CF). Antibiotic therapy is the mainstay treatment for PA infection, and tobramycin is one of the widely used antibiotics in intravenous or inhalation form. This review aims to explore if there is any advantage of adding systemic antibiotics to tobramycin inhalation therapy by comparing the combination regimen to tobramycin inhalation monotherapy in CF patients with PA infection. We collected studies relevant to our review topic by doing a literature search on multiple databases. According to the currently available studies, the addition of oral antibiotics such as fluoroquinolones and azithromycin to tobramycin inhalation solution (TIS) provides no additional benefit in eradicating PA infection or producing clinical improvement in cystic fibrosis patients. However, adding intravenous antibiotics to TIS has not produced conclusive results and thus requires further research. We recommend conducting more randomized controlled trials comparing different treatment regimens, which may help discover the most beneficial treatment regimen with decreased systemic side effects.
Collapse
Affiliation(s)
- Kumar Karki
- Internal Medicine, Larkin Community Hospital, Miami, USA
| | - Santosh Sigdel
- Internal Medicine, Avera McKennan Hospital and University Health Center, Sioux Falls, USA
| | - Sunam Kafle
- Internal Medicine, College of Medical Sciences, Bharatpur, NPL
| |
Collapse
|
21
|
Fernández-Martínez NF, Ortiz-González-Serna R, Serrano-Ortiz Á, Rivera-Izquierdo M, Ruiz-Montero R, Pérez-Contreras M, Guerrero-Fernández de Alba I, Romero-Duarte Á, Salcedo-Leal I. Sex Differences and Predictors of In-Hospital Mortality among Patients with COVID-19: Results from the ANCOHVID Multicentre Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9018. [PMID: 34501608 PMCID: PMC8431708 DOI: 10.3390/ijerph18179018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Spain is one of the countries most affected by the COVID-19 pandemic. Although risk factors for severe disease are published, sex differences have been widely neglected. In this multicentre study, we aimed to identify predictors of in-hospital mortality in men and women hospitalised with COVID-19. An observational longitudinal study was conducted in the cohort of patients admitted to four hospitals in Andalusia, Spain, from 1 March 2020 to 15 April 2020. Sociodemographic and clinical data were collected from hospital records. The Kaplan-Meier method was used to estimate 30-day survival and multiple Cox regression models were applied. All analyses were stratified by sex. A total of 968 patients were included (54.8% men, median age 67.0 years). In-hospital mortality reached 19.1% in men and 16.0% in women. Factors independently associated with an increased hazard of death were advanced age, higher CURB-65 score and not receiving azithromycin treatment, in both sexes; active cancer and autoimmune disease, in men; cardiovascular disease and chronic lung disease, in women. Disease outcomes and predictors of death differed between sexes. In-hospital mortality was higher in men, but the long-term effects of COVID-19 merit further research. The sex-differential impact of the pandemic should be addressed in public health policies.
Collapse
Affiliation(s)
- Nicolás Francisco Fernández-Martínez
- Unidad de Gestión Clínica Interniveles de Prevención, Promoción y Vigilancia de la Salud, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (N.F.F.-M.); (R.O.-G.-S.); (Á.S.-O.); (I.S.-L.)
- Preventive Medicine and Public Health Research Group, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Rocío Ortiz-González-Serna
- Unidad de Gestión Clínica Interniveles de Prevención, Promoción y Vigilancia de la Salud, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (N.F.F.-M.); (R.O.-G.-S.); (Á.S.-O.); (I.S.-L.)
- Preventive Medicine and Public Health Research Group, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Álvaro Serrano-Ortiz
- Unidad de Gestión Clínica Interniveles de Prevención, Promoción y Vigilancia de la Salud, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (N.F.F.-M.); (R.O.-G.-S.); (Á.S.-O.); (I.S.-L.)
- Preventive Medicine and Public Health Research Group, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Mario Rivera-Izquierdo
- Service of Preventive Medicine and Public Health, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.R.-I.); (I.G.-F.d.A.)
- Instituto de Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
| | - Rafael Ruiz-Montero
- Unidad de Gestión Clínica Interniveles de Prevención, Promoción y Vigilancia de la Salud, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (N.F.F.-M.); (R.O.-G.-S.); (Á.S.-O.); (I.S.-L.)
- Preventive Medicine and Public Health Research Group, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), 14004 Córdoba, Spain
- Facultad de Medicina y Enfermería, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Marina Pérez-Contreras
- Service of Preventive Medicine and Public Health, Hospital Universitario de Puerto Real, 11510 Puerto Real, Spain;
| | - Inmaculada Guerrero-Fernández de Alba
- Service of Preventive Medicine and Public Health, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.R.-I.); (I.G.-F.d.A.)
- Service of Preventive Medicine and Public Health, Complejo Hospitalario de Jaén, 23007 Jaén, Spain
| | | | - Inmaculada Salcedo-Leal
- Unidad de Gestión Clínica Interniveles de Prevención, Promoción y Vigilancia de la Salud, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (N.F.F.-M.); (R.O.-G.-S.); (Á.S.-O.); (I.S.-L.)
- Preventive Medicine and Public Health Research Group, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), 14004 Córdoba, Spain
- Facultad de Medicina y Enfermería, Universidad de Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
22
|
Rashad A, Nafady A, Hassan MH, Mansour H, Taya U, Bazeed SES, Aref ZF, Sayed MAA, Nafady-Hego H, Abdelmaksoud AA. Therapeutic efficacy of macrolides in management of patients with mild COVID-19. Sci Rep 2021; 11:16361. [PMID: 34381155 PMCID: PMC8357809 DOI: 10.1038/s41598-021-95900-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Evidence on the efficacy of adding macrolides (azithromycin or clarithromycin) to the treatment regimen for COVID-19 is limited. We testify whether adding azithromycin or clarithromycin to a standard of care regimen was superior to standard of supportive care alone in patients with mild COVID-19.This randomized trial included three groups of patients with COVID-19. The azithromycin group included, 107 patients who received azithromycin 500 mg/24 h for 7 days, the clarithromycin group included 99 patients who received clarithromycin 500 /12 h for 7 days, and the control group included 99 patients who received standard care only. All three groups received only symptomatic treatment for control of fever and cough .Clinical and biochemical evaluations of the study participants including assessment of the symptoms duration, real-time reverse transcription-polymerase chain reaction (rRT-PCR), C-reactive protein (CRP), serum ferritin, D-dimer, complete blood count (CBC), in addition to non-contrast chest computed tomography (CT), were performed. The overall results revealed significant early improvement of symptoms (fever, dyspnea and cough) in patients treated with either azithromycin or clarithromycin compared to control group, also there was significant early conversion of SARS-CoV-2 PCR to negative in patients treated with either azithromycin or clarithromycin compared to control group (p < 0.05 for all).There was no significant difference in time to improvement of fever, cough, dyspnea, anosmia, gastrointestinal tract "GIT" symptoms and time to PCR negative conversion between patients treated with azithromycin compared to patients treated with clarithromycin (p > 0.05 for all). Follow up chest CT done after 2 weeks of start of treatment showed significant improvement in patients treated with either azithromycin or clarithromycin compared to control group (p < 0.05 for all).Adding Clarithromycin or azithromycin to the therapeutic protocols for COVID-19 could be beneficial for early control of fever and early PCR negative conversion in Mild COVID-19.Trial registration: (NCT04622891) www.ClinicalTrials.gov retrospectively registered (November 10, 2020).
Collapse
Affiliation(s)
- Alaa Rashad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Valley-University, Qena, Egypt
| | - Asmaa Nafady
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Clinical and Chemical Pathology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, 83523, Egypt.
| | - Haggagy Mansour
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Valley-University, Qena, Egypt
| | - Usama Taya
- ENT Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Shamardan Ezzeldin S Bazeed
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Zaki F Aref
- ENT Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Hanaa Nafady-Hego
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | |
Collapse
|
23
|
Nippes RP, Macruz PD, da Silva GN, Neves Olsen Scaliante MH. A critical review on environmental presence of pharmaceutical drugs tested for the covid-19 treatment. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2021; 152:568-582. [PMID: 34226801 PMCID: PMC8243632 DOI: 10.1016/j.psep.2021.06.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 05/11/2023]
Abstract
On March 11, 2020, the World Health Organization (WHO) declared COVID-19 a pandemic. The outbreak caused a worldwide impact, becoming a health threat to the general population and its professionals. To date, there are no specific antiviral treatments or vaccines for the COVID-19 infection, however, some drugs are being clinically tested. The use of these drugs on large scale raises great concern about their imminent environmental risk, since the elimination of these compounds by feces and urine associated with the inefficiency of sewage treatment plants in their removal can result in their persistence in the environment, putting in risk the health of humans and of other species. Thus, the goal of this work was to conduct a review of other studies that evaluated the presence of the drugs chloroquine, hydroxychloroquine, azithromycin, ivermectin, dexamethasone, remdesivir, favipiravir and some HIV antivirals in the environment. The research indicated the presence of these drugs in the environment in different regions, with concentration data that could serve as a basis for further comparative studies following the pandemic.
Collapse
Affiliation(s)
- Ramiro Picoli Nippes
- State University of Maringa, Department of Chemical Engineering, Maringa, 87020-900, Parana, Brazil
| | - Paula Derksen Macruz
- State University of Maringa, Department of Chemical Engineering, Maringa, 87020-900, Parana, Brazil
| | | | | |
Collapse
|
24
|
Kumar R, Sharma A, Srivastava JK, Siddiqui MH, Uddin MS, Aleya L. Hydroxychloroquine in COVID-19: therapeutic promises, current status, and environmental implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40431-40444. [PMID: 33447984 PMCID: PMC7808930 DOI: 10.1007/s11356-020-12200-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/22/2020] [Indexed: 04/16/2023]
Abstract
The outbreak of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected the entire world with its infectious spread and mortality rate. The severe cases of coronavirus disease 2019 (COVID-19) are characterized by hypoxia and acute respiratory distress syndrome. In the absence of any specific treatment, just the preventive and supportive care options are available. Therefore, much focus is given to assess the available therapeutic options not only to avoid acute respiratory failure and hypoxia but also to reduce the viral load to control the severity of the disease. The antimalarial drug hydroxychloroquine (HCQ) is among the much-discussed drugs for the treatment and management of COVID-19 patients. This article reviews the therapeutic potential of HCQ in the treatment of COVID-19 based on the available in vitro and clinical evidence, current status of registered HCQ-based clinical trials investigating therapeutic options for COVID-19, and environmental implications of HCQ.
Collapse
Affiliation(s)
- Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India.
| | - Anju Sharma
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Janmejai Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France.
| |
Collapse
|
25
|
Sulis G, Sayood S, Gandra S. Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert Rev Anti Infect Ther 2021; 20:147-160. [PMID: 34225545 DOI: 10.1080/14787210.2021.1951705] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Rising rates of antimicrobial resistance (AMR) globally continue to pose agrave threat to human health. Low- and middle-income countries (LMICs) are disproportionately affected, partly due to the high burden of communicable diseases.Areas covered: We reviewed current trends in AMR in LMICs and examined the forces driving AMR in those regions. The state of interventions being undertaken to curb AMR across the developing world are discussed, and the impact of the current COVID-19 pandemic on those efforts is explored.Expert opinion: The dynamics that drive AMR in LMICs are inseparable from the political, economic, socio-cultural, and environmental forces that shape these nations. The COVID-19 pandemic has further exacerbated underlying factors that increase AMR. Some progress is being made in implementing surveillance measures in LMICs, but implementation of concrete measures to meaningfully impact AMR rates must address the underlying structural issues that generate and promote AMR. This, in turn, will require large infrastructural investments and significant political will.
Collapse
Affiliation(s)
- Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Sena Sayood
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis
| | - Sumanth Gandra
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis
| |
Collapse
|
26
|
Rahman Sabuj MZ, Islam N. Inhaled antibiotic-loaded polymeric nanoparticles for the management of lower respiratory tract infections. NANOSCALE ADVANCES 2021; 3:4005-4018. [PMID: 36132845 PMCID: PMC9419283 DOI: 10.1039/d1na00205h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Lower respiratory tract infections (LRTIs) are one of the leading causes of deaths in the world. Currently available treatment for this disease is with high doses of antibiotics which need to be administered frequently. Instead, pulmonary delivery of drugs has been considered as one of the most efficient routes of drug delivery to the targeted areas as it provides rapid onset of action, direct deposition of drugs into the lungs, and better therapeutic effects at low doses and is self-administrable by the patients. Thus, there is a need for scientists to design more convenient pulmonary drug delivery systems towards the innovation of a novel treatment system for LRTIs. Drug-encapsulating polymer nanoparticles have been investigated for lung delivery which could significantly reduce the limitations of the currently available treatment system for LRTIs. However, the selection of an appropriate polymer carrier for the drugs is a critical issue for the successful formulations of inhalable nanoparticles. In this review, the current understanding of LRTIs, management systems for this disease and their limitations, pulmonary drug delivery systems and the challenges of drug delivery through the pulmonary route are discussed. Drug-encapsulating polymer nanoparticles for lung delivery, antibiotics used in pulmonary delivery and drug encapsulation techniques have also been reviewed. A strong emphasis is placed on the impact of drug delivery into the infected lungs.
Collapse
Affiliation(s)
- Mohammad Zaidur Rahman Sabuj
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT) Brisbane QLD Australia
| |
Collapse
|
27
|
Huang Z, Wei P, Gan L, Li W, Zeng T, Qin C, Chen Z, Liu G. Protective effects of different anti‑inflammatory drugs on tracheal stenosis following injury and potential mechanisms. Mol Med Rep 2021; 23:314. [PMID: 34240225 PMCID: PMC7974317 DOI: 10.3892/mmr.2021.11953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/07/2020] [Indexed: 01/17/2023] Open
Abstract
Tracheal stenosis following injury cannot be effectively treated. The current study compared the protective effects of different anti-inflammatory drugs on tracheal stenosis and investigated their possible mechanisms. Rabbit tracheal stenosis models following injury were constructed and confirmed using hematoxylin and eosin (H&E) staining. A total of 30 rabbits were divided into the control (CON), penicillin (PEN), erythromycin (ERY), budesonide (BUD) and PEN + ERY + BUD groups (n=6). Stenotic tracheal tissue, serum and bronchoalveolar lavage fluid (BALF) were collected 10 days after continuous treatment. Pathological changes in the tracheas were observed by H&E staining. Histone deacetylase 2 (HDAC2) expression in tracheal tissues was detected by immunofluorescence. Immunohistochemistry was performed to detect collagen I (Col-I) and collagen III (Col-III) levels in tracheal tissues. Transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF) and interleukin 8 (IL-8) levels in serum and BALF samples were determined using ELISA kits. Western blotting detected HDAC2, IL-8, TGF-β1 and VEGF levels in tracheal tissues. H&E staining demonstrated that tracheal epithelial hyperplasia and fibroblast proliferation in the ERY and PEN + ERY + BUD groups markedly improved compared with the CON group. Furthermore, in tracheal tissues, HDAC2 expression was significantly increased and IL-8, TGF-β1, VEGF, Col-I and Col-III levels were significantly decreased in the ERY and PEN + ERY + BUD groups compared with the CON group. Additionally, the results for the PEN + ERY + BUD were more significant compared with the ERY group. In serum and BALF samples, IL-8, TGF-β1 and VEGF levels in the ERY and PEN + ERY + BUD groups were significantly lower compared with the CON group, with the results of the PEN + ERY + BUD group being more significant compared with the ERY group. There were no significant differences between the PEN, BUD and CON groups. ERY inhibited tracheal granulation tissue proliferation and improved tracheal stenosis following injury and synergistic effects with PEN and BUD further enhanced these protective effects. The mechanism may involve HDAC2 upregulation and inhibition of local airway and systemic inflammatory responses.
Collapse
Affiliation(s)
- Zhenjie Huang
- Department of Respiratory Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Peng Wei
- Department of Respiratory Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Luoman Gan
- School of Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Wentao Li
- Department of Respiratory Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Tonghua Zeng
- Department of Respiratory Medicine, Beihai People's Hospital, Beihai, Guangxi 536000, P.R. China
| | - Caicheng Qin
- Department of Respiratory Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Zhiyu Chen
- Department of Respiratory Medicine, Beihai People's Hospital, Beihai, Guangxi 536000, P.R. China
| | - Guangnan Liu
- Department of Respiratory Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
28
|
Ullah M, Wahab A, Saeed S, Khan SU, Ali H, Humayun S, Abbasi BA, Saud S, Naveed K, Khan SA, Fahad S. Coronavirus and its terrifying inning around the globe: The pharmaceutical cares at the main frontline. CHEMOSPHERE 2021; 275:129968. [PMID: 33652275 PMCID: PMC7884917 DOI: 10.1016/j.chemosphere.2021.129968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 05/06/2023]
Abstract
A novel coronavirus (2019-nCoV) is an acute life-threatening disease, emerged in China, which imposed a potentially immense toll in terms of public health emergency due to high infection rate and has a devastating economic impact that attracts the world's attention. After that, on January 30, 2020, it was officially declared as a global pandemic by World Health Organization (WHO). The International Committee on Taxonomy of Viruses (ICTV) recognized it as a Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and the disease named Coronavirus Disease-19 (COVID-19). Several studies have been ameliorated the active role of COVID-19 transmission, etiology, pathogenicity, and mortality rate as serious impact on human life. The symptoms of this disease may include fever, fatigue, cough and some peoples are severely prone to gastrointestinal infection. The elderly and seriously affected peoples are likely concerned with serious outcomes. In this review, we mainly aimed to provide a benchmark summary of the silent characteristics and findings of some candidates for antiviral drugs and immunotherapies such as plasma therapy, cytokine therapy, antibodies, intravenous immunoglobulin, and pharmaceutical health concerns that are related to this disease.
Collapse
Affiliation(s)
- Muneeb Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Sumbul Saeed
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shahid Ullah Khan
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haider Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shah Humayun
- Pakistan Institute of Medical Sciences (pims), Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Khalid Naveed
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Sher Aslam Khan
- Department of Plant Breeding & Genetics, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Shah Fahad
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
29
|
Beura S, Chetti P. In-silico strategies for probing chloroquine based inhibitors against SARS-CoV-2. J Biomol Struct Dyn 2021; 39:3747-3759. [PMID: 32448039 PMCID: PMC7284140 DOI: 10.1080/07391102.2020.1772111] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
The global health emergency of novel COVID-19 is due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Currently there are no approved drugs for the treatment of coronaviral disease (COVID-19), although some of the drugs have been tried. Chloroquine is being widely used in treatment of SARS-CoV-2 infection. Hydroxychloroquine, the derivative of Chloroquine shows better inhibition than Chloroquine and has in vitro activity against SARS-CoV-2 also used to treat COVID-19. To study the interactions of Chloroquine and derivatives of Chloroquine with SARS-CoV-2, series of computational approaches like pharmacophore model, molecular docking, MM_GBSA study and ADME property analysis are explored. The pharmacophore model and molecular docking study are used to explore the structural properties of the compounds and the ligand-receptor (PDB_ID: 6LU7) interactions respectively. MM_GBSA study gives the binding free energy of the protein-ligand complex and ADME property analysis explains the pharmacological property of the compounds. The resultant best molecule (CQD15) further subjected to molecular dynamics (MD) simulation study which explains the protein stability (RMSD), ligand properties as well as protein-ligand contacts. Outcomes of the present study conclude with the molecule CQD15 which shows better interactions for the inhibition of SARS-CoV-2 in comparison to Chloroquine and Hydroxychloroquine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyajit Beura
- Department of Chemistry, National Institute of Technology, Kurukshetra, India
| | - Prabhakar Chetti
- Department of Chemistry, National Institute of Technology, Kurukshetra, India
| |
Collapse
|
30
|
Ewig S, Kolditz M, Pletz M, Altiner A, Albrich W, Drömann D, Flick H, Gatermann S, Krüger S, Nehls W, Panning M, Rademacher J, Rohde G, Rupp J, Schaaf B, Heppner HJ, Krause R, Ott S, Welte T, Witzenrath M. [Management of Adult Community-Acquired Pneumonia and Prevention - Update 2021 - Guideline of the German Respiratory Society (DGP), the Paul-Ehrlich-Society for Chemotherapy (PEG), the German Society for Infectious Diseases (DGI), the German Society of Medical Intensive Care and Emergency Medicine (DGIIN), the German Viological Society (DGV), the Competence Network CAPNETZ, the German College of General Practitioneers and Family Physicians (DEGAM), the German Society for Geriatric Medicine (DGG), the German Palliative Society (DGP), the Austrian Society of Pneumology Society (ÖGP), the Austrian Society for Infectious and Tropical Diseases (ÖGIT), the Swiss Respiratory Society (SGP) and the Swiss Society for Infectious Diseases Society (SSI)]. Pneumologie 2021; 75:665-729. [PMID: 34198346 DOI: 10.1055/a-1497-0693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present guideline provides a new and updated concept of the management of adult patients with community-acquired pneumonia. It replaces the previous guideline dating from 2016.The guideline was worked out and agreed on following the standards of methodology of a S3-guideline. This includes a systematic literature search and grading, a structured discussion of recommendations supported by the literature as well as the declaration and assessment of potential conflicts of interests.The guideline has a focus on specific clinical circumstances, an update on severity assessment, and includes recommendations for an individualized selection of antimicrobial treatment.The recommendations aim at the same time at a structured assessment of risk for adverse outcome as well as an early determination of treatment goals in order to reduce mortality in patients with curative treatment goal and to provide palliation for patients with treatment restrictions.
Collapse
Affiliation(s)
- S Ewig
- Thoraxzentrum Ruhrgebiet, Kliniken für Pneumologie und Infektiologie, EVK Herne und Augusta-Kranken-Anstalt Bochum
| | - M Kolditz
- Universitätsklinikum Carl-Gustav Carus, Klinik für Innere Medizin 1, Bereich Pneumologie, Dresden
| | - M Pletz
- Universitätsklinikum Jena, Institut für Infektionsmedizin und Krankenhaushygiene, Jena
| | - A Altiner
- Universitätsmedizin Rostock, Institut für Allgemeinmedizin, Rostock
| | - W Albrich
- Kantonsspital St. Gallen, Klinik für Infektiologie/Spitalhygiene
| | - D Drömann
- Universitätsklinikum Schleswig-Holstein, Medizinische Klinik III - Pulmologie, Lübeck
| | - H Flick
- Medizinische Universität Graz, Universitätsklinik für Innere Medizin, Klinische Abteilung für Lungenkrankheiten, Graz
| | - S Gatermann
- Ruhr Universität Bochum, Abteilung für Medizinische Mikrobiologie, Bochum
| | - S Krüger
- Kaiserswerther Diakonie, Florence Nightingale Krankenhaus, Klinik für Pneumologie, Kardiologie und internistische Intensivmedizin, Düsseldorf
| | - W Nehls
- Helios Klinikum Erich von Behring, Klinik für Palliativmedizin und Geriatrie, Berlin
| | - M Panning
- Universitätsklinikum Freiburg, Department für Medizinische Mikrobiologie und Hygiene, Freiburg
| | - J Rademacher
- Medizinische Hochschule Hannover, Klinik für Pneumologie, Hannover
| | - G Rohde
- Universitätsklinikum Frankfurt, Medizinische Klinik I, Pneumologie und Allergologie, Frankfurt/Main
| | - J Rupp
- Universitätsklinikum Schleswig-Holstein, Klinik für Infektiologie und Mikrobiologie, Lübeck
| | - B Schaaf
- Klinikum Dortmund, Klinik für Pneumologie, Infektiologie und internistische Intensivmedizin, Dortmund
| | - H-J Heppner
- Lehrstuhl Geriatrie Universität Witten/Herdecke, Helios Klinikum Schwelm, Klinik für Geriatrie, Schwelm
| | - R Krause
- Medizinische Universität Graz, Universitätsklinik für Innere Medizin, Klinische Abteilung für Infektiologie, Graz
| | - S Ott
- St. Claraspital Basel, Pneumologie, Basel, und Universitätsklinik für Pneumologie, Universitätsspital Bern (Inselspital) und Universität Bern
| | - T Welte
- Medizinische Hochschule Hannover, Klinik für Pneumologie, Hannover
| | - M Witzenrath
- Charité, Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Berlin
| |
Collapse
|
31
|
Sulis G, Batomen B, Kotwani A, Pai M, Gandra S. Sales of antibiotics and hydroxychloroquine in India during the COVID-19 epidemic: An interrupted time series analysis. PLoS Med 2021; 18:e1003682. [PMID: 34197449 PMCID: PMC8248656 DOI: 10.1371/journal.pmed.1003682] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We assessed the impact of the coronavirus disease 2019 (COVID-19) epidemic in India on the consumption of antibiotics and hydroxychloroquine (HCQ) in the private sector in 2020 compared to the expected level of use had the epidemic not occurred. METHODS AND FINDINGS We performed interrupted time series (ITS) analyses of sales volumes reported in standard units (i.e., doses), collected at regular monthly intervals from January 2018 to December 2020 and obtained from IQVIA, India. As children are less prone to develop symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we hypothesized a predominant increase in non-child-appropriate formulation (non-CAF) sales. COVID-19-attributable changes in the level and trend of monthly sales of total antibiotics, azithromycin, and HCQ were estimated, accounting for seasonality and lockdown period where appropriate. A total of 16,290 million doses of antibiotics were sold in India in 2020, which is slightly less than the amount in 2018 and 2019. However, the proportion of non-CAF antibiotics increased from 72.5% (95% CI: 71.8% to 73.1%) in 2019 to 76.8% (95% CI: 76.2% to 77.5%) in 2020. Our ITS analyses estimated that COVID-19 likely contributed to 216.4 million (95% CI: 68.0 to 364.8 million; P = 0.008) excess doses of non-CAF antibiotics and 38.0 million (95% CI: 26.4 to 49.2 million; P < 0.001) excess doses of non-CAF azithromycin (equivalent to a minimum of 6.2 million azithromycin treatment courses) between June and September 2020, i.e., until the peak of the first epidemic wave, after which a negative change in trend was identified. In March 2020, we estimated a COVID-19-attributable change in level of +11.1 million doses (95% CI: 9.2 to 13.0 million; P < 0.001) for HCQ sales, whereas a weak negative change in monthly trend was found for this drug. Study limitations include the lack of coverage of the public healthcare sector, the inability to distinguish antibiotic and HCQ sales in inpatient versus outpatient care, and the suboptimal number of pre- and post-epidemic data points, which could have prevented an accurate adjustment for seasonal trends despite the robustness of our statistical approaches. CONCLUSIONS A significant increase in non-CAF antibiotic sales, and particularly azithromycin, occurred during the peak phase of the first COVID-19 epidemic wave in India, indicating the need for urgent antibiotic stewardship measures.
Collapse
Affiliation(s)
- Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Brice Batomen
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Madhukar Pai
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Sumanth Gandra
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
32
|
Romanowski JE, Nayyar SV, Romanowski EG, Jhanji V, Shanks RMQ, Kowalski RP. Speciation and Antibiotic Susceptibilities of Coagulase Negative Staphylococci Isolated from Ocular Infections. Antibiotics (Basel) 2021; 10:antibiotics10060721. [PMID: 34208455 PMCID: PMC8234609 DOI: 10.3390/antibiotics10060721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are frequently occurring ocular opportunistic pathogens that are not easily identifiable to the species level. The goal of this study was to speciate CoNS and document antibiotic susceptibilities from cases of endophthalmitis (n = 50), keratitis (n = 50), and conjunctivitis/blepharitis (n = 50) for empiric therapy. All 150 isolates of CoNS were speciated using (1) API Staph (biochemical system), (2) Biolog GEN III Microplates (phenotypic substrate system), and (3) DNA sequencing of the sodA gene. Disk diffusion antibiotic susceptibilities for topical and intravitreal treatment were determined based on serum standards. CoNS identification to the species level by all three methods indicated that S. epidermidis was the predominant species of CoNS isolated from cases of endophthalmitis (84-90%), keratitis (80-86%), and conjunctivitis/blepharitis (62-68%). Identifications indicated different distributions of CoNS species among endophthalmitis (6), keratitis (10), and conjunctivitis/blepharitis (13). Antibiotic susceptibility profiles support empiric treatment of endophthalmitis with vancomycin, and keratitis treatment with cefazolin or vancomycin. There was no clear antibiotic choice for conjunctivitis/blepharitis. S. epidermidis was the most frequently found CoNS ocular pathogen, and infection by other CoNS appears to be less specific and random. Antibiotic resistance does not appear to be a serious problem associated with CoNS.
Collapse
|
33
|
Soumya RS, Unni TG, Raghu KG. Impact of COVID-19 on the Cardiovascular System: A Review of Available Reports. Cardiovasc Drugs Ther 2021; 35:411-425. [PMID: 32926272 PMCID: PMC7487338 DOI: 10.1007/s10557-020-07073-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
The recent emergence of the coronavirus disease 19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China is now a global health emergency. The transmission of SARS-CoV-2 is mainly via human-to-human contact. This virus is expected to be of zoonotic origin and has a high genome identity to that of bat derived SARS-like coronavirus. Various stringent measures have been implemented to lower person-to-person transmission of COVID-19. Particular observations and attempts have been made to reduce transmission in vulnerable populations, including older adults, children, and healthcare providers. This novel CoV enters the cells through the angiotensin-converting enzyme 2 (ACE2) receptor. There is a higher risk of COVID-19 infection among those with preexisting cardiovascular diseases (CVD), and it has been connected with various direct and indirect complications, including myocarditis, acute myocardial injury, venous thromboembolism, and arrhythmias. This article summarizes the various cardiovascular complications and mechanisms responsible for the same with COVID-19 infection. For the benefit of the scientific community and public, the effect of COVID-19 on major vital organs such as the kidneys, liver, and intestines has been briefly discussed. In this review, we also discuss drugs in different stages of clinical trials and their associated complications, as well as the details of vaccines in various stages of development.
Collapse
Affiliation(s)
- R S Soumya
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - T Govindan Unni
- Department of Cardiology, Jubilee Mission Medical College & Research Centre, Thrissur, Kerala, 680005, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India.
| |
Collapse
|
34
|
Astale T, Ebert CD, Nute AW, Zerihun M, Gessese D, Melak B, Sata E, Ayele Z, Ayenew G, Callahan EK, Haile M, Zeru T, Tadesse Z, Nash SD. The population-based prevalence of trachomatous scarring in a trachoma hyperendemic setting: results from 152 impact surveys in Amhara, Ethiopia. BMC Ophthalmol 2021; 21:213. [PMID: 33985443 PMCID: PMC8120834 DOI: 10.1186/s12886-021-01972-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trachomatous scarring (TS) results from repeated infection with the bacterium Chlamydia trachomatis. Pronounced scarring is an underlying cause of trachomatous trichiasis (TT) that can lead to blindness. Since the condition is irreversible, TS in adults has been considered a marker of past exposure to trachoma infection. The aim of this report was to estimate the population-based prevalence of TS within Amhara, Ethiopia, a region with a historically high burden of trachoma. METHODS District-level multi-stage cluster surveys were conducted in all districts between 2010 and 2015 to monitor the impact of approximately 5 years of trachoma interventions. Approximately 40 households were sampled per cluster and all participants ages ≥ 1 year were graded for the 5 World Health Organization simplified signs. Before each survey round, trachoma graders participated in a 7-day training and reliability exam that included cases of TS. TS prevalence estimates were weighted to account for sampling design and adjusted for age and sex using post-stratification weighting. RESULTS Across the 152 districts in Amhara, 208,510 individuals ages 1 year and older were examined for the signs of trachoma. Region-wide, the prevalence of TS was 8.2 %, (95 % Confidence Interval [CI]: 7.7-8.6 %), and the prevalence among individuals ages 15 years and older (n = 110,137) was 12.6 % (95 % CI: 12.0-13.3 %). District-level TS prevalence among individuals ages 15 years and older ranged from 0.9 to 36.9 % and was moderately correlated with district prevalence of TT (r = 0.31; P < 0.001). The prevalence of TS increased with age, reaching 22.4 % among those ages 56 to 60 years and 24.2 % among those ages 61 to 65 years. Among children ages 1 to 15 years TS prevalence was 2.2 % (95 % CI: 1.8-2.8 %), increased with age (P < 0.001), and 5 % of individuals with TS also had trachomatous inflammation-intense (TI). CONCLUSIONS These results suggest that Amhara has had a long history of trachoma exposure and that a large population remains at risk for developing TT. It is promising, however, that children, many born after interventions began, have low levels of TS compared to other known trachoma-hyperendemic areas.
Collapse
Affiliation(s)
| | - Caleb D Ebert
- F.I. Proctor Foundation, University of California, San Francisco, CA, San Francisco, USA.
| | | | | | | | | | | | | | | | | | | | - Taye Zeru
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | | | | |
Collapse
|
35
|
Abstract
Background::
The pathological agent of Coronavirus disease 2019 (COVID-19) is a novel
coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has
its origin in Wuhan, China, and spread to other provinces of China and subsequently to other countries
resulting in a pandemic worldwide. The virus is extremely contagious and causes pneumonia and respiratory
failure. Since its emergence, researchers around the world are trying to develop vaccines and
find suitable drugs for the treatment of COVID-19.
Objective::
To give an overview of the various therapeutic agents for COVID-19 such as vaccines and
drugs that are in preclinical stage or under different stages of clinical trials.
Results::
As per World Health Organization (WHO), there are 137 vaccines under development to date,
out of which few vaccines have successfully completed preclinical studies and reached clinical trials.
According to the present scenario, only one coronavirus vaccine (sputnik-V) has been approved by the
Ministry of Health of the Russian Federation. Till date, there are no United States Food and Drug Administration
(USFDA) approved drugs to treat COVID-19 patients. However, depending on patient’s
condition, different drugs such as antiviral agents like Remdesivir, antimalarial drugs like Hydroxychloroquine,
antibiotics like Azithromycin and corticosteroids like Dexamethasone are being applied
and some of them have proved to be effective up to a certain extent.
Conclusion::
Although several vaccines for COVID-19 are under development and various drugs have
been tried for its treatment, an ideal drug candidate or a vaccine is still lacking. Almost all the big
pharmaceutical companies are associated with one or more research initiatives in order to develop
vaccines and drugs. Many of them are going through clinical stages, expecting a positive outcome by
the end of 2020.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, 398 Ramkrishnapur Road, Barasat, Kolkata 700125, India
| | - Mainak Mal
- Department of Pharmaceutical Technology, Brainware University, 398 Ramkrishnapur Road, Barasat, Kolkata 700125, India
| | - Manas Bhowmik
- Department of Pharmaceutical Technology, Brainware University, 398 Ramkrishnapur Road, Barasat, Kolkata 700125, India
| | - Dipika Mandal
- Department of Pharmaceutical Technology, University of North Bengal, Siliguri, India
| |
Collapse
|
36
|
Galvez J, Zanni R, Galvez-Llompart M, Benlloch JM. Macrolides May Prevent Severe Acute Respiratory Syndrome Coronavirus 2 Entry into Cells: A Quantitative Structure Activity Relationship Study and Experimental Validation. J Chem Inf Model 2021; 61:2016-2025. [PMID: 33734704 PMCID: PMC7986980 DOI: 10.1021/acs.jcim.0c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 02/07/2023]
Abstract
The global pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is threatening the health and economic systems worldwide. Despite the enormous efforts of scientists and clinicians around the world, there is still no drug or vaccine available worldwide for the treatment and prevention of the infection. A rapid strategy for the identification of new treatments is based on repurposing existing clinically approved drugs that show antiviral activity against SARS-CoV-2 infection. In this study, after developing a quantitative structure activity relationship analysis based on molecular topology, several macrolide antibiotics are identified as promising SARS-CoV-2 spike protein inhibitors. To confirm the in silico results, the best candidates were tested against two human coronaviruses (i.e., 229E-GFP and SARS-CoV-2) in cell culture. Time-of-addition experiments and a surrogate model of viral cell entry were used to identify the steps in the virus life cycle inhibited by the compounds. Infection experiments demonstrated that azithromycin, clarithromycin, and lexithromycin reduce the intracellular accumulation of viral RNA and virus spread as well as prevent virus-induced cell death, by inhibiting the SARS-CoV-2 entry into cells. Even though the three macrolide antibiotics display a narrow antiviral activity window against SARS-CoV-2, it may be of interest to further investigate their effect on the viral spike protein and their potential in combination therapies for the coronavirus disease 19 early stage of infection.
Collapse
Affiliation(s)
- Jorge Galvez
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
| | - Riccardo Zanni
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
| | - Maria Galvez-Llompart
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
- Instituto de Tecnología
Química, UPV-CSIC, Universidad Politícnica
de Valencia, Valencia 46022,
Spain
| | - Jose Maria Benlloch
- Instituto de Instrumentación para
Imagen Molecular, Centro Mixto CSIC—Universitat
Politècnica de València, Valencia
46022, Spain
| |
Collapse
|
37
|
Batiha GES, Zayed MA, Awad AA, Shaheen HM, Mustapha S, Herrera-Calderon O, Pagnossa JP, Algammal AM, Zahoor M, Adhikari A, Pandey I, Elazab ST, Rengasamy KRR, Cruz-Martins N, Hetta HF. Management of SARS-CoV-2 Infection: Key Focus in Macrolides Efficacy for COVID-19. Front Med (Lausanne) 2021; 8:642313. [PMID: 33937285 PMCID: PMC8079973 DOI: 10.3389/fmed.2021.642313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Macrolides (e.g., erythromycin, fidaxomicin, clarithromycin, and azithromycin) are a class of bacteriostatic antibiotics commonly employed in medicine against various gram-positive and atypical bacterial species mostly related to respiratory tract infections, besides they possess anti-inflammatory and immunomodulatory effects. Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). It was first detected in Wuhan, Hubei, China, in December 2019 and resulted in a continuing pandemic. Macrolides have been extensively researched as broad adjunctive therapy for COVID-19 due to its immunostimulant abilities. Among such class of drugs, azithromycin is described as azalide and is well-known for its ability to decrease the production of pro-inflammatory cytokines, including matrix metalloproteinases, tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8. In fact, a report recently published highlighted the effectiveness of combining azithromycin and hydroxychloroquine for COVID-19 treatment. Indeed, it has been underlined that azithromycin quickly prevents SARS-CoV-2 infection by raising the levels of both interferons and interferon-stimulated proteins at the same time which reduces the virus replication and release. In this sense, the current review aims to evaluate the applications of macrolides for the treatment of COVID-19.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Marwa A. Zayed
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Aya A. Awad
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Suleiman Mustapha
- Department of Crop Protection, University of Ilorin, Ilorin, Nigeria
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuwan University, Kritipur, Nepal
| | - Ishan Pandey
- Department of Pathology, Motilal Nehru Medical College, Prayagraj, India
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Kannan R. R. Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, South Africa
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
38
|
Tamura H, Maekawa T, Domon H, Hiyoshi T, Hirayama S, Isono T, Sasagawa K, Yonezawa D, Takahashi N, Oda M, Maeda T, Tabeta K, Terao Y. Effects of Erythromycin on Osteoclasts and Bone Resorption via DEL-1 Induction in Mice. Antibiotics (Basel) 2021; 10:antibiotics10030312. [PMID: 33803007 PMCID: PMC8002756 DOI: 10.3390/antibiotics10030312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/14/2023] Open
Abstract
Macrolides are used to treat various infectious diseases, including periodontitis. Furthermore, macrolides are known to have immunomodulatory effects; however, the underlying mechanism of their action remains unclear. DEL-1 has emerged as an important factor in homeostatic immunity and osteoclastogenesis. Specifically, DEL-1 is downregulated in periodontitis tissues. Therefore, in the present study, we investigated whether the osteoclastogenesis inhibitory effects of erythromycin (ERM) are mediated through upregulation of DEL-1 expression. We used a ligature-induced periodontitis model in C57BL/6Ncrl wild-type or DEL-1-deficient mice and in vitro cell-based mechanistic studies to investigate how ERM inhibits alveolar bone resorption. As a result of measuring alveolar bone resorption and gene expression in the tooth ligation model, ERM treatment reduced bone loss by increasing DEL-1 expression and decreasing the expression of osteoclast-related factors in wild-type mice. In DEL-1-deficient mice, ERM failed to suppress bone loss and gene expression of osteoclast-related factors. In addition, ERM treatment downregulated osteoclast differentiation and calcium resorption in in vitro experiments with mouse bone marrow-derived macrophages. In conclusion, ERM promotes the induction of DEL-1 in periodontal tissue, which may regulate osteoclastogenesis and decrease inflammatory bone resorption. These findings suggest that ERM may exert immunomodulatory effects in a DEL-1-dependent manner.
Collapse
Affiliation(s)
- Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
- Correspondence: (T.M.); (H.D.); Tel.: +81-25-227-2828 (T.M.); +81-227-2840 (H.D.)
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
- Correspondence: (T.M.); (H.D.); Tel.: +81-25-227-2828 (T.M.); +81-227-2840 (H.D.)
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Daisuke Yonezawa
- Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Naoki Takahashi
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Yamashita 607-8414, Japan;
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| |
Collapse
|
39
|
Mandru R, Zhou CY, Pauley R, Burkes RM. Considerations for and Mechanisms of Adjunct Therapy in COPD. J Clin Med 2021; 10:jcm10061225. [PMID: 33809583 PMCID: PMC7999347 DOI: 10.3390/jcm10061225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Inhaled bronchodilators and corticosteroids, when indicated, form the backbone of COPD therapy. However, over the last decade there has been an emergence of adjunct therapies in oral or inhaled form that are now part of the therapeutic approach to COPD. While these therapies have shown to be beneficial when used in the appropriate instances, there are particular considerations that need to be minded when using these therapies. This review article discussed the mechanism of roflumilast, macrolide antibiotics, other chronic antibiotic regimens, vitamin D supplementation, oral corticosteroids, n-acetylcysteine, and nebulized hypertonic saline, the clinical data behind each of these therapies, adverse events associated with therapy, and the expert recommendations for their utilization. Our goal is to provide a brief but informative and clinically useful review of commonly encountered therapies used in advanced COPD.
Collapse
Affiliation(s)
- Rachana Mandru
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Christine Y. Zhou
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (C.Y.Z.); (R.P.)
| | - Rachel Pauley
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (C.Y.Z.); (R.P.)
| | - Robert M. Burkes
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Correspondence:
| |
Collapse
|
40
|
Lindenberg M, Almeida L, Dhillon-LaBrooy A, Siegel E, Henriques-Normark B, Sparwasser T. Clarithromycin impairs tissue-resident memory and Th17 responses to macrolide-resistant Streptococcus pneumoniae infections. J Mol Med (Berl) 2021; 99:817-829. [PMID: 33595670 PMCID: PMC8164591 DOI: 10.1007/s00109-021-02039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Abstract The increasing prevalence of antimicrobial resistance in pathogens is a growing public health concern, with the potential to compromise the success of infectious disease treatments in the future. Particularly, the number of infections by macrolide antibiotics-resistant Streptococcus pneumoniae is increasing. We show here that Clarithromycin impairs both the frequencies and number of interleukin (IL)-17 producing T helper (Th) 17 cells within the lungs of mice infected with a macrolide-resistant S. pneumoniae serotype 15A strain. Subsequently, the tissue-resident memory CD4+ T cell (Trm) response to a consecutive S. pneumoniae infection was impaired. The number of lung resident IL-17+ CD69+ Trm was diminished upon Clarithromycin treatment during reinfection. Mechanistically, Clarithromycin attenuated phosphorylation of the p90-S6-kinase as part of the ERK pathway in Th17 cells. Moreover, a strong increase in the mitochondrial-mediated maximal respiratory capacity was observed, while mitochondrial protein translation and mTOR sisgnaling were unimpaired. Therefore, treatment with macrolide antibiotics may favor the spread of antimicrobial-resistant pathogens not only by applying a selection pressure but also by decreasing the natural T cell immune response. Clinical administration of macrolide antibiotics as standard therapy procedure during initial hospitalization should be reconsidered accordingly and possibly be withheld until microbial resistance is determined. Key messages • Macrolide-resistant S. pneumoniae infection undergoes immunomodulation by Clarithromycin • Clarithromycin treatment hinders Th17 and tissue-resident memory responses • Macrolide antibiotics impair Th17 differentiation in vitro by ERK-pathway inhibition Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02039-5.
Collapse
Affiliation(s)
- Marc Lindenberg
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hanover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
- German Centre for Infection Research, partner site Hanover-Brunswick, Hanover, Germany
| | - Luis Almeida
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hanover, Germany
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hanover, Germany
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ekkehard Siegel
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, MTC, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hanover, Germany.
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
41
|
Mater Mahnashi H, Mahmoud AM, Saad Alkahtani A, El-Wekil MM. Simultaneous electrochemical detection of azithromycin and hydroxychloroquine based on VS 2 QDs embedded N, S @graphene aerogel/cCNTs 3D nanostructure. Microchem J 2021; 163:105925. [PMID: 33437097 PMCID: PMC7792520 DOI: 10.1016/j.microc.2021.105925] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
In this research paper, an innovative electrochemical sensor was suggested for simultaneous voltammetric analysis of azithromycin (AZM) and hydroxychloroquine (HCQ) for the first time. The sensor based on hydrothermal synthesis of vanadium disulfide quantum dots (VS2 QDs) and insertion within 3D N, S graphene aerogel (3D N, S @ GNA) and carbon nanotubes nanaostructure as a new and widely group of carbon nanomaterials. The nanocomposites were characterized morphologically using different techniques. In addition, the nanomaterials were characterized electrochemically using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The proposed electrochemical sensor showed wide dynamic linear ranges of 0.28–30 × 10−8 M and 0.84–22.5 × 10−8 M for analysis of AZM and HCQ, respectively. The limits of detection (LODs) based on signal to noise (S/N) 3:1 were found to be 0.091 × 10−8 M and 0.277 × 10−8 M for AZM and HCQ, respectively. Briefly, the electrochemical sensor had good stability, selectivity, reproducibility and feasibility for simultaneous detection of AZM and HCQ in presence of different interfering species.
Collapse
Affiliation(s)
- H Mater Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - A Saad Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
42
|
Pagliano P, Scarpati G, Sellitto C, Conti V, Spera AM, Ascione T, Piazza O, Filippelli A. Experimental Pharmacotherapy for COVID-19: The Latest Advances. J Exp Pharmacol 2021; 13:1-13. [PMID: 33442304 PMCID: PMC7800714 DOI: 10.2147/jep.s255209] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
The coronavirus infectious disease-2019 (COVID-19) has overwhelmed like a shock wave in a completely unprepared world. Despite coronavirus infections were involved in previous epidemic outbreaks, no antiviral agent was developed for specific treatment. As a consequence, since the beginning of this pandemic, both repositioned and experimental drugs were used to treat the infected patients without evidence of clinical efficacy. Just based on experience coming from the use of antiviral agents to treat other viruses (eg, lopinavir/ritonavir, remdesivir) and supposed antiviral or immunomodulatory activities of drugs with no approved antiviral indications (eg hydroxychloroquine, tocilizumab), clinicians have faced the ongoing pandemic. Currently, after about 9 months from the COVID-19 spread, there is still no antiviral agent capable of ensuring the cure of this syndrome. Clinical trials are beginning to confirm the benefits of some drugs, while for other compounds, efficacy and safety have not yet been confirmed. Randomized clinical trials (RCT) have denied or downsized the beneficial effects attributed to certain molecules, such as aminoquinolines, largely used in clinical practice at the beginning of COVID-19 spread. Conversely, at the same time, they have provided evidence for unexpected effectiveness of other agents that have been underutilized, such as steroids, which were not used in SARS treatment because of the threatened effect on viral replication. Evidence deriving from pathologic studies have demonstrated that the prothrombotic effects of SARS-CoV-2 can be prevented by heparin prophylaxis, underlining the need for personalized treatment for patients with severe disease. The main aim of this review is to synthesize the available information and evidence on both repositioned and experimental drugs for the treatment of COVID-19, focusing on the need to exercise caution on the use of unproven medical therapies.
Collapse
Affiliation(s)
- Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Anna Maria Spera
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Diseases, Cardarelli Hospital, Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| |
Collapse
|
43
|
Lariccia V, Magi S, Serfilippi T, Toujani M, Gratteri S, Amoroso S. Challenges and Opportunities from Targeting Inflammatory Responses to SARS-CoV-2 Infection: A Narrative Review. J Clin Med 2020; 9:E4021. [PMID: 33322733 PMCID: PMC7763517 DOI: 10.3390/jcm9124021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) is a global pandemic that continues to sweep across the world, posing an urgent need for effective therapies and prevention of the spread of the severe acute respiratory syndrome related to coronavirus-2 (SARS-CoV-2). A major hypothesis that is currently guiding research and clinical care posits that an excessive and uncontrolled surge of pro-inflammatory cytokines (the so-called "cytokine storm") drives morbidity and mortality in the most severe cases. In the overall efforts made to develop effective and safe therapies (including vaccines) for COVID-19, clinicians are thus repurposing ready-to-use drugs with direct or indirect anti-inflammatory and immunomodulatory activities. Speculatively, there are many opportunities and challenges in targeting immune/inflammatory processes in the evolving settings of COVID-19 disease because of the need to safely balance the fight against virus and aggressive inflammation versus the suppression of host immune defenses and the risk of additional harms in already compromised patients. To this end, many studies are globally underway to weigh the pros and cons of tailoring drugs used for inflammatory-driven conditions to COVID-19 patient care, and the next step will be to summarize the growing clinical trial experience into clean clinical practice. Based on the current evidence, anti-inflammatory drugs should be considered as complementary approaches to anti-viral drugs that need to be timely introduced in the management of COVID-19 according to disease severity. While drugs that target SARS-CoV-2 entry or replication are expected to confer the greatest benefits at the early stage of the infection, anti-inflammatory drugs would be more effective in limiting the inflammatory processes that drive the worsening of the disease.
Collapse
Affiliation(s)
- Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| | - Marwa Toujani
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| | - Santo Gratteri
- Institute of Legal Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| |
Collapse
|
44
|
Aguilar RB, Hardigan P, Mayi B, Sider D, Piotrkowski J, Mehta JP, Dev J, Seijo Y, Camargo AL, Andux L, Hagen K, Hernandez MB. Current Understanding of COVID-19 Clinical Course and Investigational Treatments. Front Med (Lausanne) 2020; 7:555301. [PMID: 33195304 PMCID: PMC7641603 DOI: 10.3389/fmed.2020.555301] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
Importance: Currently, there is no unified framework linking disease progression to established viral levels, clinical tests, inflammatory markers, and investigational treatment options. Objective: It may take many weeks or months to establish a standard treatment approach. Given the growing morbidity and mortality with respect to COVID-19, this systemic review presents a treatment approach based on a thorough review of scholarly articles and clinical reports. Our focus is on staged progression, clinical algorithms, and individualized treatment. Evidence Review: We followed the protocol for a quality review article proposed by Heyn et al. (1). A literature search was conducted to find all relevant studies related to COVID-19. The search was conducted between April 1, 2020, and April 13, 2020, using the following electronic databases: PubMed (1809 to present); Google Scholar (1900 to present); MEDLINE (1946 to present), CINAHL (1937 to present); and Embase (1980 to present). The keywords used included COVID-19, 2019-nCov, SARS-CoV-2, SARS-CoV, and MERS-CoV, with terms such as efficacy, seroconversion, microbiology, pathophysiology, viral levels, inflammation, survivability, and treatment and pharmacology. No language restriction was placed on the search. Reference lists were manually scanned for additional studies. Findings: Of the articles found in the literature search, 70 were selected for inclusion in this study (67 cited in the body of the manuscript and 3 additional unique references in the Figures). The articles represent work from China, Japan, Taiwan, Vietnam, Rwanda, Israel, France, the United Kingdom, the Netherlands, Canada, and the United States. Most of the articles were cohort or case studies, but we also drew upon other information, including guidelines from hospitals and clinics instructing their staff on procedures to follow. In addition, we based some decisions on data collected by organizations such as the CDC, FDA, IHME, IDSA, and Worldometer. None of the case studies or cohort studies used a large number of participants. The largest group of participants numbered <500 and some case studies had fewer than 30 patients. However, the review of the literature revealed the need for individualized treatment protocols due to the variability of patient clinical presentation and survivability. A number of factors appear to influence mortality: the stage at which the patient first presented for care, pre-existing health conditions, age, and the viral load the patient carried. Conclusion and Relevance: COVID-19 can be divided into three distinct stages, beginning at the time of infection (Stage I), sometimes progressing to pulmonary involvement (Stage II, with or without hypoxemia), and less frequently to systemic inflammation (Stage III). In addition to modeling the stages of disease progression along with diagnostic testing, we have also created a treatment algorithm that considers age, comorbidities, clinical presentation, and disease progression to suggest drug classes or treatment modalities. This paper presents the first evidence-based recommendations for individualized treatment for COVID-19.
Collapse
Affiliation(s)
| | - Patrick Hardigan
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Bindu Mayi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University (NSU), Fort Lauderdale, FL, United States
| | - Darby Sider
- Internal Medicine, Cleveland Clinic Florida, Weston, FL, United States
| | | | | | - Jenankan Dev
- Internal Medicine, Cleveland Clinic Florida, Weston, FL, United States
| | - Yelenis Seijo
- Internal Medicine, Cleveland Clinic Florida, Weston, FL, United States
| | | | | | - Kathleen Hagen
- Health Professions Division, Nova Southeastern University (NSU), Fort Lauderdale, FL, United States
| | | |
Collapse
|
45
|
An JS, Lee JY, Kim E, Ahn H, Jang YJ, Shin B, Hwang S, Shin J, Yoon YJ, Lee SK, Oh DC. Formicolides A and B, Antioxidative and Antiangiogenic 20-Membered Macrolides from a Wood Ant Gut Bacterium. JOURNAL OF NATURAL PRODUCTS 2020; 83:2776-2784. [PMID: 32892623 DOI: 10.1021/acs.jnatprod.0c00772] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two new macrolides, formicolides A (1) and B (2), were isolated from Streptomyces sp. BA01, a gut bacterial strain of the wood ant (Formica yessensis). Their 20-membered macrocyclic lactone structures were established using NMR and mass spectrometric data. The relative configurations of the formicolides were determined by J-based configuration analysis utilizing ROESY, HETLOC, and HECADE NMR spectroscopic data. Genomic and bioinformatics analysis of the bacterial strain enabled us to identify the type-I polyketide synthase pathway employing a trans-acyltransferase system. The absolute configurations of 1 and 2 are proposed based on detailed analysis of the sequences of the ketoreductases in the modular gene cluster and statistical comparative analysis of the experimental NMR chemical shifts and quantum mechanical calculations. Formicolides A and B (1 and 2) induced quinone reductase activity in murine Hepa-1c1c7 cells and antiangiogenic activity by suppression of tube formation in human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunji Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungju Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Joon Jang
- Natura Center of Life and Environment, Seoul 08826, Republic of Korea
| | - Bora Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
46
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
47
|
Groeneveld GH, van der Reyden TJ, Joosten SA, Bootsma HJ, Cobbaert CM, de Vries JJC, Kuijper EJ, van Dissel JT. Non-lytic antibiotic treatment in community-acquired pneumococcal pneumonia does not attenuate inflammation: the PRISTINE trial. J Antimicrob Chemother 2020; 74:2385-2393. [PMID: 31106377 PMCID: PMC6640306 DOI: 10.1093/jac/dkz207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background The inflammatory response in pneumococcal infection is primarily driven by immunoreactive bacterial cell wall components [lipoteichoic acid (LTA)]. An acute release of these components occurs when pneumococcal infection is treated with β-lactam antibiotics. Objectives We hypothesized that non-lytic rifampicin compared with lytic β-lactam antibiotic treatment would attenuate the inflammatory response in patients with pneumococcal pneumonia. Methods In the PRISTINE (Pneumonia treated with RIfampicin aTtenuates INflammation) trial, a randomized, therapeutic controlled, exploratory study in patients with community-acquired pneumococcal pneumonia, we looked at LTA release and inflammatory and clinical response during treatment with both rifampicin and β-lactam compared with treatment with β-lactam antibiotics only. The trial is registered in the Dutch trial registry, number NTR3751 (European Clinical Trials Database number 2012-003067-22). Results Forty-one patients with community-acquired pneumonia were included; 17 of them had pneumococcal pneumonia. LTA release, LTA-mediated inflammatory responses, clinical outcomes, inflammatory biomarkers and transcription profiles were not different between treatment groups. Conclusions The PRISTINE study demonstrated the feasibility of adding rifampicin to β-lactam antibiotics in the treatment of community-acquired pneumococcal pneumonia, but, despite solid in vitro and experimental animal research evidence, failed to demonstrate a difference in plasma LTA concentrations and subsequent inflammatory and clinical responses. Most likely, an inhibitory effect of human plasma contributes to the low immune response in these patients. In addition, LTA plasma concentration could be too low to mount a response via Toll-like receptor 2 in vitro, but may nonetheless have an effect in vivo.
Collapse
Affiliation(s)
- Geert H Groeneveld
- Department of Internal Medicine and Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tanny J van der Reyden
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Jutte J C de Vries
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Jaap T van Dissel
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, The Netherlands
| |
Collapse
|
48
|
Zeenny RM, Mansour H, Kabbara WK, Chamoun N, Audi M, Yared Y, Salameh P. Effects of statins on clinical outcomes in hospitalized patients with community-acquired pneumonia. J Int Med Res 2020; 48:300060520938586. [PMID: 32780619 PMCID: PMC7557788 DOI: 10.1177/0300060520938586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective We evaluated the effect of chronic use of statins based on C-reactive protein (CRP) levels and hospital length of stay (LOS) in patients admitted with community-acquired pneumonia (CAP). Methods We conducted a retrospective study over 12 months at a teaching hospital in Lebanon comparing patients with CAP taking chronic statins with patients not taking statins. Included patients with CAP were older than age 18 years and had two CRP level measures during hospitalization. CURB-65 criteria were used to assess the severity of pneumonia. A decrease in CRP levels on days 1 and 3, LOS, and normalization of fever were used to assess the response to antibiotics. Results Sixty-one patients were taking statins and 90 patients were not taking statins. Patients on statins had significantly more comorbid conditions; both groups had comparable CURB-65 scores. In both groups, no statistically significant difference was seen for the decrease in CRP level on days 1 and 3 and LOS. No difference in days to normalization of fever was detected in either group. Conclusion No association was found between the chronic use of statins and CRP levels, LOS, or days to fever normalization in patients with CAP.
Collapse
Affiliation(s)
- Rony M Zeenny
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Hanine Mansour
- Lebanese American University, School of Pharmacy, Byblos, Lebanon
| | - Wissam K Kabbara
- Lebanese American University, School of Pharmacy, Byblos, Lebanon
| | - Nibal Chamoun
- Lebanese American University, School of Pharmacy, Byblos, Lebanon
| | - Myriam Audi
- Lebanese American University, School of Pharmacy, Byblos, Lebanon.,Pharmacy Manager, Pharmacie Aoude, Jounieh, Lebanon
| | | | | |
Collapse
|
49
|
Trikha A, Singh AK, Khanna P. Intensive care management of patients with COVID-19. J Anaesthesiol Clin Pharmacol 2020; 36:S29-S38. [PMID: 33100643 PMCID: PMC7574000 DOI: 10.4103/joacp.joacp_265_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 01/25/2023] Open
Abstract
The COVID-19 pandemic originated in China in December 2019 and has since then, swept across the world. The last Influenza pandemic of 1918 happened before the advent of modern medicine. We have come a long way since then. But the pandemic has still caught us unprepared in many quarters. The review focuses on the management of critically ill COVID-19 patients and the various challenges faced by intensivists.
Collapse
Affiliation(s)
- Anjan Trikha
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Akhil Kant Singh
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Puneet Khanna
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
50
|
Chams N, Chams S, Badran R, Shams A, Araji A, Raad M, Mukhopadhyay S, Stroberg E, Duval EJ, Barton LM, Hajj Hussein I. COVID-19: A Multidisciplinary Review. Front Public Health 2020; 8:383. [PMID: 32850602 PMCID: PMC7403483 DOI: 10.3389/fpubh.2020.00383] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that is responsible for the 2019-2020 pandemic. In this comprehensive review, we discuss the current published literature surrounding the SARS-CoV-2 virus. We examine the fundamental concepts including the origin, virology, pathogenesis, clinical manifestations, diagnosis, laboratory, radiology, and histopathologic findings, complications, and treatment. Given that much of the information has been extrapolated from what we know about other coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), we identify and provide insight into controversies and research gaps for the current pandemic to assist with future research ideas. Finally, we discuss the global response to the coronavirus disease-2019 (COVID-19) pandemic and provide thoughts regarding lessons for future pandemics.
Collapse
Affiliation(s)
- Nour Chams
- Geriatric Division, Department of Internal Medicine, Beaumont Health System, Royal Oak, MI, United States
| | - Sana Chams
- Geriatric Division, Department of Internal Medicine, Beaumont Health System, Royal Oak, MI, United States
| | - Reina Badran
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ali Shams
- Department of Emergency Medicine, Beaumont Health System, Royal Oak, MI, United States
| | - Abdallah Araji
- Department of Diagnostic Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mohamad Raad
- Department of Cardiology, Henry Ford Health System, Detroit, MI, United States
| | | | - Edana Stroberg
- Office of the Chief Medical Examiner, Oklahoma City, OK, United States
| | - Eric J. Duval
- Office of the Chief Medical Examiner, Oklahoma City, OK, United States
| | - Lisa M. Barton
- Office of the Chief Medical Examiner, Oklahoma City, OK, United States
| | - Inaya Hajj Hussein
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|