1
|
Ebrahim H, Haldenby S, Moore M, Dashti A, Floyd R, Fothergill J. Genotypic and phenotypic analyses of two distinct sets of Pseudomonas aeruginosa urinary tract isolates. J Med Microbiol 2025; 74:001971. [PMID: 40013918 PMCID: PMC11868659 DOI: 10.1099/jmm.0.001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/18/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction. Urinary tract infections (UTIs) are associated with a high burden of morbidity, mortality and cost. Pseudomonas aeruginosa employs a myriad of virulence factors, including biofilm formation and motility mechanisms, to cause infections including persistent UTIs. P. aeruginosa is highly resistant to antibiotics, and the World Health Organization has identified it as a pathogen for which novel antimicrobials are urgently required.Gap statement. Genotypic and phenotypic characterization of P. aeruginosa from UTIs is underreported. In addition, the rise of antimicrobial resistance (AMR) is a cause for concern, particularly in many countries where surveillance is severely lacking.Aim. To identify genotypic and phenotypic characteristics of P. aeruginosa UTI isolates sourced from the UK and the state of Kuwait, with an emphasis on genotypic diversity and AMR.Methods. Twenty-three P. aeruginosa UTI isolates were sourced from the UK and Kuwait. To establish the phenotypes of UK isolates, growth analysis, biofilm formation assays, motility assays and antibiotic disc diffusion assays were performed. Whole-genome sequencing, antimicrobial susceptibility assays and in silico detection of AMR-associated genes were conducted on both sets of isolates.Results. In terms of their phenotypic characteristics and genomic composition, the UTI isolates varied. Multiple resistance genes are associated with resistance to various classes of antibiotics, such as aminoglycosides, fluoroquinolones and β-lactams, particularly in isolates from Kuwait. Extreme antibiotic resistance was detected in the isolates obtained from Kuwait, indicating that the country may be an antibiotic resistance hotspot.Conclusion. This study highlights that isolates from UTIs are diverse and can display extremely high resistance. Surveillance in countries such as Kuwait is currently limited, and this study suggests the need for greater surveillance.
Collapse
Affiliation(s)
- H. Ebrahim
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- School of Arts and Sciences, American International University, Kuwait
| | - S. Haldenby
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - M.P. Moore
- School of Life Sciences, University of Warwick, Coventry, UK
| | - A.A. Dashti
- Department of Medical Laboratory Sciences, Faculty of Allied Health Science, Health Sciences Centre, Kuwait University, Kuwait
| | - R.V. Floyd
- School of Life Sciences, University of Liverpool, Liverpool, UK
| | - J.L. Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Saechue B, Atwill ER, Jeamsripong S. Occurrence and molecular characteristics of antimicrobial resistance, virulence factors, and extended-spectrum β-lactamase (ESBL) producing Salmonella enterica and Escherichia coli isolated from the retail produce commodities in Bangkok, Thailand. Heliyon 2024; 10:e26811. [PMID: 38444485 PMCID: PMC10912461 DOI: 10.1016/j.heliyon.2024.e26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of antimicrobial resistance (AMR) in the environment is often overlooked and leads to serious health threats under the One Health paradigm. Infection with extended-spectrum β-lactamase (ESBL) producing bacteria in humans and animals has been widely examined, with the mode of transmission routes such as food, water, and contact with a contaminated environment. The purpose of this study was to determine the occurrence and molecular characteristics of resistant Salmonella enterica (S. enterica) (n = 59) and Escherichia coli (E. coli) (n = 392) isolated from produce commodities collected from fresh markets and supermarkets in Bangkok, Thailand. In this study, the S. enterica isolates exhibited the highest prevalence of resistance to tetracycline (11.9%) and streptomycin (8.5%), while the E. coli isolates were predominantly resistant to tetracycline (22.5%), ampicillin (21.4%), and sulfamethoxazole (11.5%). Among isolates of S. enterica (6.8%) and E. coli (15.3%) were determined as multidrug resistant (MDR). The prevalence of ESBL-producing isolates was 5.1% and 1.0% in S. enterica and E. coli, respectively. A minority of S. enterica isolates, where a single isolate exclusively carried blaCTX-M-55 (n = 1), and another isolate harbored both blaCTX-M-55 and blaTEM-1 (n = 1); similarly, a minority of E. coli isolates contained blaCTX-M-55 (n = 2) and blaCTX-M-15 (n = 1). QnrS (11.9%) and blaTEM (20.2%) were the most common resistant genes found in S. enterica and E. coli, respectively. Nine isolates resistant to ciprofloxacin contained point mutations in gyrA and parC. In addition, the odds of resistance to tetracycline among isolates of S. enterica were positively associated with the co-occurrence of ampicillin resistance and the presence of tetB (P = 0.001), while the E. coli isolates were positively associated with ampicillin resistance, streptomycin resistance, and the presence of tetA (P < 0.0001) in this study. In summary, these findings demonstrate that fresh vegetables and fruits, such as cucumbers and tomatoes, can serve as an important source of foodborne AMR S. enterica and E. coli in the greater Bangkok area, especially given the popularity of these fresh commodities in Thai cuisine.
Collapse
Affiliation(s)
- Benjawan Saechue
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Saharuetai Jeamsripong
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Microbial Food Safety and Antimicrobial resistance, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Lemay-St-Denis C, Pelletier JN. From a binding module to essential catalytic activity: how nature stumbled on a good thing. Chem Commun (Camb) 2023; 59:12560-12572. [PMID: 37791701 DOI: 10.1039/d3cc04209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Enzymes are complex macromolecules capable of catalyzing a wide variety of chemical reactions with high efficiency. Nonetheless, biological catalysis can be rudimentary. Here, we describe an enzyme that is built from a simple protein fold. This short protein sequence - almost a peptide - belongs to the ancient SH3 family of binding modules. Surprisingly, this binding module catalyzes the specific reduction of dihydrofolate using NADPH as a reducing cofactor, making this a dihydrofolate reductase. Too small to provide all the required binding and catalytic machinery on its own, it homotetramerizes, thus creating a large, central active site environment. Remarkably, none of the active site residues is essential to the catalytic function. Instead, backbone interactions juxtapose the reducing cofactor proximal to the target imine of the folate substrate, and a specific motion of the substrate promotes formation of the transition state. In this feature article, we describe the features that make this small protein a functional enzyme capable of catalyzing a metabolically essential reaction, highlighting the characteristics that make it a model for the evolution of primitive enzymes from binding modules.
Collapse
Affiliation(s)
- Claudèle Lemay-St-Denis
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Joelle N Pelletier
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
4
|
Kneis D, Lemay-St-Denis C, Cellier-Goetghebeur S, Elena AX, Berendonk TU, Pelletier JN, Heß S. Trimethoprim resistance in surface and wastewater is mediated by contrasting variants of the dfrB gene. THE ISME JOURNAL 2023; 17:1455-1466. [PMID: 37369703 PMCID: PMC10432401 DOI: 10.1038/s41396-023-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Trimethoprim (TMP) is a low-cost, widely prescribed antibiotic. Its effectiveness is increasingly challenged by the spread of genes coding for TMP-resistant dihydrofolate reductases: dfrA, and the lesser-known, evolutionarily unrelated dfrB. Despite recent reports of novel variants conferring high level TMP resistance (dfrB10 to dfrB21), the prevalence of dfrB is still unknown due to underreporting, heterogeneity of the analyzed genetic material in terms of isolation sources, and limited bioinformatic processing. In this study, we explored a coherent set of shotgun metagenomic sequences to quantitatively estimate the abundance of dfrB gene variants in aquatic environments. Specifically, we scanned sequences originating from influents and effluents of municipal sewage treatment plants as well as river-borne microbiomes. Our analyses reveal an increased prevalence of dfrB1, dfrB2, dfrB3, dfrB4, dfrB5, and dfrB7 in wastewater microbiomes as compared to freshwater. These gene variants were frequently found in genomic neighborship with other resistance genes, transposable elements, and integrons, indicating their mobility. By contrast, the relative abundances of the more recently discovered variants dfrB9, dfrB10, and dfrB13 were significantly higher in freshwater than in wastewater microbiomes. Moreover, their direct neighborship with other resistance genes or markers of mobile genetic elements was significantly less likely. Our findings suggest that natural freshwater communities form a major reservoir of the recently discovered dfrB gene variants. Their proliferation and mobilization in response to the exposure of freshwater communities to selective TMP concentrations may promote the prevalence of high-level TMP resistance and thus limit the future effectiveness of antimicrobial therapies.
Collapse
Affiliation(s)
- David Kneis
- TU Dresden, Institute of Hydrobiology, 01062, Dresden, Germany.
| | - Claudèle Lemay-St-Denis
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Department of Biochemistry & Molecular Medicine, University of Montréal, Montréal, QC, H3T 1J4, Canada
| | - Stella Cellier-Goetghebeur
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Department of Biochemistry & Molecular Medicine, University of Montréal, Montréal, QC, H3T 1J4, Canada
| | - Alan X Elena
- TU Dresden, Institute of Hydrobiology, 01062, Dresden, Germany
| | | | - Joelle N Pelletier
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Department of Biochemistry & Molecular Medicine, University of Montréal, Montréal, QC, H3T 1J4, Canada
- Chemistry Department, University of Montréal, Montréal, QC, H2V 0B3, Canada
| | - Stefanie Heß
- TU Dresden, Institute of Microbiology, 01062, Dresden, Germany
| |
Collapse
|
5
|
Rodriguez L, Berliner EA. Outbreak management of multidrug-resistant Bordetella bronchiseptica in 16 shelter-housed cats. J Feline Med Surg 2023; 25:1098612X231153051. [PMID: 36763462 PMCID: PMC10812073 DOI: 10.1177/1098612x231153051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
CASE SERIES SUMMARY This case series describes an outbreak of multidrug-resistant (MDR) Bordetella bronchiseptica in 16 shelter-housed cats with infectious respiratory disease. Four cats presented with acute dyspnea on the same day, each with a history of previous upper respiratory disease that had resolved with treatment. Early diagnostic testing and culture and sensitivity allowed for targeted antimicrobial therapy and environmental interventions. A case definition based on exposure and clinical signs identified 12 additional presumptive cases, including the likely index case. Comprehensive outbreak management included diagnostic testing, risk assessment, vaccination, use of isolation and quarantine, increased surveillance and review of biosecurity practices. The outbreak resolved in 26 days. RELEVANCE AND NOVEL INFORMATION Management of an MDR B bronchiseptica outbreak in shelter-housed cats has not been previously described. Along with standard population and environmental measures, early and appropriate use of necropsy, PCR and bacterial culture allowed rapid and appropriate use of effective, second-line antibiotics. Shelters are resource-challenged population centers. Veterinarians working in animal shelters can play an important role in helping to develop cost-efficient and effective antimicrobial stewardship practices for companion animal settings. Outbreak management expertise and funding for diagnostic testing, as well as application of the principles of antimicrobial stewardship, are essential components of shelter medicine practice.
Collapse
Affiliation(s)
| | - Elizabeth A Berliner
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| |
Collapse
|
6
|
Cellier-Goetghebeur S, Lafontaine K, Lemay-St-Denis C, Tsamo P, Bonneau-Burke A, Copp JN, Pelletier JN. Discovery of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases in Diverse Environmental Settings Suggests an Evolutionary Advantage Unrelated to Antibiotic Resistance. Antibiotics (Basel) 2022; 11:1768. [PMID: 36551425 PMCID: PMC9774602 DOI: 10.3390/antibiotics11121768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Type B dihydrofolate reductases (DfrB) are intrinsically highly resistant to the widely used antibiotic trimethoprim, posing a threat to global public health. The ten known DfrB family members have been strongly associated with genetic material related to the application of antibiotics. Several dfrB genes were associated with multidrug resistance contexts and mobile genetic elements, integrated both in chromosomes and plasmids. However, little is known regarding their presence in other environments. Here, we investigated the presence of dfrB beyond the traditional areas of enquiry by conducting metagenomic database searches from environmental settings where antibiotics are not prevalent. Thirty putative DfrB homologues that share 62 to 95% identity with characterized DfrB were identified. Expression of ten representative homologues verified trimethoprim resistance in all and dihydrofolate reductase activity in most. Contrary to samples associated with the use of antibiotics, the newly identified dfrB were rarely associated with mobile genetic elements or antibiotic resistance genes. Instead, association with metabolic enzymes was observed, suggesting an evolutionary advantage unrelated to antibiotic resistance. Our results are consistent with the hypothesis that multiple dfrB exist in diverse environments from which dfrB were mobilized into the clinically relevant resistome. Our observations reinforce the need to closely monitor their progression.
Collapse
Affiliation(s)
- Stella Cellier-Goetghebeur
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
| | - Kiana Lafontaine
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
| | - Claudèle Lemay-St-Denis
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
| | - Princesse Tsamo
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
| | - Alexis Bonneau-Burke
- The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
- Chemistry Department, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Janine N. Copp
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joelle N. Pelletier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
- Chemistry Department, Université de Montréal, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
7
|
Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits. Pharmaceutics 2022; 14:pharmaceutics14071434. [PMID: 35890330 PMCID: PMC9317422 DOI: 10.3390/pharmaceutics14071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious respiratory diseases caused by Bordetella bronchiseptica (Bb) are seriously endangering the development of the rabbit industry in China. Unfortunately, no licensed vaccines are available for this pathogen. The present study was designed to determine whether the inactivated Bb antigen formulated with vegetable oil adjuvant (named E515) which contains soybean oil, vitamin E, and ginseng saponins, functions as a safe and effective vaccine (E515-Bb) against Bb infection in rabbits. Based on local and systemic reactions, both the E515 adjuvant alone and the E515-Bb vaccine exhibited good safety in rabbits. Immune response analysis implies that rabbits immunized with the E515-Bb vaccine produced significantly higher, earlier, and longer-lasting specific antibody responses and activated Th1/Th2/Th17 cell responses than those immunized with the aluminum hydroxide (Alum)-adjuvanted Bb vaccine (Alum-Bb) or Bb antigen alone. Moreover, the E515-Bb vaccine effectively protected rabbits from Bb infection. Additionally, integrated multi-omics analysis revealed that the immunoprotective effect of the E515-Bb vaccine was achieved through upregulation of the complement and coagulation cascades and cell adhesion molecule (CAM) pathways, and the downregulation of the P53 pathway. Overall, these results indicate that the E515-Bb vaccine is safe, elicits an efficient immune response and provides good protection against Bb infection in rabbits. Thus, the E515-adjuvanted Bb vaccine can be considered a promising candidate vaccine for preventing Bb infection.
Collapse
|
8
|
Yue Z, Zhang J, Zhou Z, Ding C, Wan L, Liu J, Chen L, Wang X. Pollution characteristics of livestock faeces and the key driver of the spread of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124957. [PMID: 33418295 DOI: 10.1016/j.jhazmat.2020.124957] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in livestock and poultry faeces has attracted considerable amounts of attention. However, in the actual breeding environment, the key driver of the spread of ARGs and which bacteria are involved remain unclear. This study investigated 19 antibiotics and 4 heavy metals in 147 animal faeces. The results showed that piglet faeces exhibited the highest levels of antibiotics and heavy metals. Twelve ARGs, 4 mobile genetic elements (MGEs) and bacterial communities of piglet faeces from 6 pig farms were further assessed to determine the key driver and relevant mechanism of the spread of ARGs. Sulphonamides (SAs) explained 36.5% of the variance (P < 0.05) of the bacterial community and were significantly related to 8 genes (P < 0.01), indicating that SAs dominated the spread of ARGs and should be tightly supervised. Structural equation modelling (SEM) indicated that SAs increased the abundance of ARGs via two pathways: horizontal transfer of ARGs (involving 10 genera) and vertical transfer of ARGs (involving 26 genera). These results improve our understanding of the potential hosts involved in the spread of ARGs, suggesting that monitoring of the above potential hosts is also important in animal feeding practice.
Collapse
Affiliation(s)
- Zhengfu Yue
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Wan
- Jiangxi Zhenghe Ecological Agriculture Company Limited, Xinyu 338008, China
| | - Jia Liu
- Institute of Soil and Fertilizer & Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Liumeng Chen
- Institute of Applied Agricultural Microorganism, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Lemay-St-Denis C, Diwan SS, Pelletier JN. The Bacterial Genomic Context of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases Highlights an Emerging Threat to Public Health. Antibiotics (Basel) 2021; 10:433. [PMID: 33924456 PMCID: PMC8103504 DOI: 10.3390/antibiotics10040433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/21/2023] Open
Abstract
Type B dihydrofolate reductase (dfrb) genes were identified following the introduction of trimethoprim in the 1960s. Although they intrinsically confer resistance to trimethoprim (TMP) that is orders of magnitude greater than through other mechanisms, the distribution and prevalence of these short (237 bp) genes is unknown. Indeed, this knowledge has been hampered by systematic biases in search methodologies. Here, we investigate the genomic context of dfrbs to gain information on their current distribution in bacterial genomes. Upon searching publicly available databases, we identified 61 sequences containing dfrbs within an analyzable genomic context. The majority (70%) of those sequences also harbor virulence genes and 97% of the dfrbs are found near a mobile genetic element, representing a potential risk for antibiotic resistance genes. We further identified and confirmed the TMP-resistant phenotype of two new members of the family, dfrb10 and dfrb11. Dfrbs are found both in Betaproteobacteria and Gammaproteobacteria, a majority (59%) being in Pseudomonas aeruginosa. Previously labelled as strictly plasmid-borne, we found 69% of dfrbs in the chromosome of pathogenic bacteria. Our results demonstrate that the intrinsically TMP-resistant dfrbs are a potential emerging threat to public health and justify closer surveillance of these genes.
Collapse
Affiliation(s)
- Claudèle Lemay-St-Denis
- Department of Biochemistry and Molecular Medecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; (C.L.-S.-D.); (S.-S.D.)
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
| | - Sarah-Slim Diwan
- Department of Biochemistry and Molecular Medecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; (C.L.-S.-D.); (S.-S.D.)
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
| | - Joelle N. Pelletier
- Department of Biochemistry and Molecular Medecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; (C.L.-S.-D.); (S.-S.D.)
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
- Chemistry Department, Université de Montréal, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
10
|
Toulouse JL, Shi G, Lemay-St-Denis C, Ebert MCCJC, Deon D, Gagnon M, Ruediger E, Saint-Jacques K, Forge D, Vanden Eynde JJ, Marinier A, Ji X, Pelletier JN. Dual-Target Inhibitors of the Folate Pathway Inhibit Intrinsically Trimethoprim-Resistant DfrB Dihydrofolate Reductases. ACS Med Chem Lett 2020; 11:2261-2267. [PMID: 33214838 DOI: 10.1021/acsmedchemlett.0c00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Trimethoprim (TMP) is widely used to treat infections in humans and in livestock, accelerating the incidence of TMP resistance. The emergent and largely untracked type II dihydrofolate reductases (DfrBs) are intrinsically TMP-resistant plasmid-borne Dfrs that are structurally and evolutionarily unrelated to chromosomal Dfrs. We report kinetic characterization of the known DfrB family members. Their kinetic constants are conserved and all are poorly inhibited by TMP, consistent with TMP resistance. We investigate their inhibition with known and novel bisubstrate inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK). Importantly, all are inhibited by the HPPK inhibitors, making these molecules dual-target inhibitors of two folate pathway enzymes that are strictly microbial.
Collapse
Affiliation(s)
- Jacynthe L. Toulouse
- Département de biochimie, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
- PROTEO, Quebec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Quebec H2V 0B3, Canada
| | - Genbin Shi
- Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland 21702, United States
| | - Claudèle Lemay-St-Denis
- Département de biochimie, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
- PROTEO, Quebec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Quebec H2V 0B3, Canada
| | | | - Daniel Deon
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Marc Gagnon
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Edward Ruediger
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Kévin Saint-Jacques
- Département de chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Delphine Forge
- Laboratoire de chimie organique, Université de Mons, 7000 Mons, Belgium
| | | | - Anne Marinier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland 21702, United States
| | - Joelle N. Pelletier
- Département de biochimie, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
- PROTEO, Quebec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Quebec H2V 0B3, Canada
- Département de biochimie, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
11
|
Occurrence of Antibiotic-Resistant Bacteria and Genes in Two Drinking Water Treatment and Distribution Systems in the North-West Province of South Africa. Antibiotics (Basel) 2020; 9:antibiotics9110745. [PMID: 33126462 PMCID: PMC7692212 DOI: 10.3390/antibiotics9110745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/17/2022] Open
Abstract
With the increasing spread of antimicrobial resistance, there is growing attention to the contribution made by drinking water systems. The potential health impact of two drinking water treatment and distribution systems (A and B) in the North-West Province of South Africa was determined by investigating the water quality and occurrence of antimicrobial-resistant heterotrophic bacteria and genes in the raw and treated water over four seasons. Most of the physicochemical parameters except for electrical conductivity were within permissible limits. Coliform bacteria reduced from raw to potable water except for counts higher than the threshold recorded in Summer and Winter. A total of 203 heterotrophic bacterial isolates were recovered on chromogenic R2A medium and subjected to susceptibility testing to twelve antibiotics. Most of the isolates were resistant to β-lactam antibiotics and Trimethoprim, whereas they were susceptible to Ciprofloxacin, Erythromycin, and Neomycin. The proportions of Cephalothin and Kanamycin-resistant isolates were significantly higher (p < 0.05) after treatment for site A, compared to significantly lower β-lactam, Oxytetracycline, and Trimethoprim-resistant isolates for B. Over 50% of isolates were of high risk, indicating their origin from high antibiotic-use sources. Seventy-one (35%) isolates were multidrug-resistant, out of which the majority (53.5%, n = 38) possessed the strA gene, followed by strB 21 (29.6%), dfrB 13 (18.3%), aadA 11 (15.5%), blaCTX-M 5 (7.0%), and tetA 3 (4.2%). The 16S rRNA gene sequences of the isolates revealed strains belonging to eight bacterial families, some of which are clinically important.
Collapse
|
12
|
Abstract
Bordetella bronchiseptica is a potential zoonotic pathogen, which mainly causes respiratory diseases in humans and a variety of animal species. B. bronchiseptica is one of the important pathogens isolated from rabbits in Fujian Province. However, the knowledge of the epidemiology and characteristics of the B. bronchiseptica in rabbits in Fujian Province is largely unknown. In this study, 219 B. bronchiseptica isolates recovered from lung samples of dead rabbits with respiratory diseases in Fujian Province were characterised by multi-locus sequencing typing, screening virulence genes and testing antimicrobial susceptibility. The results showed that the 219 isolates were typed into 11 sequence types (STs) including five known STs (ST6, ST10, ST12, ST14 and ST33) and six new STs (ST88, ST89, ST90, ST91, ST92 and ST93) and the ST33 (30.14%, 66/219), ST14 (26.94%, 59/219) and ST12 (16.44%, 36/219) were the three most prevalent STs. Surprisingly, all the 219 isolates carried the five virulence genes (fhaB, prn, cyaA, dnt and bteA) in the polymerase chain reaction screening. Moreover, the isolates were resistant to cefixime, ceftizoxime, cefatriaxone and ampicillin at rates of 33.33%, 31.05%, 11.87% and 3.20%, respectively. This study showed the genetic diversity of B. bronchiseptica in rabbits in Fujian Province, and the colonisation of the human-associated ST12 strain in rabbits in Fujian Province. The results might be useful for monitoring the epidemic strains, developing preventive methods and preventing the transmission of epidemic strains from rabbits to humans.
Collapse
|
13
|
Toulouse J, Yachnin BJ, Ruediger EH, Deon D, Gagnon M, Saint-Jacques K, Ebert MCCC, Forge D, Bastien D, Colin DY, Vanden Eynde JJ, Marinier A, Berghuis AM, Pelletier JN. Structure-Based Design of Dimeric Bisbenzimidazole Inhibitors to an Emergent Trimethoprim-Resistant Type II Dihydrofolate Reductase Guides the Design of Monomeric Analogues. ACS OMEGA 2019; 4:10056-10069. [PMID: 31460098 PMCID: PMC6648814 DOI: 10.1021/acsomega.9b00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/22/2019] [Indexed: 05/18/2023]
Abstract
The worldwide use of the broad-spectrum antimicrobial trimethoprim (TMP) has induced the rise of TMP-resistant microorganisms. In addition to resistance-causing mutations of the microbial chromosomal dihydrofolate reductase (Dfr), the evolutionarily and structurally unrelated type II Dfrs (DfrBs) have been identified in TMP-resistant microorganisms. DfrBs are intrinsically TMP-resistant and allow bacterial proliferation when the microbial chromosomal Dfr is TMP-inhibited, making these enzymes important targets for inhibitor development. Furthermore, DfrBs occur in multiresistance plasmids, potentially accelerating their dissemination. We previously reported symmetrical bisbenzimidazoles that are the first selective inhibitors of the only well-characterized DfrB, DfrB1. Here, their diversification provides a new series of inhibitors (K i = 1.7-12.0 μM). Our results reveal two prominent features: terminal carboxylates and inhibitor length allow the establishment of essential interactions with DfrB1. Two crystal structures demonstrate the simultaneous binding of two inhibitor molecules in the symmetrical active site. Observations of those dimeric inhibitors inspired the design of monomeric analogues, binding in a single copy yet offering similar inhibition potency (K i = 1.1 and 7.4 μM). Inhibition of a second member of the DfrB family, DfrB4, suggests the generality of these inhibitors. These results provide key insights into inhibition of the highly TMP-resistant DfrBs, opening avenues to downstream development of antibiotics for combatting this emergent source of resistance.
Collapse
Affiliation(s)
- Jacynthe
L. Toulouse
- Département
de Biochimie, Institute for Research in Immunology and Cancer
(IRIC), and Département de Chimie, Université
de Montréal, Montreal H3C 3J7, Quebec, Canada
- PROTEO,
the Québec Network for Research on Protein, Function, Engineering
and Applications, Quebec G1V 0A6, Canada
- CGCC,
The Center in Green Chemistry and Catalysis, Montréal H3A
0B8, Quebec, Canada
| | - Brahm J. Yachnin
- PROTEO,
the Québec Network for Research on Protein, Function, Engineering
and Applications, Quebec G1V 0A6, Canada
- Department
of Biochemistry, McGill University, Montréal H3A 0G4, Quebec, Canada
| | - Edward H. Ruediger
- Département
de Biochimie, Institute for Research in Immunology and Cancer
(IRIC), and Département de Chimie, Université
de Montréal, Montreal H3C 3J7, Quebec, Canada
| | - Daniel Deon
- Département
de Biochimie, Institute for Research in Immunology and Cancer
(IRIC), and Département de Chimie, Université
de Montréal, Montreal H3C 3J7, Quebec, Canada
| | - Marc Gagnon
- Département
de Biochimie, Institute for Research in Immunology and Cancer
(IRIC), and Département de Chimie, Université
de Montréal, Montreal H3C 3J7, Quebec, Canada
| | - Kévin Saint-Jacques
- Département
de Biochimie, Institute for Research in Immunology and Cancer
(IRIC), and Département de Chimie, Université
de Montréal, Montreal H3C 3J7, Quebec, Canada
- Département
de Chimie, Université de Sherbrooke, Sherbrooke J1K 0A5, Quebec, Canada
| | | | - Delphine Forge
- Laboratoire
de Chimie Organique, Université de
Mons, Mons 7000, Belgium
| | - Dominic Bastien
- Département
de Biochimie, Institute for Research in Immunology and Cancer
(IRIC), and Département de Chimie, Université
de Montréal, Montreal H3C 3J7, Quebec, Canada
- PROTEO,
the Québec Network for Research on Protein, Function, Engineering
and Applications, Quebec G1V 0A6, Canada
- CGCC,
The Center in Green Chemistry and Catalysis, Montréal H3A
0B8, Quebec, Canada
| | - Damien Y. Colin
- Département
de Biochimie, Institute for Research in Immunology and Cancer
(IRIC), and Département de Chimie, Université
de Montréal, Montreal H3C 3J7, Quebec, Canada
- PROTEO,
the Québec Network for Research on Protein, Function, Engineering
and Applications, Quebec G1V 0A6, Canada
- CGCC,
The Center in Green Chemistry and Catalysis, Montréal H3A
0B8, Quebec, Canada
| | | | - Anne Marinier
- Département
de Biochimie, Institute for Research in Immunology and Cancer
(IRIC), and Département de Chimie, Université
de Montréal, Montreal H3C 3J7, Quebec, Canada
| | - Albert M. Berghuis
- PROTEO,
the Québec Network for Research on Protein, Function, Engineering
and Applications, Quebec G1V 0A6, Canada
- Department
of Biochemistry, McGill University, Montréal H3A 0G4, Quebec, Canada
| | - Joelle N. Pelletier
- Département
de Biochimie, Institute for Research in Immunology and Cancer
(IRIC), and Département de Chimie, Université
de Montréal, Montreal H3C 3J7, Quebec, Canada
- PROTEO,
the Québec Network for Research on Protein, Function, Engineering
and Applications, Quebec G1V 0A6, Canada
- CGCC,
The Center in Green Chemistry and Catalysis, Montréal H3A
0B8, Quebec, Canada
- E-mail: . Phone: 514-343-2124. Fax: 514-343-7586
| |
Collapse
|
14
|
Müller A, Jansen W, Grabowski NT, Kehrenberg C. Characterization of Salmonella enterica serovars recovered from meat products legally and illegally imported into the EU reveals the presence of multiresistant and AmpC-producing isolates. Gut Pathog 2018; 10:40. [PMID: 30258498 PMCID: PMC6151051 DOI: 10.1186/s13099-018-0268-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/15/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Food products of animal origin brought into the EU from third countries, both legally and illegally, can harbor foodborne pathogens such as Salmonella enterica. In this study, we examined five S. enterica isolates recovered either from legally imported chicken meat (n = 3) or from meat products confiscated from air travel passengers arriving in Germany (n = 2). The isolates were serotyped and further characterized by antimicrobial susceptibility testing, PCR-detection and sequencing of genes associated with antimicrobial resistances, and macrorestriction analysis. Transferability of resistance to third-generation cephalosporins was assessed by conjugation experiments and the plasmids tested for their incompatibility groups. RESULTS The three isolates from legal imports were identified as S. Heidelberg or as non-flagellated. All three isolates were identified as AmpC producers carrying bla CMY-2 and as non-susceptible to ciprofloxacin. They were additionally resistant to tetracycline and sulfamethoxazole. The bla CMY-2-carrying plasmids were transferable by conjugation and belonged to incompatibility groups IncI1 or IncA/C. The two isolates from illegally imported meat belonged to the serovars Infantis or Weltevreden. The former was phenotypically resistant to five classes of antimicrobial agents while the S. Weltevreden isolate was fully susceptible to all agents tested. CONCLUSION The results of this study demonstrate that meat products imported from third countries, both legally and illegally, can harbor multiresistant Salmonella enterica. Consequently, these imports could constitute a source for the dissemination of antimicrobial resistant isolates, including those resistant to third-generation cephalosporins and fluoroquinolones.
Collapse
Affiliation(s)
- Anja Müller
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Wiebke Jansen
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
- Integrated Veterinary Research Unit, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Nils Th. Grabowski
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Corinna Kehrenberg
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
15
|
Kadlec K, Schwarz S. Antimicrobial Resistance in Bordetella bronchiseptica. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0024-2017. [PMID: 30027886 PMCID: PMC11633599 DOI: 10.1128/microbiolspec.arba-0024-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Bordetella bronchiseptica is involved in respiratory tract infections mainly in dogs and pigs but may also cause infections in humans. Valid and representative data on antimicrobial susceptibility of B. bronchiseptica is rare. Approved antimicrobial susceptibility testing methods have been published, but very few clinical breakpoints are available. The MIC values are low for most agents but high for β-lactam antibiotics and macrolides. Information on the genetic basis of resistance is scarce. For a small number of isolates that are resistant or show elevated MICs, the molecular basis of resistance was identified. Three tetracycline resistance genes, tet(A), tet(C), and tet(31), coding for major facilitator superfamily efflux pumps, were identified. Two other major facilitator superfamily exporter genes confer resistance to chloramphenicol (cmlB1) or to chloramphenicol and florfenicol (floR). Two class B chloramphenicol acetyltransferase genes (catB1 and catB3), which confer resistance to nonfluorinated phenicols by enzymatic inactivation, have been identified in B. bronchiseptica. Like the trimethoprim resistance genes dfrA1 and dfrB1, which code for trimethoprim-insensitive dihydrofolate reductases, the genes catB1 and catB3 were located on gene cassettes and found in class 1 integrons also harboring the sulfonamide resistance gene sul1. In addition, the gene sul2 has also been detected. Both sul1 and sul2 code for sulfonamide-insensitive dihydropteroate synthases. A gene cassette harboring the β-lactamase gene blaOXA-2 was also identified, whereas β-lactam resistance in B. bronchiseptica seems to be more likely due to reduced influx in combination with the species-specific β-lactamase encoded by blaBOR-1. The resistance genes were mostly located on conjugative plasmids.
Collapse
Affiliation(s)
- Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt-Mariensee, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
16
|
Niemann L, Müller P, Brauns J, Nathaus R, Schäkel F, Kipschull K, Höltig D, Wendt M, Schwarz S, Kadlec K. Antimicrobial susceptibility and genetic relatedness of respiratory tract pathogens in weaner pigs over a 12-month period. Vet Microbiol 2018; 219:165-170. [PMID: 29778191 DOI: 10.1016/j.vetmic.2018.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
The collaboration project VASIB aims at reducing the antibiotic consumption in pig production by integrating information from consulting expertise in clinical inspection, hygiene, epidemiology, microbiology and pharmacology. In this VASIB subproject, we investigated the antimicrobial susceptibility and relatedness of porcine respiratory tract pathogens. Bordetella bronchiseptica (n = 47), Pasteurella multocida (n = 18) and Streptococcus suis (n = 58) were obtained from weaner pigs at two farms. Antimicrobial susceptibility testing was performed by broth microdilution according to CLSI standards. Resistance genes were detected via specific PCR assays. Macrorestriction analysis was conducted to determine the relatedness of the isolates and to identify clones. The B. bronchiseptica isolates showed indistinguishable (farm 1) or two closely related XbaI-patterns (farm 2). Different SmaI-PFGE patterns of P. multocida isolates were obtained at three different time points. In contrast, PFGE analysis of S. suis indicated more than one fragment pattern per pig and time point. Isolates exhibiting indistinguishable PFGE patterns were considered to represent the same clone. This study showed that only two closely related B. bronchiseptica clones were present in both farms, which had low MICs to all antimicrobials, except to β-lactams. Different P. multocida clones were present at the three time points. They showed overall low MIC values, with two clones being resistant and one intermediate to tetracycline. S. suis clones were resistant to tetracycline (n = 19) and/or erythromycin/clindamycin (n = 16). They harboured the tetracycline resistance genes tet(O), tet(M) or tet(L) and/or the macrolide/lincosamide/streptogramin B resistance gene erm(B). Five penicillin-resistant S. suis clones were also detected.
Collapse
Affiliation(s)
- Lisa Niemann
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Germany; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Petra Müller
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Jasmin Brauns
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Germany
| | | | - Franziska Schäkel
- Institute for Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Germany
| | | | - Doris Höltig
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Michael Wendt
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Germany.
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| |
Collapse
|
17
|
Occurrence and characterisation of ESBL-encoding plasmids among Escherichia coli isolates from fresh vegetables. Vet Microbiol 2018; 219:63-69. [PMID: 29778206 DOI: 10.1016/j.vetmic.2018.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 01/11/2023]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates have been increasingly reported in different reservoirs. The aims of this study were to investigate the presence of ESBL-producing E. coli in fresh vegetables and to characterise their ESBL gene-carrying plasmids. Among the 245 samples from vegetables investigated during 2011-2013, seven putative ESBL-producing E. coli (salad n = 2, sprouts n = 5) were found. They were subjected to ESBL phenotypic confirmatory tests, detection/sequencing of ESBL genes, antimicrobial susceptibility testing (AST), phylotyping, XbaI-macrorestriction analysis, multilocus sequence typing and transformation. Transformants were characterised by AST, S1-nuclease PFGE, replicon typing, conjugation and investigated for co-located antimicrobial resistance genes. Two ESBL gene-carrying plasmids were sequenced using a HiSeq 2500 system. The seven isolates were confirmed as ESBL producers, displayed unrelated XbaI-patterns and unique sequence types (STs) and belonged to the phylogroups A, B1 or D. The ESBL genes were located on plasmids. Two plasmids carrying blaCTX-M-14 genes (incompatibility group IncK or IncHI2) were seen in isolates from salad (ST973) and sprout (ST527). Two blaCTX-M-15- (IncFIB; non-typeable) and the IncN blaCTX-M-65- and IncHI2 blaCTX-M-125-carrying plasmids were found in isolates from sprouts (ST410, ST847, ST10, ST542). All plasmids were conjugative, except for the IncFIA-FIB blaCTX-M-2-carrying plasmid. Sequence analysis of two plasmids identified the ESBL genes in close location to other resistance genes: sulfonamide resistance gene sul2, streptomycin resistance genes strA and strB, the plasmid-mediated quinolone resistance gene qnrS1 and blaTEM-1 (sul2-strA-strB-IS66-blaTEM-1-tnpR-ΔtnpA-ISEcp1-blaCTX-M-15-Δorf477-ΔtnpA-qnrS1) or the fosfomycin resistance gene fosA3 (ΔISEcp1-blaCTX-M-125-ΔIS903B-fosA3). These observations underline the importance of vegetables as reservoirs for multidrug resistant ESBL-producing E. coli.
Collapse
|
18
|
Alonso CA, Michael GB, Li J, Somalo S, Simón C, Wang Y, Kaspar H, Kadlec K, Torres C, Schwarz S. Analysis of blaSHV-12-carrying Escherichia coli clones and plasmids from human, animal and food sources. J Antimicrob Chemother 2017; 72:1589-1596. [PMID: 28333184 DOI: 10.1093/jac/dkx024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/15/2017] [Indexed: 11/14/2022] Open
Abstract
Objectives This study aimed at characterizing 23 Escherichia coli isolates from various sources and their respective bla SHV-12 -carrying plasmids and sequencing one of these plasmids completely. Methods Isolates were typed by XbaI-PFGE, MLST and PCR-based phylotyping. Transformed bla SHV-12 -carrying plasmids were examined by replicon typing, S1-nuclease, conjugation, EcoRI-HindIII-BamHI digests and plasmid MLST. Co-located resistance genes and integrons as well as the bla SHV-12 genetic environment were analysed by PCR and sequencing. One IncI1 plasmid was sequenced completely using HiSeq 2500 and gap closure by PCRs and Sanger sequencing. Results Among the 23 SHV-12-positive E. coli , some isolates from different sources showed the same characteristics: ST23/phylogroup A (human, dog, livestock), ST57/D (wild bird, chicken meat) and ST117/D (chicken meat, chicken). All bla SHV-12 genes were horizontally transferable via 30-120 kb plasmids of incompatibility groups IncI1 ( n = 17), IncK ( n = 3), IncF ( n = 1), IncX3 ( n = 1) and a non-typeable plasmid. IncK plasmids, indistinguishable in size and restriction patterns, were found in isolates from different sources (ST57/D, meat; ST131/B2, meat; ST57/B1, dog). The IncI1- bla SHV-12 -carrying plasmids were mostly assigned to plasmid ST (pST) 26 and pST3. Three plasmids showed novel pSTs (pST214, pST215). The majority of the IncI1 transformants exhibited resistance to β-lactams, chloramphenicol and streptomycin (in relation with a class 1 integron containing an estX - psp - aadA2 - cmlA1 - aadA1 - qacI gene cassette array), and to tetracycline. A novel bla SHV-12 environment was detected and whole plasmid sequencing revealed a Tn 21 -derived- bla SHV12 -ΔTn 1721 resistance complex. Conclusions Results from this study suggest that the dissemination of bla SHV-12 genes occurs by vertical (clonal) and horizontal transfer, the latter mainly mediated through IncI1 multidrug-resistance plasmids.
Collapse
Affiliation(s)
- Carla Andrea Alonso
- Department of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Geovana Brenner Michael
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany.,Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jun Li
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sergio Somalo
- Department of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Carmen Simón
- Faculty of Veterinary Science, University of Zaragoza, Zaragoza, Spain
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Carmen Torres
- Department of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany.,Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Integron-Associated DfrB4, a Previously Uncharacterized Member of the Trimethoprim-Resistant Dihydrofolate Reductase B Family, Is a Clinically Identified Emergent Source of Antibiotic Resistance. Antimicrob Agents Chemother 2017; 61:AAC.02665-16. [PMID: 28242670 DOI: 10.1128/aac.02665-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/11/2017] [Indexed: 01/01/2023] Open
Abstract
Whole-genome sequencing of trimethoprim-resistant Escherichia coli clinical isolates identified a member of the trimethoprim-resistant type II dihydrofolate reductase gene family (dfrB). The dfrB4 gene was located within a class I integron flanked by multiple resistance genes. This arrangement was previously reported in a 130.6-kb multiresistance plasmid. The DfrB4 protein conferred a >2,000-fold increased trimethoprim resistance on overexpression in E. coli Our results are consistent with the finding that dfrB4 contributes to clinical trimethoprim resistance.
Collapse
|
20
|
Freitag C, Michael GB, Kadlec K, Hassel M, Schwarz S. Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Vet Microbiol 2017; 200:151-156. [DOI: 10.1016/j.vetmic.2016.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 07/26/2016] [Accepted: 08/13/2016] [Indexed: 11/16/2022]
|
21
|
Lopes GV, Michael GB, Cardoso M, Schwarz S. Antimicrobial resistance and class 1 integron-associated gene cassettes in Salmonella enterica serovar Typhimurium isolated from pigs at slaughter and abattoir environment. Vet Microbiol 2016; 194:84-92. [DOI: 10.1016/j.vetmic.2016.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
22
|
Ojo OE, Schwarz S, Michael GB. Detection and characterization of extended-spectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Vet Microbiol 2016; 194:62-68. [DOI: 10.1016/j.vetmic.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
|
23
|
Siqueira AK, Michael GB, Domingos DF, Ferraz MMG, Ribeiro MG, Schwarz S, Leite DS. Diversity of class 1 and 2 integrons detected in Escherichia coli isolates from diseased and apparently healthy dogs. Vet Microbiol 2016; 194:79-83. [PMID: 27302904 DOI: 10.1016/j.vetmic.2016.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
Escherichia coli is one of the major pathogens causing urinary tract infections (UTIs) and pyometra in dogs. The aims of this study were to investigate canine E. coli isolates for the presence of class 1 and 2 integrons by PCR/sequencing and to characterize these isolates and their integron-carrying plasmids. Isolates were characterized by phylotyping, XbaI-macrorestriction analysis and plasmid transfer experiments. Plasmids were analyzed by S1 nuclease-PFGE, replicon typing, conjugation and restriction analysis. Antimicrobial resistance was investigated by antimicrobial susceptibility testing and PCR/sequencing. From 158 E. coli of dogs suffering from UTIs (n=51) and pyometra (n=52) or being apparently healthy (n=55), 13 isolates harboured class 1 (n=10) or class 2 integrons (n=3). They were distributed among the phylogenetic groups A (3/13), B1 (6/13), B2 (3/13) and D (1/13). Two isolates showed indistinguishable XbaI-patterns, but differed in the remaining characteristics. Another two isolates (UTI or apparently healthy) displayed different XbaI-patterns, but harboured similar plasmids. Integrons were found on plasmids of incompatibility groups IncF, IncF-IncFIC, IncFIB-IncHI2, IncFIB-IncN, IncFIC or IncHI2 and three of them were conjugative. Resistances to aminoglycosides, sulphonamides and trimethoprim were commonly detected. Class 1 integrons carried the gene cassette arrays dfrA12-orfF-aadA28, ΔdfrA17-aadA5, dfrA29, aadA7, aadA29 or dfrA12-orfF-aadA2-cmlA1-aadA1. Class 2 integrons carried the array dfrA1-sat2-aadA30. Two extended-spectrum β-lactamase genes (blaCTX-M-2) and one AmpC β-lactamase gene (blaCMY-2) were also detected on plasmids. These findings indicate the potential risk of the dissemination and persistence of E. coli and/or integron-carrying plasmids in companion animals.
Collapse
Affiliation(s)
- Amanda K Siqueira
- Laboratório de Antígenos Bacterianos, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee 31535, Germany
| | - Geovana B Michael
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee 31535, Germany.
| | - Daniela F Domingos
- Laboratório de Antígenos Bacterianos, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Mirtis M G Ferraz
- Laboratório de Antígenos Bacterianos, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Márcio G Ribeiro
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, São Paulo, Brazil
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee 31535, Germany
| | - Domingos S Leite
- Laboratório de Antígenos Bacterianos, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Prüller S, Rensch U, Meemken D, Kaspar H, Kopp PA, Klein G, Kehrenberg C. Antimicrobial Susceptibility of Bordetella bronchiseptica Isolates from Swine and Companion Animals and Detection of Resistance Genes. PLoS One 2015; 10:e0135703. [PMID: 26275219 PMCID: PMC4537227 DOI: 10.1371/journal.pone.0135703] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/24/2015] [Indexed: 01/05/2023] Open
Abstract
Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1-2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes blaBOR-1 (n = 147), blaOXA-2, (n = 4), strA and strB (n = 17), sul1 (n = 10), sul2 (n = 73), dfrA7 (n = 3) and tet(A) (n = 8) were detected and a plasmid localisation was identified for several of the resistance genes.
Collapse
Affiliation(s)
- Sandra Prüller
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Ulrike Rensch
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Diana Meemken
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Peter A Kopp
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Ludwigsburg, Germany
| | - Günter Klein
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Corinna Kehrenberg
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
25
|
Prüller S, Frömke C, Kaspar H, Klein G, Kreienbrock L, Kehrenberg C. Recommendation for a Standardised Method of Broth Microdilution Susceptibility Testing for Porcine Bordetella bronchiseptica. PLoS One 2015; 10:e0123883. [PMID: 25910232 PMCID: PMC4409320 DOI: 10.1371/journal.pone.0123883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
Abstract
The objective was to establish and standardise a broth microdilution susceptibility testing method for porcine Bordetella (B.) bronchiseptica. B. bronchiseptica isolates from different geographical regions and farms were genotyped by macrorestriction analysis and subsequent pulsed-field gel electrophoresis. One reference and one type strain plus two field isolates of B. bronchiseptica were chosen to analyse growth curves in four different media: cation-adjusted Mueller-Hinton broth (CAMHB) with and without 2% lysed horse blood, Brain-Heart-Infusion (BHI), and Caso broth. The growth rate of each test strain in each medium was determined by culture enumeration and the suitability of CAMHB was confirmed by comparative statistical analysis. Thereafter, reference and type strain and eight epidemiologically unrelated field isolates of B. bronchiseptica were used to test the suitability of a broth microdilution susceptibility testing method following CLSI-approved performance standards given in document VET01-A4. Susceptibility tests, using 20 antimicrobial agents, were performed in five replicates, and data were collected after 20 and 24 hours incubation and statistically analysed. Due to the low growth rate of B. bronchiseptica, an incubation time of 24 hours resulted in significantly more homogeneous minimum inhibitory concentrations after five replications compared to a 20-hour incubation. An interlaboratory comparison trial including susceptibility testing of 24 antimicrobial agents revealed a high mean level of reproducibility (97.9%) of the modified method. Hence, in a harmonization for broth microdilution susceptibility testing of B. bronchiseptica, an incubation time of 24 hours in CAMHB medium with an incubation temperature of 35°C and an inoculum concentration of approximately 5 x 105 cfu/ml was proposed.
Collapse
Affiliation(s)
- Sandra Prüller
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173, Hannover, Germany
| | - Cornelia Frömke
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training in Veterinary Public Health, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Günter Klein
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173, Hannover, Germany
| | | | - Corinna Kehrenberg
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173, Hannover, Germany
- * E-mail:
| |
Collapse
|
26
|
Lopes GV, Michael GB, Cardoso M, Schwarz S. Identification and characterization ofSalmonella entericasubsp.entericaserovar Derby isolates carrying a newaadA26gene cassette in a class 1 integron obtained at pig slaughterhouses. FEMS Microbiol Lett 2014; 356:71-8. [DOI: 10.1111/1574-6968.12473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/15/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Graciela Volz Lopes
- Departamento de Medicina Veterinária Preventiva; Universidade Federal do Rio Grande do Sul (UFGRS); Porto Alegre Brazil
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Neustadt-Mariensee Germany
| | - Geovana Brenner Michael
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Neustadt-Mariensee Germany
| | - Marisa Cardoso
- Departamento de Medicina Veterinária Preventiva; Universidade Federal do Rio Grande do Sul (UFGRS); Porto Alegre Brazil
| | - Stefan Schwarz
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Neustadt-Mariensee Germany
| |
Collapse
|
27
|
Huang Y, Michael GB, Becker R, Kaspar H, Mankertz J, Schwarz S, Runge M, Steinhagen D. Pheno- and genotypic analysis of antimicrobial resistance properties of Yersinia ruckeri from fish. Vet Microbiol 2013; 171:406-12. [PMID: 24331744 DOI: 10.1016/j.vetmic.2013.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/23/2013] [Accepted: 10/26/2013] [Indexed: 11/26/2022]
Abstract
Enteric red-mouth disease, caused by Yersinia ruckeri, is an important disease in rainbow trout aquaculture. Antimicrobial agents are frequently used in aquaculture, thereby causing a selective pressure on bacteria from aquatic organisms under which they may develop resistance to antimicrobial agents. In this study, the distribution of minimal inhibitory concentrations (MICs) of antimicrobial agents for 83 clinical and non-clinical epidemiologically unrelated Y. ruckeri isolates from north west Germany was determined. Antimicrobial susceptibility was conducted by broth microdilution at 22 ± 2°C for 24, 28 and 48 h. Incubation for 24h at 22 ± 2°C appeared to be suitable for susceptibility testing of Y. ruckeri. In contrast to other antimicrobial agents tested, enrofloxacin and nalidixic acid showed a bimodal distribution of MICs, with one subpopulation showing lower MICs for enrofloxacin (0.008-0.015 μg/mL) and nalidixic acid (0.25-0.5 μg/mL) and another subpopulation exhibiting elevated MICs of 0.06-0.25 and 8-64 μg/mL, respectively. Isolates showing elevated MICs revealed single amino acid substitutions in the quinolone resistance-determining region (QRDR) of the GyrA protein at positions 83 (Ser83-Arg or -Ile) or 87 (Asn87-Tyr), which raised the MIC values 8- to 32-fold for enrofloxacin or 32- to 128-fold for nalidixic acid. An isolate showing elevated MICs for sulfonamides and trimethoprim harbored a ∼ 8.9 kb plasmid, which carried the genes sul2, strB and a dfrA14 gene cassette integrated into the strA gene. These observations showed that Y. ruckeri isolates were able to develop mutations that reduce their susceptibility to (fluoro)quinolones and to acquire plasmid-borne resistance genes.
Collapse
Affiliation(s)
- Yidan Huang
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Geovana Brenner Michael
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Roswitha Becker
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food safety (BVL), Berlin, Germany
| | - Joachim Mankertz
- Federal Office of Consumer Protection and Food safety (BVL), Berlin, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Foundation, Germany.
| |
Collapse
|
28
|
Wang Y, He T, Schwarz S, Zhou D, Shen Z, Wu C, Wang Y, Ma L, Zhang Q, Shen J. Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. J Antimicrob Chemother 2012; 67:1094-8. [PMID: 22331590 DOI: 10.1093/jac/dks020] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To investigate the presence and the genetic environment of the multiresistance gene cfr in Escherichia coli found in domestic animals. METHODS A total of 1230 E. coli isolates, collected from pigs, chickens and ducks, were screened by PCR for the cfr gene. The location of the cfr gene was determined by Southern blotting, the transferability of cfr gene was tested by conjugation and transformation, and the regions flanking the cfr gene were sequenced by a modified random primer walking strategy. The location of the cfr promoter sequence was analysed by mapping the cfr transcription start site using rapid amplification of 5' cDNA ends (5' RACE). RESULTS Only a single strain from the nasal swab of a pig harboured the cfr gene. Southern blotting indicated that the cfr gene was located on a ~110 kb plasmid, designated pEC-01. A cfr-carrying segment of 1545 bp with a sequence identical to that of the cfr-harbouring plasmid pSCFS1 was flanked by two IS26 elements in the same orientation. The IS26 transposition created a new hybrid promoter in which the -35 region was part of the left inverted repeat of IS26 while the -10-like sequence was part of the original cfr upstream region. CONCLUSIONS To the best of our knowledge, this is the first report of the cfr gene in a naturally occurring E. coli strain. Continued surveillance of the presence of the cfr gene in Gram-negative bacteria of domestic-animal origin is warranted.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Development and Evaluation of Chemical and Herbal Drugs for Animal Use, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Povilonis J, Šeputienė V, Ružauskas M, Šiugždinienė R, Virgailis M, Pavilonis A, Sužiedėlienė E. Transferable class 1 and 2 integrons in Escherichia coli and Salmonella enterica isolates of human and animal origin in Lithuania. Foodborne Pathog Dis 2010; 7:1185-92. [PMID: 20578916 DOI: 10.1089/fpd.2010.0536] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-resistant Escherichia coli (n = 191) and Salmonella enterica (n = 87) isolates of human and animal origin obtained in Lithuania during 2005-2008 were characterized for the presence and diversity of class 1 and 2 integrons. E. coli isolates were obtained from patients with urinary tract infections (UTIs) (n = 59) and both healthy and diseased farm animals, including poultry (n = 54), swine (n = 35), and cattle (n = 43). Isolates of non-typhoidal S. enterica were recovered from salmonellosis patients (n = 37) and healthy animals, including poultry (n = 31) and swine (n = 19). The presence of integrons, their gene cassette structure, and genome location were investigated by polymerase chain reaction, restriction fragment-length polymorphism, DNA sequencing, Southern blot hybridization, and conjugation experiments. Forty percent of the E. coli and 11% of the S. enterica isolates carried class 1 integrons, whereas class 2 integrons were found in E. coli isolates (9%) only. The incidence of integrons in human UTIs and cattle isolates was most frequent (p < 0.01). A total of 23 different gene cassettes within 15 different variable regions were observed. Seven different integron types, all of them transferable by conjugation, were common for isolates from human infections and for one or more groups of animal isolates. The most prevalent integron types contained arrays dfrA1-aadA1 (36%), dfrA17-aadA5 (23%), and dfrA1-sat1-aadA1 (78%). Two E. coli isolates from humans with UTIs harbored class 1 integron on conjugative plasmid with the novel array type of 4800 bp/dfrA17-aadA5Δ-IS26-ΔintI1-aadB-aadA1-cmlA residing on the Tn21-like transposon. Three S. enterica isolates from swine contained class 1 integron with the newly observed array type of 1800 bp/aadA7-aadA7. Integrons of 10 different types of both classes were located on transferable plasmids in E. coli and S. enterica. Our study demonstrated the existence of a considerable and common pool of transferable integrons in E. coli and S. enterica present in clinical and livestock environment in Lithuania.
Collapse
Affiliation(s)
- Justas Povilonis
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences, Vilnius University, M.K. Ciurlionio 21, Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
31
|
Transmission of IncN plasmids carrying blaCTX-M-1 between commensal Escherichia coli in pigs and farm workers. Antimicrob Agents Chemother 2009; 53:1709-11. [PMID: 19188380 DOI: 10.1128/aac.01014-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTX-M-1-producing Escherichia coli were isolated from 56 pigs, three farm personnel, two manure samples, and two air samples from two Danish pig farms where an association between prophylactic ceftiofur use and the occurrence of cephalosporin resistance was previously demonstrated. Human, animal, and environmental strains displayed high genetic diversity but harbored indistinguishable or closely related IncN plasmids carrying bla(CTX-M-1), indicating that IncN plasmids mediating cephalosporin resistance were transmitted between pigs and farm workers across multiple E. coli lineages.
Collapse
|
32
|
Kadlec K, Schwarz S. Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the BfT-GermVet monitoring study. J Antimicrob Chemother 2008; 62:469-73. [DOI: 10.1093/jac/dkn233] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Schlüter A, Szczepanowski R, Pühler A, Top EM. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 2007; 31:449-77. [PMID: 17553065 DOI: 10.1111/j.1574-6976.2007.00074.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the IncP-1 group are self-transmissible, and transfer to and replicate in a wide range of hosts. Their backbone functions are described with respect to their impact on vegetative replication, stable maintenance and inheritance, mobility and plasmid control. Accessory genetic modules, mainly representing mobile genetic elements, are integrated in-between functional plasmid backbone modules. These elements carry determinants conferring resistance to nearly all clinically relevant antimicrobial drug classes, to heavy metals, and quaternary ammonium compounds used as disinfectants. All plasmids analysed here contain integrons that potentially facilitate integration, exchange and dissemination of resistance gene cassettes. Comparative genomics of accessory modules located on plasmids from WWTP and corresponding modules previously identified in other bacterial genomes revealed that animal, human and plant pathogens and other bacteria isolated from different habitats share a common pool of resistance determinants.
Collapse
Affiliation(s)
- Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|
34
|
Kadlec K, Wiegand I, Kehrenberg C, Schwarz S. Studies on the mechanisms of β-lactam resistance in Bordetella bronchiseptica. J Antimicrob Chemother 2007; 59:396-402. [PMID: 17261565 DOI: 10.1093/jac/dkl515] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Little is currently known about beta-lactam resistance in Bordetella bronchiseptica. So far, only a single beta-lactamase gene, bla(BOR-1), has been identified. In a previous study, high MICs of ampicillin, cefalotin and ceftiofur were determined among 349 porcine B. bronchiseptica isolates. The aim of this study was to identify genes associated with elevated MICs of beta-lactams and their transferability. METHODS Selected isolates were investigated by PCR for commonly found bla genes and class 1 integrons; selected amplicons were sequenced. Plasmid location of resistance genes was confirmed by conjugation. Beta-lactamases were characterized by SDS-PAGE and isoelectric focusing. The genomic relatedness of the isolates was investigated by XbaI macrorestriction analysis. Inhibition studies with efflux pump inhibitors were conducted. The permeability of cephalosporins into intact cells was measured exemplarily for one isolate. RESULTS Of the 349 B. bronchiseptica isolates, eight isolates carried a class 1 integron with a bla(OXA-2) cassette on a conjugative plasmid of ca. 50 kb. In addition, one plasmid-free isolate also carried this class 1 integron. Besides bla(BOR-1), no other beta-lactamase gene was detected in the remaining isolates with high MICs of ampicillin of >or= 32 mg/L. Inhibition experiments suggested that efflux does not play a role in beta-lactam resistance. Instead, membrane permeability for cephalosporins was reduced as shown for B. bronchiseptica isolate B543. CONCLUSIONS This is to the best of our knowledge the first report of a mobile bla gene in B. bronchiseptica. Reduced membrane permeability of B. bronchiseptica seems to decrease susceptibility against cephalosporins.
Collapse
Affiliation(s)
- Kristina Kadlec
- Institut für Tierzucht, Bundesforschungsanstalt für Landwirtschaft (FAL), Höltystr. 10, 31535 Neustadt-Mariensee, Germany
| | | | | | | |
Collapse
|
35
|
Murphy BP, O'Mahony R, Buckley JF, Shine P, Boyd EF, Gilroy D, Fanning S. Investigation of a global collection of nontyphoidalSalmonellaof various serotypes cultured between 1953 and 2004 for the presence of class 1 integrons. FEMS Microbiol Lett 2007; 266:170-6. [PMID: 17233727 DOI: 10.1111/j.1574-6968.2006.00537.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In this study, antibiotic resistance profiles, and the presence of class 1 integrons were determined for 108 Salmonella isolates comprising 37 serotypes cultured from a variety of sources between 1953 and 2004. Antibiogram analyses showed that all isolates were resistant to streptomycin/spectinomycin. Molecular analysis revealed that 50% of the collection contained an integrase-encoding gene (int1) and 25% contained class 1 integrons. A Salmonella Wien isolate possessing a complete class 1 integron with a dfrA5-ereA2 gene arrangement within the variable region was characterized.
Collapse
Affiliation(s)
- Brenda P Murphy
- Veterinary Department, Cork County Council, County Hall, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
36
|
Alonso H, Gready JE. Integron-sequestered dihydrofolate reductase: a recently redeployed enzyme. Trends Microbiol 2006; 14:236-42. [PMID: 16584884 DOI: 10.1016/j.tim.2006.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 03/01/2006] [Accepted: 03/21/2006] [Indexed: 11/21/2022]
Abstract
The introduction and wide use of antibacterial drugs has resulted in the emergence of resistant organisms. DfrB dihydrofolate reductase (DHFR) is a bacterial enzyme that is uniquely associated with mobile gene cassettes within integrons, and confers resistance to the drug trimethoprim. This enzyme has intrigued microbiologists since it was discovered more than thirty years ago because of its simple structure, enzymatic inefficiency and its virtual insensitivity to trimethoprim. Here, for the first time, a comprehensive discussion of genetic, evolutionary, structural and functional studies of this enzyme is presented together. This information supports the ideas that DfrB DHFR is a poorly adapted catalyst and has recently been recruited to perform a novel enzymatic activity in response to selective pressure.
Collapse
Affiliation(s)
- Hernán Alonso
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
37
|
Michael GB, Cardoso M, Schwarz S. Identification of an aadA2 Gene Cassette from Salmonella enterica subsp. enterica Serovar Derby. ACTA ACUST UNITED AC 2005; 52:456-9. [PMID: 16364021 DOI: 10.1111/j.1439-0450.2005.00893.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During a study on Salmonella enterica subsp. enterica serovar Derby from slaughter-age pigs in Brazil, two epidemiologically unrelated multi-resistant S. Derby isolates were found to carry a class 1 integron with a single gene cassette. Sequence analysis confirmed that this gene cassette harboured an aadA2 gene. The aadA2 gene codes for an aminoglycoside adenyltransferase, which mediates resistance to the aminoglycoside streptomycin and the aminocyclitol spectinomycin. Although aadA2 gene cassettes are widely distributed among Salmonella, database searches identified an AadA2 protein indistinguishable from that of S. Derby only in single isolates of S. enterica subsp. enterica Enteritidis from France and S. enterica subsp. enterica Typhimurium from Japan. Structural analysis of the 59-base element revealed at least one base pair difference between the 59-base element of the aadA2 cassette from S. Derby and any of the 59-base elements deposited in the databases.
Collapse
Affiliation(s)
- G B Michael
- Institut für Tierzucht, Bundesforschungsanstalt für Landwirtschaft (FAL), Höltystrasse 10, 31535 Neustadt-Mariensee, Germany
| | | | | |
Collapse
|