1
|
Davis BC, Vikesland PJ, Pruden A. Evaluating Quantitative Metagenomics for Environmental Monitoring of Antibiotic Resistance and Establishing Detection Limits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6192-6202. [PMID: 40100955 PMCID: PMC11966778 DOI: 10.1021/acs.est.4c08284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Metagenomics holds promise as a comprehensive, nontargeted tool for environmental monitoring. However, one key limitation is that the quantitative capacity of metagenomics is not well-defined. Here, we demonstrated a quantitative metagenomic technique and benchmarked the approach for wastewater-based surveillance of antibiotic resistance genes. To assess the variability of low-abundance oligonucleotide detection across sample matrices, we spiked DNA reference standards (meta sequins) into replicate wastewater DNA extracts at logarithmically decreasing mass-to-mass percentages (m/m%). Meta sequin ladders exhibited strong linearity at input concentrations as low as 2 × 10-3 m/m% (R2 > 0.95), with little to no reference length or GC bias. At a mean sequencing depth of 94 Gb, the limits of quantification (LoQ) and detection were calculated to be 1.3 × 103 and 1 gene copy per μL DNA extract, respectively. In wastewater influent, activated sludge, and secondary effluent samples, 27.3, 47.7, and 44.3% of detected genes were ≤LoQ, respectively. Volumetric gene concentrations and log removal values were statistically equivalent between quantitative metagenomics and ddPCR for 16S rRNA, intI1, sul1, CTX-M-1, and vanA. The quantitative metagenomics benchmark here is a key step toward establishing metagenomics for high-throughput, nontargeted, and quantitative environmental monitoring.
Collapse
Affiliation(s)
- Benjamin C. Davis
- Office
of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter J. Vikesland
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Ferro P, Rossel J, Ferro-Gonzales AL, Morales-Rojas E, Ticona E, Guevara R, Córdova L. Determination of Antibiotic Resistance Genes in the Interior Bay of Puno-Peru, Lake Titicaca. SCIENTIFICA 2025; 2025:5571355. [PMID: 40160312 PMCID: PMC11952920 DOI: 10.1155/sci5/5571355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Water can serve as a source of genetic resistance and act as an amplifier and/or reservoir for genes acquired by human pathogens, which can be released into the environment as pollutants. The interior bay of Puno, part of Lake Titicaca, is a popular tourist attraction, being an active component of the dynamics of the city of Puno. Therefore, the determination of the presence of antibiotic resistance genes (ARGs) in water samples from the interior bay of Puno of six collection points was the main objective of this research work. DNA extraction was conducted, followed by the identification and quantification of 16S rRNA and Escherichia coli uidA gene, two ARGs (bla TEM and qacEΔ1), and class 1 integron-integrase gene (intI1) by means of quantitative PCR. The intI1 and qacEΔ1 genes were detected throughout the interior bay of Puno; however, the abundance of the bla TEM gene was comparatively lower. The uidA gene was reported only in some sampled points with < LOQ. These findings should raise concerns regarding the potential risk of their dissemination in Lake Titicaca and their impact on public health.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Faculty of Natural and Applied Sciences of the Universidad Nacional Intercultural Fabiola Salazar Leguia de Bagua, Jr. Ancash 520, Bagua 01721, Amazonas, Peru
- Universidad Privada San Carlos, Ilave. Jr. Ilo 343 Ilave, Puno, Peru
| | - Jhordan Rossel
- Universidad Privada San Carlos, Ilave. Jr. Ilo 343 Ilave, Puno, Peru
| | - Ana Lucia Ferro-Gonzales
- Universidad Privada San Carlos, Ilave. Jr. Ilo 343 Ilave, Puno, Peru
- Economic, Social and Strategic Development Research Group of the Universidad Nacional de Juliaca, Av. Nueva Zelandia 631, Puno 21101, Peru
| | - Eli Morales-Rojas
- Faculty of Natural and Applied Sciences of the Universidad Nacional Intercultural Fabiola Salazar Leguia de Bagua, Jr. Ancash 520, Bagua 01721, Amazonas, Peru
- Institute for Research in Information and Communication Technologies (IITIC) of the Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Jr. Libertad No. 1300, Bagua, Amazonas, Peru
| | - Euclides Ticona
- Faculty of Natural and Applied Sciences of the Universidad Nacional Intercultural Fabiola Salazar Leguia de Bagua, Jr. Ancash 520, Bagua 01721, Amazonas, Peru
| | - Romel Guevara
- Faculty of Natural and Applied Sciences of the Universidad Nacional Intercultural Fabiola Salazar Leguia de Bagua, Jr. Ancash 520, Bagua 01721, Amazonas, Peru
| | - Lizbeth Córdova
- Faculty of Natural and Applied Sciences of the Universidad Nacional Intercultural Fabiola Salazar Leguia de Bagua, Jr. Ancash 520, Bagua 01721, Amazonas, Peru
| |
Collapse
|
3
|
Etienne N, Bedell JP, Benoit P, Bertrand-Krajewski JL, Brelot E, Dagot C, Gaschet M, Guironnet A, Lamy I, Nélieu S, Patureau D, Roques O, Wiest L. RISMEAU dataset: Pharmaceuticals and biocides concentrations in urban and agricultural sludge, amended soil and leachate and their environmental impacts. Data Brief 2024; 57:111124. [PMID: 39687359 PMCID: PMC11647127 DOI: 10.1016/j.dib.2024.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
The RISMEAU project (RISques liés aux résidus de Médicaments, biocides et antibiorésistance d'origine humaine et vétérinaire sur les ressources en EAU du bassin versant de l'Arve - Risks related to residues of pharmaceuticals and biocides, and antimicrobial resistance of human and veterinary origin on the water resources of the 2083 km2 Arve catchment located in the French Alps) was implanted from 2018 to 2024 on the SIPIBEL observatory. It was devoted to the evaluation of (i) transfers of and processes related to pharmaceutical residues and biocides from both urban sludge and manure spread on fields as fertilisers, and (ii) the environmental impacts of land spreading, in particular the ecotoxicological risks and antimicrobial resistance dissemination. The methodology was based on the physico-chemical, ecotoxicological and antimicrobial resistance (AMR - assessed by molecular biology) characterisation of leachate and soil matrices samples, and focused on organic waste products application at locally representative agronomic rates. This dataset can be reused by other researchers for comparison with their own investigations on this emerging topic under different contexts and conditions, and may contribute to international reviews. The database includes in total 26,217 values, measured on 348 samples of organic waste products, soil, in situ lysimeter leachate, earthworms, plants with 3136 usual physico-chemical values, 15,469 values on pharmaceuticals and biocides concentrations, 6827 bioassay values (ecotoxicity and phytotoxicity) and 785 values of antimicrobial resistance indicators. The 348 samples have been collected from Nov. 2019 to Dec. 2022: 4 samples in 2019, 26 in 2020, 130 in 2021 and 188 in 2022. Regarding AMR, 96 assays coding for most abundant resistance genes in healthy humans, clinically relevant antibiotic resistance genes, biocide resistance genes, heavy metal genes, integrons (class I, II and III), and mobile genetic elements (transposase genes) have been carried out.
Collapse
Affiliation(s)
- Noémie Etienne
- INSA Lyon, DEEP, UR 7429, 11 rue de la physique, F-69621 Villeurbanne cedex, France
| | - Jean-Philippe Bedell
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69518 Vaulx-en-Velin, France
| | - Pierre Benoit
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, F-91120 Palaiseau, France
| | | | - Elodie Brelot
- GRAIE (Groupe de Recherche, Animation technique et Information sur l'Eau), 66 boulevard Niels Bohr, CS52132, F-69603 Villeurbanne, France
| | - Christophe Dagot
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000 Limoges, France
| | - Margaux Gaschet
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000 Limoges, France
| | - Alexandre Guironnet
- Universite Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Isabelle Lamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, F-91120 Palaiseau, France
| | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, F-91120 Palaiseau, France
| | - Dominique Patureau
- INRAE, Univ Montpellier, LBE, 102 avenue des étangs, F-11100 Narbonne, France
| | - Olivier Roques
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69518 Vaulx-en-Velin, France
| | - Laure Wiest
- Universite Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
4
|
Sresung M, Srathongneam T, Paisantham P, Sukchawalit R, Whangsuk W, Honda R, Satayavivad J, Mongkolsuk S, Sirikanchana K. Quantitative distribution of antibiotic resistance genes and crAssphage in a tropical urbanized watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176569. [PMID: 39349196 DOI: 10.1016/j.scitotenv.2024.176569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/04/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
As antimicrobial resistance continues to pose a significant threat to global health, this study provided a focused examination of the prevalence and behavior of key antibiotic resistance genes in aquatic environments. We investigated the quantitative distribution of intI1, sul1, blaTEM, blaNDM, blaVIM, mcr-1, tetQ, and crAssphage within wastewater influents (n = 12), effluents (n = 12) and river water samples (n = 12), from three municipal wastewater treatment plants and three river locations in an urbanized watershed in Central Thailand over dry and wet seasons. The qPCR method demonstrated that intI1, sul1, blaTEM, and tetQ were the most abundant in all samples (2.71-7.89 mean log10 copies/100 mL), with all genes exhibiting consistently uniform levels across diverse locations, suggesting the potential for any site to act as a monitoring sentinel. Although there is a significant reduction of ARG concentrations by WWTPs (0.62 - >4.05 LRV), the persistence of these genes in effluents points to the limited effectiveness of existing treatment methodologies. Temporal data indicated stable ARG concentrations over time, but tetQ levels rose during the wet season, in alignment with the monsoonal climate in Thailand. Additionally, we identified crAssphage, a marker of human sewage contamination, exhibited strong correlations with the more abundant ARGs (rho 0.65 - 0.81), implying that human waste contributes significantly to the environmental burden of ARGs. The results of this research highlight the widespread nature of ARGs in water systems and the need for improved treatment and sanitation strategies to mitigate the public health threat posed by antimicrobial resistance.
Collapse
Affiliation(s)
- Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Thitima Srathongneam
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Rojana Sukchawalit
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Wirongrong Whangsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Jutamaad Satayavivad
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand; Research Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
5
|
Siri Y, Sthapit N, Malla B, Raya S, Haramoto E. Comparative performance of electronegative membrane filtration and automated concentrating pipette for detection of antibiotic resistance genes and microbial markers in river water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176109. [PMID: 39255938 DOI: 10.1016/j.scitotenv.2024.176109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
The target viral and bacterial concentrations in river water are essential for environmental monitoring and public health studies. Filtration-based methods are commonly employed, yet challenges arise due to recoverability and filter pore size. This study aimed to compare the performance of electronegative membrane filtration (EMF) and automated Concentrating Pipette (CP) Select (InnovaPrep) methods for quantifying antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial and viral markers in river water samples. Fifty-four river water samples were collected from upstream and downstream locations in a river in Japan. The CP Select method was modified by adding MgCl2 and using different tips. The recovery efficiencies for total coliforms and Escherichia coli were assessed, and class 1 integron-integrase gene (intI1), 16S rRNA, gene encoding sulfonamide resistance (sul1), cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), and Escherichia coli gene (sfmD) were detected. CP Select showed recovery efficiencies of 45 %-63 % for total coliforms and 17 %-35 % for E. coli. The intI1, 16S rRNA, sul1, crAssphage, PMMoV, and sfmD concentrations using the modified CP Select method were 10.1 ± 0.5, 8.7 ± 0.2, 7.7 ± 0.2, 6.7 ± 0.2, 5.4 ± 0.2, and 3.5 ± 0.5 log10 copies/L, respectively. Higher intI1 and sul1 concentrations were observed downstream, with the highest contribution percentage (22 % and 21 %) using CP Select or EMF. The modified CP Select method with 0.05 μm tips yielded more quantifiable results for all target genes and greater PMMoV concentrations (p < 0.05). Positive correlations were found among bacterial, ARG/MGE, and viral markers (Spearman's ρ = 0.71 for 16S rRNA and sfmD, 0.88 for intI1 and sul1, and 0.64 for PMMoV and crAssphage). The modified CP Select method demonstrated effective recovery of bacteria and quantification of ARGs, MGEs, and microbial markers in river water. Further studies are required to validate these methods and confirm their applicability in diverse environmental contexts.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
6
|
Liu Q, Zhang N, Ge J, Zhang L, Guo L, Zhang H, Song K, Luo J, Zhao L, Yang S. Aquatic plants combined with microbial fuel cells promote sulfamethoxazole and sul genes removal from aquaculture pond sediments via bioelectrochemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124680. [PMID: 39116922 DOI: 10.1016/j.envpol.2024.124680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in the aquaculture environment are receiving increasing public attention as emerging contaminants. In this study, aquatic plant (P) and sediment microbial fuel cells (SMFC) were used individually and in combination (P-SMFC) to simulate in situ remediation of sulfamethoxazole (SMX) and sul genes in aquaculture environments. The results showed that the average power densities of SMFC and P-SMFC were 622.18 mW m-2 and 565.99 mW m-2, respectively. The addition of 5 mg kg-1 of SMX to the sediment boosted the voltages of SMFC and P-SMFC by 36.3% and 51.5%, respectively. After 20 days of treatment, the removal efficiency of SMX from the sediment was 86.17% and 89.60% for SMFC and P-SMFC group, respectively, which were significantly higher than the control group (P < 0.05). However, removal of SMX by plants was not observed. P-SMFC group significantly reduced the biotoxicity of SMX to Staphylococcus aureus and Escherichia coli in the overlying water (P < 0.05). P and P-SMFC groups significantly reduced the abundance of ARGs intl1 and sul1 (P < 0.05). The removal rate of ARGs intl1, sul1 and sul2 from sediments by P-SMFC ranged from 94.22% to 97.08%. However, SMFC increased the abundance of sul3. SMFC and P-SMFC increased the relative abundance of some of sulfate-reducing bacteria such as Desulfatiglans, Thermodesulfovibrionia and Sva0485 in sediments. These results showed that aquatic plants promoted the removal of ARGs and SMFC promoted the removal of antibiotics, and the combination with aquatic plants and SMFC achieved a synergistic removal of both SMX and ARGs. Therefore, current study provides a promising approach for the in situ removal of antibiotics and ARGs in the aquaculture environment.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Nisha Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiayu Ge
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Leji Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lipeng Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hanwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kaige Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
7
|
Catherine N A, Claudia S, Savino A, Edgar MM, Rogers K, Julius LB, Morgan A, Imelda TK, Joel B, Frederick B, Andreas T. Antibiotic resistance of E. coli isolates from different water sources in Mbarara, Uganda. JOURNAL OF WATER AND HEALTH 2024; 22:1579-1593. [PMID: 39340372 DOI: 10.2166/wh.2024.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/11/2024] [Indexed: 09/30/2024]
Abstract
Escherichia coli is widely used as an indicator of recent faecal pollution of water. Most E. coli strains are commensals; however, isolates in water samples have been shown to carry antibiotic resistance determinants. In total, 47 E. coli were isolated from selected drinking water sources in Mbarara, Uganda. The isolates were examined for their susceptibility to seven antibiotics and the presence of nine antibiotic-resistance genes (mostly β-lactamase genes) and class 1 integrons. Isolates showed a high resistance to ampicillin of 55.5% and a high sensitivity to azithromycin and gentamicin at 98 and 96%, respectively. PCR analysis showed the presence of extended-spectrum β-lactamase genes blaCTX-M-32 and blaCMY-2 in 64 and 36% of the isolates. The carbapenemase genes blaOXA-48, blaVIM-2, blaNDM-1, and blaKPC-3 were either not detected or only in a very small number of the isolates, whereas class 1 integrons were present in 68% of the isolates. This study proves that antimicrobial resistance exists in E. coli in water used for drinking purposes in Mbarara city. There is a need for public health actors to improve the surveillance of microbiological quality of drinking water to minimize health risks.
Collapse
Affiliation(s)
- Abaasa Catherine N
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda E-mail:
| | - Stange Claudia
- DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Ayesiga Savino
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Mulogo M Edgar
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Kalyetsi Rogers
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Lejju B Julius
- Faculty of Science, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Andama Morgan
- Faculty of Science, Muni University, Mbarara city, Uganda
| | - Tamwesigire K Imelda
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Bazira Joel
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Byarugaba Frederick
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Tiehm Andreas
- DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| |
Collapse
|
8
|
Bonanno Ferraro G, Bonomo C, Brandtner D, Mancini P, Veneri C, Briancesco R, Coccia AM, Lucentini L, Suffredini E, Bongiorno D, Musso N, Stefani S, La Rosa G. Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173217. [PMID: 38750766 DOI: 10.1016/j.scitotenv.2024.173217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, blaTEM, blaOXA-48, blaCTX-M-1 group, blaKPC) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 109), tetA (5.2 × 108), blaTEM (1.1 × 108), blaOXA-48 (2.1 × 107), blaCTX-M-1 group (1.1 × 107), blaKPC (9.4 × 105), and int1 (5.5 × 109). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics.
Collapse
Affiliation(s)
- Giusy Bonanno Ferraro
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy; Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - David Brandtner
- Departments of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Pamela Mancini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Carolina Veneri
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Briancesco
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Coccia
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Luca Lucentini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Science, University of Catania, Italy
| | - Giuseppina La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
9
|
Bourdonnais E, Briet A, Brauge T, Debuiche S, Helsens N, Granier SA, Midelet G. Antimicrobial susceptibility profile and molecular characterization of Vibrio parahaemolyticus strains isolated from imported shrimps. Microbiol Spectr 2024; 12:e0017524. [PMID: 38832768 PMCID: PMC11218469 DOI: 10.1128/spectrum.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/20/2024] [Indexed: 06/05/2024] Open
Abstract
Vibrio parahaemolyticus is a threat to human health and one of the leading bacterial causes of seafood-borne infection worldwide. This pathogen is autochtonous in the marine environment and is able to acquire antimicrobial resistance (AMR) mechanisms, which is a global concern. However, the emergence of AMR V. parahaemolyticus strains in seafood is still understudied, as interpretation criteria for this species for antimicrobial susceptibility tests are limited in the literature. In this study, we investigated the susceptibility profiles to clinically important antibiotics and the associated genetic determinants of V. parahaemolyticus isolates cultured from imported shrimps. Based on the analysis of the resistance phenotypes of 304 V. parahaemolyticus isolates, we have defined experimental epidemiological cutoff values (COWT) for 14/15 antibiotics tested. We observed that 19.1% of the bacterial isolates had acquired resistance to at least one antibiotic class. The highest number of resistance was associated with tetracycline (14.5% of the strains) and trimethoprim-sulfamethoxazole (3.6%). Moreover, seven strains were multidrug-resistant (MDR, resistant to at least three antibiotic classes). The most frequently identified genes in these strains were aph(3″)-Ib/aph(6)-Id (aminoglycoside resistance), sul2 (sulfonamide), tet(59) (tetracycline), and floR (chloramphenicol). The SXT/R391 family ICE and class 1 integron-integrase genes were detected by PCR in three and one MDR V. parahaemolyticus strains, respectively. Consequently, V. parahaemolyticus in seafood can act as a reservoir of AMR, constituting a health risk for the consumer.IMPORTANCEOur study on "Antimicrobial Resistance Profiles and Genetic Determinants of Vibrio parahaemolyticus Isolates from Imported Shrimps" addresses a critical gap in understanding the emergence of antimicrobial resistance (AMR) in this seafood-associated pathogen. Vibrio parahaemolyticus is a major cause of global seafood-borne infections, and our research reveals that 19.1% of isolates from imported shrimps display resistance to at least one antibiotic class, with multidrug resistance observed in seven strains. Importantly, we establish experimental epidemiological cutoff values for antibiotic susceptibility, providing valuable criteria specific to V. parahaemolyticus. Our findings underscore the potential risk to consumers, emphasizing the need for vigilant monitoring and intervention strategies. This study significantly contributes to the comprehension of AMR dynamics in V. parahaemolyticus, offering crucial insights for global public health. The dissemination of our research through Microbiology Spectrum ensures broad accessibility and impact within the scientific community and beyond.
Collapse
Affiliation(s)
- Erwan Bourdonnais
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Arnaud Briet
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Thomas Brauge
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Sabine Debuiche
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Nicolas Helsens
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Sophie A Granier
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Maisons-Alfort, France
| | - Graziella Midelet
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| |
Collapse
|
10
|
Burch TR, Stokdyk JP, Durso LM, Borchardt MA. Quantitative microbial risk assessment for ingestion of antibiotic resistance genes from private wells contaminated by human and livestock fecal sources. Appl Environ Microbiol 2024; 90:e0162923. [PMID: 38335112 PMCID: PMC10952444 DOI: 10.1128/aem.01629-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
We used quantitative microbial risk assessment to estimate ingestion risk for intI1, erm(B), sul1, tet(A), tet(W), and tet(X) in private wells contaminated by human and/or livestock feces. Genes were quantified with five human-specific and six bovine-specific microbial source-tracking (MST) markers in 138 well-water samples from a rural Wisconsin county. Daily ingestion risk (probability of swallowing ≥1 gene) was based on daily water consumption and a Poisson exposure model. Calculations were stratified by MST source and soil depth over the aquifer where wells were drilled. Relative ingestion risk was estimated using wells with no MST detections and >6.1 m soil depth as a referent category. Daily ingestion risk varied from 0 to 8.8 × 10-1 by gene and fecal source (i.e., human or bovine). The estimated number of residents ingesting target genes from private wells varied from 910 (tet(A)) to 1,500 (intI1 and tet(X)) per day out of 12,000 total. Relative risk of tet(A) ingestion was significantly higher in wells with MST markers detected, including wells with ≤6.1 m soil depth contaminated by bovine markers (2.2 [90% CI: 1.1-4.7]), wells with >6.1 m soil depth contaminated by bovine markers (1.8 [1.002-3.9]), and wells with ≤6.1 m soil depth contaminated by bovine and human markers simultaneously (3.1 [1.7-6.5]). Antibiotic resistance genes (ARGs) were not necessarily present in viable microorganisms, and ingestion is not directly associated with infection. However, results illustrate relative contributions of human and livestock fecal sources to ARG exposure and highlight rural groundwater as a significant point of exposure.IMPORTANCEAntibiotic resistance is a global public health challenge with well-known environmental dimensions, but quantitative analyses of the roles played by various natural environments in transmission of antibiotic resistance are lacking, particularly for drinking water. This study assesses risk of ingestion for several antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in drinking water from private wells in a rural area of northeast Wisconsin, United States. Results allow comparison of drinking water as an exposure route for antibiotic resistance relative to other routes like food and recreational water. They also enable a comparison of the importance of human versus livestock fecal sources in the study area. Our study demonstrates the previously unrecognized importance of untreated rural drinking water as an exposure route for antibiotic resistance and identifies bovine fecal material as an important exposure factor in the study setting.
Collapse
Affiliation(s)
- Tucker R. Burch
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, Wisconsin, USA
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, Wisconsin, USA
| | - Joel P. Stokdyk
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, Wisconsin, USA
- U.S. Geological Survey, Upper Midwest Water Science Center, Marshfield, Wisconsin, USA
| | - Lisa M. Durso
- U.S. Department of Agriculture-Agricultural Research Service, Agroecosystem Management Research Unit, Lincoln, Nebraska, USA
| | - Mark A. Borchardt
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, Wisconsin, USA
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, Wisconsin, USA
| |
Collapse
|
11
|
Schachner-Groehs I, Koller M, Leopold M, Kolm C, Linke RB, Jakwerth S, Kolarević S, Kračun-Kolarević M, Kandler W, Sulyok M, Vierheilig J, Toumi M, Farkas R, Toth E, Kittinger C, Zarfel G, Farnleitner AH, Kirschner AKT. Linking antibiotic resistance gene patterns with advanced faecal pollution assessment and environmental key parameters along 2300 km of the Danube River. WATER RESEARCH 2024; 252:121244. [PMID: 38340455 DOI: 10.1016/j.watres.2024.121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The global spread of antimicrobial resistance (AMR) in the environment is a growing health threat. Large rivers are of particular concern as they are highly impacted by wastewater discharge while being vital lifelines serving various human needs. A comprehensive understanding of occurrence, spread and key drivers of AMR along whole river courses is largely lacking. We provide a holistic approach by studying spatiotemporal patterns and hotspots of antibiotic resistance genes (ARGs) along 2311 km of the navigable Danube River, combining a longitudinal and temporal monitoring campaign. The integration of advanced faecal pollution diagnostics and environmental and chemical key parameters allowed linking ARG concentrations to the major pollution sources and explaining the observed patterns. Nine AMR markers, including genes conferring resistance to five different antibiotic classes of clinical and environmental relevance, and one integrase gene were determined by probe-based qPCR. All AMR targets could be quantified in Danube River water, with intI1 and sul1 being ubiquitously abundant, qnrS, tetM, blaTEM with intermediate abundance and blaOXA-48like, blaCTX-M-1 group, blaCTX-M-9 group and blaKPC genes with rare occurrence. Human faecal pollution from municipal wastewater discharges was the dominant factor shaping ARG patterns along the Danube River. Other significant correlations of specific ARGs were observed with discharge, certain metals and pesticides. In contrast, intI1 was not associated with wastewater but was already established in the water microbiome. Animal contamination was detected only sporadically and was correlated with ARGs only in the temporal sampling set. During temporal monitoring, an extraordinary hotspot was identified emphasizing the variability within natural waters. This study provides the first comprehensive baseline concentrations of ARGs in the Danube River and lays the foundation for monitoring future trends and evaluating potential reduction measures. The applided holistic approach proved to be a valuable methodological contribution towards a better understanding of the environmental occurrence of AMR.
Collapse
Affiliation(s)
- Iris Schachner-Groehs
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria
| | - Michael Koller
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Melanie Leopold
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria
| | - Claudia Kolm
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Gumpendorfer Straße 1A/166, Vienna 1060, Austria
| | - Rita B Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Gumpendorfer Straße 1A/166, Vienna 1060, Austria
| | - Stefan Jakwerth
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria
| | - Stoimir Kolarević
- Department of Hydroecology and Water Protection, Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia
| | - Margareta Kračun-Kolarević
- Department of Hydroecology and Water Protection, Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia
| | - Wolfgang Kandler
- Department of Agrotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, Tulln an der Donau 3430, Austria
| | - Michael Sulyok
- Department of Agrotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, Tulln an der Donau 3430, Austria
| | - Julia Vierheilig
- Institute of Water Quality and Resource Management, Technische Universität Wien, Karlsplatz 13/226-1, Wien 1040, Austria
| | - Marwene Toumi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., H-1117, Budapest, Hungary
| | - Rózsa Farkas
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., H-1117, Budapest, Hungary
| | - Erika Toth
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., H-1117, Budapest, Hungary
| | - Clemens Kittinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Gernot Zarfel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Andreas H Farnleitner
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Gumpendorfer Straße 1A/166, Vienna 1060, Austria.
| | - A K T Kirschner
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria; Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria.
| |
Collapse
|
12
|
Bourdonnais E, Le Bris C, Brauge T, Midelet G. Tracking antimicrobial resistance indicator genes in wild flatfish from the English Channel and the North Sea area: A one health concern. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123274. [PMID: 38160773 DOI: 10.1016/j.envpol.2023.123274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Antimicrobial resistance (AMR) is a burgeoning environmental concern demanding a comprehensive One Health investigation to thwart its transmission to animals and humans, ensuring food safety. Seafood, housing bacterial AMR, poses a direct threat to consumer health, amplifying the risk of hospitalization, invasive infections, and death due to compromised antimicrobial treatments. The associated antimicrobial resistance genes (ARGs) in diverse marine species can amass and transmit through various pathways, including surface contact, respiration, and feeding within food webs. Our research, focused on the English Channel and North Sea, pivotal economic areas, specifically explores the occurrence of four proposed AMR indicator genes (tet(A), blaTEM, sul1, and intI1) in a benthic food web. Analyzing 350 flatfish samples' skin, gills, and gut, our quantitative PCR (qPCR) results disclosed an overall prevalence of 71.4% for AMR indicator genes. Notably, sul1 and intI1 genes exhibited higher detection in fish skin, reaching a prevalence of 47.5%, compared to gills and gut samples. Proximity to major European ports (Le Havre, Dunkirk, Rotterdam) correlated with increased AMR gene frequencies in fish, suggesting these ports' potential role in AMR spread in marine environments. We observed a broad dispersion of indicator genes in the English Channel and the North Sea, influenced by sea currents, maritime traffic, and flatfish movements. In conclusion, sul1 and intI1 genes emerge as robust indicators of AMR contamination in the marine environment, evident in seawater and species representing a benthic food web. Further studies are imperative to delineate marine species' role in accumulating and transmitting AMR to humans via seafood consumption. This research sheds light on the urgent need for a concerted effort in comprehending and mitigating AMR risks in marine ecosystems within the context of One Health.
Collapse
Affiliation(s)
- Erwan Bourdonnais
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France; Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Thomas Brauge
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France.
| | - Graziella Midelet
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| |
Collapse
|
13
|
Bourdonnais E, Le Bris C, Brauge T, Midelet G. Monitoring indicator genes to assess antimicrobial resistance contamination in phytoplankton and zooplankton communities from the English Channel and the North Sea. Front Microbiol 2024; 15:1313056. [PMID: 38389523 PMCID: PMC10882542 DOI: 10.3389/fmicb.2024.1313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Phytoplankton and zooplankton play a crucial role in marine ecosystems as the basis of the food webs but are also vulnerable to environmental pollutants. Among emerging pollutants, antimicrobial resistance (AMR) is a major public health problem encountered in all environmental compartments. However, the role of planktonic communities in its dissemination within the marine environment remains largely unexplored. In this study, we monitored four genes proposed as AMR indicators (tetA, blaTEM, sul1, and intI1) in phytoplankton and zooplankton samples collected in the English Channel and the North Sea. The indicator gene abundance was mapped to identify the potential sources of contamination. Correlation was assessed with environmental parameters to explore the potential factors influencing the abundance of AMR in the plankton samples. The prevalence in phytoplankton and zooplankton of sul1 and intI1, the most quantified indicator genes, ranged from 63 to 88%. A higher level of phytoplankton and zooplankton carrying these genes was observed near the French and English coasts in areas subjected to anthropogenic discharges from the lands but also far from the coasts. Correlation analysis demonstrated that water temperature, pH, dissolved oxygen and turbidity were correlated to the abundance of indicator genes associated with phytoplankton and zooplankton samples. In conclusion, the sul1 and intI1 genes would be suitable indicators for monitoring AMR contamination of the marine environment, either in phytoplankton and zooplankton communities or in seawater. This study fills a part of the gaps in knowledge about the AMR transport by marine phytoplankton and zooplankton, which may play a role in the transmission of resistance to humans through the marine food webs.
Collapse
Affiliation(s)
- Erwan Bourdonnais
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Thomas Brauge
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| |
Collapse
|
14
|
Okonkwo V, Cholet F, Ijaz UZ, Koottatep T, Pussayanavin T, Polpraset C, Sloan WT, Connelly S, Smith CJ. intI1 gene abundance from septic tanks in Thailand using validated intI1 primers. Appl Environ Microbiol 2023; 89:e0107123. [PMID: 37874304 PMCID: PMC10686061 DOI: 10.1128/aem.01071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/22/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Antimicrobial resistance is a global crisis, and wastewater treatment, including septic tanks, remains an important source of antimicrobial resistance (AMR) genes. The role of septic tanks in disseminating class 1 integron, and by extension AMR genes, in Thailand, where antibiotic use is unregulated remains understudied. We aimed to monitor gene abundance as a proxy to infer potential AMR from septic tanks in Thailand. We evaluated published intI1 primers due to the lack of consensus on optimal Q-PCR primers and the absence of standardization. Our findings confirmed septic tanks are a source of class 1 integron to the environment. We highlighted the significance of intI1 primer choice, in the context of interpretation of risk associated with AMR spread from septic tanks. We recommend the validated set (F3-R3) for optimal intI1 quantification toward the goal of achieving standardization across studies.
Collapse
Affiliation(s)
- Valentine Okonkwo
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Fabien Cholet
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Umer Z. Ijaz
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Thammarat Koottatep
- School of Environment, Resources and Development, Asian Institute of Technology, Khlong Nueng, Thailand
| | | | - Chongrak Polpraset
- Thammasat School of Engineering, Thammasat University, Bangkok, Thailand
| | - William T. Sloan
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Stephanie Connelly
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Cindy J. Smith
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
Gionchetta G, Snead D, Semerad S, Beck K, Pruden A, Bürgmann H. Dynamics of antibiotic resistance markers and Escherichia coli invasion in riverine heterotrophic biofilms facing increasing heat and flow stagnation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164658. [PMID: 37321511 DOI: 10.1016/j.scitotenv.2023.164658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
As motivation to address environmental dissemination of antimicrobial resistance (AMR) is mounting, there is a need to characterize mechanisms by which AMR can propagate under environmental conditions. Here we investigated the effect of temperature and stagnation on the persistence of wastewater-associated antibiotic resistance markers in riverine biofilms and the invasion success of genetically-tagged Escherichia coli. Biofilms grown on glass slides incubated in-situ downstream of a wastewater treatment plant effluent discharge point were transferred to laboratory-scale flumes fed with filtered river water under potentially stressful temperature and flow conditions: recirculation flow at 20 °C, stagnation at 20 °C, and stagnation at 30 °C. After 14 days, quantitative PCR and amplicon sequencing were used to quantify bacteria, biofilms diversity, resistance markers (sul1, sul2, ermB, tetW, tetM, tetB, blaCTX-M-1, intI1) and E. coli. Resistance markers significantly decreased over time regardless of the treatment applied. Although invading E. coli were initially able to colonize the biofilms, its abundance subsequently declined. Stagnation was associated with a shift in biofilm taxonomic composition, but there was no apparent effect of flow conditions or the simulated river-pool warming (30 °C) on AMR persistence or invasion success of E. coli. Results however indicated that antibiotic resistance markers in the riverine biofilms decreased under the experimental conditions in the absence of exposure to external inputs of antibiotics and AMR.
Collapse
Affiliation(s)
- G Gionchetta
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - D Snead
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA; Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - S Semerad
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - K Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - A Pruden
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - H Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland.
| |
Collapse
|
16
|
Liguori K, Calarco J, Maldonado Rivera G, Kurowski A, Keenum I, Davis BC, Harwood VJ, Pruden A. Comparison of Cefotaxime-Resistant Escherichia coli and sul1 and intI1 by qPCR for Monitoring of Antibiotic Resistance of Wastewater, Surface Water, and Recycled Water. Antibiotics (Basel) 2023; 12:1252. [PMID: 37627672 PMCID: PMC10451376 DOI: 10.3390/antibiotics12081252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Awareness of the need for surveillance of antimicrobial resistance (AMR) in water environments is growing, but there is uncertainty regarding appropriate monitoring targets. Adapting culture-based fecal indicator monitoring to include antibiotics in the media provides a potentially low-tech and accessible option, while quantitative polymerase chain reaction (qPCR) targeting key genes of interest provides a broad, quantitative measure across the microbial community. The purpose of this study was to compare findings obtained from the culture of cefotaxime-resistant (cefR) Escherichia coli with two qPCR methods for quantification of antibiotic resistance genes across wastewater, recycled water, and surface waters. The culture method was a modification of US EPA Method 1603 for E. coli, in which cefotaxime is included in the medium to capture cefR strains, while qPCR methods quantified sul1 and intI1. A common standard operating procedure for each target was applied to samples collected by six water utilities across the United States and processed by two laboratories. The methods performed consistently, and all three measures reflected the same overarching trends across water types. The qPCR detection of sul1 yielded the widest dynamic range of measurement as an AMR indicator (7-log versus 3.5-log for cefR E. coli), while intI1 was the most frequently detected target (99% versus 96.5% and 50.8% for sul1 and cefR E. coli, respectively). All methods produced comparable measurements between labs (p < 0.05, Kruskal-Wallis). Further study is needed to consider how relevant each measure is to capturing hot spots for the evolution and dissemination of AMR in the environment and as indicators of AMR-associated human health risk.
Collapse
Affiliation(s)
- Krista Liguori
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA (G.M.R.); (B.C.D.)
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA (V.J.H.)
| | - Gabriel Maldonado Rivera
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA (G.M.R.); (B.C.D.)
| | - Anna Kurowski
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA (G.M.R.); (B.C.D.)
| | - Ishi Keenum
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA (G.M.R.); (B.C.D.)
| | - Benjamin C. Davis
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA (G.M.R.); (B.C.D.)
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA (V.J.H.)
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA (G.M.R.); (B.C.D.)
| |
Collapse
|
17
|
Patry A, Bothorel P, Labrunie A, Renesme L, Lehours P, Benard M, Dubois D, Ponthier L, Meyer S, Norbert K, Villeneuve L, Jouvencel P, Leysenne D, Chainier D, Luce S, Grélaud C, Ploy MC, Bedu A, Garnier F. Dynamics of the digestive acquisition of bacterial carriage and integron presence by French preterm newborns according to maternal colonization: The DAIR3N multicentric study. Front Microbiol 2023; 14:1148319. [PMID: 36998410 PMCID: PMC10043237 DOI: 10.3389/fmicb.2023.1148319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
ObjectivesThe study aimed to describe the dynamics and risk factors of Gram-negative bacteria (GNB) acquisition in preterm infants.MethodsThis prospective multicenter French study included mothers hospitalized for preterm delivery and their newborns, followed until hospital discharge. Maternal feces and vaginal fluids at delivery, and neonatal feces from birth to discharge were tested for cultivable GNB, potential acquired resistance, and integrons. The primary outcome was the acquisition of GNB and integrons in neonatal feces, and their dynamics, evaluated by survival analysis using the actuarial method. Risk factors were analyzed using Cox models.ResultsTwo hundred thirty-eight evaluable preterm dyads were included by five different centers over 16 months. GNB were isolated in 32.6% of vaginal samples, with 15.4% of strains producing extended-spectrum beta-lactamase (ESBL) or hyperproducing cephalosporinase (HCase), and in 96.2% of maternal feces, with 7.8% ESBL-GNB or HCase-GNB. Integrons were detected in 40.2% of feces and 10.6% of GNB strains. The mean (SD) length of stay of newborns was 39.5 (15.9) days; 4 died in the hospital. At least one infection episode occurred in 36.1% of newborns. The acquisition of GNB and integrons was progressive from birth to discharge. At discharge, half of newborns had ESBL-GNB or HCase-GNB, independently favored by a premature rupture of membranes (Hazard Ratio (HR), 3.41, 95% confidence interval (CI), 1.71; 6.81), and 25.6% had integrons (protective factor: multiple gestation, HR, 0.367, 95% CI, 0.195; 0.693).ConclusionIn preterm newborns, the acquisitions of GNB, including resistant ones, and integrons are progressive from birth to discharge. A premature rupture of membranes favored the colonization by ESBL-GNB or Hcase-GNB.
Collapse
Affiliation(s)
- Alice Patry
- INSERM UMR, Limoges University, Limoges University Hospital, Limoges, France
| | - Philippe Bothorel
- Department of Pediatrics, Mother-Child Hospital, Limoges University Hospital, Limoges, France
| | - Anaïs Labrunie
- Epidemiology, Biostatistics, and Research Methodology Centre (CEBIMER), Limoges University Hospital, Limoges, France
| | - Laurent Renesme
- Department of Pediatrics, Neonatology and Maternity Unit, Pellegrin University Hospital, Bordeaux, France
| | - Philippe Lehours
- Bacteriology Laboratory, Pellegrin University Hospital, Bordeaux, France
| | - Melinda Benard
- Department of Pediatrics and Neonatology, CHU Toulouse, Toulouse, France
| | - Damien Dubois
- Bacteriology and Hygiene Department, Federative Institute of Biology, CHU Toulouse University Hospital, Toulouse, France
| | - Laure Ponthier
- Department of Pediatrics, Mother-Child Hospital, Limoges University Hospital, Limoges, France
| | - Sylvain Meyer
- INSERM UMR, Limoges University, Limoges University Hospital, Limoges, France
| | | | | | - Philippe Jouvencel
- Department of Pediatrics and Neonatology, « Côte Basque » Hospital, Bayonne, France
| | - David Leysenne
- Microbiology Laboratory, « Côte Basque » Hospital, Bayonne, France
| | - Delphine Chainier
- INSERM UMR, Limoges University, Limoges University Hospital, Limoges, France
| | - Sandrine Luce
- Epidemiology, Biostatistics, and Research Methodology Centre (CEBIMER), Limoges University Hospital, Limoges, France
| | - Carole Grélaud
- INSERM UMR, Limoges University, Limoges University Hospital, Limoges, France
| | - Marie-Cecile Ploy
- INSERM UMR, Limoges University, Limoges University Hospital, Limoges, France
| | - Antoine Bedu
- Department of Pediatrics, Mother-Child Hospital, Limoges University Hospital, Limoges, France
| | - Fabien Garnier
- INSERM UMR, Limoges University, Limoges University Hospital, Limoges, France
- *Correspondence: Fabien Garnier,
| |
Collapse
|
18
|
Matviichuk O, Mondamert L, Geffroy C, Dagot C, Labanowski J. Life in an unsuspected antibiotics world: River biofilms. WATER RESEARCH 2023; 231:119611. [PMID: 36716569 DOI: 10.1016/j.watres.2023.119611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Waterborne bacteria that naturally live in biofilms are continuously exposed to pharmaceutical residues, regularly released into the freshwater environment. At the source level, the discharge of antibiotics into rivers has already been repeatedly linked to the development of antimicrobial resistance. But what about biofilms away from the discharge point? Two rivers, with sites subject to dispersed contamination of medium intensity, were studied as typical representatives of high- and middle-income countries. The biofilms developed on rocks indigenous to rivers are perfectly representative of environmental exposure. Our results show that away from the hotspots, the amount of antibiotics in the biofilms studied favours the maintenance and enrichment of existing resistant strains as well as the selection of new resistant mutants, and these favourable conditions remain over a period of time. Thus, in this type of river, the environmental risk of selection pressure is not only present downstream of urbanized areas but is also possible upstream and far downstream of wastewater treatment plant discharges. Despite this, correlation analysis found no strong positive correlation between antibiotic concentrations and the abundance of measured integrons and their corresponding resistance genes. Nevertheless, this work highlights the need to consider the risks of antibiotics beyond hotspots as well.
Collapse
Affiliation(s)
- Olha Matviichuk
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France; University of Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Leslie Mondamert
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | - Claude Geffroy
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | - Christophe Dagot
- University of Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France.
| |
Collapse
|
19
|
Burch TR, Stokdyk JP, Firnstahl AD, Kieke BA, Cook RM, Opelt SA, Spencer SK, Durso LM, Borchardt MA. Microbial source tracking and land use associations for antibiotic resistance genes in private wells influenced by human and livestock fecal sources. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:270-286. [PMID: 36479898 DOI: 10.1002/jeq2.20443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Antimicrobial resistance is a growing public health problem that requires an integrated approach among human, agricultural, and environmental sectors. However, few studies address all three components simultaneously. We investigated the occurrence of five antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in private wells drawing water from a vulnerable aquifer influenced by residential septic systems and land-applied dairy manure. Samples (n = 138) were collected across four seasons from a randomized sample of private wells in Kewaunee County, Wisconsin. Measurements of ARGs and intI1 were related to microbial source tracking (MST) markers specific to human and bovine feces; they were also related to 54 risk factors for contamination representing land use, rainfall, hydrogeology, and well construction. ARGs and intI1 occurred in 5%-40% of samples depending on target. Detection frequencies for ARGs and intI1 were lowest in the absence of human and bovine MST markers (1%-30%), highest when co-occurring with human and bovine markers together (11%-78%), and intermediate when co-occurring with just one type of MST marker (4%-46%). Gene targets were associated with septic system density more often than agricultural land, potentially because of the variable presence of manure on the landscape. Determining ARG prevalence in a rural setting with mixed land use allowed an assessment of the relative contribution of human and bovine fecal sources. Because fecal sources co-occurred with ARGs at similar rates, interventions intended to reduce ARG occurrence may be most effective if both sources are considered.
Collapse
Affiliation(s)
- Tucker R Burch
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, USA
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Joel P Stokdyk
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
- U.S. Geological Survey, Upper Midwest Water Science Center, Marshfield, WI, USA
| | - Aaron D Firnstahl
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
- U.S. Geological Survey, Upper Midwest Water Science Center, Marshfield, WI, USA
| | - Burney A Kieke
- Marshfield Clinic Research Institute, Center for Clinical Epidemiology and Population Health, Marshfield, WI, USA
| | - Rachel M Cook
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, USA
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Sarah A Opelt
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, USA
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Susan K Spencer
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, USA
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Lisa M Durso
- U.S. Department of Agriculture-Agricultural Research Service, Agroecosystem Management Research Unit, Lincoln, NE, USA
| | - Mark A Borchardt
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, USA
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| |
Collapse
|
20
|
Fate of Horizontal-Gene-Transfer Markers and Beta-Lactamase Genes during Thermophilic Composting of Human Excreta. Microorganisms 2023; 11:microorganisms11020308. [PMID: 36838273 PMCID: PMC9958827 DOI: 10.3390/microorganisms11020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Thermophilic composting is a suitable treatment for the recycling of organic wastes for agriculture. However, using human excreta as feedstock for composting raises concerns about antibiotic resistances. We analyzed samples from the start and end of a thermophilic composting trial of human excreta, together with green cuttings and straw, with and without biochar. Beta-lactamase genes blaCTX-M, blaIMP, and blaTEM conferring resistance to broad-spectrum beta-lactam antibiotics, as well as horizontal gene transfer marker genes, intI1 and korB, were quantified using qPCR. We found low concentrations of the beta-lactamase genes in all samples, with non-significant mean decreases in blaCTX-M and blaTEM copy numbers and a mean increase in blaIMP copy numbers. The decrease in both intI1 and korB genes from start to end of composting indicated that thermophilic composting can decrease the horizontal spread of resistance genes. Thus, thermophilic composting can be a suitable treatment for the recycling of human excreta.
Collapse
|
21
|
Zhang M, Ma Y, Xu H, Wang M, Li L. Surfaces of gymnastic equipment as reservoirs of microbial pathogens with potential for transmission of bacterial infection and antimicrobial resistance. Front Microbiol 2023; 14:1182594. [PMID: 37152727 PMCID: PMC10157288 DOI: 10.3389/fmicb.2023.1182594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Gymnastic equipment surfaces are shared by many people, and could mediate the transfer of bacterial pathogens. To better understand this detrimental potential, investigations on the reservoirs of bacterial pathogens and antimicrobial resistance on the surfaces of gymnastic equipment were performed by analyzing the bacterial community structures, prevalence of viable bacteria, and presence of antimicrobial resistance on both indoor and outdoor gymnastic facilities. The results of high-throughput 16S rDNA amplicon sequencing showed that Gram-positive bacteria on the surfaces of indoor gymnastic equipment significantly enriched, including the opportunistic pathogen Staphylococcus strains, while Enterobacteriaceae significantly enriched on surfaces of outdoor gymnastic equipment. The analysis of α-diversities showed a higher richness and diversity for bacterial communities on the surfaces of gymnastic equipment than the environment. Analysis of β-diversities showed that the bacterial communities on the surfaces of gymnastic equipment differ significantly from environmental bacterial communities, while the bacterial communities on indoor and outdoor equipment are also significantly different. Thirty-four bacterial isolates were obtained from the surfaces of gymnastic equipment, including three multidrug Staphylococcus and one multidrug resistant Pantoea. In particular, Staphylococcus hemolyticus 5-6, isolated from the dumbbell surface, is a multidrug resistant, hemolytic, high- risk pathogen. The results of quantitative PCR targeting antibiotic resistance related genes (intI1, sul1 and bla TEM) showed that the abundances of sul1 and bla TEM genes on the surfaces of gymnastic equipment are higher than the environment, while the abundances of sul1 gene on indoor equipment are higher than outdoor equipment. These results lead to the conclusion that the surfaces of gymnastic equipment are potential dissemination pathways for highly dangerous pathogens as well as antimicrobial resistance, and the risks of indoor equipment are higher than outdoor equipment.
Collapse
|
22
|
Corno G, Ghaly T, Sabatino R, Eckert EM, Galafassi S, Gillings MR, Di Cesare A. Class 1 integron and related antimicrobial resistance gene dynamics along a complex freshwater system affected by different anthropogenic pressures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120601. [PMID: 36351483 DOI: 10.1016/j.envpol.2022.120601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The risk for human health posed by polluted aquatic environments, and especially those carrying antibiotic resistance genes (ARGs) of clinical interest, is still debated. This is because of our limited knowledge of the dynamics of antimicrobial resistance in the environment, the selection mechanisms underlying the spread of ARGs, and the ecological factors potentially favoring their return to humans. The Class 1 integron is one of the most effective platforms for the dissemination of ARGs. In this study we investigated a freshwater system consisting of a lake-river-lake continuum, determining the abundance of class 1 integrons and their associated ARGs by a modulated metagenomic approach. Bacterial abundance and community composition were used to identify the potential carriers of class 1 integrons and their associated ARGs over a period of six months. Class 1 integrons and their ARG cargoes were significantly more abundant in riverine sampling sites receiving treated wastewater. Further, class 1 integrons carried ARGs ranked at the highest risk for human health (e.g., catB genes), in particular, genes encoding resistance to aminoglycosides. Genera of potential pathogens, such as Pseudomonas and Escherichia-Shigella, were correlated with class 1 integrons. The lake-river-lake system demonstrated a clear relationship between the integrase gene of class 1 integrons (intI1) and anthropogenic impact, but also a strong environmental filtering that favored the elimination of intI1 once the human derived stressors were reduced. Overall, the results of this study underline the role class 1 integrons as proxy of anthropogenic pollution and suggest this genetic platform as an important driver of aminoglycoside resistance genes, including high risk ARGs, of potential concern for human health.
Collapse
Affiliation(s)
- Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy.
| | - Timothy Ghaly
- ARC Centre of Excellence in Synthetic Biology and Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Ester M Eckert
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Silvia Galafassi
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Michael R Gillings
- ARC Centre of Excellence in Synthetic Biology and Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| |
Collapse
|
23
|
Major N, Jechalke S, Nesme J, Goreta Ban S, Černe M, Sørensen SJ, Ban D, Grosch R, Schikora A, Schierstaedt J. Influence of sewage sludge stabilization method on microbial community and the abundance of antibiotic resistance genes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:126-135. [PMID: 36242814 DOI: 10.1016/j.wasman.2022.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Municipal sewage sludge (MSS) and other biosolids are of high interest for agriculture. These nutrient-rich organic materials can potentially serve as organic fertilizers. Besides an increase of organic matter in soil, other positive effects were shown after their application. Especially the positive influence on circular economy increased the attention paid to management of MSS in recent years. Unfortunately, the use of sewage sludge has some drawbacks. Biosolids are frequently polluted with heavy metals, xenobiotic organic compounds and industrial chemicals, which may be hazardous for the environment and humans. Here, we investigated the influence of stabilization method and the size of wastewater treatment plant on the structure of microbial communities as well as the abundance of antibiotic resistance genes (ARG) and mobile genetic elements (MGE). All tested ARG and MGE were detectable in almost all of the samples. Interestingly, the presence of MGE as well as particular heavy metals correlated positively with the presence of several ARG. We conclude that the distribution of ARG and MGE in biosolids originated from municipal wastewater treatment plants, cannot be explained by the size of the facility or the applied stabilization method. Moreover, we postulate that the presence of pollutants and long-term impacts should be assessed prior to a possible use of sewage sludge as fertilizer.
Collapse
Affiliation(s)
- Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany.
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
24
|
Nguyen KH, Smith S, Roundtree A, Feistel DJ, Kirby AE, Levy K, Mattioli MC. Fecal indicators and antibiotic resistance genes exhibit diurnal trends in the Chattahoochee River: Implications for water quality monitoring. Front Microbiol 2022; 13:1029176. [PMID: 36439800 PMCID: PMC9684717 DOI: 10.3389/fmicb.2022.1029176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Water bodies that serve as sources of drinking or recreational water are routinely monitored for fecal indicator bacteria (FIB) by state and local agencies. Exceedances of monitoring thresholds set by those agencies signal likely elevated human health risk from exposure, but FIB give little information about the potential source of contamination. To improve our understanding of how within-day variation could impact monitoring data interpretation, we conducted a study at two sites along the Chattahoochee River that varied in their recreational usage and adjacent land-use (natural versus urban), collecting samples every 30 min over one 24-h period. We assayed for three types of microbial indicators: FIB (total coliforms and Escherichia coli); human fecal-associated microbial source tracking (MST) markers (crAssphage and HF183/BacR287); and a suite of clinically relevant antibiotic resistance genes (ARGs; blaCTX-M, blaCMY, MCR, KPC, VIM, NDM) and a gene associated with antibiotic resistance (intl1). Mean levels of FIB and clinically relevant ARGs (blaCMY and KPC) were similar across sites, while MST markers and intI1 occurred at higher mean levels at the natural site. The human-associated MST markers positively correlated with antibiotic resistant-associated genes at both sites, but no consistent associations were detected between culturable FIB and any molecular markers. For all microbial indicators, generalized additive mixed models were used to examine diurnal variability and whether this variability was associated with environmental factors (water temperature, turbidity, pH, and sunlight). We found that FIB peaked during morning and early afternoon hours and were not associated with environmental factors. With the exception of HF183/BacR287 at the urban site, molecular MST markers and intI1 exhibited diurnal variability, and water temperature, pH, and turbidity were significantly associated with this variability. For blaCMY and KPC, diurnal variability was present but was not correlated with environmental factors. These results suggest that differences in land use (natural or urban) both adjacent and upstream may impact overall levels of microbial contamination. Monitoring agencies should consider matching sample collection times with peak levels of target microbial indicators, which would be in the morning or early afternoon for the fecal associated indicators. Measuring multiple microbial indicators can lead to clearer interpretations of human health risk associated with exposure to contaminated water.
Collapse
Affiliation(s)
| | - Shanon Smith
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Alexis Roundtree
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Dorian J. Feistel
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Amy E. Kirby
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Karen Levy
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Mia Catharine Mattioli
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- *Correspondence: Mia Catharine Mattioli,
| |
Collapse
|
25
|
Zhu W, Wang T, Zhu Y, Xiao L, Liu W, Wei Q. Two-dimensional PCR for detecting class 1, 2 and 3 integrons. Heliyon 2022; 8:e11844. [DOI: 10.1016/j.heliyon.2022.e11844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
|
26
|
Keely SP, Brinkman NE, Wheaton EA, Jahne MA, Siefring SD, Varma M, Hill RA, Leibowitz SG, Martin RW, Garland JL, Haugland RA. Geospatial Patterns of Antimicrobial Resistance Genes in the US EPA National Rivers and Streams Assessment Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14960-14971. [PMID: 35737903 PMCID: PMC9632466 DOI: 10.1021/acs.est.2c00813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antimicrobial resistance (AR) is a serious global problem due to the overuse of antimicrobials in human, animal, and agriculture sectors. There is intense research to control the dissemination of AR, but little is known regarding the environmental drivers influencing its spread. Although AR genes (ARGs) are detected in many different environments, the risk associated with the spread of these genes to microbial pathogens is unknown. Recreational microbial exposure risks are likely to be greater in water bodies receiving discharge from human and animal waste in comparison to less disturbed aquatic environments. Given this scenario, research practitioners are encouraged to consider an ecological context to assess the effect of environmental ARGs on public health. Here, we use a stratified, probabilistic survey of nearly 2000 sites to determine national patterns of the anthropogenic indicator class I integron Integrase gene (intI1) and several ARGs in 1.2 million kilometers of United States (US) rivers and streams. Gene concentrations were greater in eastern than in western regions and in rivers and streams in poor condition. These first of their kind findings on the national distribution of intI1 and ARGs provide new information to aid risk assessment and implement mitigation strategies to protect public health.
Collapse
Affiliation(s)
- Scott P. Keely
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Nichole E. Brinkman
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Emily A. Wheaton
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Michael A. Jahne
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Shawn D. Siefring
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Manju Varma
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Ryan A. Hill
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Scott G. Leibowitz
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Roy W. Martin
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jay L. Garland
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Richard A. Haugland
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
27
|
Di Pippo F, Crognale S, Levantesi C, Vitanza L, Sighicelli M, Pietrelli L, Di Vito S, Amalfitano S, Rossetti S. Plastisphere in lake waters: Microbial diversity, biofilm structure, and potential implications for freshwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119876. [PMID: 35934149 DOI: 10.1016/j.envpol.2022.119876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Once dispersed in water, microplastic (MP) particles are rapidly colonised by aquatic microbes, which can adhere and grow onto solid surfaces in the form of biofilms. This study provides new insights on microbial diversity and biofilm structure of plastisphere in lake waters. By combining Fourier Confocal Laser Scanning Microscopy (CLSM), Transform Infrared Spectroscopy (FT-IR) and high-throughput DNA sequencing, we investigated the microbial colonization patterns on floating MPs and, for the first time, the occurrence of eukaryotic core members and their possible relations with biofilm-forming bacterial taxa within the plastisphere of four different lakes. Through PCR-based methods (qPCR, LAMP-PCR), we also evaluated the role of lake plastisphere as long-term dispersal vectors of potentially harmful organisms (including pathogens) and antibiotic resistance genes (ARGs) in freshwater ecosystems. Consistent variation patterns of the microbial community composition occurred between water and among the plastisphere samples of the different lakes. The eukaryotic core microbiome was mainly composed by typical freshwater biofilm colonizers, such as diatoms (Pennales, Bacillariophyceaea) and green algae (Chlorophyceae), which interact with eukaryotic and prokaryotic microbes of different trophic levels. Results also showed that MPs are suitable vectors of biofilm-forming opportunistic pathogens and a hotspot for horizontal gene transfer, likely facilitating antibiotic resistance spread in the environments.
Collapse
Affiliation(s)
- Francesca Di Pippo
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy.
| | - Simona Crognale
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Caterina Levantesi
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Luca Vitanza
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Maria Sighicelli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) CR Casaccia, Rome, Italy
| | - Loris Pietrelli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Stefano Amalfitano
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Simona Rossetti
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| |
Collapse
|
28
|
Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA. Microorganisms 2022; 10:microorganisms10091804. [PMID: 36144405 PMCID: PMC9503305 DOI: 10.3390/microorganisms10091804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water environment. In this study, we used direct measurement of sewage-associated molecular markers, the class 1 integron gene, standard water quality parameters, and watershed characteristics to evaluate the sources and drivers of ARGs in an urban watershed impacted by a gradient of human activities. Quantitative polymerase chain reaction (qPCR) was used to quantify the abundance of the sewage-associated HF183, the E. coli fecal indicator, class 1 integron gene (int1), and the ARGs sulI, sulII, tetW, tetM, ampC, and blaSHV in stream water samples collected from the Proctor Creek watershed in Atlanta, Georgia. Our findings show that ARGs were widely distributed, with detection frequencies of 96% (sulI and sulII), 82% (tetW and tetM), and 49% (ampC and blaSHV). All the ARGs were positively and significantly correlated (r > 0.5) with the HF183 and E. coli markers. Non-linear machine learning models developed using generalized boosting show that more than 70% of the variation in ARG loads in the watershed could be explained by fecal source loading, with other factors such as class 1 integron, which is associated with acquired antibiotic resistance, and environmental factors contributing < 30% to ARG variation. These results suggest that input from fecal sources is a more critical driver of ARG dissemination than environmental stressors or horizontal gene transfer in aquatic environments highly impacted by anthropogenic pollution. Finally, our results provide local watershed managers and stakeholders with information to mitigate the burden of ARGs and fecal bacteria in urban streams.
Collapse
|
29
|
Ginn O, Lowry S, Brown J. A systematic review of enteric pathogens and antibiotic resistance genes in outdoor urban aerosols. ENVIRONMENTAL RESEARCH 2022; 212:113097. [PMID: 35339466 DOI: 10.1016/j.envres.2022.113097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Aerosol transport of enteric microbiota including fecal pathogens and antimicrobial resistance genes (ARGs) has been documented in a range of settings but remains poorly understood outside indoor environments. We conducted a systematic review of the peer-reviewed literature to summarize evidence on specific enteric microbiota including enteric pathogens and ARGs that have been measured in aerosol samples in urban settings where the risks of outdoor exposure and antibiotic resistance (AR) spread may be highest. Following PRISMA guidelines, we conducted a key word search for articles published within the years 1990-2020 using relevant data sources. Two authors independently conducted the keyword searches of databases and conducted primary and secondary screenings before merging results. To be included, studies contained extractable data on enteric microbes and AR in outdoor aerosols regardless of source confirmation and reported on qualitative, quantitative, or viability data on enteric microbes or AR. Qualitative analyses and metric summaries revealed that enteric microbes and AR have been consistently reported in outdoor aerosols, generally via relative abundance measures, though gaps remain preventing full understanding of the role of the aeromicrobiological pathway in the fate and transport of enteric associated outdoor aerosols. We identified remaining gaps in the evidence base including a need for broad characterization of enteric pathogens in bioaerosols beyond bacterial genera, a need for greater sampling in locations of high enteric disease risk, and a need for quantitative estimation of microbial and nucleic acid densities that may be applied to fate and transport models and in quantitative microbial risk assessment.
Collapse
Affiliation(s)
- Olivia Ginn
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Sarah Lowry
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Joe Brown
- Deparment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
30
|
Premke K, Wurzbacher C, Felsmann K, Fabian J, Taube R, Bodmer P, Attermeyer K, Nitzsche KN, Schroer S, Koschorreck M, Hübner E, Mahmoudinejad TH, Kyba CCM, Monaghan MT, Hölker F. Large-scale sampling of the freshwater microbiome suggests pollution-driven ecosystem changes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119627. [PMID: 35714791 DOI: 10.1016/j.envpol.2022.119627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Freshwater microbes play a crucial role in the global carbon cycle. Anthropogenic stressors that lead to changes in these microbial communities are likely to have profound consequences for freshwater ecosystems. Using field data from the coordinated sampling of 617 lakes, ponds, rivers, and streams by citizen scientists, we observed linkages between microbial community composition, light and chemical pollution, and greenhouse gas concentration. All sampled water bodies were net emitters of CO2, with higher concentrations in running waters, and increasing concentrations at higher latitudes. Light pollution occurred at 75% of sites, was higher in urban areas and along rivers, and had a measurable effect on the microbial alpha diversity. Genetic elements suggestive of chemical stress and antimicrobial resistances (IntI1, blaOX58) were found in 85% of sites, and were also more prevalent in urban streams and rivers. Light pollution and CO2 were significantly related to microbial community composition, with CO2 inversely related to microbial phototrophy. Results of synchronous nationwide sampling indicate that pollution-driven alterations to the freshwater microbiome lead to changes in CO2 production in natural waters and highlight the vulnerability of running waters to anthropogenic stressors.
Collapse
Affiliation(s)
- Katrin Premke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | - Katja Felsmann
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jenny Fabian
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Robert Taube
- City University of Applied Science, Bremen, Germany
| | | | - Katrin Attermeyer
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Kai Nils Nitzsche
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | | | - Eric Hübner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | | | - Christopher C M Kyba
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; GFZ German Research Centre for Geosciences, Helmholtz Centre, Potsdam, Germany
| | - Michael T Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institute für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institute für Biologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
31
|
Szopińska M, Potapowicz J, Jankowska K, Luczkiewicz A, Svahn O, Björklund E, Nannou C, Lambropoulou D, Polkowska Ż. Pharmaceuticals and other contaminants of emerging concern in Admiralty Bay as a result of untreated wastewater discharge: Status and possible environmental consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155400. [PMID: 35469867 DOI: 10.1016/j.scitotenv.2022.155400] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Considering how the impact of human activity in Antarctica is growing, the aim of this study was to conduct the first assessment of pharmaceuticals and personal care products (PPCPs), other emerging contaminants (ECs), and antibiotic resistance genes present in the western shore of the Admiralty Bay region of King George Island. In total, more than 170 substances were evaluated to assess the potential environmental risks they pose to the study area. The major evaluated source of pollutants in this study is discharged untreated wastewater. The highest PPCP concentrations in wastewater were found for naproxen (2653 ngL-1), diclofenac (747 ngL-1), ketoconazole (760 ngL-1), ibuprofen (477 ngL-1) and acetaminophen (332 ngL-1). Moreover, the concentrations of benzotriazole (6340 ngL-1) and caffeine (3310 ngL-1) were also high. The Risk Quotient values indicate that azole antifungals (ketoconazole), anti-inflammatories (diclofenac, ibuprofen) and stimulants (caffeine) are the main groups responsible for the highest toxic burden. In addition, antibiotic resistance genes integrons (int 1) and sulphonamide resistance genes (sul 1-2) were detected in wastewater and seawater. These results indicate that regular monitoring of PPCPs and other ECs is of great importance in this environment. Additionally, the following mitigation strategies are suggested: (1) to create a centralised record of the medications prescribed and consumed in situ (to improve knowledge of potential contaminants without analysis); (2) to use more environmentally friendly substitutes both for pharmaceuticals and personal care products when possible (limiting consumption at the source); and (3) to apply advanced systems for wastewater treatment before discharge to the recipient (end-of-pipe technologies as a final barrier).
Collapse
Affiliation(s)
- Małgorzata Szopińska
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Joanna Potapowicz
- Gdansk University of Technology, Faculty of Chemistry, Analytical Chemistry Department, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Katarzyna Jankowska
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Aneta Luczkiewicz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Ola Svahn
- Department of Environmental Science and Bioscience, Kristianstad University, Elmetorpsvägen 15, SE-291 88 Kristianstad, Sweden
| | - Erland Björklund
- Department of Environmental Science and Bioscience, Kristianstad University, Elmetorpsvägen 15, SE-291 88 Kristianstad, Sweden
| | - Christina Nannou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 10th km Thessaloniki-Thermi Rd, Thessaloniki GR 57001, Greece
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 10th km Thessaloniki-Thermi Rd, Thessaloniki GR 57001, Greece
| | - Żaneta Polkowska
- Gdansk University of Technology, Faculty of Chemistry, Analytical Chemistry Department, 11/12 Narutowicza St., Gdansk 80-233, Poland
| |
Collapse
|
32
|
Liguori K, Keenum I, Davis BC, Calarco J, Milligan E, Harwood VJ, Pruden A. Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9149-9160. [PMID: 35732277 DOI: 10.1080/10643389.2021.2024739] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antimicrobial resistance (AMR) is a grand societal challenge with important dimensions in the water environment that contribute to its evolution and spread. Environmental monitoring could provide vital information for mitigating the spread of AMR; this includes assessing antibiotic resistance genes (ARGs) circulating among human populations, identifying key hotspots for evolution and dissemination of resistance, informing epidemiological and human health risk assessment models, and quantifying removal efficiencies by domestic wastewater infrastructure. However, standardized methods for monitoring AMR in the water environment will be vital to producing the comparable data sets needed to address such questions. Here we sought to establish scientific consensus on a framework for such standardization, evaluating the state of the science and practice of AMR monitoring of wastewater, recycled water, and surface water, through a literature review, survey, and workshop leveraging the expertise of academic, governmental, consulting, and water utility professionals.
Collapse
Affiliation(s)
- Krista Liguori
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ishi Keenum
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Benjamin C Davis
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Erin Milligan
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Amy Pruden
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
33
|
Bech TB, Badawi N, Rosenbom AE. Impact of surface-applied liquid manure on the drainage resistance profile of an agricultural tile-drained clay till field. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:656-669. [PMID: 35435263 DOI: 10.1002/jeq2.20354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) in aquatic environments is a concern due to human and animal health. Application of liquid manure on agricultural land is an important source of ARGs, where pathogens, antibiotic-resistant bacteria, and selective agents are released. To improve our understanding of ARGs spreading through soils, our main objective was to evaluate the effectiveness of the soil as a barrier protecting water resources. Over the course of a year, profiles and abundances of ARGs and mobile genetic elements in soil and drainage from an agricultural tile-drained clay till field were investigated upon liquid pig manure application by applying high-throughput quantitative polymerase chain reaction targeting 143 genes. The findings were as follows: (a) 97 genes were detected, where only the transposon gene tnpA-03/ IS6 was shared between the genes detected in drainage and those in acidified liquid manure or fertilized soils, indicating that liquid manure application had a limited impact on the drainage resistance profile; (b) intI1 gene was present in ∼60% of drainage samples in concentrations up to 1,634 intI1 ml-1 ; and (c) evapotranspiration from barley (Hordeum vulgare L., 'KWS Irina') and a low groundwater table appeared to reduce preferential transport to drainage during the first 3 mo of liquid manure application. Interestingly, the first preferential transport to drainage was observed immediately after the harvest of spring barley. Overall, during the monitoring year we found the soil to be an effective barrier against the spread of fecal ARGs even though the occurrence of the intI1 gene questions the barrier effect from previous years.
Collapse
Affiliation(s)
- Tina B Bech
- Dep. of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Nora Badawi
- Dep. of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Annette E Rosenbom
- Dep. of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
- Rambøll Danmark A/S, Hannemanns Allé 53, 2300 Copenhagen S, Copenhagen, Denmark
| |
Collapse
|
34
|
Nischwitz V, Stelmaszyk L, Piel S, Tiehm A. Cascade Filtration With PCR Detection and Field-Flow-Fractionation Online With ICP-MS for the Characterization of DNA Interaction With Suspended Particulate Matter. Front Chem 2022; 10:919442. [PMID: 35836676 PMCID: PMC9274009 DOI: 10.3389/fchem.2022.919442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
The variety of applied antibiotics in animal and human medicine results in the release, development, and spread of relevant numbers of antibiotic resistance genes (ARGs) in the environment. The majority of ARGs are present in intracellular forms (in bacteria). Neglected aspects are extracellular variants of ARGs (eARGs) and their fragments, which have been detected in surface-water samples and sediments. The stability of eARGs is expected to be low; however, binding to particulate matter is likely to improve their stability and also affect their transport and dissemination behavior. Few studies have investigated DNA particle interactions, mostly via indirect characterization of adduct formation in model systems but not in real environmental matrices. Therefore, our study aims at a novel approach for direct characterization of desoxyribonucleic acid (DNA) particle interactions using both cascade filtration and field-flow fractionation. Cascade filtration with quantitative polymerase chain reaction (qPCR) detection indicated retention of ARGs on filters with much larger pore sizes supporting the hypothesis of ARG-particle interactions. However, artifacts from membrane clogging or DNA–membrane interaction cannot be excluded. Consequently, asymmetric flow field-flow fractionation was investigated as an alternative separation technique with the advantage of particle separation in a thin channel, reducing the risk of artifacts. The key method parameters, membrane composition, molecular weight cut off, and carrier composition, were systematically investigated using a calf-thymus DNA-spiked surface-water sample as a model. The results clearly showed a shift in the elution time of clay particles suggesting the presence of DNA–clay adducts. Multi-element detection by inductively coupled plasma mass spectrometry (ICP-MS) enabled monitoring of clay via the Al, Fe, and Si signals and DNA via the P signal. Matching peak profiles for the new fraction in the fractograms of the ARG and DNA-spiked water sample support adduct formation. Further evidence was provided by a novel post-channel filtration approach for the separation of free DNA from DNA–clay adducts.
Collapse
Affiliation(s)
- Volker Nischwitz
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Forschungszentrum Juelich, Juelich, Germany
- *Correspondence: Volker Nischwitz,
| | - Lara Stelmaszyk
- Department Water Microbiology, TZW: DVGW Technologiezentrum Wasser, Karlsruhe, Germany
| | - Sandra Piel
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Forschungszentrum Juelich, Juelich, Germany
| | - Andreas Tiehm
- Department Water Microbiology, TZW: DVGW Technologiezentrum Wasser, Karlsruhe, Germany
| |
Collapse
|
35
|
Bourdonnais E, Colcanap D, Le Bris C, Brauge T, Midelet G. Occurrence of Indicator Genes of Antimicrobial Resistance Contamination in the English Channel and North Sea Sectors and Interactions With Environmental Variables. Front Microbiol 2022; 13:883081. [PMID: 35651498 PMCID: PMC9150721 DOI: 10.3389/fmicb.2022.883081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The marine environment is a potential natural reservoir of antimicrobial resistance genes (ARGs), subject to anthropogenic effluents (wastewater, industrial, and domestic), and known as a final receiving system. The aim of this study was to investigate the abundance and geographical distribution of the three blaTEM , sul1, and intI1 genes, proposed as indicators of contamination to assess the state of antimicrobial resistance in environmental settings, added to the tetA gene and the microbial population (tuf gene) in the English Channel and North Sea areas. Bacterial DNA was extracted from 36 seawater samples. The abundance of these genes was determined by quantitative PCR (qPCR) and was analyzed in association with environmental variables and geographical locations to determine potential correlations. The blaTEM and tetA genes were quantified in 0% and 2.8% of samples, respectively. The sul1 and intI1 genes were detected in 42% and 31% of samples, respectively, with an apparent co-occurrence in 19% of the samples confirmed by a correlation analysis. The absolute abundance of these genes was correlated with the microbial population, with results similar to the relative abundance. We showed that the sul1 and intI1 genes were positively correlated with dissolved oxygen and turbidity, while the microbial population was correlated with pH, temperature and salinity in addition to dissolved oxygen and turbidity. The three tetA, sul1, and intI1 genes were quantified in the same sample with high abundances, and this sample was collected in the West Netherlands coast (WN) area. For the first time, we have shown the impact of anthropogenic inputs (rivers, man-made offshore structures, and maritime activities) and environmental variables on the occurrence of three indicators of environmental contamination by antimicrobial resistance in the North Sea and English Channel seawaters.
Collapse
Affiliation(s)
- Erwan Bourdonnais
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France.,Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Darina Colcanap
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Thomas Brauge
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| |
Collapse
|
36
|
Burch TR, Firnstahl AD, Spencer SK, Larson RA, Borchardt MA. Fate and seasonality of antimicrobial resistance genes during full-scale anaerobic digestion of cattle manure across seven livestock production facilities. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:352-363. [PMID: 35388483 DOI: 10.1002/jeq2.20350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion has been suggested as an intervention to attenuate antibiotic resistance genes (ARGs) in livestock manure but supporting data have typically been collected at laboratory scale. Few studies have quantified ARG fate during full-scale digestion of livestock manure. We sampled untreated manure and digestate from seven full-scale mesophilic dairy manure digesters to assess ARG fate through each system. Samples were collected biweekly from December through August (i.e., winter, spring, and summer; n = 235 total) and analyzed by quantitative polymerase chain reaction for intI1, erm(B), sul1, tet(A), and tet(W). Concentrations of intI1, sul1, and tet(A) decreased during anaerobic digestion, but their removal was less extensive than expected based on previous laboratory studies. Removal for intI1 during anaerobic digestion equaled 0.28 ± 0.03 log10 units (mean ± SE), equivalent to only 48% removal and notable given intI1's role in horizontal gene transfer and multiple resistance. Furthermore, tet(W) concentrations were unchanged during anaerobic digestion (p > 0.05), and erm(B) concentrations increased by 0.52 ± 0.03 log10 units (3.3-fold), which is important given erythromycin's status as a critically important antibiotic for human medicine. Seasonal log10 changes in intI1, sul1, and tet(A) concentrations were ≥50% of corresponding log10 removals by anaerobic digestion, and variation in ARG and intI1 concentrations among digesters was quantitatively comparable to anaerobic digestion effects. These results suggest that mesophilic anaerobic digestion may be limited as an intervention for ARGs in livestock manure and emphasize the need for multiple farm-level interventions to attenuate antibiotic resistance.
Collapse
Affiliation(s)
- Tucker R Burch
- USDA-ARS, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Dr., Marshfield, WI, 54449, USA
- Laboratory for Infectious Disease and the Environment (an interagency laboratory supported by USDA-ARS and USGS), 2615 Yellowstone Dr., Marshfield, WI, 54449, USA
| | - Aaron D Firnstahl
- Laboratory for Infectious Disease and the Environment (an interagency laboratory supported by USDA-ARS and USGS), 2615 Yellowstone Dr., Marshfield, WI, 54449, USA
- USGS, Upper Midwest Water Science Center, 2615 Yellowstone Dr., Marshfield, WI, 54449, USA
| | - Susan K Spencer
- USDA-ARS, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Dr., Marshfield, WI, 54449, USA
- Laboratory for Infectious Disease and the Environment (an interagency laboratory supported by USDA-ARS and USGS), 2615 Yellowstone Dr., Marshfield, WI, 54449, USA
| | - Rebecca A Larson
- Dep. of Biological Systems Engineering, Univ. of Wisconsin-Madison, 232C Agricultural Engineering Building, 460 Henry Mall, Madison, WI, 53706, USA
| | - Mark A Borchardt
- USDA-ARS, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Dr., Marshfield, WI, 54449, USA
- Laboratory for Infectious Disease and the Environment (an interagency laboratory supported by USDA-ARS and USGS), 2615 Yellowstone Dr., Marshfield, WI, 54449, USA
| |
Collapse
|
37
|
Elias P, Barraud O, El Hamel C, Chainier D, Dallochio A, Grélaud C, Ploy MC, Guigonis V, Garnier F. Integron detection for prediction of trimethoprim/sulfamethoxazole susceptibility in children with Enterobacterales urinary tract infections. J Antimicrob Chemother 2022; 77:767-770. [DOI: 10.1093/jac/dkab431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Objectives
In some countries, third-generation cephalosporins (3GCs) serve as first-line therapy in children with urinary tract infections (UTIs). However, their use may contribute to the emergence of antibiotic resistance, notably among Gram-negative bacteria (GNB). Integrons are bacterial genetic elements involved in antibiotic resistance in GNB. Their absence is associated with >97% susceptibility to trimethoprim/sulfamethoxazole in adults infected with GNB. The objective of this study was to examine the value of integron detection directly from urine samples as a predictive marker of resistance to trimethoprim/sulfamethoxazole in children with GNB-related UTIs.
Methods
Children admitted to the Limoges University Hospital’s paediatric emergency department between February 2018 and March 2019 with a suspicion of UTI were eligible for the study. Only confirmed cases presenting a positive urine culture with unique GNB were retained for further study analyses. Integrons were detected directly from urines using real-time PCR.
Results
The data of 72 patients were analysed and integrons were detected in 15 urine samples. The negative predictive value of integron detection for resistance to trimethoprim/sulfamethoxazole was 100% as all of the GNB (all were Enterobacterales) isolated from patients with no integrons detected in their urine samples were susceptible to trimethoprim/sulfamethoxazole.
Conclusions
The detection of integrons in cases of paediatric patients with suspected UTI could help limit 3GC empirical use and empower an empirical first-line strategy better tailored to the needs of each patient.
Collapse
Affiliation(s)
- Peter Elias
- Service de Pédiatrie, Hôpital Mère Enfant, CHU Limoges, 8 Ave D Larrey, Limoges, France
| | - Olivier Barraud
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 Ave M Luther King, Limoges, France
| | - Chahrazed El Hamel
- Service de Pédiatrie, Hôpital Mère Enfant, CHU Limoges, 8 Ave D Larrey, Limoges, France
- CB-HME, Hôpital Mère Enfant, CHU Limoges, 8 Ave D Larrey, Limoges, France
| | - Delphine Chainier
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 Ave M Luther King, Limoges, France
| | - Aymeric Dallochio
- Service de Pédiatrie, Hôpital Mère Enfant, CHU Limoges, 8 Ave D Larrey, Limoges, France
| | - Carole Grélaud
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 Ave M Luther King, Limoges, France
| | - Marie-Cécile Ploy
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 Ave M Luther King, Limoges, France
| | - Vincent Guigonis
- Service de Pédiatrie, Hôpital Mère Enfant, CHU Limoges, 8 Ave D Larrey, Limoges, France
- CB-HME, Hôpital Mère Enfant, CHU Limoges, 8 Ave D Larrey, Limoges, France
| | - Fabien Garnier
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 Ave M Luther King, Limoges, France
| |
Collapse
|
38
|
González-Gaya B, García-Bueno N, Buelow E, Marin A, Rico A. Effects of aquaculture waste feeds and antibiotics on marine benthic ecosystems in the Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151190. [PMID: 34710419 DOI: 10.1016/j.scitotenv.2021.151190] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Intensive aquaculture is an important source of organic waste and antibiotics into the marine environment. Yet, their impacts on benthic marine ecosystems are poorly understood. Here, we investigated the ecological impacts of fish feed waste alone and in combination with three different antibiotics (i.e., oxytetracycline, florfenicol and flumequine) in benthic ecosystems of the Mediterranean Sea by performing a field experiment. We assessed the fate of the antibiotics in the sediment and their accumulation in wild fauna after two weeks of exposure. Moreover, we investigated the impact of the feed waste alone and in combination with the antibiotics on sediment physico-chemical properties, on benthic invertebrates, as well as on the microbiota and resistome of the sampled sediments. One week after the last antibiotic application, average oxytetracycline and flumequine concentrations in the sediment were <1% and 15% of the applied dose, respectively, while florfenicol was not detected. Flumequine concentrations in wild invertebrates reached 3 μg g-1, while concentrations of oxytetracycline were about an order of magnitude lower, and florfenicol was not detected. Feed waste, with and without antibiotics, increased the concentration of fine particulate matter, affected the pH and redox conditions, and significantly reduced the biodiversity and abundance of benthic invertebrates. Feed waste also had a significant influence on the structure of sediment microbial communities, while specific effects related to the different antibiotics ranged from insignificant to mild. The presence of antibiotics significantly influenced the normalized abundance of the measured antibiotic resistance genes. Florfenicol and oxytetracycline contributed to an increase of genes conferring resistance to macrolides, tetracyclines, aminoglycosides and chloramphenicol, while flumequine had a less clear impact on the sediment resistome. This study demonstrates that feed waste from aquaculture farms can rapidly alter the habitat and biodiversity of Mediterranean benthic ecosystems, while antibiotic residual concentrations can contribute to the enrichment of bacterial genes resistant to antibiotic classes that are of high relevance for human medicine.
Collapse
Affiliation(s)
- Belén González-Gaya
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain; Department of Analytical Chemistry, Science and Technology Faculty, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Basque Country, Spain
| | - Nuria García-Bueno
- Murcia University, Ecology and Hydrology department, Biology Faculty, University campus of Espinardo, 30100 Murcia, Spain
| | - Elena Buelow
- University Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000 Limoges, France; University Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Institut Jean Roget, Domaine de la Merci, BP170, 38042 Grenoble Cedex 9, Grenoble, France
| | - Arnaldo Marin
- Murcia University, Ecology and Hydrology department, Biology Faculty, University campus of Espinardo, 30100 Murcia, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
39
|
Jankowski P, Gan J, Le T, McKennitt M, Garcia A, Yanaç K, Yuan Q, Uyaguari-Diaz M. Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. ENVIRONMENTAL MICROBIOME 2022; 17:3. [PMID: 35033203 PMCID: PMC8760730 DOI: 10.1186/s40793-022-00398-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 104 gene copies/mL) followed by intI3 (4.97 × 103 gene copies/mL) while intI2 abundance remained low (6.4 × 101 gene copies/mL). CONCLUSIONS Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.
Collapse
Affiliation(s)
- Paul Jankowski
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jaydon Gan
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Tri Le
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Michaela McKennitt
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, MB, Canada
- Institute of the Environment, University of Ottawa, Ottawa, ON, Canada
| | - Audrey Garcia
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Miguel Uyaguari-Diaz
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
40
|
Cui Y, Gao J, Zhang D, Li D, Dai H, Wang Z, Zhao Y. Responses of performance, antibiotic resistance genes and bacterial communities of partial nitrification system to polyamide microplastics. BIORESOURCE TECHNOLOGY 2021; 341:125767. [PMID: 34419884 DOI: 10.1016/j.biortech.2021.125767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Polyamide (PA), a prevalent microplastics (MPs), is often collected from wastewater treatment plants. However, the responses of partial nitrification system to PA MPs are unclear. The short-term and long-term effect of PA MPs on the partial nitrification system was slight, but the ammonia oxidation rate decreased slowly with the increase of PA MPs concentration. Meantime, the PA MPs addition could decrease the microbial diversity, alter microbial community structure of the system and facilitate the propagation of antibiotic resistance genes (ARGs) including fabI, intI1 and Tn916/1545. Correlation analysis and network analysis indicated that Ferruginibacter, Hyphomicrobium, Terrimonas, Brevundimonas and Plasticicumulans in the system might be the dominant hosts of ARGs. In addition, oligotyping analysis indicated not all oligotypes of the relevant genus showed positive correlation with ARGs. In general, PA MPs had almost no effect on performance but altered community structure and increased ARGs spread risk of the partial nitrification system.
Collapse
Affiliation(s)
- Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
41
|
Chacón L, Arias-Andres M, Mena F, Rivera L, Hernández L, Achi R, Garcia F, Rojas-Jimenez K. Short-term exposure to benzalkonium chloride in bacteria from activated sludge alters the community diversity and the antibiotic resistance profile. JOURNAL OF WATER AND HEALTH 2021; 19:895-906. [PMID: 34874898 DOI: 10.2166/wh.2021.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The continuous introduction of cleaning products containing benzalkonium chloride (BAC) from household discharges can mold the microbial communities in wastewater treatment plants (WWTPs) in a way still poorly understood. In this study, we performed an in vitro exposure of activated sludge from a WWTP in Costa Rica to BAC, quantified the changes in intI1, sul2, and qacE/qacEΔ1 gene profiles, and determined alterations in the bacterial community composition. The analysis of the qPCR data revealed elevated charges of antibiotic resistance genes in the microbial community; after BAC's exposure, a significant increase in the qacE/qacEΔ1 gene, which is related to ammonium quaternary resistance, was observed. The 16S rRNA gene sequences' analysis showed pronounced variations in the structure of the bacterial communities, including reduction of the alpha diversity values and an increase of the relative abundance of Alphaproteobacteria, particularly of Rhodospseudomonas and Rhodobacter. We confirmed that the microbial communities presented high resilience to BAC at the mg/mL concentration, probably due to constant exposure to this pollutant. They also presented antibiotic resistance-related genes with similar mechanisms to tolerate this substance. These mechanisms should be explored more thoroughly, especially in the context of high use of disinfectant.
Collapse
Affiliation(s)
- Luz Chacón
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, P.O. Box: 11501-20160, San José, Costa Rica E-mail:
| | - Maria Arias-Andres
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Campus Omar Dengo, P.O. Box 86-3000, Heredia, Costa Rica
| | - Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Campus Omar Dengo, P.O. Box 86-3000, Heredia, Costa Rica
| | - Luis Rivera
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, P.O. Box: 11501-20160, San José, Costa Rica E-mail:
| | - Lorena Hernández
- Centro de Investigación en Productos Naturales (CIPRONA), Universidad de Costa Rica, P.O. Box: 11501-20160, San José, Costa Rica
| | - Rosario Achi
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, P.O. Box: 11501-20160, San José, Costa Rica E-mail:
| | - Fernando Garcia
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, P.O. Box: 11501-20160, San José, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, P.O. Box: 11501-20160, San José, Costa Rica
| |
Collapse
|
42
|
Fernández Rivas C, Porphyre T, Chase-Topping ME, Knapp CW, Williamson H, Barraud O, Tongue SC, Silva N, Currie C, Elsby DT, Hoyle DV. High Prevalence and Factors Associated With the Distribution of the Integron intI1 and intI2 Genes in Scottish Cattle Herds. Front Vet Sci 2021; 8:755833. [PMID: 34778436 PMCID: PMC8585936 DOI: 10.3389/fvets.2021.755833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Integrons are genetic elements that capture and express antimicrobial resistance genes within arrays, facilitating horizontal spread of multiple drug resistance in a range of bacterial species. The aim of this study was to estimate prevalence for class 1, 2, and 3 integrons in Scottish cattle and examine whether spatial, seasonal or herd management factors influenced integron herd status. We used fecal samples collected from 108 Scottish cattle herds in a national, cross-sectional survey between 2014 and 2015, and screened fecal DNA extracts by multiplex PCR for the integrase genes intI1, intI2, and intI3. Herd-level prevalence was estimated [95% confidence interval (CI)] for intI1 as 76.9% (67.8-84.0%) and intI2 as 82.4% (73.9-88.6%). We did not detect intI3 in any of the herd samples tested. A regional effect was observed for intI1, highest in the North East (OR 11.5, 95% CI: 1.0-130.9, P = 0.05) and South East (OR 8.7, 95% CI: 1.1-20.9, P = 0.04), lowest in the Highlands. A generalized linear mixed model was used to test for potential associations between herd status and cattle management, soil type and regional livestock density variables. Within the final multivariable model, factors associated with herd positivity for intI1 included spring season of the year (OR 6.3, 95% CI: 1.1-36.4, P = 0.04) and watering cattle from a natural spring source (OR 4.4, 95% CI: 1.3-14.8, P = 0.017), and cattle being housed at the time of sampling for intI2 (OR 75.0, 95% CI: 10.4-540.5, P < 0.001). This study provides baseline estimates for integron prevalence in Scottish cattle and identifies factors that may be associated with carriage that warrant future investigation.
Collapse
Affiliation(s)
- Cristina Fernández Rivas
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Évolutive, UMR5558, CNRS, VetAgro Sup, Université de Lyon, Villeurbanne Cedex, France
| | - Margo E Chase-Topping
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| | - Charles W Knapp
- Centre for Water, Environment, Sustainability and Public Health, Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Helen Williamson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| | - Olivier Barraud
- INSERM, CHU Limoges, UMR1092, Université de Limoges, Limoges, France
| | - Sue C Tongue
- Epidemiology Research Unit, Scotland's Rural College (SRUC), An Lòchran, Inverness Campus, Inverness, United Kingdom
| | - Nuno Silva
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Carol Currie
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Derek T Elsby
- Environmental Research Institute, University of the Highlands and Islands, Thurso, United Kingdom
| | - Deborah V Hoyle
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| |
Collapse
|
43
|
Quintela-Baluja M, Frigon D, Abouelnaga M, Jobling K, Romalde JL, Gomez Lopez M, Graham DW. Dynamics of integron structures across a wastewater network - Implications to resistance gene transfer. WATER RESEARCH 2021; 206:117720. [PMID: 34673462 PMCID: PMC8626773 DOI: 10.1016/j.watres.2021.117720] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/14/2021] [Accepted: 09/24/2021] [Indexed: 05/19/2023]
Abstract
Class 1 and other integrons are common in wastewater networks, often being associated with antibiotic resistance genes (ARGs). However, the importance of different integron structures in ARG transfer within wastewater systems has only been implied, especially between community and hospital sources, among wastewater treatment plant compartments, and in receiving waters. This uncertainty is partly because current clinical class 1 integron qPCR assays (i.e., that target human-impacted structures, i.e., clintI1) poorly delineate clintI1 from non-impacted class 1 integron structures. They also say nothing about their ARG content. To fill these technical gaps, new real-time qPCR assays were developed for "impacted" class 1 structures (called aint1; i.e., anthropogenic class 1 integrons) and empty aint1 structures (i.e., carry no ARGs; called eaint1). The new assays and other integron assays then were used to examine integron dynamics across a wastewater network. 16S metagenomic sequencing also was performed to characterise associated microbiomes. aint1 abundances per bacterial cell were about 10 times greater in hospital wastewaters compared with other compartments, suggesting aint1 enrichment with ARGs in hospital sources. Conversely, the relative abundance of eaint1 structures were over double in recycled activated sludge compared with other compartments, except receiving waters (RAS; ∼30% of RAS class 1 structures did not carry ARGs). Microbiome analysis showed that human-associated bacterial taxa with mobile integrons also differed in RAS and river sediments. Further, class 1 integrons in RAS bacteria appear to have released ARGs, whereas hospital bacteria have accumulated ARGs. Results show that quantifying integron dynamics can help explain where ARG transfer occurs in wastewater networks, and should be considered in future studies on antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Marcos Quintela-Baluja
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Department of Analytical Chemistry, Nutrition and Bromatology, University of Santiago de Compostela, Spain.
| | - Dominic Frigon
- Department of Civil Engineering and Applied Mechanics, McGill University, Montréal (QC), Canada
| | - M Abouelnaga
- Department of Analytical Chemistry, School of Veterinary Sciences, Suez Canel University, Ismailia, Egypt
| | - Kelly Jobling
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología & Institute CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - David W Graham
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
44
|
Aeromonas: the multifaceted middleman in the One Health world. Curr Opin Microbiol 2021; 65:24-32. [PMID: 34717260 DOI: 10.1016/j.mib.2021.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023]
Abstract
Aeromonas is at the interface of all the One Health components and represents an amazingly sound test case in the One Health approach, from economic loss in aquaculture tochallenges related to antibiotic-resistant bacteria selected from the environment. In human health, infections following leech therapy is an outstanding example of such One Health challenges. Aeromonads are not only ubiquitous environmental bacteria, able to rapidly colonize and cause opportunistic infections in humans and animals, they are also capable of promoting interactions and gene exchanges between the One Health components. This makes this genus a key amplifier of genetic transfer, especially of antibiotic resistance genes.
Collapse
|
45
|
Release of Antibiotic-Resistance Genes from Hospitals and a Wastewater Treatment Plant in the Kathmandu Valley, Nepal. WATER 2021. [DOI: 10.3390/w13192733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hospitals and wastewater treatment plants (WWTPs) are high-risk point sources of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria. This study investigates the occurrence of clinically relevant ARGs (sul1, tet(B), blaCTX-M, blaNDM-1, qnrS) and a class one integron (intI1) gene in urban rivers, hospitals, and municipal wastewater in the Kathmandu Valley, Nepal. Twenty-five water samples were collected from three rivers, six hospitals, and a wastewater treatment plant to determine the concentrations of ARGs and intI1 using quantitative polymerase chain reactions. From the results, all tested ARGs were detected in the river water; also, concentrations of ARGs in WWTP and hospital effluents varied from 6.2 to 12.5 log10 copies/L, highlighting the role of a WWTP and hospitals in the dissemination of ARGs. Except for blaNDM-1, significant positive correlations were found between intI1 and other individual ARGs (r = 0.71–0.96, p < 0.05), indicating the probable implications of intI1 in the transfer of ARGs. Furthermore, this study supports the statement that the blaNDM-1 gene is most likely to be spread in the environment through untreated hospital wastewater. Due to the interaction of surface water and groundwater, future research should focus on ARGs and factors associated with the increase/decrease in their concentration levels in drinking water sources of the Kathmandu Valley.
Collapse
|
46
|
Barraud O, Guichard E, Chainier D, Postil D, Chimot L, Mercier E, Frat JP, Desachy A, Lacherade JC, Mathonnet A, Bellec F, Giraudeau B, Ploy MC, François B. Integrons, a predictive biomarker for antibiotic resistance in acute sepsis: the IRIS study. J Antimicrob Chemother 2021; 77:213-217. [PMID: 34557914 DOI: 10.1093/jac/dkab348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/15/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Considering the increase in MDR Gram-negative bacteria (GNB), the choice of empirical antibiotic therapy is challenging. In parallel, use of broad-spectrum antibiotics should be avoided to decrease antibiotic selection pressure. Accordingly, clinicians need rapid diagnostic tools to narrow antibiotic therapy. Class 1-3 integrons, identified by intI1-3 genes, are genetic elements that play a major role in antibiotic resistance in GNB. OBJECTIVES The objective of the IRIS study was to evaluate the negative and positive predictive values (NPVs and PPVs, respectively) of intI1-3 as markers of antibiotic resistance. METHODS The IRIS study was an observational cross-sectional multicentre study that enrolled adult subjects with suspected urinary tract or intra-abdominal infections. intI1-3 were detected directly from routinely collected biological samples (blood, urine or intra-abdominal fluid) using real-time PCR. A patient was considered 'MDR positive' if at least one GNB, expressing acquired resistance to at least two antibiotic families among β-lactams, aminoglycosides, fluoroquinolones and/or co-trimoxazole, was isolated from at least one biological sample. RESULTS Over a 2 year period, 513 subjects were enrolled and 409 had GNB documentation, mostly Enterobacterales. intI1 and/or intI2 were detected in 31.8% of patients and 24.4% of patients were considered 'MDR positive'. The NPV of intI1 and/or intI2 as a marker of acquired antibiotic resistances was estimated at 92.8% (89.1%-95.5%). The NPVs for first-line antibiotics were all above 92%, notably >96% for resistance to third-generation cephalosporins. CONCLUSIONS The IRIS study strongly suggests that the absence of intI1 and intI2 in biological samples from patients with GNB-related infections is predictive of the absence of acquired resistances.
Collapse
Affiliation(s)
- Olivier Barraud
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France.,INSERM, CIC1435, CHU Limoges, Limoges, France
| | | | | | | | - Loïc Chimot
- CH Périgueux, Réanimation, Périgueux, France
| | | | - Jean-Pierre Frat
- CHU Poitiers, Réanimation médicale et médecine interne, Poitiers, France
| | - Arnaud Desachy
- CH Angoulême, Réanimation Polyvalente, Angoulême, France
| | | | | | - Frédéric Bellec
- CH Montauban, Réanimation-Surveillance continue, Montauban, France
| | | | | | - Bruno François
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France.,INSERM, CIC1435, CHU Limoges, Limoges, France.,CHU Limoges, Réanimation Polyvalente, Limoges, France
| |
Collapse
|
47
|
Toubiana M, Salles C, Tournoud MG, Licznar-Fajardo P, Zorgniotti I, Trémélo ML, Jumas-Bilak E, Robert S, Monfort P. Monitoring Urban Beach Quality on a Summer Day: Determination of the Origin of Fecal Indicator Bacteria and Antimicrobial Resistance at Prophète Beach, Marseille (France). Front Microbiol 2021; 12:710346. [PMID: 34512587 PMCID: PMC8424182 DOI: 10.3389/fmicb.2021.710346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022] Open
Abstract
A highly frequented beach in Marseille, France, was monitored on an hourly basis during a summer day in July 2018, to determine possible water and sand fecal pollution, in parallel with influx of beach users from 8 a.m. to 8 p.m. Fecal indicator bacteria were enumerated, together with four host-associated fecal molecular markers selected to discriminate human, dog, horse, or gull/seagull origins of the contamination. The antimicrobial resistance of bacteria in water and sand was evaluated by quantifying (i) the class 1, 2, and 3 integron integrase genes intI, and (ii) blaTEM, blaCTX–M, and blaSHV genes encoding endemic beta-lactamase enzymes. The number of beach users entering and leaving per hour during the observation period was manually counted. Photographs of the beach and the bathing area were taken every hour and used to count the number of persons in the water and on the sand, using a photo-interpretation method. The number of beach users increased from early morning to a peak by mid-afternoon, totaling more than 1,800, a very large number of users for such a small beach (less than 1 ha). An increase in fecal contamination in the water corresponded to the increase in beach attendance and number of bathers, with maximum numbers observed in the mid-afternoon. The human-specific fecal molecular marker HF183 indicated the contamination was of human origin. In the water, the load of Intl2 and 3 genes was lower than Intl1 but these genes were detected only during peak attendance and highest fecal contamination. The dynamics of the genes encoding B-lactamases involved in B-lactams resistance notably was linked to beach attendance and human fecal contamination. Fecal indicator bacteria, integron integrase genes intI, and genes encoding B-lactamases were detected in the sand. This study shows that bathers and beach users can be significant contributors to contamination of seawater and beach sand with bacteria of fecal origin and with bacteria carrying integron-integrase genes and beta lactamase encoding genes. High influx of users to beaches is a significant factor to be considered in order to reduce contamination and manage public health risk.
Collapse
Affiliation(s)
- Mylène Toubiana
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Christian Salles
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Marie-George Tournoud
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Patricia Licznar-Fajardo
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France.,Département d'Hygiène Hospitalière, CHU Montpellier, Montpellier, France
| | - Isabelle Zorgniotti
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Marie-Laure Trémélo
- ESPACE, UMR 7300 Aix Marseille Université, Avignon Université, Université Côte d'Azur, CNRS, Aix-en-Provence, France
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France.,Département d'Hygiène Hospitalière, CHU Montpellier, Montpellier, France
| | - Samuel Robert
- ESPACE, UMR 7300 Aix Marseille Université, Avignon Université, Université Côte d'Azur, CNRS, Aix-en-Provence, France
| | - Patrick Monfort
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
48
|
Azithromycin and Ciprofloxacin Can Promote Antibiotic Resistance in Biosolids and Biosolids-Amended Soils. Appl Environ Microbiol 2021; 87:e0037321. [PMID: 34085858 DOI: 10.1128/aem.00373-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spread of biosolids-borne antibiotic resistance is a growing public and environmental health concern. Herein, we conducted incubation experiments involving biosolids, which are byproducts of sewage treatment processes, and biosolids-amended soil. Quantitative reverse transcription-PCR (RT-qPCR) was employed to assess responses of select antibiotic resistance genes (ARGs) and mobile elements to environmentally relevant concentrations of two biosolids-borne antibiotics, azithromycin (AZ) and ciprofloxacin (CIP). Additionally, we examined sequence distribution of gyrA (encoding DNA gyrase; site of action of CIP) to assess potential shifts in genotype. Increasing antibiotic concentrations generally increased the transcriptional activities of qnrS (encoding CIP resistance) and ermB and mefE (encoding AZ resistance). The transcriptional activity of intl1, a marker of class 1 integrons, was unaffected by CIP or AZ concentrations, but biosolids amendment increased intl1 activity in the soil by 4 to 5 times, which persisted throughout incubation. While the dominant gyrA sequences found herein were unrelated to known CIP-resistant genotypes, the increasing CIP concentrations significantly decreased the diversity of genes encoding the DNA gyrase A subunit, suggesting changes in microbial community structures. This study suggests that biosolids harbor transcriptionally active ARGs and mobile elements that could survive and spread in biosolids-amended soils. However, more research is warranted to investigate these trends under field conditions. IMPORTANCE Although previous studies have indicated that biosolids may be important spreaders of antibiotics and antibiotic resistance genes (ARGs) in environments, the potential activities of ARGs or their responses to environmental parameters have been understudied. This study highlights that certain biosolids-borne antibiotics can induce transcriptional activities of ARGs and mobile genetic elements in biosolids and biosolids-amended soil, even when present at environmentally relevant concentrations. Furthermore, these antibiotics can alter the structure of microbial populations expressing ARGs. Our findings indicate the bioavailability of the antibiotics in biosolids and provide evidence that biosolids can promote the activities and dissemination of ARGs and mobile genes in biosolids and soils that receive contaminated biosolids, thus, underscoring the importance of investigating anthropogenically induced antibiotic resistance in the environment under real-world scenarios.
Collapse
|
49
|
Liguori R, Rommel SH, Bengtsson-Palme J, Helmreich B, Wurzbacher C. Microbial retention and resistances in stormwater quality improvement devices treating road runoff. FEMS MICROBES 2021. [DOI: 10.1093/femsmc/xtab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT
Current knowledge about the microbial communities that occur in urban road runoff is scarce. Road runoff of trafficked roads can be heavily polluted and is treated by stormwater quality improvement devices (SQIDs). However, microbes may influence the treatment process of these devices or could lead to stress resistant opportunistic microbial strains. In this study, the microbial community in the influent, effluent and the filter materials used to remove dissolved heavy metals from two different SQIDs were analyzed to determine microbial load, retention, composition, and mobile resistance genes. Although the microbes were replaced by new taxa in the effluent, there was no major retention of microbial genera. Further, the bacterial abundance of the SQIDs effluent was relatively stable over time. The heavy metal content correlated with intl1 and with microbial genera. The filter media itself was enriched with Intl1 gene cassettes, carrying several heavy metal and multidrug resistance genes (e.g. czrA, czcA, silP, mexW and mexI), indicating that this is a hot spot for horizontal gene transfer. Overall, the results shed light on road runoff microbial communities, and pointed to distinct bacterial communities within the SQIDs, which subsequently influence the microbial community and the genes released with the treated water.
Collapse
Affiliation(s)
- Renato Liguori
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
- Department of Science and Technology, Parthenope University of Naples, Centro direzionale Isola –C4, 80143, Napoli, Italy
| | - Steffen H Rommel
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, SE-413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden
| | - Brigitte Helmreich
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Christian Wurzbacher
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| |
Collapse
|
50
|
Paruch L, Paruch AM, Iordache TV, Olaru AG, Sarbu A. Mitigating Antibiotic Resistance Genes in Wastewater by Sequential Treatment with Novel Nanomaterials. Polymers (Basel) 2021; 13:polym13101593. [PMID: 34063382 PMCID: PMC8157218 DOI: 10.3390/polym13101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Wastewater (WW) has been widely recognized as the major sink of a variety of emerging pathogens (EPs), antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which may disseminate and impact wider environments. Improving and maximizing WW treatment efficiency to remove these microbial hazards is fundamentally imperative. Despite a variety of physical, biological and chemical treatment technologies, the efficiency of ARG removal is still far from satisfactory. Within our recently accomplished M-ERA.NET project, novel functionalized nanomaterials, i.e., molecularly imprinted polymer (MIP) films and quaternary ammonium salt (QAS) modified kaolin microparticles, were developed and demonstrated to have significant EP removal effectiveness on both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB) from WW. As a continuation of this project, we took the further step of exploring their ARG mitigation potential. Strikingly, by applying MIP and QAS functionalized kaolin microparticles in tandem, the ARGs prevalent in wastewater treatment plants (WWTPs), e.g., blaCTXM, ermB and qnrS, can be drastically reduced by 2.7, 3.9 and 4.9 log (copies/100 mL), respectively, whereas sul1, tetO and mecA can be eliminated below their detection limits. In terms of class I integron-integrase I (intI1), a mobile genetic element (MGE) for horizontal gene transfer (HGT), 4.3 log (copies/100 mL) reduction was achieved. Overall, the novel nanomaterials exhibit outstanding performance on attenuating ARGs in WW, being superior to their control references. This finding provides additional merit to the application of developed nanomaterials for WW purification towards ARG elimination, in addition to the proven bactericidal effect.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Oluf Thesens 43, 1433 Aas, Norway;
- Correspondence:
| | - Adam M. Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Oluf Thesens 43, 1433 Aas, Norway;
| | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania; (T.-V.I.); (A.S.)
| | | | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania; (T.-V.I.); (A.S.)
| |
Collapse
|