1
|
Yang R, Ma X, Peng F, Wen J, Allahou LW, Williams GR, Knowles JC, Poma A. Advances in antimicrobial peptides: From mechanistic insights to chemical modifications. Biotechnol Adv 2025; 81:108570. [PMID: 40154761 DOI: 10.1016/j.biotechadv.2025.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
This review provides a comprehensive analysis of antimicrobial peptides (AMPs), exploring their diverse sources, secondary structures, and unique characteristics. The review explores into the mechanisms underlying the antibacterial, immunomodulatory effects, antiviral, antiparasitic and antitumour of AMPs. Furthermore, it discusses the three principal synthesis pathways for AMPs and assesses their current clinical applications and preclinical research status. The paper also addresses the limitations of AMPs, including issues related to stability, resistance, and toxicity, while offering insights into strategies for their enhancement. Recent advancements in AMP research, such as chemical modifications (including amino acid sequence optimisation, terminal and side-chain modifications, PEGylation, conjugation with small molecules, conjugation with photosensitisers, metal ligands, polymerisation, cyclisation and specifically targeted antimicrobial peptides) are highlighted. The goal is to provide a foundation for the future design and optimisation of AMPs.
Collapse
Affiliation(s)
- Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
2
|
Pandey A, Lenin RR, Patiyal S, Agrawal P. High Throughput Meta-analysis of Antimicrobial Peptides for Characterizing Class Specific Therapeutic Candidates: An In Silico Approach. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10596-1. [PMID: 40423878 DOI: 10.1007/s12602-025-10596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2025] [Indexed: 05/28/2025]
Abstract
The increasing incidence of antimicrobial resistance is becoming a serious concern worldwide and requires newer drugs. Recent evidence has shown growing interest in peptide-based therapeutics. Here, we performed a meta-analysis of nearly 867,000 predicted antimicrobial peptides and assessed their antibacterial (ABPs), antifungal (AFPs), and antiviral (AVPs) activity. We created high-quality, class-specific datasets and performed several computational analyses. Composition analysis revealed enrichment of aliphatic (V, A, I, and L) and positively charged (K and R) amino acids in ABPs: aliphatic (G, I), basic (K and R), and aromatic amino acids (F) in AFPs and sulfur containing (M) and aliphatic amino acids (V, I, and L) in AVPs. We observed significant differences in the molecular weight, charge, isoelectric point, and instability index of the peptides among three classes. We observed AFPs possessing the highest molecular weight and ABPs showing the highest charge and isoelectric point, whereas instability index was found to be comparable among the three classes. Motif analysis shows enrichment of unique motifs such as "VRVR" and "AKKPA" in ABPs, "DFFAI" and "FFAI" in AFPs, and "VVV" and "IM" in AVPs. We further developed seven distinct machine learning models to predict peptide activity where ExtraTree model achieved the highest AUROC of 0.98 in classifying ABPs and non-ABPs, 0.99 for classifying AFPs and non-AFPs, and 0.99 for classifying AVPs and non-AVPs on an independent dataset. To assist scientific community, we have provided the dataset and models at our GitHub page ( https://github.com/agrawalpiyush-srm/AMP_MetaAnalysis ). Subsequent filtering of peptides based on moonlighting properties (toxicity, allergenicity, cell-penetrating ability, half-life, and secondary structure) yielded a list of peptides that exhibit substantial therapeutic potential. We further selected the top ten peptides in each class, predicted their 3D structures using ColabFold embedded in ChimeraX1.8 software and performed molecular docking analysis with a pathogenic protein selected from an organism in each class using HDOCK webserver. Docking studies demonstrated strong interaction between peptides and the proteins. Lastly, we proposed list of peptides with high therapeutic potential in each class.
Collapse
Affiliation(s)
- Anwesh Pandey
- School of Pharmacy, Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Raji Rajesh Lenin
- Division of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, 603203, India
| | - Sumeet Patiyal
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Piyush Agrawal
- Division of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, 603203, India.
| |
Collapse
|
3
|
Chowdhary R, Rathore A, Sarkar AR, Kumari J, Manhas R, Firdous S, Mahapa A, Rai R. Antibacterial activity of 2-(4-aminopiperidin-4-yl)acetic acid (β 3,3-Pip) derivatives and its peptides conjugated with lauric acid through the side chain against methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog 2025; 205:107693. [PMID: 40349993 DOI: 10.1016/j.micpath.2025.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The present work describes the synthesis, characterization, and antibacterial efficacy of cationic β-amino acid derivatives and peptides, H2N-β3,3-Pip(LA)-PEA, P1; and H2N-β3,3-Pip (ULA)-PEA, P2; H2N-β3,3-Pip(LA)-β2,2-Ac6c-PEA, P3; and H2N- β3,3-Pip(ULA)- β2,2-Ac6c-PEA, P4. The compounds P1-P4 were evaluated against the WHO priority multidrug-resistant (MDR) ESKAPE panel pathogens. P2 and P4 exhibited potent activity with MIC values ranging from 3.1 μM to 6.2 μM against MDR pathogens. Further, the kill-kinetics assay demonstrated that P2 and P4 eliminate MRSA in a concentration and time-dependent manner. P2 and P4 also showed the MRSA biofilm prevention and disruption of preformed biofilm. The SEM images and PI permeability assays confirmed the bacterial killing by P2 and P4 through membrane disruption, highlighting their strong bactericidal activity. Additionally, the very low hemolytic and cytotoxic activity of peptides indicate these compounds as promising candidates for further investigation. Subsequently, the compounds P2 and P4 showed synergistic effects with vancomycin. Altogether, the present study highlights the potential of short cationic β-amino acid derivatives and peptides conjugated with lauric acid through the side chain as novel antibacterial agents for combating antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Rubina Chowdhary
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arti Rathore
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India; Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Aminur Rahman Sarkar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jyoti Kumari
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India; Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Rakshit Manhas
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Shifa Firdous
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India; Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Avisek Mahapa
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India; Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India.
| | - Rajkishor Rai
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Tang D, Zhou X, Qian H, Jiao Y, Wang Y. Streptomyces flavusporus sp. nov., a Novel Actinomycete Isolated from Naidong, Xizang (Tibet), China. Microorganisms 2025; 13:1001. [PMID: 40431174 PMCID: PMC12113709 DOI: 10.3390/microorganisms13051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
The exploration of Streptomyces from extreme environments presents a particularly compelling avenue for novel compound discovery. A Gram-positive, pink-pigmented Streptomyces strain designated HC307T was isolated from a soil sample collected in Xizang (Tibet), China. The exploration of Streptomyces from extreme environments presents a particularly compelling avenue for novel compound discovery. In this study, the 16S rRNA sequence of strain HC307T exhibited the highest similarity with Streptomyces prasinosporus NRRL B-12431T (97.5%) and Streptomyces chromofuscus DSM 40273T (97.3%), which were below 98.7%. The draft genome of the bacteria was 10.0 Mb, with a G+C content of 70.0 mol%. The average nucleotide identity (ANI) values of strain HC307T and similar type strains ranged from 78.3% to 87.5% (<95%). The digital DNA-DNA hybridization (dDDH) values ranged from 22.6% to 33.9% (<70%), which was consistent with the results obtained from phylogenetic tree analysis. Phenotypically, this bacterium grew within the temperature range of 25-40 °C, at a pH range of 5 to 9, and in NaCl concentrations from 0% to 6% (w/v). The polar lipid profile of strain HC307T was diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified lipids. The analysis of 32 biosynthetic gene clusters (BGCs) indicated the strain's capacity to synthesize diverse compounds. Phylogenetic and phenotypic analyses demonstrated that strain HC307T represented a novel species within the genus Streptomyces, and proposed the name Streptomyces flavusporus sp. nov., with strain HC307T (=DSM 35222T=CGMCC 32047T). The strain was deposited in Deutsche Sammlung von Mikroorganismen und Zellkulturen and the China General Microbiological Culture Collection Center for patent procedures under the Budapest Treaty.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (X.Z.); (H.Q.); (Y.J.); (Y.W.)
| | | | | | | | | |
Collapse
|
5
|
Huang C, Wang T, Chen R, Xu Y. Discovery of CMNPD31124 as a novel marine-derived PKMYT1 inhibitor for pancreatic ductal adenocarcinoma therapy: computational and biological insights. Front Pharmacol 2025; 16:1569765. [PMID: 40290442 PMCID: PMC12022493 DOI: 10.3389/fphar.2025.1569765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to its late diagnosis, resistance to therapy, and a dismal 5-year survival rate of only 12%. Overexpression of PKMYT1-a key regulator of the cell cycle-correlates with poor patient outcomes, making it a promising therapeutic target. In this study, we identify CMNPD31124, a novel marine-derived indole alkaloid, as a potent PKMYT1 inhibitor. Molecular docking revealed that CMNPD31124 has superior binding affinity compared to the reference compound Cpd 4, forming robust interactions with critical residues such as CYS-190, TYR-121, and GLY-122. Molecular dynamics simulations further demonstrated its stable binding conformation and dynamic adaptability, with Chai-1 modeling supporting a covalent binding mechanism at the PKMYT1 active site. Importantly, in vitro assays showed that CMNPD31124 exhibits an IC50 of 18.6 μM in MiaPaCa-2 cells and 31.7 μM in BXPC3 cells, while concentrations up to 80 μM did not significantly affect normal pancreatic cells. Despite these promising results, toxicity predictions indicate potential hepatotoxicity and neurotoxicity, highlighting the need for further structural optimization. This work lays a solid foundation for the rational design of PKMYT1 inhibitors by integrating computational methods with insights from marine natural products.
Collapse
Affiliation(s)
- Chaojie Huang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicinesla, Hangzhou, China
| | - Ting Wang
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Chen
- College of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yunyun Xu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
6
|
Betancourth A, Bangash S, Bajwa Y, Garbinski A, DuMont T, Bajwa O, Bhanot N. Antimicrobials in the Management of Sepsis in the Intensive Care Unit (ICU). Crit Care Nurs Q 2025; 48:80-87. [PMID: 40009854 DOI: 10.1097/cnq.0000000000000545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Sepsis is a severe and often life-threatening condition which can lead to widespread organ dysfunction, septic shock, and even death. Antimicrobials are critical in improving outcomes for patients with sepsis. This chapter details the general principles of antimicrobial therapy, appropriate selection and de-escalation of antimicrobials, and challenges in antimicrobial stewardship.
Collapse
Affiliation(s)
- Adriana Betancourth
- Author Affiliations: Division of Infectious Disease and Critical Care Medicine (Drs Betancourth and Bangas), Division of Pulmonary and Critical Care Medicine (Drs Garbinski, DuMont, and Bajwa), Division of Infectious Disease (Dr Bhanot), Allegheny Health Network Medicine Institute, Pittsburgh, Pennsylvania; and University of Pittsburgh (Dr Bajwa), Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
7
|
Liu L, Shi Z, Tong M, Fang Y, Yang D, Yu J, Cao Z. Designing a Novel Ultrashort Cyclic [R 3W 4V] Antimicrobial Peptide with Superior Antimicrobial Potential Based on the Transmembrane Structure to Facilitate Pore Formation. J Chem Inf Model 2025; 65:2623-2635. [PMID: 39976454 DOI: 10.1021/acs.jcim.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The clinical application of antimicrobial peptides (AMPs) is frequently hindered by the inherent limitations of linear peptides. Previous studies have primarily focused on the physicochemical properties of AMPs, and there is a scarcity of information regarding the transmembrane structure and interactions of AMPs with cell membranes and their antimicrobial activity. The present study is the first to propose that the backbone cyclization of linear R3W4V (l(R3W4V)) into the cyclic R3W4V (c[R3W4V]) form can enhance the stability of its transmembrane structure and consequently improve its antibacterial activity. The results of the bacterial inhibition assays performed herein demonstrated that the antibacterial activity of c[R3W4V] against Staphylococcus aureus and Bacillus subtilis was approximately 17-fold and 19-fold higher than that of l(R3W4V). The effect of c[R3W4V] on the structure of the bilayer membrane was further assessed via well-tempered bias-exchange metadynamics simulations and long-time conventional unbiased molecular dynamics simulations. This study demonstrated that the single c[R3W4V] peptide assumes a stable transmembrane configuration. Consequently, as the number of peptides accumulating in the membrane core increases at higher peptide-lipid ratios, a higher number of phospholipid headgroups embedded into the hydrophobic lipid core, leading to membrane fusion, permeabilization, and deformation of the upper and lower leaflets of the bilayer. The study provides a novel computational perspective on enhancing the antimicrobial efficacy of AMPs and highlights the importance of peptide-membrane structures, dynamics, and interactions in promoting the membrane-disruptive potential of peptides.
Collapse
Affiliation(s)
- Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhihong Shi
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Mingqiong Tong
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Yaqing Fang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Dongying Yang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
8
|
Davani-Davari D, Tiwari RK, Parang K. Future applications of cyclic antimicrobial peptides in drug delivery. Expert Opin Drug Deliv 2025; 22:383-404. [PMID: 39876578 DOI: 10.1080/17425247.2025.2460661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes. AREAS COVERED This review explores the structural advantages and mechanisms of action of CAMPs, emphasizing their role in drug delivery. The literature analysis (2010-2024) from PubMed, Scopus, and Web of Science highlights developments in CAMP-conjugated therapies, liposomal formulations, and encapsulation systems. The review also examines their antimicrobial potency, amphipathic and cell-penetrating properties, and integration into nanocarrier technologies to enhance drug stability, bioavailability, and precision targeting. Challenges such as toxicity, scalability, and cost are also discussed. CAMPs have the potential to revolutionize drug delivery through their robustness and multifunctionality, particularly in precision medicine. EXPERT OPINION Future advancements in peptide engineering, nanotechnology, and AI-driven design are expected to enhance CAMPs' therapeutic specificity, reduce toxicity, and broaden their applications, including oncology and gene therapy, paving the way for their integration into next-generation therapeutics.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Rakesh Kumar Tiwari
- Department of Biomedical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| |
Collapse
|
9
|
Alenazi F, Khan MS. Novel antimicrobial strategies for diabetic foot infections: addressing challenges and resistance. Acta Diabetol 2025; 62:303-321. [PMID: 39760785 DOI: 10.1007/s00592-024-02438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
AIMS This review examines the challenges posed by Diabetic Foot Infections (DFIs), focusing on the impact of neuropathy, peripheral arterial disease, immunopathy, and the polymicrobial nature of these infections. The aim is to explore the factors contributing to antimicrobial resistance and assess the potential of novel antimicrobial treatments and drug delivery systems in improving patient outcomes. METHOD A comprehensive analysis of existing literature on DFIs was conducted, highlighting the multifactorial pathogenesis and polymicrobial composition of these infections. The review delves into the rise of antimicrobial resistance due to the overuse of antimicrobials, biofilm formation, and microbial genetic adaptability. Additionally, it considers glycemic control, patient adherence, and recurrence rates as contributing factors to treatment failure. Emerging therapies, including new antimicrobial classes and innovative drug delivery systems, were evaluated for their potential efficacy. RESULTS DFIs present unique treatment challenges, with high rates of antimicrobial resistance and poor response to standard therapies. Biofilm formation and the genetic adaptability of pathogens worsen resistance, complicating treatment. Current antimicrobial therapies are further hindered by poor glycemic control and patient adherence, leading to recurrent infections. Novel antimicrobial classes and innovative delivery systems show promise in addressing these challenges by offering more targeted, effective treatments. These new approaches aim to reduce resistance and improve treatment outcomes. CONCLUSION DFIs remain a clinical challenge due to their multifactorial nature and antimicrobial resistance. The development of novel antimicrobials and drug delivery systems is crucial to improving patient outcomes and combating resistance. Future research should focus on enhancing treatment efficacy, reducing resistance, and addressing patient adherence to reduce the burden of DFIs.
Collapse
Affiliation(s)
- Fahaad Alenazi
- Department of Pharmacology, College of Medicine, University of Ha'il, Ha'il City, Saudi Arabia
| | - Mohd Shahid Khan
- Department of Microbiology, Hind Institute of Medical Sciences, Mau, Ataria, Sitapur, Uttar Pradesh, India.
| |
Collapse
|
10
|
Dai C, Liu Y, Lv F, Cheng P, Qu S. An alternative approach to combat multidrug-resistant bacteria: new insights into traditional Chinese medicine monomers combined with antibiotics. ADVANCED BIOTECHNOLOGY 2025; 3:6. [PMID: 39918653 PMCID: PMC11805748 DOI: 10.1007/s44307-025-00059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Antibiotic treatment is crucial for controlling bacterial infections, but it is greatly hindered by the global prevalence of multidrug-resistant (MDR) bacteria. Although traditional Chinese medicine (TCM) monomers have shown high efficacy against MDR infections, the inactivation of bacteria induced by TCM is often incomplete and leads to infection relapse. The synergistic combination of TCM and antibiotics emerges as a promising strategy to mitigate the limitations inherent in both treatment modalities when independently administered. This review begins with a succinct exploration of the molecular mechanisms such as the antibiotic resistance, which informs the antibiotic discovery efforts. We subsequently provide an overview of the therapeutic effects of TCM/antibiotic combinations that have been developed. Finally, the factors that affect the therapeutic outcomes of these combinations and their underlying molecular mechanisms are systematically summarized. This overview offers insights into alternative strategies to treat clinical infections associated with MDR bacteria and the development of novel TCM/antibiotic combination therapies, with the goal of guiding their appropriate usage and further development.
Collapse
Affiliation(s)
- Cunchun Dai
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
- College of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Liu
- College of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Fan Lv
- College of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Cheng
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Fukushima S, Hagiya H, Gotoh K, Tsuji S, Iio K, Akazawa H, Matsushita O, Otsuka F. Clinical and microbiological characteristics of high-level daptomycin-resistant Corynebacterium species: A systematic scoping review. J Infect Chemother 2025; 31:102575. [PMID: 39638285 DOI: 10.1016/j.jiac.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Corynebacterium species potentially develop high-level daptomycin resistance (HLDR) shortly after daptomycin (DAP) administration. We aimed to investigate the clinical and microbiological characteristics of HLDR Corynebacterium infections. METHODS We first presented a clinical case accompanied by the results of a comprehensive genetic analysis of the isolate, and then performed a systematic scoping review. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews, we searched for articles with related keywords, including "Corynebacterium", "Daptomycin", and "Resistance", in the MEDLINE and Web of Science databases from the database inception to October 25, 2024. Clinical case reports and research articles documenting the isolation of HLDR Corynebacterium species, defined by a minimum inhibitory concentration of DAP at ≥256 μg/mL, were deemed eligible for this review. RESULTS Of 80 articles screened, seven case reports detailing eight cases of HLDR Corynebacterium infections, as well as five research articles, were included. C. striatum was the most common species (7/9 cases, 77.8 %), and prosthetic device-associated infections accounted for 66.7 % of the cases. Duration of DAP administration before the emergence of HLDR isolates ranged from 5 days to 3 months; three-quarters of the cases developed within 17 days. Three HLDR isolates were genetically confirmed to have an alteration in pgsA2. The majority of the patients were treated with either glycopeptides or linezolid, with favorable outcomes. In vitro experiments confirmed that C. striatum strains acquire the HLDR phenotype at higher rates (71 %-100 %) within 24 h of incubation, compared to other Corynebacterium strains. CONCLUSION DAP monotherapy, especially for prosthetic device-associated infections, can result in the development of HLDR Corynebacterium. Additional research is warranted to investigate the clinical implications of this potentially proliferating antimicrobial resistant pathogen.
Collapse
Affiliation(s)
- Shinnosuke Fukushima
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Infectious Diseases, Okayama University Hospital, Okayama, Japan; Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Okayama, Japan.
| | - Kazuyoshi Gotoh
- Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Shuma Tsuji
- Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Koji Iio
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, Japan
| | - Hidemasa Akazawa
- Department of Infectious Diseases, Okayama University Hospital, Okayama, Japan; Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumio Otsuka
- Department of Infectious Diseases, Okayama University Hospital, Okayama, Japan; Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
12
|
Dimas DA, Kumar V, Mandal PS, Masterson JM, Tonelli M, Singh S. Chemoenzymatic Modification of Daptomycin: Aromatic Group Installation on Trp1. Chembiochem 2024; 25:e202400503. [PMID: 39019798 PMCID: PMC11576237 DOI: 10.1002/cbic.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Daptomycin is a cyclic lipodepsipeptide antibiotic used to treat infections caused by Gram-positive pathogens, including multi-drug resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The emergence of daptomycin-resistant bacterial strains has renewed interest in generating daptomycin analogs. Previous studies have shown that replacing the tryptophan of daptomycin with aromatic groups can generate analogs with enhanced potency. Additionally, we have demonstrated that aromatic prenyltransferases can attach diverse groups to the tryptophan of daptomycin. Here, we report the use of the prenyltransferase CdpNPT to derivatize the tryptophan of daptomycin with a library of benzylic and heterocyclic pyrophosphates. An analytical-scale study revealed that CdpNPT can transfer various aromatic groups onto daptomycin. Subsequent scaled-up and purified reactions indicated that the enzyme can attach aromatic groups to N1, C2, C5 and C6 positions of Trp1 of daptomycin. In vitro antibacterial activity assays using six of these purified compounds identified aromatic substituted daptomycin analogs show potency against both daptomycin-susceptible and resistant strains of Gram-positive bacteria. These findings suggest that installing aromatic groups on the Trp1 of daptomycin can lead to the generation of potent daptomycin analogs.
Collapse
Affiliation(s)
- Dustin A Dimas
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Vikas Kumar
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Prashant S Mandal
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Johanna M Masterson
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, 411 Babcock Drive, Madison, Wisconsin, 45005, United States
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| |
Collapse
|
13
|
He X, Xv S, Liu R, Duan M, Fan W, Fan B. Triton X-100 counteracts antibiotic resistance of Enterococcus faecalis: An in vitro study. J Dent 2024; 146:105046. [PMID: 38729285 DOI: 10.1016/j.jdent.2024.105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES The high prevalence of antibiotic-resistant bacteria poses a threat to the global public health. The appropriate use of adjuvants to restore the antimicrobial activity of antibiotics against resistant bacteria could be an effective strategy for combating antibiotic resistance. In this study, we investigated the counteraction of Triton X-100 (TX-100) and the mechanisms underlying the antibiotic resistance of Enterococcus faecalis (E. faecalis). METHODS Standard, wild-type (WT), and induced antibiotic-resistant E. faecalis strains were used in this study. In vitro antibacterial experiments were conducted to evaluate the antimicrobial activities of gentamicin sulfate and ciprofloxacin hydrochloride in the presence and absence of 0.02 % TX-100 against both planktonic and biofilm bacteria. Transcriptomic and untargeted metabolomic analyses were performed to explore the molecular mechanisms of TX-100 as an antibiotic adjuvant. Additionally, membrane permeability, membrane potential, glycolysis-related enzyme activity, intracellular adenosine triphosphate (ATP), and expression levels of virulence genes were assessed. The biocompatibility of different drug combinations was also evaluated. RESULTS A substantially low TX-100 concentration improved the antimicrobial effects of gentamicin sulfate or ciprofloxacin hydrochloride against antibiotic-resistant E. faecalis. Mechanistic studies demonstrated that TX-100 increased cell membrane permeability and dissipated membrane potential. Moreover, antibiotic resistance and pathogenicity of E. faecalis were attenuated by TX-100 via downregulation of the ABC transporter, phosphotransferase system (PTS), and ATP supply. CONCLUSIONS TX-100 enhanced the antimicrobial activity of gentamicin sulfate and ciprofloxacin hydrochloride at a low concentration by improving antibiotic susceptibility and attenuating antibiotic resistance and pathogenicity of E. faecalis. CLINICAL SIGNIFICANCE These findings provide a theoretical basis for developing new root canal disinfectants that can reduce antibiotic resistance.
Collapse
Affiliation(s)
- Xinling He
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shujie Xv
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Runze Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengting Duan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Bing Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Codde C, Rivals F, Destere A, Fromage Y, Labriffe M, Marquet P, Benoist C, Ponthier L, Faucher JF, Woillard JB. A machine learning approach to predict daptomycin exposure from two concentrations based on Monte Carlo simulations. Antimicrob Agents Chemother 2024; 68:e0141523. [PMID: 38501807 PMCID: PMC11064575 DOI: 10.1128/aac.01415-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Daptomycin is a concentration-dependent lipopeptide antibiotic for which exposure/effect relationships have been shown. Machine learning (ML) algorithms, developed to predict the individual exposure to drugs, have shown very good performances in comparison to maximum a posteriori Bayesian estimation (MAP-BE). The aim of this work was to predict the area under the blood concentration curve (AUC) of daptomycin from two samples and a few covariates using XGBoost ML algorithm trained on Monte Carlo simulations. Five thousand one hundred fifty patients were simulated from two literature population pharmacokinetics models. Data from the first model were split into a training set (75%) and a testing set (25%). Four ML algorithms were built to learn AUC based on daptomycin blood concentration samples at pre-dose and 1 h post-dose. The XGBoost model (best ML algorithm) with the lowest root mean square error (RMSE) in a 10-fold cross-validation experiment was evaluated in both the test set and the simulations from the second population pharmacokinetic model (validation). The ML model based on the two concentrations, the differences between these concentrations, and five other covariates (sex, weight, daptomycin dose, creatinine clearance, and body temperature) yielded very good AUC estimation in the test (relative bias/RMSE = 0.43/7.69%) and validation sets (relative bias/RMSE = 4.61/6.63%). The XGBoost ML model developed allowed accurate estimation of daptomycin AUC using C0, C1h, and a few covariates and could be used for exposure estimation and dose adjustment. This ML approach can facilitate the conduct of future therapeutic drug monitoring (TDM) studies.
Collapse
Affiliation(s)
- Cyrielle Codde
- Service de Maladies Infectieuses et Tropicales, CHU Dupuytren, Limoges, France
| | - Florence Rivals
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU Dupuytren, Limoges, France
| | | | - Yeleen Fromage
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU Dupuytren, Limoges, France
| | - Marc Labriffe
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU Dupuytren, Limoges, France
- Inserm, Univ. Limoges, CHU Limoges, Pharmacology & Toxicology, Limoges, France
| | - Pierre Marquet
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU Dupuytren, Limoges, France
- Inserm, Univ. Limoges, CHU Limoges, Pharmacology & Toxicology, Limoges, France
| | - Clément Benoist
- Inserm, Univ. Limoges, CHU Limoges, Pharmacology & Toxicology, Limoges, France
| | - Laure Ponthier
- Inserm, Univ. Limoges, CHU Limoges, Pharmacology & Toxicology, Limoges, France
| | | | - Jean-Baptiste Woillard
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU Dupuytren, Limoges, France
- Inserm, Univ. Limoges, CHU Limoges, Pharmacology & Toxicology, Limoges, France
| |
Collapse
|
15
|
Nair ZJ, Gao IH, Firras A, Chong KKL, Hill ED, Choo PY, Colomer-Winter C, Chen Q, Manzano C, Pethe K, Kline KA. An essential protease, FtsH, influences daptomycin resistance acquisition in Enterococcus faecalis. Mol Microbiol 2024; 121:1021-1038. [PMID: 38527904 DOI: 10.1111/mmi.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Daptomycin is a last-line antibiotic commonly used to treat vancomycin-resistant Enterococci, but resistance evolves rapidly and further restricts already limited treatment options. While genetic determinants associated with clinical daptomycin resistance (DAPR) have been described, information on factors affecting the speed of DAPR acquisition is limited. The multiple peptide resistance factor (MprF), a phosphatidylglycerol-modifying enzyme involved in cationic antimicrobial resistance, is linked to DAPR in pathogens such as methicillin-resistant Staphylococcus aureus. Since Enterococcus faecalis encodes two paralogs of mprF and clinical DAPR mutations do not map to mprF, we hypothesized that functional redundancy between the paralogs prevents mprF-mediated resistance and masks other evolutionary pathways to DAPR. Here, we performed in vitro evolution to DAPR in mprF mutant background. We discovered that the absence of mprF results in slowed DAPR evolution and is associated with inactivating mutations in ftsH, resulting in the depletion of the chaperone repressor HrcA. We also report that ftsH is essential in the parental, but not in the ΔmprF, strain where FtsH depletion results in growth impairment in the parental strain, a phenotype associated with reduced extracellular acidification and reduced ability for metabolic reduction. This presents FtsH and HrcA as enticing targets for developing anti-resistance strategies.
Collapse
Affiliation(s)
- Zeus Jaren Nair
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Iris Hanxing Gao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Aslam Firras
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, Singapore, Singapore
| | - Eric D Hill
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Cristina Colomer-Winter
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Qingyan Chen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Caroline Manzano
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin Pethe
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases (NCID), Singapore, Singapore
| | - Kimberly A Kline
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Lim C, Coombs GW, Daley DA, Shoby P, Mowlaboccus S. Whole-genome sequencing identifies MprF mutations in a genetically diverse population of daptomycin non-susceptible Staphylococcus aureus in Australia. Int J Antimicrob Agents 2024; 63:107144. [PMID: 38494147 DOI: 10.1016/j.ijantimicag.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES Daptomycin is one of the few last-line antimicrobials available for the treatment of multidrug-resistant Staphylococcus aureus infections. An increasing number of daptomycin non-susceptible S. aureus infections has been reported worldwide, including Australia. Resistance to daptomycin is multifactorial and involves chromosomal mutations in genes encoding proteins involved in cell membrane and cell wall synthesis. METHODS In this study, we performed broth microdilution (BMD) to determine the daptomycin minimum inhibitory concentration (MIC) of 66 clinical isolates of S. aureus previously reported as daptomycin non-susceptible by the VITEKⓇ 2. We used whole-genome sequencing to characterise the isolates and screened the genomes for mutations associated with daptomycin non-susceptibility. RESULTS Only 56 of the 66 isolates had a daptomycin MIC >1 mg/L by BMD. Although the 66 isolates were polyclonal, ST22 was the predominant sequence type and one-third of the isolates were multidrug resistant. Daptomycin non-susceptibility was primarily associated with MprF mutations-at least one MprF mutation was identified in the 66 isolates. Twelve previously reported MprF mutations associated with daptomycin non-susceptibility were identified in 83% of the isolates. Novel MprF mutations identified included P314A, P314F, P314T, S337T, L341V, F349del, and T423R. CONCLUSIONS Daptomycin non-susceptible S. aureus causing infections in Australia are polyclonal and harbour MprF mutation(s). The identification of multidrug-resistant daptomycin non-susceptible S. aureus is a public health concern.
Collapse
Affiliation(s)
- Candice Lim
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Australia; Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, Australia
| | - Denise A Daley
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, Australia
| | - Princy Shoby
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Australia; Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, Australia; School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.
| |
Collapse
|
17
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
18
|
Gómez-Casanova N, Gutiérrez-Zufiaurre MN, Blázquez de Castro AM, Muñoz-Bellido JL. Genomic Insights into Staphylococcus aureus Isolates Exhibiting Diminished Daptomycin Susceptibility. Pathogens 2024; 13:206. [PMID: 38535549 PMCID: PMC10974884 DOI: 10.3390/pathogens13030206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/11/2025] Open
Abstract
Daptomycin is one of the last therapeutic resources for multidrug-resistant gram-positive bacteria. Despite its structural similarities with glycopeptides, its mechanisms of action and resistance are different and in some respects are not completely understood. Mutations in several genes have been associated with daptomycin resistance, especially in mprF, walkR, rpoB and rpoC, but their role and importance remain to be elucidated. We have studied mutations in 11 genes, which have been previously associated with daptomycin non-susceptibility, in nine daptomycin-non-susceptible Staphylococcus aureus clinical isolates (daptomycin MIC: >1 mg/L). Susceptibility to daptomycin, vancomycin, linezolid, oxacillin, telavancin and dalbavancin was studied. walkR, agrA, cls1, cls2, fakA, pnpA, clpP, prs, rpoB, rpoC and mprF were amplified by PCR and sequenced. The sequences were compared with the S. aureus ATCC 25923 complete genome (GenBank gi: 685631213) by using BLAST® software. We did not find any changes in walkR, pnpA, prs and clpP. All isolates excepting isolate MSa5 showed a high number of significant mutations (between 13 and 25 amino acid changes) in mprF. Most isolates also showed mutations in the rpo genes, the cls genes and fakA. Daptomycin non-susceptibility in S. aureus clinical isolates seems to be reached through different mutation combinations when compared to S. aureus ATCC 25293. Especially mprF and cls1 showed very high polymorphism in most isolates. Meanwhile, one isolate, MSa5, showed only single mutation in mprF (P314T).
Collapse
Affiliation(s)
- Natalia Gómez-Casanova
- Research Group on Clinical Microbiology and Parasitology and Antimicrobial Resistance (IIMD-16), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.N.G.-Z.); (A.M.B.d.C.); (J.L.M.-B.)
- Department of Biomedical and Diagnostic Sciences, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mª Nieves Gutiérrez-Zufiaurre
- Research Group on Clinical Microbiology and Parasitology and Antimicrobial Resistance (IIMD-16), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.N.G.-Z.); (A.M.B.d.C.); (J.L.M.-B.)
- Department of Microbiology and Parasitology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Ana Mª Blázquez de Castro
- Research Group on Clinical Microbiology and Parasitology and Antimicrobial Resistance (IIMD-16), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.N.G.-Z.); (A.M.B.d.C.); (J.L.M.-B.)
- Department of Microbiology and Parasitology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Juan Luis Muñoz-Bellido
- Research Group on Clinical Microbiology and Parasitology and Antimicrobial Resistance (IIMD-16), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.N.G.-Z.); (A.M.B.d.C.); (J.L.M.-B.)
- Department of Biomedical and Diagnostic Sciences, Universidad de Salamanca, 37007 Salamanca, Spain
- Department of Microbiology and Parasitology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
19
|
Adamu Y, Puig-Asensio M, Dabo B, Schweizer ML. Comparative effectiveness of daptomycin versus vancomycin among patients with methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections: A systematic literature review and meta-analysis. PLoS One 2024; 19:e0293423. [PMID: 38381737 PMCID: PMC10881006 DOI: 10.1371/journal.pone.0293423] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/12/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND In the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSIs), vancomycin stands as the prevalent therapeutic agent. Daptomycin remains an alternative antibiotic to treat MRSA BSIs in cases where vancomycin proves ineffective. However, studies have conflicted on whether daptomycin is more effective than vancomycin among patients with MRSA BSI. OBJECTIVE To compare the effectiveness of daptomycin and vancomycin for the prevention of mortality among adult patients with MRSA BSI. METHODS Systematic searches of databases were performed, including Embase, PubMed, Web of Science, and Cochrane Library. The Newcastle Ottawa Scale (NOS) and Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) were used to assess the quality of individual observational and randomized control studies, respectively. Pooled odd ratios were calculated using random effects models. RESULTS Twenty studies were included based on a priori set inclusion and exclusion criteria. Daptomycin treatment was associated with non-significant lower mortality odds, compared to vancomycin treatment (OR = 0.81; 95% CI, 0.62, 1.06). Sub-analyses based on the time patients were switched from another anti-MRSA treatment to daptomycin demonstrated that switching to daptomycin within 3 or 5 days was significantly associated with 55% and 45% decreased odds of all-cause mortality, respectively. However, switching to daptomycin any time after five days of treatment was not significantly associated with lower odds of mortality. Stratified analysis based on vancomycin minimum inhibitory concentration (MIC) revealed that daptomycin treatment among patients infected with MRSA strains with MIC≥1 mg/L was significantly associated with 40% lower odds of mortality compared to vancomycin treatment. CONCLUSION Compared with vancomycin, an early switch from vancomycin to daptomycin was significantly associated with lower odds of mortality. In contrast, switching to daptomycin at any time only showed a trend towards reduced mortality, with a non-significant association. Therefore, the efficacy of early daptomycin use over vancomycin against mortality among MRSA BSIs patients may add evidence to the existing literature in support of switching to daptomycin early over remaining on vancomycin. More randomized and prospective studies are needed to assess this association.
Collapse
Affiliation(s)
- Yau Adamu
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Mireia Puig-Asensio
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Bashir Dabo
- College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Marin L. Schweizer
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
20
|
Prajapati RN, Bhushan B, Singh K, Chopra H, Kumar S, Agrawal M, Pathak D, Chanchal DK, Laxmikant. Recent Advances in Pharmaceutical Design: Unleashing the Potential of Novel Therapeutics. Curr Pharm Biotechnol 2024; 25:2060-2077. [PMID: 38288793 DOI: 10.2174/0113892010275850240102105033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 09/10/2024]
Abstract
Pharmaceutical design has made significant advancements in recent years, leading to the development of novel therapeutics with unprecedented efficacy and safety profiles. This review highlights the potential of these innovations to revolutionize healthcare and improve patient outcomes. The application of cutting-edge technologies like artificial intelligence, machine learning, and data mining in drug discovery and design has made it easier to find potential drug candidates. Combining big data and omics has led to the discovery of new therapeutic targets and personalized medicine strategies. Nanoparticles, liposomes, and microneedles are examples of advanced drug delivery systems that allow precise control over drug release, better bioavailability, and targeted delivery to specific tissues or cells. This improves the effectiveness of the treatment while reducing side effects. Stimuli-responsive materials and smart drug delivery systems enable drugs to be released on demand when specific internal or external signals are sent. Biologics and gene therapies are promising approaches in pharmaceutical design, offering high specificity and potency for treating various diseases like cancer, autoimmune disorders, and infectious diseases. Gene therapies hold tremendous potential for correcting genetic abnormalities, with recent breakthroughs demonstrating successful outcomes in inherited disorders and certain types of cancer. Advancements in nanotechnology and nanomedicine have paved the way for innovative diagnostic tools and therapeutics, such as nanoparticle-based imaging agents, targeted drug delivery systems, gene editing technologies, and regenerative medicine strategies. Finally, the review emphasizes the importance of regulatory considerations, ethical challenges, and future directions in pharmaceutical design. Regulatory agencies are adapting to the rapid advancements in the field, ensuring the safety and efficacy of novel therapeutics while fostering innovation. Ethical considerations regarding the use of emerging technologies, patient privacy, and access to advanced therapies also require careful attention.
Collapse
Affiliation(s)
- Ram Narayan Prajapati
- Department of Pharmaceutics, Institute of Pharmacy, Bundelkhand University, Jhansi-284128 (UP) India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh India
| | - Mehak Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh, India
| | - Devender Pathak
- Department of Chemistry, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh, India
| | - Dilip Kumar Chanchal
- Department of Pharmacognosy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
| | - Laxmikant
- Department of Chemistry, Agra Public Pharmacy College, Artoni Agra, Uttar Pradesh, India
| |
Collapse
|
21
|
Dimopoulou D, Mantadakis E, Koutserimpas C, Samonis G. A Narrative Review on the Role of Dalbavancin in the Treatment of Bone and Joint Infections. Antibiotics (Basel) 2023; 12:1492. [PMID: 37887193 PMCID: PMC10604335 DOI: 10.3390/antibiotics12101492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Bone and joint infections (BJI) require prolonged antimicrobial treatment, leading to lengthy hospitalizations, high costs, the risk of nosocomial infections, and the development of antimicrobial resistance. Dalbavancin is a novel semisynthetic lipoglycopeptide approved for the treatment of adults and children with acute bacterial skin and skin structure infections. This narrative review aims to summarize the characteristics of dalbavancin and the current scientific evidence regarding its clinical efficacy and safety in the treatment of BJI. A literature search until June 2023 was performed to identify all published research about the role of dalbavancin in the management of BJI. Due to its unique pharmacokinetics characterized by prolonged half-life, high bactericidal activity against most Gram-positive bacteria, a good safety profile, and high tissue penetration, dalbavancin can be a valuable alternative to the treatment of BJI. Clinical studies have shown its non-inferiority compared to conventional therapies in BJI, offering potent activity against key pathogens and an extended dosing interval that may shorten hospitalization. In conclusion, dalbavancin represents a promising treatment option for BJI with a favorable safety profile, but further research in both adults and particularly children, who are ideal candidates for long-acting antibiotics, is necessary to evaluate the role of dalbavancin in BJI.
Collapse
Affiliation(s)
- Dimitra Dimopoulou
- Second Department of Pediatrics, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Elpis Mantadakis
- Department of Pediatrics, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece;
| | - Christos Koutserimpas
- Department of Orthopaedics and Traumatology, “251” Hellenic Air Force General Hospital of Athens, 115 25 Athens, Greece;
| | - George Samonis
- Department of Medicine, University of Crete, 715 00 Heraklion, Greece
- First Department of Medical Oncology, “Metropolitan” Hospital, 185 47 Attica, Greece
| |
Collapse
|
22
|
Robertson EB, Willett JLE. Streptococcus mutans inhibits the growth of Enterococcus via the non-ribosomal cyclic peptide mutanobactin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557362. [PMID: 37745448 PMCID: PMC10515869 DOI: 10.1101/2023.09.12.557362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Enterococcus faecalis is a Gram-positive commensal bacterium in the gastrointestinal tract and an opportunistic pathogen. Enterococci are a leading cause of nosocomial infections, treatment of which is complicated by intrinsic and acquired antibiotic resistance mechanisms. Additionally, E. faecalis has been associated with various oral diseases, and it is frequently implicated in the failure of endodontic treatment. For establishment and persistence in a microbial community, E. faecalis must successfully compete against other bacteria. Streptococcal species play an important role in the establishment of the oral microbiome and co-exist with Enterococcus in the small intestine, yet the nature of interactions between E. faecalis and oral streptococci remains unclear. Here, we describe a mechanism by which Streptococcus mutans inhibits the growth of E. faecalis and other Gram-positive pathogens through the production of mutanobactin, a cyclic lipopeptide. Mutanobactin is produced by a polyketide synthase-nonribosomal peptide synthetase hybrid system encoded by the mub locus. Mutanobactin-producing S. mutans inhibits planktonic and biofilm growth of E. faecalis and is also active against other Enterococcus species and Staphylococcus aureus. Mutanobactin damages the cell envelope of E. faecalis, similar to other lipopeptide antibiotics like daptomycin. E. faecalis resistance to mutanobactin is mediated by the virulence factor gelatinase, a secreted metalloprotease. Our results highlight the anti-biofilm potential of the microbial natural product mutanobactin, provide insight into how E. faecalis interacts with other organisms in the human microbiome, and demonstrate the importance of studying E. faecalis dynamics within polymicrobial communities.
Collapse
Affiliation(s)
- Ethan B. Robertson
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA
| | - Julia L. E. Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA
| |
Collapse
|
23
|
Tzalis S, Ioannou P, Billiari E, Kofteridis DP, Karakonstantis S. Daptomycin as an option for lock therapy: a systematic literature review. Future Microbiol 2023; 18:917-928. [PMID: 37622290 DOI: 10.2217/fmb-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
Aim: To review preclinical and clinical data relevant to daptomycin lock therapy in catheter-related bloodstream infection (CRBSI). Methods: Systematic review in PubMed, Scopus and clinical trial registries. Results: Preclinical data demonstrate daptomycin lock solution stability and compatibility with heparin, good biofilm penetration, bactericidal activity against biofilm-embedded bacteria, and high efficacy in vitro and in animal catheter infection models. Clinical data remain limited (two case reports and five case series totaling n = 65 CRBSI episodes), albeit promising (successful catheter salvage in about 80% of cases). Conclusion: Despite theoretical advantages of daptomycin, clinical data remain scarce. Comparative studies versus alternative lock solutions are needed, as well as studies to define optimal daptomycin lock regimen (including optimal concentration, dwell time and lock duration).
Collapse
Affiliation(s)
- Sotirios Tzalis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
| | - Petros Ioannou
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
- School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
- Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, 71500, Greece
| | - Eleni Billiari
- School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
| | - Diamantis P Kofteridis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
- School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
- Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, 71500, Greece
| | - Stamatis Karakonstantis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
- Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, 71500, Greece
| |
Collapse
|
24
|
Jang H, Choi SY, Mitchell RJ. Staphylococcus aureus Sensitivity to Membrane Disrupting Antibacterials Is Increased under Microgravity. Cells 2023; 12:1907. [PMID: 37508571 PMCID: PMC10377918 DOI: 10.3390/cells12141907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In a survey of the International Space Station (ISS), the most common pathogenic bacterium identified in samples from the air, water and surfaces was Staphylococcus aureus. While growth under microgravity is known to cause physiological changes in microbial pathogens, including shifts in antibacterial sensitivity, its impact on S. aureus is not well understood. Using high-aspect ratio vessels (HARVs) to generate simulated microgravity (SMG) conditions in the lab, we found S. aureus lipid profiles are altered significantly, with a higher presence of branch-chained fatty acids (BCFAs) (14.8% to 35.4%) with a concomitant reduction (41.3% to 31.4%) in straight-chain fatty acids (SCFAs) under SMG. This shift significantly increased the sensitivity of this pathogen to daptomycin, a membrane-acting antibiotic, leading to 12.1-fold better killing under SMG. Comparative assays with two additional compounds, i.e., SDS and violacein, confirmed S. aureus is more susceptible to membrane-disrupting agents, with 0.04% SDS and 0.6 mg/L violacein resulting in 22.9- and 12.8-fold better killing in SMG than normal gravity, respectively. As humankind seeks to establish permanent colonies in space, these results demonstrate the increased potency of membrane-active antibacterials to control the presence and spread of S. aureus, and potentially other pathogens.
Collapse
Affiliation(s)
- Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
25
|
Chowdhary R, Mubarak MM, Kantroo HA, Ur Rahim J, Malik A, Sarkar AR, Bashir G, Ahmad Z, Rai R. Synthesis, Characterization, and Antimicrobial Activity of Ultra-Short Cationic β-Peptides. ACS Infect Dis 2023; 9:1437-1448. [PMID: 37399583 DOI: 10.1021/acsinfecdis.3c00238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The development of new antibiotics is urgently required because of the rapidly growing resistance against conventional antibiotics. The antimicrobial peptides show potential as small antibiotic molecules. The stability of peptides is a primary concern for the use of peptides as drugs. Introducing β-amino acids into peptide sequences can be useful in preventing biological degradation by proteolytic enzymes. Herein, we describe the synthesis, characterization, and antimicrobial activity of ultra-short cationic β-peptides, LA-β3,3-Pip-β2,2-Ac6c-PEA, P1; LA-β3,3-Pip(G)-β2,2-Ac6c-PEA, P2; LAU-β3,3-Pip-β2,2-Ac6c-PEA, P3, and LAU-β3,3-Pip(G)-β2,2-Ac6c-PEA, P4. Peptides P1-P4 were evaluated against Gram-negative, Gram-positive, MRSA, and multi-drug resistant E. coli (MDR-E. coli). P3 exhibited the most potent antimicrobial activity against E. coli, S. epidermidis, S. aureus, K. pneumoniae, S. mutans, and E. faecalis, with MIC values 0.5, 2, 0.5, 1, 2, and 1 μg/mL, respectively. P3 exhibited time- and concentration-dependent bactericidal activities against E. coli, S. aureus, and E. faecalis with a killing rate of 1.6 logs/h. The treatment of E. coli with peptide P3 showed membrane disruption. In addition, P3 exhibited the inhibition of biofilm produced by E. coli, synergism with antibiotics (ciprofloxacin, streptomycin, and ampicillin), 100% cell viability against AML12, RAW 264.7, and HEK-293 cell lines at 1, and 10 μg/mL concentrations.
Collapse
Affiliation(s)
- Rubina Chowdhary
- Natural Products &Medicinal Chemistry Division, CSIR - Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohamad Mosa Mubarak
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, Srinagar 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hadiya A Kantroo
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, Srinagar 190005, India
| | - Junaid Ur Rahim
- Natural Products &Medicinal Chemistry Division, CSIR - Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abbass Malik
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, Srinagar 190005, India
| | - Aminur Rahman Sarkar
- Natural Products &Medicinal Chemistry Division, CSIR - Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gulnaz Bashir
- Department of Microbiology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, India
| | - Zahoor Ahmad
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, Srinagar 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajkishor Rai
- Natural Products &Medicinal Chemistry Division, CSIR - Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Monstrey SJ, Govaers K, Lejuste P, Lepelletier D, Ribeiro de Oliveira P. Evaluation of the role of povidone‑iodine in the prevention of surgical site infections. Surg Open Sci 2023; 13:9-17. [PMID: 37034245 PMCID: PMC10074992 DOI: 10.1016/j.sopen.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Background The occurrence of surgical site infections (SSIs) is associated with increased risk of mortality, development of other infections, and the need for reintervention, posing a significant health burden. The aim of this review was to examine the current data and guidelines around the use of antiseptic povidone‑iodine (PVP-I) for the prevention of SSIs at each stage of surgical intervention. Methods A literature search for selected key words was performed using PubMed. Additional papers were identified based on author expertise. Results Scientific evidence demonstrates that PVP-I can be used at every stage of surgical intervention: preoperative, intraoperative, and postoperative. PVP-I is one of the most widely used antiseptics on healthy skin and mucous membranes for preoperative surgical site preparation and is associated with a low SSI rate. For intraoperative irrigation, aqueous PVP-I is the recommended agent and has been demonstrated to decrease SSIs in a range of surgical settings, and for postoperative wound healing, there is a growing body of evidence to support the use of PVP-I. Conclusions There is a need for more stringent study designs in clinical trials to enable meaningful comparisons between antiseptic agents, particularly for preoperative skin preparation. The use of a single agent (PVP-I) at each stage of surgical intervention could potentially provide advantages, including economic benefits, over agents that can only be used at discrete stages of the surgical procedure. Key message Evidence supports the use of PVP-I at all stages of surgical intervention, from preoperative measures (including skin preparation, preoperative washing, and nasal decolonization) to intraoperative irrigation, through to postoperative wound management. However, there is a need for more stringent study designs in clinical trials to enable meaningful comparisons between antiseptic agents, particularly for preoperative skin preparation.
Collapse
Affiliation(s)
- Stan J. Monstrey
- Burn Care Center, Plastic Surgery Department, University Hospital Ghent, Ghent, Belgium
| | - Kris Govaers
- Division of Orthopaedic Surgery, az Sint-Blasius, Dendermonde, Belgium
| | - Patrice Lejuste
- Department of Oral and Maxillofacial Surgery, Grand Hôpital de Charleroi, Charleroi, Belgium
| | | | | |
Collapse
|
27
|
Patel YI, Natarajan S, Ramakrishna S, Ochieng P. Daptomycin-Induced Pulmonary Toxicity: A Case Series. Cureus 2023; 15:e39613. [PMID: 37384075 PMCID: PMC10299848 DOI: 10.7759/cureus.39613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 06/30/2023] Open
Abstract
Daptomycin is a bactericidal antibiotic used to treat methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). Eosinophilic pneumonia is an uncommon but significant adverse effect of daptomycin. We present two patients treated with daptomycin who subsequently developed eosinophilic pneumonia (EP).
Collapse
Affiliation(s)
- Yamini I Patel
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | - Sarasija Natarajan
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | | | - Pius Ochieng
- Pulmonary and Critical Care Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
28
|
Butler J, Handy RD, Upton M, Besinis A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS NANO 2023; 17:7064-7092. [PMID: 37027838 PMCID: PMC10134505 DOI: 10.1021/acsnano.2c12488] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review discusses topics relevant to the development of antimicrobial nanocoatings and nanoscale surface modifications for medical and dental applications. Nanomaterials have unique properties compared to their micro- and macro-scale counterparts and can be used to reduce or inhibit bacterial growth, surface colonization and biofilm development. Generally, nanocoatings exert their antimicrobial effects through biochemical reactions, production of reactive oxygen species or ionic release, while modified nanotopographies create a physically hostile surface for bacteria, killing cells via biomechanical damage. Nanocoatings may consist of metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern, especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe development of antimicrobials requires careful consideration of the "One Health" agenda, appropriate legislation, and risk assessment.
Collapse
Affiliation(s)
- James Butler
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D. Handy
- School
of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Mathew Upton
- School
of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United
Kingdom
| | - Alexandros Besinis
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Peninsula
Dental School, Faculty of Health, University
of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
29
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
30
|
Wang Y, Xue M, Gao R, Chakraborty S, Wang S, Zhao X, Gu M, Cao C, Sun X, Cai J. Short, Lipidated Dendrimeric γ-AApeptides as New Antimicrobial Peptidomimetics. Int J Mol Sci 2023; 24:6407. [PMID: 37047380 PMCID: PMC10094648 DOI: 10.3390/ijms24076407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Antibiotic resistance is one of the most significant issues encountered in global health. There is an urgent demand for the development of a new generation of antibiotic agents combating the emergence of drug resistance. In this article, we reported the design of lipidated dendrimeric γ-AApeptides as a new class of antimicrobial agents. These AApeptides showed excellent potency and broad-spectrum activity against both Gram-positive bacteria and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The mechanistic studies revealed that the dendrimeric AApeptides could kill bacteria rapidly through the permeabilization of bacterial membranes, analogous to host-defense peptides (HDPs). These dendrimers also did not induce antibiotic resistance readily. The easy access to the synthesis, together with their potent and broad-spectrum activity, make these lipidated dendrimeric γ-AApeptides a new generation of antibacterial agents.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Menglin Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Soumyadeep Chakraborty
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Xue Zhao
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Meng Gu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Chuanhai Cao
- College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
31
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
32
|
Lai S, Zhang Q, Jin L. Natural and Man-Made Cyclic Peptide-Based Antibiotics. Antibiotics (Basel) 2022; 12:antibiotics12010042. [PMID: 36671244 PMCID: PMC9855121 DOI: 10.3390/antibiotics12010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
In recent years, an increasing number of drug-resistant bacterial strains have been identified due to the abuse of antibiotics, which seriously threatens human and animal health. Antimicrobial peptides (AMPs) have become one of the most effective weapons to solve this problem. AMPs have little tendency to induce drug resistance and have outstanding antimicrobial effects. The study of AMPs, especially cyclic peptides, has become a hot topic. Among them, macrocyclic AMPs have received extensive attention. This mini-review discusses the structures and functions of the dominant cyclic natural and synthetic AMPs and provides a little outlook on the future direction of cyclic AMPs.
Collapse
Affiliation(s)
- Shian Lai
- Small Molecule Drugs Sichuan Key Laboratory, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0394, Japan
| | - Quan Zhang
- Small Molecule Drugs Sichuan Key Laboratory, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Lin Jin
- Small Molecule Drugs Sichuan Key Laboratory, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence:
| |
Collapse
|
33
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
34
|
Sulaiman JE, Long L, Qian PY, Lam H. Proteome profiling of evolved methicillin-resistant Staphylococcus aureus strains with distinct daptomycin tolerance and resistance phenotypes. Front Microbiol 2022; 13:970146. [PMID: 35992709 PMCID: PMC9386379 DOI: 10.3389/fmicb.2022.970146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly dangerous pathogen, and daptomycin has been increasingly used to treat its infections in clinics. Recently, several groups have shown that tolerance and resistance of microbes can evolve rapidly under cyclic antibiotic exposure. We have previously shown that the same tolerance and resistance development occurs in MRSA treated with daptomycin in an adaptive laboratory evolution (ALE) experiment. In the present study, we performed proteomic analysis to compare six daptomycin-tolerant and resistant MRSA strains that were evolved from the same ancestral strain. The strain with a higher tolerance level than the others had the most different proteome and response to antibiotic treatment, resembling those observed in persister cells, which are small subpopulations of bacteria that survive lethal antibiotics treatment. By comparing the proteome changes across strains with similar phenotypes, we identified the key proteins that play important roles in daptomycin tolerance and resistance in MRSA. We selected two candidates to be confirmed by gene overexpression analysis. Overexpression of EcsA1 and FabG, which were up-regulated in all of the tolerant evolved strains, led to increased daptomycin tolerance in wild-type MRSA. The proteomics data also suggested that cell wall modulations were implicated in both resistance and tolerance, but in different ways. While the resistant strains had peptidoglycan changes and a more positive surface charge to directly repel daptomycin, the tolerant strains possessed different cell wall changes that do not involve the peptidoglycan nor alterations of the surface charge. Overall, our study showed the differential proteome profiles among multiple tolerant and resistant strains, pinpointed the key proteins for the two phenotypes and revealed the differences in cell wall modulations between the daptomycin-tolerant/resistant strains.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Lexin Long
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Henry Lam,
| |
Collapse
|
35
|
Mutation in the Two-Component System Regulator YycH Leads to Daptomycin Tolerance in Methicillin-Resistant Staphylococcus aureus upon Evolution with a Population Bottleneck. Microbiol Spectr 2022; 10:e0168722. [PMID: 35913149 PMCID: PMC9431245 DOI: 10.1128/spectrum.01687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptive laboratory evolution (ALE) is a useful tool to study the evolution of antibiotic tolerance in bacterial populations under diverse environmental conditions. The role of population bottlenecks in the evolution of tolerance has been investigated in Escherichia coli, but not in a more clinically relevant pathogen, methicillin-resistant Staphylococcus aureus (MRSA). In this study, we used ALE to evolve MRSA under repetitive daptomycin treatment and incorporated population bottlenecks following antibiotic exposure. We observed that the populations finally attained a tolerance mutation in the yycH gene after 2 weeks of evolution with population bottlenecks, and additional mutations in yycI and several other genes further increased the tolerance level. The tolerant populations also became resistant to another glycopeptide antibiotic, vancomycin. Through proteomics, we showed that yycH and yycI mutations led to the loss of function of the proteins and downregulated the WalKR two-component system and the downstream players, including the autolysin Atl and amidase Sle1, which are important for cell wall metabolism. Overall, our study offers new insights into the evolution of daptomycin tolerance under population bottlenecking conditions, which are commonly faced by pathogens during infection; the study also identified new mutations conferring daptomycin tolerance and revealed the proteome alterations in the evolved tolerant populations. IMPORTANCE Although population bottlenecks are known to influence the evolutionary dynamics of microbial populations, how such bottlenecks affect the evolution of tolerance to antibiotics in a clinically relevant methicillin-resistant S. aureus (MRSA) pathogen are still unclear. Here, we performed in vitro evolution of MRSA under cyclic daptomycin treatment and applied population bottlenecks following the treatment. We showed that under these experimental conditions, MRSA populations finally attained mutations in yycH, yycI, and several other genes that led to daptomycin tolerance. The discovered yycH and yycI mutations caused early termination of the genes and loss of function of the proteins, and they subsequently downregulated the expression of proteins controlled by the WalKR two-component system, such as Atl and Sle1. In addition, we compared our proteomics data with multiple studies on distinct daptomycin-tolerant MRSA mutants to identify proteins with a consistent expression pattern that could serve as biological markers for daptomycin tolerance in MRSA.
Collapse
|
36
|
Wang Y, Wu P, Liu F, Chen J, Xue J, Qin Y, Chen F, Wang S, Ji L. Design, synthesis, and biological evaluation of membrane-active honokiol derivatives as potent antibacterial agents. Eur J Med Chem 2022; 240:114593. [PMID: 35820350 DOI: 10.1016/j.ejmech.2022.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Infections caused by drug-resistant bacteria have emerged to be one of the greatest threats to global public health, and new antimicrobial agents with novel mechanisms of action hence are in an urgent need to combat bacterial resistance. Herein, we reported the design, synthesis, and antibacterial evaluation of novel honokiol derivatives as mimics of antimicrobial peptides (AMPs). These mimics showed potent antimicrobial properties against Gram-positive bacteria. Among them, the most promising compound 13b exhibited excellent antibacterial activity, rapid bactericidal properties, avoidance of antibiotic resistance, and weak hemolytic and cytotoxic activities. In addition, compound 13b not only inhibited the biofilm formation but also destroy the preformed biofilm. Mechanism studies further revealed that compound 13b killed bacteria rapidly by interrupting the bacterial membrane. More intriguingly, compound 13b exhibited potent in vivo antibacterial efficacy in a mouse septicemia model induced by Staphylococcus aureus ATCC43300. These results highlight the potential of 13b to be used as therapeutic agents.
Collapse
Affiliation(s)
- Yinhu Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China.
| | - Ping Wu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Fangquan Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Junjie Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Jie Xue
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fang Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China.
| | - Lusha Ji
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China.
| |
Collapse
|
37
|
Prevalence of High Level Gentamicin Resistance among the Clinical Isolates of Enterococci Species. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci infections, have drawn attention of clinicians due to rapid increase in high level aminoglycoside resistance (HLAR). This resistance predicts failure of β-lactam antibiotic and aminoglycoside combination, which is the current treatment of choice for serious enterococci infections. This led us to investigate about the prevalence of HLAR enterococci in our hospital setting in Shimoga, Karnataka. All the clinical samples received at Microbiology laboratory, McGan hospital, Shivamogga between June 2016 and December 2016 was considered for the study. Enterococci were identified and further speciated by following conventional method. Antibiotic susceptibility pattern of all the isolates was determined according to CLSI guidelines. High level gentamicin resistance was detected by disc diffusion method using 120µg gentamicin disc. A total of 64 Enterococci species were isolated from the clinical specimens. On speciation, Enterococcus faecalis (E. faecalis) accounted for 72% (46) of the total isolates, 24%(16) of the isolates were Enterococcus faecium (E. faecium)and 4% (2) isolates were Enterococcus durans (E. durans). High level gentamicin resistance was noted in 42% (27) among the total isolates. E. faecium was found to be more resistant compared to E. faecalis. E. durans was a sensitive strain. Our study reconfirms the high prevalence of HLAR in the clinical setting. The study stresses on the need for regular screening of HLAR in all Enterococci infections and revise the battery of drugs for its treatment according to the report.
Collapse
|
38
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
39
|
Progress Report: Antimicrobial Drug Discovery in the Resistance Era. Pharmaceuticals (Basel) 2022; 15:ph15040413. [PMID: 35455410 PMCID: PMC9030565 DOI: 10.3390/ph15040413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance continues to be a most serious threat to public health. This situation demands that the scientific community increase their efforts for the discovery of alternative strategies to circumvent the problems associated with conventional small molecule therapeutics. The Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report (published in June 2021) discloses the rapidly increasing number of bacterial infections that are mainly caused by antimicrobial-resistant bacteria. These concerns have initiated various government agencies and other organizations to educate the public regarding the appropriate use of antibiotics. This review discusses a brief highlight on the timeline of antimicrobial drug discovery with a special emphasis on the historical development of antimicrobial resistance. In addition, new antimicrobial targets and approaches, recent developments in drug screening, design, and delivery were covered. This review also discusses the emergence and roles of various antibiotic adjuvants and combination therapies while shedding light on current challenges and future perspectives. Overall, the emergence of resistant microbial strains has challenged drug discovery but their efforts to develop alternative technologies such as nanomaterials seem to be promising for the future.
Collapse
|
40
|
Colistin Interaction and Surface Changes Associated with mcr-1 Conferred Plasmid Mediated Resistance in E. coli and A. veronii Strains. Pharmaceutics 2022; 14:pharmaceutics14020295. [PMID: 35214028 PMCID: PMC8880236 DOI: 10.3390/pharmaceutics14020295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Colistin, a polycationic antimicrobial peptide, is one of the last-resort antibiotics for treating infections caused by carbapenem-resistant Gram-negative bacteria. The antibacterial activity of colistin occurs through electrostatic interaction between the polycationic peptide group of colistin and the negatively charged phosphate groups of lipid A membrane. This study investigated the interaction of colistin with the outer membrane and surface constituents of resistant and susceptible strains of Escherichia coli and Aeromonas veronii harboring mcr-1 resistance gene. Bacterial membrane and lipopolysaccharide used in this study were isolated from susceptible as well as colistin-resistant strains of E. coli and A. veronii. Interaction of colistin with the bacterial surface was studied by deoxycholate and lysozyme sensitivity test, N-phenyl-1-naphthylamine (NPN) uptake assay, Atomic force microscopy (AFM), Zeta potential measurements and 1H NMR. The binding affinity of colistin was found to be lower with outer membrane from resistant strains in comparison with the susceptible strains. Colistin exposure enhances the outer membrane permeability of the susceptible strains to deoxycholate and lysozyme. However, on the other hand, colistin dose of 256 µg/mL did not permeabilize the outer membrane of resistant bacteria. The NPN permeability in resistant strains was greater in comparison with susceptible strains. Atomic force microscopy images depicted smooth, featherless and deformed membranes in treated susceptible cells. Contrary to the above, resistant treated cells displayed surface roughness topography even at 256 µg/mL colistin concentration. Surface charge alterations were confirmed by Zeta potential measurements as a function of the growth phase. Mid-logarithmic phase susceptible strains showed a greater negative charge than resistant strains upon exposure to colistin. However, there was no statistical variation in the Zeta potential measurements between resistant and susceptible strains at the stationary phase. NMR analysis revealed line broadening in susceptible strains with increasing colistin: LPS aggregates mass ratio. Moreover, resistant strains did not show line broadening for the outer membrane, even at the highest mass ratio. The findings of this study suggest that the resistant strains of E. coli and A. veronii can block the electrostatic contact between the cationic peptide and anionic lipid A component that drives the first phase of colistin action, thereby preventing hydrophobically driven second-tier action of colistin on the outer lipopolysaccharide layer.
Collapse
|
41
|
Zhang H, Chen S. Cyclic peptide drugs approved in the last two decades (2001-2021). RSC Chem Biol 2022; 3:18-31. [PMID: 35128405 PMCID: PMC8729179 DOI: 10.1039/d1cb00154j] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023] Open
Abstract
In contrast to the major families of small molecules and antibodies, cyclic peptides, as a family of synthesizable macromolecules, have distinct biochemical and therapeutic properties for pharmaceutical applications. Cyclic peptide-based drugs have increasingly been developed in the past two decades, confirming the common perception that cyclic peptides have high binding affinities and low metabolic toxicity as antibodies, good stability and ease of manufacture as small molecules. Natural peptides were the major source of cyclic peptide drugs in the last century, and cyclic peptides derived from novel screening and cyclization strategies are the new source. In this review, we will discuss and summarize 18 cyclic peptides approved for clinical use in the past two decades to provide a better understanding of cyclic peptide development and to inspire new perspectives. The purpose of the present review is to promote efforts to resolve the challenges in the development of cyclic peptide drugs that are more effective.
Collapse
Affiliation(s)
- Huiya Zhang
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Shiyu Chen
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| |
Collapse
|
42
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
43
|
Silva ARP, Guimarães M, Rabelo J, Belen L, Perecin C, Farias J, Picado Madalena Santos JH, Rangel-Yagui CO. Recent advances in the design of antimicrobial peptide conjugates. J Mater Chem B 2022; 10:3587-3600. [DOI: 10.1039/d1tb02757c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides (AMPs) are ubiquitous host defense peptides characterized by antibiotic activity and lower propensity for developing resistance compared to classic antibiotics. While several AMPs have shown activity against antibiotic-sensitive...
Collapse
|
44
|
Kaur R, Rani P, Atanasov AG, Alzahrani Q, Gupta R, Kapoor B, Gulati M, Chawla P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev Med Chem 2021; 22:984-1029. [PMID: 34939541 DOI: 10.2174/1570193x19666211221150119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.
Collapse
Affiliation(s)
- Ravleen Kaur
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia. Canada
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara. India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, Vienna. Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville. Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan Moga, Punjab 142001. India
| |
Collapse
|
45
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
46
|
Somoza-Cano FJ, Makadia A, Cruz-Peralta MP, Zakarna L, Demyda E, Al Armashi AR, Patell K, Altaqi B. Acute Eosinophilic Pneumonia Secondary to Daptomycin. Cureus 2021; 13:e19403. [PMID: 34926005 PMCID: PMC8658045 DOI: 10.7759/cureus.19403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/15/2022] Open
Abstract
Daptomycin is an antimicrobial agent with activity against gram-positive bacteria that is usually reserved for severe infections. Acute eosinophilic pneumonia (AEP) is an increasingly rare side effect that can manifest after its use. Our patient is a 79-year-old male who was admitted for a left total knee arthroplasty infection. After daptomycin was started, he developed AEP. The offending agent was stopped, the appropriate medical treatment was given, and his symptoms significantly improved. This case illustrates an uncommon side effect of daptomycin. Prompt medical recognition is paramount for medication discontinuation and adequate medical care.
Collapse
Affiliation(s)
| | - Austin Makadia
- Internal Medicine, St. Vincent Charity Medical Center, Cleveland, USA
| | | | - Lara Zakarna
- Internal Medicine, St. Vincent Charity Medical Center, Cleveland, USA
| | - Eleonora Demyda
- Internal Medicine, St. Vincent Charity Medical Center, Cleveland, USA
| | | | - Kanchi Patell
- Internal Medicine, St. Vincent Charity Medical Center, Cleveland, USA
| | - Basel Altaqi
- Pulmonary/Critical Care, St. Vincent Charity Medical Center, Cleveland, USA
| |
Collapse
|
47
|
Novel Daptomycin Tolerance and Resistance Mutations in Methicillin-Resistant Staphylococcus aureus from Adaptive Laboratory Evolution. mSphere 2021; 6:e0069221. [PMID: 34585959 PMCID: PMC8550074 DOI: 10.1128/msphere.00692-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been shown recently in a number of in vitro laboratory evolution experiments that under repetitive antibiotic exposure, bacterial populations can adapt quickly to the treatment condition by becoming tolerant and/or resistant to the drug. The repeated killing and regrowth cycles hasten the selection for tolerant/resistant mutants with survival advantages. Due to the random nature of mutagenesis and the large target size of tolerance mutations, this dynamic evolutionary process appears to be highly unpredictable, generating distinct mutants even under identical, well-controlled laboratory conditions. Here, we utilized an adaptive laboratory evolution (ALE) experiment to hunt for novel tolerance and resistance mutations by subjecting multiple lineages of methicillin-resistant Staphylococcus aureus (MRSA) to repetitive daptomycin treatment. By sequencing multiple isolates along the course of evolution, we obtained three tolerant mutants that have different tolerance levels and identified novel daptomycin resistance mutations in the mprF gene. In addition, we found that tolerance/resistance development is more rapid if the population is treated in the exponential phase than if it is treated in the stationary phase, which is likely attributable to the more effective killing of growing cells by the antibiotic. Through competition assays, we found that whether or not the resistant mutants can take over the population heavily depends on the relative survival advantages conferred by the tolerance and resistance mutations. This study reports novel daptomycin resistance and tolerance mutations and offers new insights into the dynamics of the development of tolerance and resistance in bacterial populations under antibiotic exposure. IMPORTANCE Although the phenotype of increased tolerance and/or resistance was commonly observed in evolved populations from typical adaptive laboratory evolution (ALE) experiments, a wide variety of mutations that underlie those phenotypes have been discovered. Therefore, performing ALE experiments in multiple populations in parallel would serve the purpose of mining for different tolerant/resistant mutants and would be useful to explore the diverse population dynamics of evolution. In this study, we performed in vitro evolution in a clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) pathogen, using a lethal concentration of a drug that is frequently used in the clinic, daptomycin. Using this strategy, we obtained three distinct daptomycin-tolerant mutants and identified six daptomycin resistance mutations in different locations on the mprF gene, collectively adding to our current knowledge of this important pathogen. In addition, we found out that in most cases, the daptomycin-resistant mutant outcompetes other susceptible and tolerant mutants and becomes established in the final population. Follow-up competition experiments offered an explanation; the resistant mutant cannot invade populations of tolerant mutants that confer higher survival advantages than itself. In summary, we demonstrated an experimental strategy to explore the landscape and dynamics of the evolution of tolerance and resistance in MRSA toward daptomycin and made observations that will guide future ALE experiments.
Collapse
|
48
|
Gotoh K, Mayura IPB, Enomoto Y, Iio K, Matsushita O, Otsuka F, Hagiya H. Detection of in-frame mutation by IS30-family insertion sequence in the phospholipid phosphatidylglycerol synthase gene (pgsA2) of high-level daptomycin-resistant Corynebacterium striatum. Eur J Clin Microbiol Infect Dis 2021; 41:331-333. [PMID: 34671843 DOI: 10.1007/s10096-021-04369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
The emergence of high-level daptomycin (DAP)-resistant (HLDR) Corynebacterium striatum has been reported as a result of loss-of-function point mutations or premature stop codon mutations in a responsible gene, pgsA2. We herein describe the novel detection of an HLDR C. striatum clinical isolate, in which IS30-insertion was corroborated to cause destruction of pgsA2 gene. We isolated an HLDR C. striatum from a critically ill patient with underlying mycosis fungoides who had been treated with DAP for 10 days. With a sequence investigation, IS30-insertion was discovered to split pgsA2 in the HLDR C. striatum strain, which may cause disrupted phospholipid phosphatidylglycerol (PG) production. Future studies should survey the prevalence of IS-mediated gene inactivation among HLDR C. striatum clinical isolates.
Collapse
Affiliation(s)
- Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - I Putu Bayu Mayura
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yusaku Enomoto
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Koji Iio
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
49
|
Nunes LGP, Reichert T, Machini MT. His-Rich Peptides, Gly- and His-Rich Peptides: Functionally Versatile Compounds with Potential Multi-Purpose Applications. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Feng Y, Coradi Tonon C, Ashraf S, Hasan T. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives. Adv Drug Deliv Rev 2021; 177:113941. [PMID: 34419503 DOI: 10.1016/j.addr.2021.113941] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment, the mainstay for the control of bacterial infections, is greatly hampered by the global prevalence of multidrug-resistant (MDR) bacteria. Photodynamic therapy (PDT) is effective against MDR infections, but PDT-induced bacterial inactivation is often incomplete, causing the relapse of infections. Combination of PDT and antibiotics is a promising strategy to overcome the limitation of both antibiotic treatment and PDT, exerting increased disinfection efficacy on MDR bacterial pathogens versus either of the monotherapies alone. In this review, we present an overview of the therapeutic effects of PDT/antibiotic combinations that have been developed. We further summarize the influencing factors and the governing molecular mechanisms of the therapeutic outcomes of PDT/antibiotic combinations. In the end, we provide concluding remarks on the strengths, limitations, and future research directions of PDT/antibiotic combination therapy to guide its appropriate usage and further development.
Collapse
Affiliation(s)
- Yanfang Feng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Health Sciences and Technology (Harvard-MIT), Cambridge, MA, USA.
| |
Collapse
|