1
|
Hasegawa Y, Akita T, Kuchibiro T, Miyoshi-Akiyama T, Tomida J, Kutsuna R, Mori R, Okuno M, Ogura Y, Kawamura Y. Streptococcus suis subsp. hashimotonensis subsp. nov.: Lancefield group A antigen-positive organisms isolated from human clinical specimens and wild boar oral cavity samples. Syst Appl Microbiol 2024; 47:126538. [PMID: 39053043 DOI: 10.1016/j.syapm.2024.126538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Three Streptococcus suis-like strains positive for Lancefield antigen group A were isolated from human boar bite wounds and the oral cavities of boars in Hashimoto City, Wakayama Prefecture, Japan, and their taxonomic positions were investigated. Application of the VITEK2 system identified all three isolates as S. suis with > 94 % probability. The isolates were assigned to S. suis based on the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis (Biotyper score of 2.382) but were differentiated according to the characteristic signal peaks (4709 m/z and 9420 m/z) that were not present for S. suis. Sequence analysis of the 16S rRNA and sodA genes determined that the isolates were similar to S. suis; however, these genes appeared on a phylogenetic sub-branch. Phylogenetic analysis of the whole chromosomal DNA showed that the isolate formed a cluster with S. suis but with clear divergence. The average nucleotide index using BLAST between the clinical isolate (PAGU 2482) and a closely related reference strain of S. suis was 94.75 %, which was not clearly conclusive; however, digital DNA-DNA hybridization showed a value of 61.2 %. Biochemical reactions, including those with acid phosphatase, α-chymotrypsin, and tagatose (acidification), distinguished our isolates from S. suis. Thus, based on phylogenetic, genomic, and phenotypic characteristics and MALDI-TOF-MS signal patterns, we propose that the isolate with Lancefield group A positive characteristics be designated as a novel subspecies, Streptococcus suis subsp. hashimotonensis subsp. nov., with the type strain PAGU 2482T (GTC 18290T = CCUG 77434T).
Collapse
Affiliation(s)
- Yuki Hasegawa
- LSI Medience Laboratory, Hashimoto Municipal Hospital, 2-8-1 Ominedai, Hashimoto, Wakayama 648-0005, Japan
| | - Toyokazu Akita
- Department of Clinical Laboratory, Hashimoto Municipal Hospital, 2-8-1 Ominedai, Hashimoto, Wakayama 648-0005, Japan
| | - Tomokazu Kuchibiro
- Department of Clinical Laboratory, Naga Municipal Hospital, 1282 Uchita, Kinokawa, Wakayama 649-6414, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya, Aichi 464-8650, Japan
| | - Ryo Kutsuna
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya, Aichi 464-8650, Japan
| | - Ryota Mori
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya, Aichi 464-8650, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya, Aichi 464-8650, Japan.
| |
Collapse
|
2
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Wu KJY, Tresco BIC, Ramkissoon A, Aleksandrova EV, Syroegin EA, See DNY, Liow P, Dittemore GA, Yu M, Testolin G, Mitcheltree MJ, Liu RY, Svetlov MS, Polikanov YS, Myers AG. An antibiotic preorganized for ribosomal binding overcomes antimicrobial resistance. Science 2024; 383:721-726. [PMID: 38359125 PMCID: PMC11665821 DOI: 10.1126/science.adk8013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
We report the design conception, chemical synthesis, and microbiological evaluation of the bridged macrobicyclic antibiotic cresomycin (CRM), which overcomes evolutionarily diverse forms of antimicrobial resistance that render modern antibiotics ineffective. CRM exhibits in vitro and in vivo efficacy against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We show that CRM is highly preorganized for ribosomal binding by determining its density functional theory-calculated, solution-state, solid-state, and (wild-type) ribosome-bound structures, which all align identically within the macrobicyclic subunits. Lastly, we report two additional x-ray crystal structures of CRM in complex with bacterial ribosomes separately modified by the ribosomal RNA methylases, chloramphenicol-florfenicol resistance (Cfr) and erythromycin-resistance ribosomal RNA methylase (Erm), revealing concessive adjustments by the target and antibiotic that permit CRM to maintain binding where other antibiotics fail.
Collapse
Affiliation(s)
- Kelvin J. Y. Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ben I. C. Tresco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Antonio Ramkissoon
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elena V. Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Egor A. Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dominic N. Y. See
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Priscilla Liow
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Georgia A. Dittemore
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Meiyi Yu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Giambattista Testolin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew J. Mitcheltree
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard Y. Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Maxim S. Svetlov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Abdullahi IN, Lozano C, Höfle Ú, Cardona-Cabrera T, Zarazaga M, Torres C. Antimicrobial resistome of coagulase-negative staphylococci from nasotracheal cavities of nestlings of Ciconia ciconia in Southern Spain: Detection of mecC-SCCmec type-XI-carrying S. lentus. Comp Immunol Microbiol Infect Dis 2023; 99:102012. [PMID: 37453201 DOI: 10.1016/j.cimid.2023.102012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
The antimicrobial resistance (AMR) genes of 268 non-duplicated coagulase-negative staphylococci (CoNS) previously obtained from nasotracheal cavities of nestling storks were characterized. They included S. sciuri isolates (n = 191), and non-sciuri-CoNS isolates (NSc-CoNS, n = 77). All S. sciuri carried the intrinsic salA gene (for clindamycin-resistance) and so, clindamycin was not considered for general analysis in this species. About 71.7%/41.6% of the S. sciuri/NSc-CoNS isolates were susceptible to all antibiotics tested; moreover, 14.1%/16.9% and 3.1%/20.8% of S. sciuri/NSc-CoNS showed single antibiotic resistance and multidrug resistance (MDR) phenotype, respectively. Of the ten mecA-positive CoNS isolates, six were associated with SCCmec types-III, -IV or -V elements. Remarkably was the detection of one MDR-S. lentus isolate carrying both mecA and mecC genes, as well as the SCCmec type-XI element. MDR-CoNS was relatively higher in nestlings of parent storks foraging in landfills (21.3%) than those in natural areas (9.7%) (χ2 = 3.421, df=1, p = 0.064). AMR phenotypes (and genes detected) include penicillin (blaZ, blaARL), erythromycin-clindamycin-constitutive (ermA, ermC, ermT), clindamycin (lnuA, salA, vgaA), erythromycin (msrA, mphC), tetracycline (tetK, tetL, tetM), tobramycin (ant4'), tobramycin-gentamicin (aac6'-aph2″), sulfamethoxazole-trimethoprim (dfrA, dfrG, dfrK), chloramphenicol (fexA, fexB, catPC221), and mupirocin (mupA). Interestingly, one S. epidermidis isolate carried the ermT gene. About 29.9% of nestlings harboured more than one non-duplicated CoNS (with varied 2-5 AMR profiles). This study demonstrated that most of the CoNS isolates were susceptible to all the antibiotics tested (63.1%). However, AMR genes of public health importance were found, including the mecC-mediated methicillin resistance trait.
Collapse
Affiliation(s)
| | - Carmen Lozano
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Úrsula Höfle
- SaBio (Health and Biotechnology Research Group, Spanish Wildlife Research Institute IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Teresa Cardona-Cabrera
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain; SaBio (Health and Biotechnology Research Group, Spanish Wildlife Research Institute IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain.
| |
Collapse
|
5
|
Krüger-Haker H, Ji X, Hanke D, Fiedler S, Feßler AT, Jiang N, Kaspar H, Wang Y, Wu C, Schwarz S. Genomic Diversity of Methicillin-Resistant Staphylococcus aureus CC398 Isolates Collected from Diseased Swine in the German National Resistance Monitoring Program GE RM-Vet from 2007 to 2019. Microbiol Spectr 2023; 11:e0077023. [PMID: 37154741 PMCID: PMC10269607 DOI: 10.1128/spectrum.00770-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) clonal complex 398 (CC398) isolates (n = 178) collected in the national resistance monitoring program GERM-Vet from diseased swine in Germany from 2007 to 2019 were investigated for their genomic diversity with a focus on virulence and antimicrobial resistance (AMR) traits. Whole-genome sequencing was followed by molecular typing and sequence analysis. A minimum spanning tree based on core-genome multilocus sequence typing was constructed, and antimicrobial susceptibility testing was performed. Most isolates were assigned to nine clusters. They displayed close phylogenetic relationships but a wide molecular variety, including 13 spa types and 19 known and four novel dru types. Several toxin-encoding genes, including eta, seb, sek, sep, and seq, were detected. The isolates harbored a wide range of AMR properties mirroring the proportions of the classes of antimicrobial agents applied in veterinary medicine in Germany. Multiple novel or rare AMR genes were identified, including the phenicol-lincosamide-oxazolidinone-pleuromutilin-streptogramin A resistance gene cfr, the lincosamide-pleuromutilin-streptogramin A resistance gene vga(C), and the novel macrolide-lincosamide-streptogramin B resistance gene erm(54). Many AMR genes were part of small transposons or plasmids. Clonal and geographical correlations of molecular characteristics and resistance and virulence genes were more frequently observed than temporal relations. In conclusion, this study provides insight into population dynamics of the main epidemic porcine LA-MRSA lineage in Germany over a 13-year-period. The observed comprehensive AMR and virulence properties, most likely resulting from the exchange of genetic material between bacteria, highlighted the importance of LA-MRSA surveillance to prevent further dissemination among swine husbandry facilities and entry into the human community. IMPORTANCE The LA-MRSA-CC398 lineage is known for its low host specificity and frequent multiresistance to antimicrobial agents. Colonized swine and their related surroundings represent a considerable risk of LA-MRSA-CC398 colonization or infection for occupationally exposed people through which such isolates might be further disseminated within the human community. This study provides insight into the diversity of the porcine LA-MRSA-CC398 lineage in Germany. Clonal and geographical correlations of molecular characteristics and resistance and virulence traits were detected and may be associated with the spread of specific isolates through livestock trade, human occupational exposure, or dust emission. The demonstrated genetic variability underlines the lineage's ability to horizontally acquire foreign genetic material. Thus, LA-MRSA-CC398 isolates have the potential to become even more dangerous for various host species, including humans, due to increased virulence and/or limited therapeutic options for infection control. Full-scale LA-MRSA monitoring at the farm, community, and hospital level is therefore essential.
Collapse
Affiliation(s)
- Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Xing Ji
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory, Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nansong Jiang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congming Wu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Kowalewicz C, Timmermans M, Fretin D, Wattiau P, Boland C. An in-house 45-plex array for the detection of antimicrobial resistance genes in Gram-positive bacteria. Microbiologyopen 2023; 12:e1341. [PMID: 36825880 PMCID: PMC9791161 DOI: 10.1002/mbo3.1341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022] Open
Abstract
Identifying antimicrobial resistance (AMR) genes and determining their occurrence in Gram-positive bacteria provide useful data to understand how resistance can be acquired and maintained in these bacteria. We describe an in-house bead array targeting AMR genes of Gram-positive bacteria and allowing their rapid detection all at once at a reduced cost. A total of 41 AMR probes were designed to target genes frequently associated with resistance to tetracycline, macrolides, lincosamides, streptogramins, pleuromutilins, phenicols, glycopeptides, aminoglycosides, diaminopyrimidines, oxazolidinones and particularly shared among Enterococcus and Staphylococcus spp. A collection of 124 enterococci and 62 staphylococci isolated from healthy livestock animals through the official Belgian AMR monitoring (2018-2020) was studied with this array from which a subsample was further investigated by whole-genome sequencing. The array detected AMR genes associated with phenotypic resistance for 93.0% and 89.2% of the individual resistant phenotypes in enterococci and staphylococci, respectively. Although linezolid is not used in veterinary medicine, linezolid-resistant isolates were detected. These were characterized by the presence of optrA and poxtA, providing cross-resistance to other antibiotics. Rarer, vancomycin resistance was conferred by the vanA or by the vanL cluster. Numerous resistance genes circulating among Enterococcus and Staphylococcus spp. were detected by this array allowing rapid screening of a large strain collection at an affordable cost. Our data stress the importance of interpreting AMR with caution and the complementarity of both phenotyping and genotyping methods. This array is now available to assess other One-Health AMR reservoirs.
Collapse
Affiliation(s)
| | | | - David Fretin
- Veterinary Bacteriology, SciensanoIxellesBelgium
| | | | | |
Collapse
|
7
|
Abdullahi IN, Lozano C, Simon C, Latorre-Fernandez J, Zarazaga M, Torres C. Nasal staphylococci community of healthy pigs and pig-farmers in Aragon (Spain). Predominance and within-host resistome diversity in MRSA-CC398 and MSSA-CC9 lineages. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
8
|
Azpiroz MF, Burger N, Mazza M, Rodríguez G, Camou T, García Gabarrot G. Characterization of Streptococcus equi subsp. zooepidemicus isolates containing lnuB gene responsible for the L phenotype. PLoS One 2023; 18:e0284869. [PMID: 37115801 PMCID: PMC10146458 DOI: 10.1371/journal.pone.0284869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Within the framework of the β-hemolytic streptococci surveillance carried out by the National Reference Laboratory from Uruguay, three putative Streptococcus equi subsp. zooepidemicus (SEZ) were received from different health centers. Being these the first reports associated with human infections in Uruguay, the objective of this work was to confirm their identification, to determine their genetic relationship and to study their antibiotic susceptibility. Using four different methods, they were identified as SEZ, a subspecies which has been described as the etiologic agent of rare and severe zoonosis in a few cases in other countries. The three isolates presented different pulsotypes by PFGE; however, two of them appeared to be related and were confirmed as ST431 by MLST, while the remaining isolate displayed ST72. Their resistance profile exhibited an unexpected feature: despite all of them were susceptible to macrolides, they showed different levels of resistance to clindamycin, i.e. they had the so-called "L phenotype". This rare trait is known to be due to a nucleotidyl-transferase, encoded by genes of the lnu family. Although this phenotype was previously described in a few SEZ isolates, its genetic basis has not been studied yet. This was now analyzed by PCR in the three isolates and they were found to contain a lnuB gene. The lnuB sequence was identical among the three isolates and with many lnuB sequences deposited in data banks. In conclusion, for the first time in Uruguay, three SEZ isolates recovered from non-epidemiologically related cases of human invasive infection were identified. Moreover, this is the first report about the presence of a lnu gene in the S. equi species, revealing the active lateral spread of the lnuB in a new streptococcal host.
Collapse
Affiliation(s)
- María F Azpiroz
- Facultad de Ciencias, Fisiología y Genética Bacterianas, UdelaR, Montevideo, Uruguay
| | | | | | | | - Teresa Camou
- Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo, Uruguay
| | | |
Collapse
|
9
|
Karakulska J, Woroszyło M, Szewczuk M, Fijałkowski K. Identification, Superantigen Toxin Gene Profile and Antimicrobial Resistance of Staphylococci Isolated from Polish Primitive Sheep Breeds. Animals (Basel) 2022; 12:ani12162139. [PMID: 36009729 PMCID: PMC9404845 DOI: 10.3390/ani12162139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The study aimed to analyze staphylococcal microbiota of the nasal cavity of the primitive sheep breeds Polish Świniarka and Wrzosówka kept on the same ecological farm. The research included the identification of staphylococcal species, evaluation of the prevalence of genes encoding enterotoxins, staphylococcal enterotoxin-like proteins, exfoliative toxins, toxic shock syndrome toxin 1, and detection of antimicrobial resistance. From 61 swab samples gathered from Świniarka (33) and Wrzosówka (28) healthy sheep, 127 coagulase-negative staphylococci (CoNS) were isolated. Based on PCR-RFLP analysis of the gap gene using AluI and HpyCH4V enzymes, the isolates were identified as: Staphylococcus xylosus (33.9%), S. equorum (29.1%), S. arlettae (15%), S. warneri (9.4%), S. lentus (7.9%), S. succinus (3.9%) and S. sciuri (0.8%). Three of these species, S. lentus, S. succinus, and S. sciuri, were detected only from the Świniarka breed. It was found that 77.2% of isolates harbored from 1 to 7 out of 21 analyzed genes for superantigenic toxins. The greatest diversity of toxin genes was recorded for S. equorum (16 different genes). The most prevalent gene was ser (40.2%). The incidence and number of resistances to antimicrobials were found to be bacterial species but not sheep breed dependent. The highest percentage of resistance was found for S. sciuri. The most frequent resistance was observed to clindamycin (45.7%). The findings of this study prove that toxigenic and antimicrobial resistant CoNS can colonize the nasal cavity of healthy sheep.
Collapse
Affiliation(s)
- Jolanta Karakulska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| | - Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| | - Małgorzata Szewczuk
- Department of Ruminant Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270 Szczecin, Poland
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
- Correspondence:
| |
Collapse
|
10
|
Microbiological and Molecular Features Associated with Persistent and Relapsing Staphylococcus aureus Prosthetic Joint Infection. Antibiotics (Basel) 2022; 11:antibiotics11081119. [PMID: 36009988 PMCID: PMC9405193 DOI: 10.3390/antibiotics11081119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Persistent and relapsing prosthetic joint infection (PJI) due to Staphylococcus aureus presents a clinical challenge. This study aimed to provide an extensive description of phenotypic and genomic changes that could be related to persistence or relapse. Methods: Initial and second S. aureus isolates from 6 cases of persistent and relapsing PJI, along with clinical isolates from 8 cases, with favorable outcome were included. All isolates were studied by phenotypic and genotypic approaches. Results: Recurrent S. aureus isolates exhibited a significant increase in adhesive capacity, invasion and persistence compared to resolved isolates. No association was found for the presence or absence of certain genes with the persistence or relapse of PJI. All sequential isolates showed identical sequence type (ST). Resistance gene loss during the infection and a great diversity of variants in different virulence genes between the pair of strains, mainly in genes encoding adhesins such as fnbA, were observed. Conclusions: S. aureus-caused relapse and persistence PJI is associated with bacterial phenotypical and genotypical adaptation. The main paths of adaptation were persistence in the intracellular compartment, and the loss of antibiotic resistance genes and variant acquisition, especially in genes encoding adhesins.
Collapse
|
11
|
An lnu(A)-Carrying Multi-Resistance Plasmid Derived from Sequence Type 3 Methicillin-Resistant Staphylococcus lugdunensis May Contribute to Antimicrobial Resistance in Staphylococci. Antimicrob Agents Chemother 2022; 66:e0019722. [PMID: 35876576 PMCID: PMC9380557 DOI: 10.1128/aac.00197-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus lugdunensis (MRSL) strains showing resistance to several common antibiotics have been reported recently. Sequence type (ST) 3 MRSL carrying SCCmec types IV, V, or Vt is the major lineage associated with health care-associated infections. We aimed to investigate the distribution and dissemination of antimicrobial resistance determinants in this lineage. Two representative ST3-MRSL strains, CGMH-SL131 (SCCmec V) and CGMH-SL138 (SCCmec IV), were subjected to whole-genome sequencing. Detection of antibiotic resistance genes and screening of susceptibility patterns were performed for 30 ST3-MRSL and 16 ST6-MRSL strains via PCR and standard methods. Except for mecA and blaZ, antimicrobial resistance genes were located within two plasmids: a 28.6 kb lnu(A)-carrying plasmid (pCGMH_SL138) in CGMH-SL138 and a 26 kb plasmid carrying non-lnu(A) resistance genes (pCGMH_SL131) in CGMH-SL131. Both plasmids shared common genetic features with multiple copies of IS257 flanked by genes conferring resistance to aminoglycoside (aacA-aphD and aadD), TET (tetk), and cadmium (cadDX) and tolerance to chlorhexidine (qacA/R); however, only pCGMH_SL138 harbored lnu(A) that conferred resistance to lincomycin and rep13 that encodes a replication initiation protein. Unlike ST6-MRSL, none of the ST3-MRSL isolates contained the ermA gene. Instead, most isolates harbored lnu(A) (20/30, 66.7%), and several other resistance genes found on pCGMH_SL138. These isolates and transformants containing pCGMH_SL138 exhibited susceptibility to ERY and higher MICs for lincomycin and aforementioned antibiotics. A novel lnu(A)-carrying plasmid, pCGMH_SL138, that harbored a multiresistance gene cluster, was identified in ST3-MRSL strains and may contribute to the dissemination of antibiotic resistance in staphylococci.
Collapse
|
12
|
Wu S, Huang J, Zhang F, Zhang J, Yang R, Pang R, Dai J, Rong D, Zhao M, Wang J, Ding Y, Chen M, Wu Q. Emergence of extensive multidrug resistant Staphylococcus aureus carrying novel Sa-MRR lsa(E) in retail food. J Glob Antimicrob Resist 2022; 30:205-213. [PMID: 35732263 DOI: 10.1016/j.jgar.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the prevalence and genetic environment of the multidrug resistance gene lsa(E) in food-related S. aureus in China. METHODS 1463 S. aureus from retail food products in 39 Chinese cities were investigated to determined the prevalence of lsa(E). Furthermore, antimicrobial susceptibility testing, whole-genome sequencing (WGS) and complete genetic analysis were performed in lsa(E)-positive isolates. RESULTS As a result, thirty-five isolates (2.4%) were positive for the lsa(E) gene which had an extensive multidrug-resistance phenotype. ST9-t899 and ST1-t4792 were the common types in positive strains. The lsa(E) genes were located in two different types of novel multiresistance region (MRRlsa(E)) on the chromosome. The Sa-MRRlsa(E)-I were inserted into lctP gene. The Sa-MRRlsa(E)-II were inserted into crtP gene and they were comprised of 7 ARGs interspersed with varieties of ISs, transposons and DNA invertase genes, showing is a novel arrangement harboring lsa(E). Part of transposon Tn1546 was inserted into downstream of lnu(B) in the novel Sa-MRRlsa(E)-II. Both two types of Sa-MRRlsa(E) could be excised from chromosome, indicating the Sa-MRRlsa(E) may be transferable. CONCLUSION Our study is the first systematical investigation of lsa(E)-positive S. aureus in retail foods in China. It indicated that the origin of most food-related lsa(E)-positive S. aureus in China might be associated with livestock or poultry breeding farm and has been transmitted between animal and food. Moreover, the emergence of S. aureus carrying novel Sa-MRRlsa(E), especially serve as a reservoir of antibiotic resistance traits, should warrants further attention.
Collapse
Affiliation(s)
- Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Dongli Rong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Miao Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China.
| |
Collapse
|
13
|
Human enterococcal isolates as reservoirs for macrolide-lincosamide-streptogramin and other resistance genes. J Antibiot (Tokyo) 2022; 75:396-402. [PMID: 35618783 DOI: 10.1038/s41429-022-00532-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022]
Abstract
According to recent studies, the importance of MLS (macrolide-lincosamide-streptogramin) resistance phenotypes and genes in enterococci are reflected in the fact that they represent reservoirs of MLS resistance genes. The aim of this study was to investigate distribution of MLS resistance genes and phenotypes in community- and hospital-acquired enterococcal isolates and to determine their prevalence. The MLS resistance phenotypes (cMLSb, iMLSb, M/MSb, and L/LSa) were determined in 245 enterococcal isolates were characterized using the double-disc diffusion method. Specific primers were chosen from database sequences for detection of the MLS resistance genes (ermA, ermB, ermC, msrA/B, lnuA, lnuB, and lsaA) in 60 isolates of enterococci by end-point PCR. There was no linezolid-resistant enterococcal isolate. Only one vancomycin-resistant (0.6%) isolate was found and it occurred in a community-acquired enterococcal isolate. The most frequent MLS resistance phenotype among enterococcal isolates was cMLSb (79.7% community- and 67.9% hospital-acquired). The most common identified MLS resistance genes among enterococcal isolates were lsaA (52.9% community- and 33.3% hospital-acquired) and ermB (17.6% community- and 33.3% hospital-acquired). The most prevalent MLS gene combination was lnuA + lsaA (five enterococcal isolates). The ermB gene encoded cMLSb phenotype, and it was identified in only one isolate that displayed iMLSb resistance phenotype. Based on the results obtained, we can conclude that the most frequent MLS resistance phenotype among enterococcal isolates was cMLSb. Surprisingly, a vancomycin-resistant enterococcal isolate was identified in a community-acquired enterococcal isolate. This study shows that enterococci may represent a major reservoir of ermB, lsaA, and lnuA genes.
Collapse
|
14
|
Tn 560, a Novel Tn 554 Family Transposon from Porcine Methicillin-Resistant Staphylococcus aureus ST398, Carries a Multiresistance Gene Cluster Comprising a Novel spc Gene Variant and the Genes lsa(E) and lnu(B). Antimicrob Agents Chemother 2022; 66:e0194721. [PMID: 35315688 DOI: 10.1128/aac.01947-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Lee GY, Kim GB, Yang SJ. Co-occurrence of cfr-mediated linezolid-resistance in ST398 LA-MRSA and non-aureus staphylococci isolated from a pig farm. Vet Microbiol 2022; 266:109336. [PMID: 35038636 DOI: 10.1016/j.vetmic.2022.109336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 01/08/2022] [Indexed: 11/26/2022]
Abstract
Linezolid resistance, mediated by the cfr gene, which confers resistant phenotypes to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antimicrobials, has emerged in S. aureus and non-aureus staphylococci (NAS). Moreover, due to the transferable potential via plasmids, the spread of cfr among staphylococci is of great concern. In the present study, we investigated the prevalence of cfr-mediated linezolid resistance in ST398 methicillin-resistant S. aureus (MRSA) and NAS strains isolated from a pig farm. Among the 26 staphylococci isolates collected from a pig farm, 14 cfr-harboring ST398 MRSA and NAS (S. epidermidis, S. pasteuri, S. cohnii, and S. rostri) strains were resistant to linezolid and also carried the fexA gene. Comparative genome analysis of cfr-carrying linezolid-resistant ST398 MRSA and NAS (S. pasteuri, S. cohnii, and S. epidermidis) strains revealed that the segments harboring cfr in different staphylococcal strains showed ≥ 99 % sequence identity and the corresponding region containing the cfr, fexA, and Tn558 elements were located in a 38-kb plasmid, designated pSA12 of ST398 MRSA. These observations indicate that the cfr-carrying plasmids and/or fragments may be disseminated among staphylococci in a pig farm and possibly transmitted to staphylococci of human origin, subsequently posing a threat to public health. This is the first report of the co-existence of cfr in linezolid-resistant ST398 MRSA and NAS isolated from a pig farm in South Korea.
Collapse
Affiliation(s)
- Gi Yong Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo-Jin Yang
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Zhang F, Wu S, Lei T, Wu Q, Zhang J, Huang J, Dai J, Chen M, Ding Y, Wang J, Wei X, Zhang Y. Presence and characterization of methicillin-resistant Staphylococcus aureus co-carrying the multidrug resistance genes cfr and lsa(E) in retail food in China. Int J Food Microbiol 2021; 363:109512. [PMID: 34971878 DOI: 10.1016/j.ijfoodmicro.2021.109512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus is an important food-related pathogen associated with bacterial poisoning that is difficult to treat due to its multidrug resistance. The cfr and lsa(E) genes both cause multiple drug resistance and have been identified in numerous Staphylococcus species, respectively. In this study, we found that a methicillin-resistant S. aureus (MRSA) strain, 2868B2, which was isolated from a sample of frozen dumplings in Hangzhou in 2015, co-carried these two different multidrug resistance genes. Further analysis showed that this strain was resistant to more than 18 antibiotics and expressed high-level resistance to florfenicol, chloramphenicol, clindamycin, tiamulin, erythromycin, ampicillin, cefepime, ceftazidime, kanamycin, streptomycin, tetracycline, trimethoprim-sulfamethoxazole and linezolid (MIC = 8 μg/mL). Whole genome sequencing was performed to characterize the genetic environment of these resistance genes and other genomic features. The cfr gene was located on the single plasmid p2868B2 (39,159 bp), which demonstrated considerable similarity to many plasmids previously identified in humans and animals. p2868B2 contained the insertion sequence (IS) element IS21-558, which allowed the insertion of cfr into Tn558 and played an important role in the mobility of cfr. Additionally, a novel multidrug resistance region (36.9 kb) harbouring lsa(E) along with nine additional antibiotic resistance genes (ARGs) (aadD, aadE, aacA-aphD, spc, lnu(B), lsa(E), tetL, ermC and blaZ) was identified. The multidrug resistance region harboured four copies of IS257 that were active and can mediate the formation of four circular structures containing ARGs and ISs. In addition, genes encoding various virulence factors and affecting multiple cell adhesion properties were identified in the genome of MRSA 2868B2. This study confirmed that the cfr and lsa(E) genes coexist in one MRSA strain and the presence of plasmid and IS257 in the multi-ARG cluster can promote both ARG transfer and dissemination. Furthermore, the presence of so many ARGs and virulence genes in food-related pathogens may seriously compromise the effectiveness of clinical therapy and threaten public health, its occurrence should pay public attention and the traceability of these genes in food-related samples needs further surveillance.
Collapse
Affiliation(s)
- Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science & Technology, Jinan University, Guangzhou 510632, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
17
|
Retapamulin: Current Status and Future Perspectives. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
: Retapamulin is one of the antibiotics recently developed semi-synthetically to inhibit protein synthesis in a specific manner different from other antibiotics. This pleuromutilin derivative shows magnificent anti-bacterial activity in Gram-positive pathogens, especially Staphylococcus aureus and Streptococcus pyogenes, and now it is available in ointment formulations (1%) for clinical use with negligible side effects. Despite the low potential for resistance development, antimicrobial susceptibility rates are significantly high. This is especially important when the prevalence of mupirocin-resistant strains is increasing, and the need for new alternatives is urgent. Unfortunately, due to its oxidation by cytochrome p450, this drug cannot be used systemically. However, another pleuromutilin derivative with systemic use, lefamulin, was approved in August 2019 by the US Food and Drug Administration. In addition to pharmacokinetic features, financial issues are also barriers to consider in the progress of new antimicrobials. In this review, we attempt to take a brief look at the derivatives usable in humans and explore their structures, action mode, metabolism, possible ways of resistance, resistance rates, and their clinical use to explain and highlight the valuable points of these antibiotics.
Collapse
|
18
|
Jiang N, Wyres KL, Li J, Feßler AT, Krüger H, Wang Y, Holt KE, Schwarz S, Wu C. Evolution and genomic insight into methicillin-resistant Staphylococcus aureus ST9 in China. J Antimicrob Chemother 2021; 76:1703-1711. [PMID: 33822977 DOI: 10.1093/jac/dkab106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To reconstruct the evolutionary history and genomic epidemiology of Staphylococcus aureus ST9 in China. METHODS Using WGS analysis, we described the phylogeny of 131 S. aureus ST9 isolates collected between 2002 and 2016 from 11 provinces in China, including six clinical samples from Taiwan. We also investigated the complex structure and distribution of the lsa(E)-carrying multiresistance gene cluster, and genotyped prophages in the genomes of the ST9 isolates. RESULTS ST9 was subdivided into one major (n = 122) and one minor (n = 9) clade. Bayesian phylogeny predicted the divergence of ST9 isolates in pig farming in China as early as 1987, which then evolved rapidly in the following three decades. ST9 isolates shared similar multiresistance properties, which were likely acquired before the ST9 emergence in China. The accessory genome is highly conserved, and ST9 harboured similar sets of phages, but lacked certain virulence genes. CONCLUSIONS Host exchange and regional transmission of ST9 have occurred between pigs and humans. Pig rearing and trading might have favoured gene exchanges between ST9 isolates. Resistance genes, obtained from the environment and other isolates, were stably integrated into the chromosomal DNA. The abundance of resistance genes among ST9 is likely attributed to the extensive use of antimicrobial agents in livestock. Phages are present in the genomes of ST9 and may play a role in the rapid evolution of this ST. Although human ST9 infections are rare, ST9 isolates may constitute a potential risk to public health as a repository of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Nansong Jiang
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jun Li
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Stefan Schwarz
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Yan H, Yu R, Li D, Shi L, Schwarz S, Yao H, Li XS, Du XD. A novel multiresistance gene cluster located on a plasmid-borne transposon in Listeria monocytogenes. J Antimicrob Chemother 2021; 75:868-872. [PMID: 31971232 DOI: 10.1093/jac/dkz545] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/07/2019] [Accepted: 12/08/2019] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES To identify the genetic context and the transferability of the multiresistance gene lsa(E) in Listeria monocytogenes. METHODS MICs were determined by broth microdilution. Transferability of lsa(E) was investigated by conjugation, electrotransformation and natural transformation. The lsa(E)-carrying plasmid was sequenced using the Illumina MiSeq and PacBio RSII platforms. The presence of translocatable units (TUs) was examined by PCR. RESULTS The 85 555 bp non-conjugative multiresistance plasmid pNH1 from L. monocytogenes harboured nine antimicrobial resistance genes including a multiresistance gene cluster, consisting of the genes aphA3, erm(B), aadE, spw, lsa(E) and lnu(B), and in addition the genes dfrG, tet(S) and catA8 were also located on plasmid pNH1 The multiresistance gene cluster, and each of the genes tet(S), catA8 and cadA were flanked by IS1216 elements. PCR identified four types of TUs, consisting of either the multiresistance gene cluster and one copy of IS1216, the catA8 gene and one copy of IS1216, or both, but also the tet(S) gene and one copy of IS1216, respectively. Natural transformation into Streptococcus mutans UA159 yielded transformants that harboured a novel 13 208 bp transposon, designated Tn6659. This transposon consisted of the multiresistance gene cluster bounded by IS1216 copies. All transformants displayed elevated MICs of the respective antimicrobial agents. At the integration site in the transformants, 8 bp direct target duplications (5'-ATTCAAAC-3') were found immediately up- and downstream of Tn6659. CONCLUSIONS To the best of our knowledge, this is the first report of this novel multiresistance gene cluster and the gene catA8, flanked by IS1216 elements located on a plasmid of L. monocytogenes. Moreover, a novel functionally active multiresistance transposon was identified.
Collapse
Affiliation(s)
- He Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Runhao Yu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Dexi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hong Yao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Xin-Sheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| |
Collapse
|
20
|
Lee GY, Seong HJ, Sul WJ, Yang SJ. Genomic Information on Linezolid-Resistant Sequence-Type 398 Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolated from a Pig. Foodborne Pathog Dis 2021; 18:378-387. [PMID: 33656917 DOI: 10.1089/fpd.2020.2882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frequent occurrence of sequence-type 398 (ST398) livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pigs has become a major public health concern owing to the increased zoonotic potential of the pathogen. Recently, a novel oxazolidinone resistance gene, chloramphenicol-florfenicol resistant (cfr), conferring multiresistance phenotypes to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (PhLOPSA), has been found among ST398 LA-MRSA strains isolated from pigs. In this study, we report the first in silico genome analysis of a linezolid-resistant ST398 LA-MRSA strain, designated PJFA-521M, recovered from a pig in Korea. Genomic analyses revealed that the presence of the cfr gene was responsible for the observed linezolid resistance in the PJFA-521M strain. Moreover, newer antimicrobial resistance genes, such as the dfrG, aadE, spw, lsa(E), lnu(B), and fexA genes, were found in the PJFA-521M strain. In addition to the genetic elements for antimicrobial resistance, the carriage of various virulence genes for adherence, invasion, and immunomodulation was identified in the genome, especially within several mobile genetic elements (MGEs). The presence of multiple antimicrobial resistance genes and virulence genes on MGEs in the genome of a linezolid-resistant ST398 LA-MRSA should raise awareness regarding the use of other antimicrobial agents in pig farms and may also provide selective pressure for the prevalence of the cfr gene and the associated multidrug-resistant phenotype.
Collapse
Affiliation(s)
- Gi Yong Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Korea
| | - Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Korea
| | - Soo-Jin Yang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Korea
| |
Collapse
|
21
|
Abstract
Plasmids have largely contributed to the spread of antimicrobial resistance genes among Staphylococcus strains. Knowledge about the fitness cost that plasmids confer on clinical staphylococcal isolates and the coevolutionary dynamics that drive plasmid maintenance is still scarce. In this study, we aimed to analyze the initial fitness cost of plasmids in the bacterial pathogen Staphylococcus aureus and the plasmid-host adaptations that occur over time. For that, we first designed a CRISPR (clustered regularly interspaced palindromic repeats)-based tool that enables the removal of native S. aureus plasmids and then transferred three different plasmids isolated from clinical S. aureus strains to the same-background clinical cured strain. One of the plasmids, pUR2940, obtained from a livestock-associated methicillin-resistant S. aureus (LA-MRSA) ST398 strain, imposed a significant fitness cost on both its native and the new host. Experimental evolution in a nonselective medium resulted in a high rate pUR2940 loss and selected for clones with an alleviated fitness cost in which compensatory adaptation occurred via deletion of a 12.8-kb plasmid fragment, contained between two ISSau10 insertion sequences and harboring several antimicrobial resistance genes. Overall, our results describe the relevance of plasmid-borne insertion sequences in plasmid rearrangement and maintenance and suggest the potential benefits of reducing the use of antibiotics both in animal and clinical settings for the loss of clinical multidrug resistance plasmids.
Collapse
|
22
|
Yang M, Li XS, Li D, Shang Y, Yu R, Schwarz S, Huang Z, Du XD. Two novel lsa(E)-carrying mobile genetic elements in Streptococcus suis. J Antimicrob Chemother 2020; 75:2689-2691. [PMID: 32464646 DOI: 10.1093/jac/dkaa199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mengyan Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xin-Sheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Dexi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Yanhong Shang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Rui Yu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Zongmei Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| |
Collapse
|
23
|
Verdú-Expósito C, Romanyk J, Cuadros-González J, TesfaMariam A, Copa-Patiño JL, Pérez-Serrano J, Soliveri J. Study of susceptibility to antibiotics and molecular characterization of high virulence Staphylococcus aureus strains isolated from a rural hospital in Ethiopia. PLoS One 2020; 15:e0230031. [PMID: 32163464 PMCID: PMC7067403 DOI: 10.1371/journal.pone.0230031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/19/2020] [Indexed: 11/20/2022] Open
Abstract
We characterised 80 Staphylococcus aureus strains isolated from human patients with SSTIs at a rural hospital in Ethiopia. Susceptibility to antibiotic of all strains was tested. The MLST method was used to type and a phylogenetic analysis was conducted employing the sequences of 7 housekeeping genes. PCR amplification was used to investigate the presence of the following virulence genes in all strains: hla (α-haemolysin), tstH (toxic shock syndrome toxin), luk PV (Panton-Valentine leukocidin), fnbA (fibronectin binding protein A) and mecA (methicillin resistance). Most of the strains were resistant to penicillin and ampicillin, but only 3 strains were resistant to oxacillin, and 1 of them was a true MRSA. The MLST results showed a high diversity of sequence types (ST), 55% of which were new, and ST152 was the most prevalent. A phylogeny study showed that many of the new STs were phylogenetically related to other previously described STs, but bore little relationship to the only ST from Ethiopia described in the database. Virulence gene detection showed a high prevalence of strains encoding the hla, fnbA and pvl genes (98.77%, 96.3% and 72.84%, respectively), a low prevalence of the tst gene (13.58%) and a markedly low prevalence of MRSA (1.25%). S. aureus strains isolated from patients in a rural area in Ethiopia showed low levels of antibiotic resistance, except to penicillin. Moreover, this study reveals new STs in Eastern Africa that are phylogenetically related to other previously described STs, and confirm the high prevalence of the pvl gene and the low prevalence of MRSA on the continent.
Collapse
Affiliation(s)
- Cristina Verdú-Expósito
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan Romanyk
- Microbiology Service, Hospital Universitario Príncipe de Asturias, Alcalá-Meco, Alcalá de Henares, Madrid, Spain
| | - Juan Cuadros-González
- Microbiology Service, Hospital Universitario Príncipe de Asturias, Alcalá-Meco, Alcalá de Henares, Madrid, Spain
| | - Abraham TesfaMariam
- Department of General Medicine, Gambo General Rural Hospital, West-Arsi, Ethiopia
| | - José Luis Copa-Patiño
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Jorge Pérez-Serrano
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan Soliveri
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
24
|
Santos V, Gomes A, Ruiz-Ripa L, Mama OM, Sabença C, Sousa M, Silva V, Sousa T, Vieira-Pinto M, Igrejas G, Torres C, Poeta PACQD. Methicillin-Resistant Staphylococcus aureus CC398 in Purulent Lesions of Piglets and Fattening Pigs in Portugal. Microb Drug Resist 2020; 26:850-856. [PMID: 31944873 DOI: 10.1089/mdr.2019.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) is an important clinical problem. In 2005, a livestock-associated MRSA clone was described, named CC398, being mostly associated with pigs, and causing colonization and infection in pigs and in related humans. The prevalence of these strains in food-producing pigs raised concerns about the possibility of MRSA-CC398 being a foodborne pathogen. The objective of this study was to investigate the presence of S. aureus and MRSA in 141 carcasses of pigs at three slaughterhouses of Portugal, discarded from the food chain by signs of infection, and to characterize the recovered isolates. Methods: S. aureus isolates were identified by matrix-assisted laser desorption/ionization time-of-flight and they were typed (spa, CC398-clone, and SCCmec). The study of antibiotic resistance and virulence genes, and the detection of immune evasion cluster genes and prophages were performed by PCR and sequencing. Results: Twenty-eight S. aureus were obtained from 141 samples (one/sample, 19.9%), being 22 MRSA and 6 methicillin-susceptible S. aureus (MSSA). All MRSA strains were typed as CC398 and were ascribed to three spa types (t011, t108, and t1451). The SCCmec detected differed according to the spa types of MRSA isolates (SCCmecV: t011 and t108; SCCmecIVa: t1451). The MSSA strains were classified as spa-t1491-ST1-CC1. All the strains contained a wide range of antimicrobial resistance genes, the resistance to tetracycline being the prevalent one. In contrast, the strains contained only a few virulence genes. Among the 6 integrases of phages tested, three were detected: SΦ1, SΦ2, and SΦ7, with variations between MRSA and MSSA strains. Conclusions: MRSA-CC398 is not only a habitual pig colonizer but also an opportunistic pathogen in these animals, and must be controlled at the level of producers and slaughterhouses because of its impact on public health.
Collapse
Affiliation(s)
- Vânia Santos
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Anícia Gomes
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Laura Ruiz-Ripa
- Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | | | - Carolina Sabença
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Margarida Sousa
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Vanessa Silva
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Associate Laboratory for Green Chemistry-LAQV, Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Telma Sousa
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Associate Laboratory for Green Chemistry-LAQV, Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Patrícia Alexandra Curado Quintas Dinis Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Associate Laboratory for Green Chemistry-LAQV, Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| |
Collapse
|
25
|
Pardo L, Machado V, Cuello D, Aguerrebere P, Seija V, Braga V, Varela G. Macrolide-lincosamide-streptogramin B resistance phenotypes and their associated genotypes in Staphylococcus aureus isolates from a tertiary level public hospital of Uruguay. Rev Argent Microbiol 2020; 52:202-210. [PMID: 31928835 DOI: 10.1016/j.ram.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022] Open
Abstract
This study was undertaken to investigate the resistance phenotypes to macrolide-lincosamide-streptogramin B (MLSB) antibiotics and their associated genotypes in isolates of Staphylococcus aureus. We analyzed one hundred, consecutive, non-duplicate isolates (methicillin-susceptible MSSA, n=53 and methicillin-resistant MRSA, n=47) obtained from various clinical samples between July 2012 to December 2013. The resistance profile to MLSB antibiotics was determined by phenotypic methods and the resistance genes were detected by PCR assays. All of the isolates were subjected to pulsed-field gel electrophoresis (SmaI-PFGE). The overall prevalence of resistance to MLSB antibiotics was 38% and the resistance phenotype distribution was as follows: cMLSB, 22%; iMLSB, 10%; MSB, 5% and L, 1%. We detected ermA, ermC, ermB and mrsA/B genes in these resistant isolates. The single ermA gene was commonly observed mainly in those with a cMLSB R phenotype, whereas the combination ermA and ermC was more commonly observed in isolates with inducible expression. The patterns of SmaI-PFGE suggest a great genetic diversity in both MRSA and MSSA resistant to MLSB antibiotics. The results demonstrate the local presence of S. aureus resistant to MLSB antibiotics and its most frequently described responsible genes. Some of these isolates, especially those with the iMLSB phenotype, may be associated with therapeutic failure. Therefore, efforts should be directed to the correct detection of all MLSB resistant isolates using appropriate laboratory tests. PFGE results reveal a wide spread of resistance genes rather than the circulation of S. aureus clones resistant to MLSB antibiotics.
Collapse
Affiliation(s)
- Lorena Pardo
- Bacteriology and Virology Department, Medicine School, Universidad de la República, Montevideo Alfredo Navarro 3051 (south entrance), 11800, Uruguay
| | - Virginia Machado
- Bacteriology and Virology Department, Medicine School, Universidad de la República, Montevideo Alfredo Navarro 3051 (south entrance), 11800, Uruguay
| | - Dianna Cuello
- Bacteriology and Virology Department, Medicine School, Universidad de la República, Montevideo Alfredo Navarro 3051 (south entrance), 11800, Uruguay
| | - Paula Aguerrebere
- Bacteriology and Virology Department, Medicine School, Universidad de la República, Montevideo Alfredo Navarro 3051 (south entrance), 11800, Uruguay
| | - Verónica Seija
- Bacteriology Laboratory, "Hospital Pasteur", Montevideo, Larravide 2458, 11800, Uruguay; Laboratory of Public Health, Alfredo Navarro 3051 (north-entrance), Montevideo, Uruguay
| | - Valeria Braga
- Bacteriology and Virology Department, Medicine School, Universidad de la República, Montevideo Alfredo Navarro 3051 (south entrance), 11800, Uruguay
| | - Gustavo Varela
- Bacteriology and Virology Department, Medicine School, Universidad de la República, Montevideo Alfredo Navarro 3051 (south entrance), 11800, Uruguay.
| |
Collapse
|
26
|
Sieber RN, Larsen AR, Urth TR, Iversen S, Møller CH, Skov RL, Larsen J, Stegger M. Genome investigations show host adaptation and transmission of LA-MRSA CC398 from pigs into Danish healthcare institutions. Sci Rep 2019; 9:18655. [PMID: 31819134 PMCID: PMC6901509 DOI: 10.1038/s41598-019-55086-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, an increasing number of infections with livestock-associated methicillin-resistant Staphylococcus aureus of clonal complex 398 (LA-MRSA CC398) in persons without contact to livestock has been registered in Denmark. These infections have been suggested to be the result of repeated spillover of random isolates from livestock into the community. However, other studies also found emerging sub-lineages spreading among humans. Based on genome-wide SNPs and genome-wide association studies (GWAS), we assessed the population structure and genomic content of Danish LA-MRSA CC398 isolates from healthcare-associated infections from 2014 to 2016 (n = 73) and compared these to isolates from pigs in Denmark from 2014 (n = 183). Phylogenetic analyses showed that most human isolates were closely related to and scattered among pig isolates showing that the majority of healthcare-associated infections are the result of repeated spillover from pig farms, even though cases of human-to-human transmission also were identified. GWAS revealed frequent loss of antimicrobial resistance genes and acquisition of human-specific virulence genes in the human isolates showing adaptation in response to changes in selective pressures in different host environments, which over time could lead to the emergence of LA-MRSA CC398 lineages more adapted to human colonization and transmission.
Collapse
Affiliation(s)
- Raphael Niklaus Sieber
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Artillerivej 5, 2300, Copenhagen S, Denmark.
| | - Anders Rhod Larsen
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Tinna Ravnholt Urth
- Statens Serum Institut, Department of Infectious Disease Epidemiology & Prevention, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Søren Iversen
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Camilla Holten Møller
- Statens Serum Institut, Department of Infectious Disease Epidemiology & Prevention, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Robert Leo Skov
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Jesper Larsen
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Marc Stegger
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Artillerivej 5, 2300, Copenhagen S, Denmark.
| |
Collapse
|
27
|
Thumu SCR, Halami PM. Heterogeneity of macrolide-lincosamide-streptogramin phenotype & conjugal transfer of erm(B) in Pediococcus pentosaceus. Indian J Med Res 2019; 149:270-275. [PMID: 31219093 PMCID: PMC6563730 DOI: 10.4103/ijmr.ijmr_2055_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives: Pediococcus pentosaceus has been reported to cause clinical infections while it is being promoted as probiotic in food formulations. Antibiotic resistance (AR) genes in this species are a matter of concern for treating clinical infections. The present study was aimed at understanding the phenotypic resistance of P. pentosaceus to macrolide-lincosamide-streptogramin B (MLSB) antibiotics and the transfer of AR to pathogens. Methods: P. pentosacues isolates (n=15) recovered from fermented foods were screened for phenotypic resistance to MLSB antibiotics using disc diffusion and microbroth dilution methods. Localization and transferability of the identified resistance genes, erm(B) and msr(C) were evaluated through Southern hybridization and in vitro conjugation methods. Results: Four different phenotypes; sensitive (S) (n=5), macrolide (M) (n=7), lincosamide (L) (n=2) and constitutive (cMLSB) (n=1) were observed among the 15 P. pentosaceus isolates. High-level resistance (>256 μg/ml) to MLSB was observed with one cMLSB phenotypic isolate IB6-2A. Intermediate resistance (8-16 μg/ml) to macrolides and lincosamides was observed among M and L phenotype isolates, respectively. Cultures with S phenotype were susceptible to all other antibiotics but showed unusual minimum inhibitory concentration (MIC) values of 8-16 μg/ml for azithromycin. Southern hybridization studies revealed that resistance genes localized on the plasmids could be conjugally transferred to Enterococcus faecalis JH2-2. Interpretation & conclusions: The study provides insights into the emerging novel resistance patterns in P. pentosaceus and their ability to disseminate AR. Monitoring their resistance phenotypes before use of MLS antibiotics can help in successful treatment of Pediococcal infections in humans.
Collapse
Affiliation(s)
| | - Prakash M Halami
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
28
|
Epidemiology and antimicrobial resistance of methicillin-resistant Staphylococcus aureus isolates colonizing pigs with different exposure to antibiotics. PLoS One 2019; 14:e0225497. [PMID: 31747427 PMCID: PMC6867694 DOI: 10.1371/journal.pone.0225497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/23/2022] Open
Abstract
Background In 2016, very high rates of methicillin-resistant Staphylococcus aureus (MRSA)-ST398 (99%) were found in Portuguese pig farms that used colistin, amoxicillin, and zinc oxide as feed additives. Since then, farms A and B banned the use of colistin, and farm C banned the use of both antibiotics. Objective The aim of the present study was to evaluate the impact of the ban of colistin and amoxicillin on pig MRSA carriage rates, clonal types and antimicrobial resistance, compared to the results obtained in 2016. Methods In 2018, 103 pigs (52 from farm B using amoxicillin only as a feed additive and 51 from farm C where no antibiotics were included in the feed regimen) were nasally swabbed for MRSA colonization. Isolates were tested for antimicrobial susceptibility, and characterised by spa typing, SCCmec typing and MLST. Whole genome sequencing (WGS) was performed for representative isolates. Results Overall, 96% of the pigs swabbed in 2018 carried MRSA, mostly ST398-SCCmec V-spa types t011/t108. MRSA from pigs not receiving antibiotics in the feed regimen showed susceptibility to a higher number of antibiotics, namely erythromycin, ciprofloxacin, gentamicin, and chloramphenicol. Notably, most of these isolates (n = 52) presented an unusual erythromycin-susceptibility/clindamycin-resistance phenotype. WGS showed that these isolates lacked the erm and the lnu genes encoding resistance to macrolides and lincosamides, respectively, but carried the vgaALC gene encoding resistance to lincosamides, which is here firstly identified in S. aureus ST398. Conclusion After two years the ban of colistin and amoxicillin as feed additives had no significant impact on the MRSA nasal carriage rates. Nevertheless, the MRSA strains circulating in those farms showed resistance to a lower number of antibiotic classes.
Collapse
|
29
|
Ruiz-Ripa L, Gómez P, Alonso CA, Camacho MC, de la Puente J, Fernández-Fernández R, Ramiro Y, Quevedo MA, Blanco JM, Zarazaga M, Höfle U, Torres C. Detection of MRSA of Lineages CC130-mecC and CC398-mecA and Staphylococcus delphini-lnu(A) in Magpies and Cinereous Vultures in Spain. MICROBIAL ECOLOGY 2019; 78:409-415. [PMID: 30694341 DOI: 10.1007/s00248-019-01328-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to determine the carriage rate of coagulase-positive staphylococci (CoPS) in wild birds and to characterize recovered isolates. Tracheal samples from 324 wild birds, obtained in different Spanish regions during 2015-2016, were screened for CoPS carriage. The antimicrobial resistance profile and the virulence gene content were investigated. Molecular typing was performed by spa, agr, MLST, SCCmec, and S. delphini group classification. CoPS were recovered from 26 samples of wild birds (8.3%), and 27 isolates were further characterized. Two CoPS species were detected: S. aureus (n = 15; eight cinereous vultures and seven magpies) and S. delphini (n = 12; 11 cinereous vultures and one red kite). Thirteen S. aureus were methicillin-resistant (MRSA) and the remaining two strains were methicillin-susceptible (MSSA). Twelve MRSA were mecC-positive, typed as t843-ST1583/ST1945/ST1581/ST1571 (n = 11) and t1535-ST1945 (n = 1) (all of clonal-complex CC130); they were susceptible to the non-β-lactams tested. The remaining MRSA strain carried the mecA gene, was typed as t011-ST398-CC398-agrI-SCCmec-V, and showed a multiresistance phenotype. MSSA isolates were ascribed to lineages ST97-CC97 and ST425-CC425. All S. aureus lacked the studied virulence genes (lukS/F-PV, tst, eta, etb, and etd), and the IEC type E (with scn and sak genes) was detected in four mecC-positive and one MSSA isolates. S. delphini strains were methicillin-susceptible but showed resistance to at least one of the antimicrobials tested, with high penicillin (75%, with blaZ gene) and tetracycline [58%, with tet(K)± tet(L)] resistance rates. All S. delphini isolates presented the virulence genes lukS-I, siet, and se-int, and four carried the clindamycin-resistance lnu(A) gene.
Collapse
Affiliation(s)
- Laura Ruiz-Ripa
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | - Paula Gómez
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | - Carla Andrea Alonso
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | - Maria Cruz Camacho
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Javier de la Puente
- SEO/BirdLife, Bird Monitoring Unit, Madrid, Spain
- Parque Nacional de la Sierra de Guadarrama, Centro de Investigación, Seguimiento y Evaluación, Rascafría, Madrid, Spain
| | - Rosa Fernández-Fernández
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | - Yolanda Ramiro
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | | | - Myriam Zarazaga
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | - Ursula Höfle
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain.
| |
Collapse
|
30
|
Zhou K, Zhu D, Tao Y, Xie L, Han L, Zhang Y, Sun J. New genetic context of lnu(B) composed of two multi-resistance gene clusters in clinical Streptococcus agalactiae ST-19 strains. Antimicrob Resist Infect Control 2019; 8:117. [PMID: 31346458 PMCID: PMC6632187 DOI: 10.1186/s13756-019-0563-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
Background Clindamycin is a lincosamide antibiotic used to treat staphylococcal and streptococcal infections. Reports of clinical Streptococcus agalactiae isolates with the rare lincosamide resistance/macrolide susceptibility (LR/MS) phenotype are increasing worldwide. In this study, we characterised three clinical S. agalactiae strains with the unusual L phenotype from China. Methods Three clinical S. agalactiae strains, Sag3, Sag27 and Sag4104, with the L phenotype were identified from 186 isolates collected from 2016 to 2018 in Shanghai, China. The MICs of clindamycin, erythromycin, tetracycline, levofloxacin, and penicillin were determined using Etest. PCR for the lnu(B) gene was conducted. Whole genome sequencing and sequence analysis were carried out to investigate the genetic context of lnu(B). Efforts to transfer lincomycin resistance by conjugation and to identify the circular form by inverse PCR were made. Results Sag3, Sag27, and Sag4104 were susceptible to erythromycin (MIC ≤0.25 mg/L) but resistant to clindamycin (MIC ≥1 mg/L). lnu(B) was found to be responsible for the L phenotype. lnu(B) in Sag3 and Sag27 were chromosomally located in an aadE-spw-lsa(E)-lnu(B) resistance gene cluster adjacent to an upstream 7-kb tet(L)-cat resistance gene cluster. Two resistance gene clusters were flanked by the IS6-like element, IS1216. Sag4104 only contained partial genes of aadE-spw-lsa(E)-lnu(B) resistance gene cluster and was also flanked by IS1216. Conclusion These results established the presence of the L phenotype associated with lnu(B) in clinical S. agalactiae isolates in China. The lnu(B)-containing multi-resistance gene cluster possibly acts as a composite transposon flanked by IS1216 and as a vehicle for the dissemination of multidrug resistance among S. agalactiae.
Collapse
Affiliation(s)
- Kaixin Zhou
- 1Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025 China
| | - Dongan Zhu
- 2Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399 China
| | - Ying Tao
- 1Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025 China
| | - Lianyan Xie
- 1Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025 China
| | - Lizhong Han
- 1Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025 China
| | - Yibo Zhang
- 3Department of Hospital infection control, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025 China
| | - Jingyong Sun
- 1Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025 China
| |
Collapse
|
31
|
Mascaro V, Capano MS, Iona T, Nobile CGA, Ammendolia A, Pavia M. Prevalence of Staphylococcus aureus carriage and pattern of antibiotic resistance, including methicillin resistance, among contact sport athletes in Italy. Infect Drug Resist 2019; 12:1161-1170. [PMID: 31123413 PMCID: PMC6511236 DOI: 10.2147/idr.s195749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/23/2022] Open
Abstract
Background and purpose: Athletes participating in contact or collision sports have a great chance of acquiring Staphylococcus aureus infections. The risk factors for colonization and infections include frequent antibiotic use, close contact situations, skin trauma, sharing of sports equipment, and poor hygiene. Therefore, our specific goals were to determine (1) prevalence of S. aureus among different types of contact sport athletes which were barely studied in the European region, (2) antimicrobial resistance of S. aureus isolates, and (3) association of carriage with particular risk factors of spor t practices. Patients and methods: A cross-sectional study was conducted among contact or collision sport athletes in Italy. A questionnaire was used to gather information about sociodemographic characteristics, specific sport activities, and participants’ health conditions. Swabs were collected from the nares, oropharynx, and fingers and tested for S. aureus isolation and antimicrobial susceptibility. Results:S. aureus was carried by 42% of 238 enrolled athletes. Colonization was associated with number of weekly training days, sharing of sports equipment, not taking a shower immediately after training, and a previous history of pharyngitis or sinusitis and skin manifestations. Isolates were resistant to clindamycin (24.8%) and erythromycin (15.8%). Of all athletes, 1.3% carried methicillin-resistant S. aureus (MRSA); MRSA were 3% of all S. aureus isolates. No strains were resistant to sulfamethoxazole/trimethoprim. Conclusion: Our results have shown a high prevalence of S. aureus carriage and a relevant resistance to antimicrobials used for the treatment of S. aureus infections. Prevention efforts aimed at reducing S. aureus colonization, and thus potentially reducing infections, should be improved.
Collapse
Affiliation(s)
- Valentina Mascaro
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Maria Simona Capano
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Teresa Iona
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | | | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Maria Pavia
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| |
Collapse
|
32
|
Mama OM, Ruiz-Ripa L, Lozano C, González-Barrio D, Ruiz-Fons JF, Torres C. High diversity of coagulase negative staphylococci species in wild boars, with low antimicrobial resistance rates but detection of relevant resistance genes. Comp Immunol Microbiol Infect Dis 2019; 64:125-129. [PMID: 31094318 DOI: 10.1016/j.cimid.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/27/2023]
Abstract
This work was focused to determine the prevalence and the species diversity of coagulase-negative staphylococci (CoNS) in wild boars, and to study their antimicrobial resistance phenotype and genotype. Nasal samples of 371 wild boars from six Spanish regions were collected for CoNS recovery. The identification was performed by MALDI-TOF mass-spectrometry. Antimicrobial susceptibility for eight antimicrobial agents was studied by disc-diffusion method and the presence of 31 antimicrobial resistance genes by PCR. CoNS were detected in nasal samples of 136/371 animals tested (36.6%), and 161 isolates were obtained (1-3/animal); a high diversity of species was found (n = 17), with predominance of S. sciuri (n = 64), S. xylosus (n = 21) and S. chromogenes (n = 17). Among CoNS isolates, 22.4% showed resistance to at least one antimicrobial tested. Tetracycline-resistance phenotype was the most frequently detected (10.5%), generally mediated by tet(K) gene [associated or not with tet(L)]. Other relevant resistance genes were identified including unusual ones [mecA, erm(B), erm(F), mphC, erm(43), msr(A)/msr(B), lnu(A), dfrG, fexA, and catpC221]. This is the first study in which CoNS isolates from wild boars are analysed. The knowledge of antimicrobial phenotype and genotype of CoNS in natural ecosystems is highly important since these staphylococcal species can act as vectors of relevant antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
| | - Laura Ruiz-Ripa
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Carmen Lozano
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - David González-Barrio
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Jose Francisco Ruiz-Fons
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain.
| |
Collapse
|
33
|
Liang Y, Tu C, Tan C, El-Sayed Ahmed MAEG, Dai M, Xia Y, Liu Y, Zhong LL, Shen C, Chen G, Tian GB, Liu J, Zheng X. Antimicrobial resistance, virulence genes profiling and molecular relatedness of methicillin-resistant Staphylococcus aureus strains isolated from hospitalized patients in Guangdong Province, China. Infect Drug Resist 2019; 12:447-459. [PMID: 30881052 PMCID: PMC6394240 DOI: 10.2147/idr.s192611] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PURPOSE The main objective of this study was to decipher the prevalence, antimicrobial resistance, major virulence genes and the molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolated from different clinical sources in southern China. MATERIALS AND METHODS The present study was performed on 187 non-duplicate S. aureus clinical isolates collected from three tertiary hospitals in Guangdong Province, China, 2010-2016. Antimicrobial susceptibility testing was performed by the disk diffusion method and by measuring the minimum inhibitory concentration. Screening for resistance and virulence genes was performed. Clonal relatedness was determined using various molecular typing methods such as multilocus sequence typing, spa and staphylococcal chromosomal cassette mec (SCCmec) typing. Whole genome sequencing was performed for three selected isolates. RESULTS Out of 187 isolates, 103 (55%) were identified as MRSA. The highest prevalence rate was found among the skin and soft tissue infection (SSTI) samples (58/103), followed by sputum samples (25/103), blood stream infection samples (15/103) and others (5/103). Antimicrobial susceptibility results revealed high resistance rates for erythromycin (64.1%), clindamycin (48.5%), gentamicin (36.9%) and ciprofloxacin (33.98%). All isolates were susceptible to vancomycin. Resistance genes and mutation detected were as follows: aac(6')-aph(2") (24.3%), dfrG (10.7%), rpoB (21.4%), cfr (0%), fexA (1.94%), gyrA (35.92%), gyrB (0.97%), grlA (20.4%), grlB (10.68%), ermA (21.4%), ermB (18.44%), ermC (21.4%) and lnuA (18.44%). Profiling of virulence genes revealed the following: sea (11.7%), seb (21.4%), sec (0.97%), sed (0.97%), hla (86.41%), hlb (17.48%), hlg (10.68%), hld (53.4%), Tsst-1 (3.9%) and pvl (27.2%). Clonal relatedness showed that ST239-SCCmecA III-t37 clone was the most prevalent clone. CONCLUSION Our study elucidated the prevalence, antibiotic resistance, pathogenicity and molecular characteristics of MRSA isolated from various clinical sources in Guangdong, China. We found that the infectious rate of MRSA was higher among SSTI than other sources. The most predominant genotype was ST239-SCCmecA III-t37 clone, indicating that ST239-t30 clone which was previously predominant had been replaced by a new clone.
Collapse
Affiliation(s)
- Yingjian Liang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| | - Changli Tu
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| | - Cuiyan Tan
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Liu
- Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Lan-Lan Zhong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Cong Shen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Guanping Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Guo-Bao Tian
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Jing Liu
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| | - Xiaobin Zheng
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| |
Collapse
|
34
|
Feßler A, Kadlec K, Wang Y, Zhang WJ, Wu C, Shen J, Schwarz S. Small Antimicrobial Resistance Plasmids in Livestock-Associated Methicillin-Resistant Staphylococcus aureus CC398. Front Microbiol 2018; 9:2063. [PMID: 30283407 PMCID: PMC6157413 DOI: 10.3389/fmicb.2018.02063] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/13/2018] [Indexed: 12/03/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of the clonal complex 398 are often resistant to a number of antimicrobial agents. Studies on the genetic basis of antimicrobial resistance in these bacteria identified SCCmec cassettes, various transposons and plasmids of different sizes that harbor antimicrobial resistance genes. While large plasmids that carry multiple antimicrobial resistance genes – occasionally together with heavy metal resistance genes and/or virulence genes – are frequently seen in LA-MRSA ST398, certain resistance genes are also associated with small plasmids of up to 15 kb in size. These small resistance plasmids usually carry only one, but in rare cases also two or three antimicrobial resistance genes. In the current review, we focus on small plasmids that carry the macrolide-lincosamide-streptogramin B resistance genes erm(C) or erm(T), the lincosamide resistance gene lnu(A), the pleuromutilin-lincosamide-streptogramin A resistance genes vga(A) or vga(C), the spectinomycin resistance gene spd, the apramycin resistance gene apmA, or the trimethoprim resistance gene dfrK. The detailed analysis of the structure of these plasmids allows comparisons with similar plasmids found in other staphylococci and underlines in many cases an exchange of such plasmids between LA-MRSA ST398 and other staphylococci including also coagulase-negative staphylococci.
Collapse
Affiliation(s)
- Andrea Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wan-Jiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Feßler AT, Wang Y, Wu C, Schwarz S. Mobile lincosamide resistance genes in staphylococci. Plasmid 2018; 99:22-31. [DOI: 10.1016/j.plasmid.2018.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 01/31/2023]
|
36
|
Fabre A, Oleastro M, Nunes A, Santos A, Sifré E, Ducournau A, Bénéjat L, Buissonnière A, Floch P, Mégraud F, Dubois V, Lehours P. Whole-Genome Sequence Analysis of Multidrug-Resistant Campylobacter Isolates: a Focus on Aminoglycoside Resistance Determinants. J Clin Microbiol 2018; 56:e00390-18. [PMID: 29976591 PMCID: PMC6113490 DOI: 10.1128/jcm.00390-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/28/2018] [Indexed: 01/03/2023] Open
Abstract
A whole-genome sequencing (WGS) approach was conducted in order to identify the molecular determinants associated with antimicrobial resistance in 12 multidrug-resistant Campylobacter jejuni and Campylobacter coli isolates, with a focus on aminoglycoside resistance determinants. Two variants of a new aminoglycoside phosphotransferase gene [aph(2″)-Ii1 and aph(2″)-Ii2 ] putatively associated with gentamicin resistance were found. In addition, the following new genes were identified for the first time in Campylobacter: a lincosamide nucleotidyltransferase gene [lnu(G)], likely associated with lincomycin resistance, and two resistance enzyme genes (spw and apmA) similar to those found in Staphylococcus aureus, which may confer spectinomycin and gentamicin resistance, respectively. A C1192T mutation of the 16S rRNA gene that may be involved in spectinomycin resistance was also found in a C. coli isolate. Genes identified in the present study were located either on the bacterial chromosome or on plasmids that could be transferred naturally. Their role in aminoglycoside resistance remains to be supported by genetic studies. Regarding the other antimicrobial agents studied, i.e., ampicillin, ciprofloxacin, erythromycin, and tetracycline, a perfect correlation between antimicrobial phenotypes and genotypes was found. Overall, our data suggest that WGS analysis is a powerful tool for identifying resistance determinants in Campylobacter and can disclose the full genetic elements associated with resistance, including antimicrobial compounds not tested routinely in antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Adrien Fabre
- CHU de Bordeaux, National Reference Center for Campylobacter and Helicobacter, Bordeaux, France
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Monica Oleastro
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Andrea Santos
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Elodie Sifré
- CHU de Bordeaux, National Reference Center for Campylobacter and Helicobacter, Bordeaux, France
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Astrid Ducournau
- CHU de Bordeaux, National Reference Center for Campylobacter and Helicobacter, Bordeaux, France
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Lucie Bénéjat
- CHU de Bordeaux, National Reference Center for Campylobacter and Helicobacter, Bordeaux, France
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Alice Buissonnière
- CHU de Bordeaux, National Reference Center for Campylobacter and Helicobacter, Bordeaux, France
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Pauline Floch
- CHU de Bordeaux, National Reference Center for Campylobacter and Helicobacter, Bordeaux, France
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Francis Mégraud
- CHU de Bordeaux, National Reference Center for Campylobacter and Helicobacter, Bordeaux, France
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | | | - Philippe Lehours
- CHU de Bordeaux, National Reference Center for Campylobacter and Helicobacter, Bordeaux, France
- INSERM, University of Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| |
Collapse
|
37
|
Schwarz S, Feßler AT, Loncaric I, Wu C, Kadlec K, Wang Y, Shen J. Antimicrobial Resistance among Staphylococci of Animal Origin. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0010-2017. [PMID: 29992898 PMCID: PMC11633598 DOI: 10.1128/microbiolspec.arba-0010-2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial resistance among staphylococci of animal origin is based on a wide variety of resistance genes. These genes mediate resistance to many classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. In addition, numerous mutations have been identified that confer resistance to specific antimicrobial agents, such as ansamycins and fluoroquinolones. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents, including agents approved solely for human use. The resistance genes code for all three major resistance mechanisms: enzymatic inactivation, active efflux, and protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate not only the exchange of resistance genes among members of the same and/or different staphylococcal species, but also between staphylococci and other Gram-positive bacteria. The observation that plasmids of staphylococci often harbor more than one resistance gene points toward coselection and persistence of resistance genes even without direct selective pressure by a specific antimicrobial agent. This chapter provides an overview of the resistance genes and resistance-mediating mutations known to occur in staphylococci of animal origin.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt-Mariensee, Germany
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
38
|
Characterisation of a ST100 Staphylococcus epidermidis producing an LnuB nucleotidyltransferase: Evidence for interspecies spread of an lnuB -carrying transposon. J Glob Antimicrob Resist 2018; 13:9-10. [DOI: 10.1016/j.jgar.2018.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/23/2022] Open
|
39
|
Zhu XQ, Wang XM, Li H, Shang YH, Pan YS, Wu CM, Wang Y, Du XD, Shen JZ. Novel lnu(G) gene conferring resistance to lincomycin by nucleotidylation, located on Tn6260 from Enterococcus faecalis E531. J Antimicrob Chemother 2017; 72:993-997. [PMID: 28039271 DOI: 10.1093/jac/dkw549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/22/2016] [Indexed: 11/12/2022] Open
Abstract
Objectives To identify a novel putative lincosamide resistance gene determinant in a swine Enterococcus faecalis E531 exhibiting a lincosamide resistance/macrolide susceptibility (L R M S ) phenotype and to determine its location and genetic environment. Methods The whole genomic DNA of E. faecalis E531, which tested negative for the known lincosamide nucleotidyltransferase genes, was sequenced. A putative lincosamide resistance gene determinant was cloned into an Escherichia coli - E. faecalis shuttle vector (pAM401) and transformed into E. faecalis JH2-2. The MICs were determined by the microbroth dilution method. Inactivity of lincomycin was examined by UPLC-MS/MS. Inverse PCR and primer walking were used to explore the genetic environment based on the assembled sequence. Results A novel resistance gene, designated lnu (G), which encodes a putative lincosamide nucleotidyltransferase, was found in E. faecalis E531. The deduced Lnu(G) amino acid sequence displayed 76.0% identity to Lnu(B) in Enterococcus faecium . Both E. faecalis E531 and E. faecalis JH2-2 harbouring pAM401- lnu (G) showed a 4-fold increase in the MICs of lincomycin, compared with E. faecalis JH2-2 or E. faecalis JH2-2 harbouring empty vector pAM401 only. UPLC-MS/MS demonstrated that the Lnu(G) enzyme catalysed adenylylation of lincomycin. The genetic environment analysis revealed that the lnu (G) gene was embedded into a novel putative transposon, designated Tn 6260 , which was active. Conclusions A novel lincosamide nucleotidyltransferase gene lnu (G) was identified in E. faecalis . The location of the lnu (G) gene on a mobile element Tn 6260 makes it easy to disseminate.
Collapse
Affiliation(s)
- Xiao-Qing Zhu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xiao-Ming Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Hui Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yan-Hong Shang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Yu-Shan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Cong-Ming Wu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Jian-Zhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
40
|
Mišić M, Čukić J, Vidanović D, Šekler M, Matić S, Vukašinović M, Baskić D. Prevalence of Genotypes That Determine Resistance of Staphylococci to Macrolides and Lincosamides in Serbia. Front Public Health 2017; 5:200. [PMID: 28894731 PMCID: PMC5581325 DOI: 10.3389/fpubh.2017.00200] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022] Open
Abstract
Macrolides, lincosamides, and streptogramins (MLS) resistance genes are responsible for resistance to these antibiotics in Staphylococcus infections. The purpose of the study was to analyze the distribution of the MLS resistance genes in community- and hospital-acquired Staphylococcus isolates. The MLS resistance phenotypes [constitutive resistance to macrolide–lincosamide–streptogramin B (cMLSb), inducible resistance to macrolide–lincosamide–streptogramin B (iMLSb), resistance to macrolide/macrolide–streptogramin B (M/MSb), and resistance to lincosamide–streptogramin A/streptogramin B (LSa/b)] were determined by double-disc diffusion method. The presence of the MLS resistance genes (ermA, ermB, ermC, msrA/B, lnuA, lnuB, and lsaA) were determined by end-point polymerase chain reaction in 179 isolates of staphylococci collected during 1-year period at the Center for Microbiology of Public Health Institute in Vranje. The most frequent MLS phenotype among staphylococcal isolates, both community-acquired and hospital-acquired, was iMLSb (33.4%). The second most frequent was M/MSb (17.6%) with statistically significantly higher number of hospital-acquired staphylococcal isolates (p < 0.05). MLS resistance was mostly determined by the presence of msrA/B (35.0%) and ermC (20.8%) genes. Examined phenotypes were mostly determined by the presence of one gene, especially by msrA/B (26.3%) and ermC (14.5%), but 15.6% was determined by a combination of two or more genes. M/MSb phenotype was the most frequently encoded by msrA/B (95.6%) gene, LSa/b phenotype by lnuA (56.3%) gene, and iMLSb phenotype by ermC (29.4%) and ermA (25.5%) genes. Although cMLSb phenotype was mostly determined by the presence of ermC (28.9%), combinations of two or more genes have been present too. This pattern was particularly recorded in methicillin-resistant Staphylococcus aureus (MRSA) (58.3%) and methicillin-resistant coagulase-negative staphylococci (MRCNS) (90.9%) isolates with cMLSB phenotype. The msrA/B gene and M/MSb phenotype were statistically significantly higher in hospital-acquired than community-acquired staphylococci strains (p < 0.05). There are no statistically significant differences between staphylococci harboring the rest of MLS resistance genes acquired in community and hospital settings (p > 0.05). The prevalence of iMLSb phenotypes may change over time, so it is necessary to perform periodic survey of MLS resistance phenotypes, particularly where the D-test is not performed routinely.
Collapse
Affiliation(s)
- Milena Mišić
- Department of Microbiology, Public Health Institute Vranje, Vranje, Serbia
| | - Jelena Čukić
- Department of Clinical Microbiology, Laboratory for Virology, Serology, Immunology and Molecular Diagnostics, Public Health Institute Kragujevac, Kragujevac, Serbia
| | - Dejan Vidanović
- Department of Laboratory Diagnostics, National Reference Laboratory for Avian Influenza and Newcastle Disease of Poultry Republic of Serbia, Veterinary Specialized Institute Kraljevo, Kraljevo, Serbia
| | - Milanko Šekler
- Department of Laboratory Diagnostics, National Reference Laboratory for Avian Influenza and Newcastle Disease of Poultry Republic of Serbia, Veterinary Specialized Institute Kraljevo, Kraljevo, Serbia
| | - Sanja Matić
- Faculty of Medical Sciences, Doctoral Studies, University of Kragujevac, Kragujevac, Serbia
| | - Mihailo Vukašinović
- Faculty of Medical Sciences, Doctoral Studies, University of Kragujevac, Kragujevac, Serbia
| | - Dejan Baskić
- Department of Clinical Microbiology, Laboratory for Virology, Serology, Immunology and Molecular Diagnostics, Public Health Institute Kragujevac, Kragujevac, Serbia.,Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
41
|
Hawkins PA, Law CS, Metcalf BJ, Chochua S, Jackson DM, Westblade LF, Jerris R, Beall BW, McGee L. Cross-resistance to lincosamides, streptogramins A and pleuromutilins in Streptococcus agalactiae isolates from the USA. J Antimicrob Chemother 2017; 72:1886-1892. [PMID: 28333320 PMCID: PMC5733627 DOI: 10.1093/jac/dkx077] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/16/2017] [Indexed: 11/12/2022] Open
Abstract
Background Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of meningitis, sepsis and pneumonia in neonates in the United States. GBS also causes invasive disease in older infants, pregnant women, children and young adults with underlying medical conditions, and older adults. Resistance to lincosamides in the absence of erythromycin resistance is rare in GBS, but has been previously reported in clinical isolates, both on its own or in combination with resistance to streptogramins A and pleuromutilins (L/LSA/LSAP phenotypes). Objectives To retrospectively screen the Active Bacterial Core surveillance (ABCs) GBS isolate collection for these phenotypes in order to identify the causal genetic determinants and determine whether their frequency is increasing. Methods Based on MIC data, 65 (0.31%) isolates susceptible to erythromycin (MIC ≤0.25 mg/L) and non-susceptible to clindamycin (MIC ≥0.5 mg/L) were identified among 21 186 GBS isolates. Genomic DNA was extracted and WGS was performed. The presence of 10 genes previously associated with LSA resistance was investigated by read mapping. Results Forty-nine (75%) isolates carried the lsa (C) gene and expressed the LSAP phenotype, and 12 (18%) carried both the lnu (B) and lsa (E) genes and expressed the LSAP phenotype. The four remaining isolates were negative for all determinants investigated. Conclusions While the overall observed frequency of these phenotypes among our GBS isolates was quite low (0.31%), this frequency has increased in recent years. To the best of our knowledge, this is the first time the LSAP phenotype has been reported among GBS isolates from the USA.
Collapse
Affiliation(s)
- Paulina A. Hawkins
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Caitlin S. Law
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Sopio Chochua
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
42
|
Escolar C, Gómez D, Del Carmen Rota García M, Conchello P, Herrera A. Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. Foodborne Pathog Dis 2017; 14:357-363. [PMID: 28355096 DOI: 10.1089/fpd.2016.2248] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this work was to investigate the antimicrobial resistance in Listeria spp. isolated from food of animal origin. A total of 50 Listeria strains isolated from meat and dairy products, consisting of 7 Listeria monocytogenes and 43 Listeria innocua strains, were characterized for antimicrobial susceptibility against nine antimicrobials. The strains were screened by real-time PCR for the presence of antimicrobial resistance genes: tet M, tet L, mef A, msr A, erm A, erm B, lnu A, and lnu B. Multidrug resistance was identified in 27 Listeria strains, 4 belonging to L. monocytogenes. Resistance to clindamycin was the most common resistance phenotype and was identified in 45 Listeria strains; the mechanisms of resistance are still unknown. A medium prevalence of resistance to tetracycline (15 and 9 resistant and intermediate strains) and ciprofloxacin (13 resistant strains) was also found. Tet M was detected in Listeria strains with reduced susceptibility to tetracycline, providing evidence that both L. innocua and L. monocytogenes displayed acquired resistance. The presence of antimicrobial resistance genes in L. innocua and L. monocytogenes indicates that these genes may be transferred to commensal and pathogenic bacteria via the food chain; besides this, antibiotic resistance in L. monocytogenes could compromise the effective treatment of listeriosis in humans.
Collapse
Affiliation(s)
- Cristina Escolar
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Diego Gómez
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - María Del Carmen Rota García
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Pilar Conchello
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Antonio Herrera
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| |
Collapse
|
43
|
Antimicrobial susceptibility of clinical isolates of Actinomyces and related genera reveals an unusual clindamycin resistance among Actinomyces urogenitalis strains. J Glob Antimicrob Resist 2017; 8:115-120. [DOI: 10.1016/j.jgar.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/29/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022] Open
|
44
|
The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J 2017; 15:e04694. [PMID: 32625402 PMCID: PMC7009883 DOI: 10.2903/j.efsa.2017.4694] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The data on antimicrobial resistance in zoonotic and indicator bacteria in 2015, submitted by 28 EU Member States (MSs), were jointly analysed by EFSA and ECDC. Resistance in zoonotic Salmonella and Campylobacter from humans, animals and food, and resistance in indicator Escherichia coli as well as meticillin‐resistant Staphylococcus aureus in animals and food were addressed. ‘Microbiological’ resistance was assessed using epidemiological cut‐off (ECOFF) values; for some countries, qualitative data on human isolates were interpreted in a way which corresponds closely to the ECOFF‐defined ‘microbiological’ resistance. In Salmonella from humans, high proportions of isolates were resistant to ampicillin, sulfonamides and tetracyclines, whereas resistance to third‐generation cephalosporins was low. In Salmonella and Escherichia coli isolates from fattening pigs and calves under one year of age, resistance to ampicillin, tetracyclines and sulfonamides was frequently detected, whereas resistance to third‐generation cephalosporins was uncommon. For the first time, presumptive extended‐spectrum beta‐lactamase (ESBL)‐/AmpC‐/carbapenemase‐production in Salmonella and Escherichia coli was monitored in humans (Salmonella), meat (pork and beef), fattening pigs and calves. Varying occurrence/prevalence rates of ESBL‐/AmpC‐producers were observed between countries, and carbapenemase‐producing Escherichia coli were detected in single samples of pig meat and from fattening pigs from two MSs. Resistance to colistin was observed at low levels in Salmonella and Escherichia coli from fattening pigs and calves under one year of age and meat thereof. In Campylobacter from humans, high to extremely high proportions of isolates were resistant to ciprofloxacin and tetracyclines, particularly in C. coli. In a few countries, a third to half of C. coli in humans were resistant also to erythromycin, leaving few options for treatment of severe Campylobacter infections. High resistance to ciprofloxacin and tetracyclines was observed in C. coli isolates from fattening pigs, whereas much lower levels were recorded for erythromycin. Co‐resistance to critically important antimicrobials in both human and animal isolates was generally uncommon.
Collapse
|
45
|
Reynaga E, Navarro M, Vilamala A, Roure P, Quintana M, Garcia-Nuñez M, Figueras R, Torres C, Lucchetti G, Sabrià M. Prevalence of colonization by methicillin-resistant Staphylococcus aureus ST398 in pigs and pig farm workers in an area of Catalonia, Spain. BMC Infect Dis 2016; 16:716. [PMID: 27894267 PMCID: PMC5127002 DOI: 10.1186/s12879-016-2050-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/21/2016] [Indexed: 11/30/2022] Open
Abstract
Background A livestock-associated clonal lineage (ST398) of methicillin-resistant Staphylococcus aureus (MRSA) has been identified causing colonization or infection in farm workers. The aim of the study was to analyze the prevalence of MRSA-ST398 colonization in pigs and in pig farmers in an area with a high pig population (Osona, Barcelona province, Catalonia, Spain). Methods We performed a cross-sectional prevalence study in Osona (Catalonia, Spain), from June 2014 to June 2015. All pig farm workers from 83 farms were studied. Twenty of these farms were randomly selected for the study of both pigs and farmers: 9 fattening and 11 farrow-to-finish farms. All workers over the age of 18 who agreed to participate were included. Samples were analyzed to identify MRSA-ST398 and their spa type. Results Eighty-one of the 140 pig farm workers analyzed (57.9% (95% IC: 50.0–66.4%)) were MRSA-positive, all of them ST398. The mean number of years worked on farms was 17.5 ± 12.6 (range:1–50), without significant differences between positive and negative MRSA results (p = 0.763). Over 75% of MRSA-ST398 carriers worked on farms with more than 1250 pigs (p < 0.001). At least one worker tested positive for MRSA-ST398 on all 20 selected pig farms. Ninety-two (46.0% (95% IC: 39.0–53.0%)) of the nasal swabs from 200 pigs from these 20 farms were MRSA-positive, with 50.5% of sows and 41.4% of fattening pigs (p = 0.198) giving MRSA-positive results. All the isolates were tetracycline-resistant, and were identified as MRSA-ST398. The spa type identified most frequently was t011 (62%). Similar spa types and phenotypes of antibiotic resistance were identified in pigs and farmers of 19/20 tested farms. Conclusions The prevalence of MRSA-ST398 among pig farm workers and pigs on farms in the studied region is very high, and the size of the farm seems to correlate with the frequency of colonization of farmers. The similar spa-types and phenotypes of resistance detected in pigs and workers in most of the farms studied suggest animal-to-human transmission.
Collapse
Affiliation(s)
- Esteban Reynaga
- Department of Internal Medicine, Hospital Universitari de Vic, Barcelona, Spain. .,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Marian Navarro
- Microbiology Department, Hospital Universitari de Vic, Barcelona, Spain
| | - Anna Vilamala
- Microbiology Department, Hospital Universitari de Vic, Barcelona, Spain
| | - Pere Roure
- Epidemiology Department, Hospital Universitari de Vic, Barcelona, Spain
| | - Manuel Quintana
- Epidemiology Department Hospital Vall d'Hebron, Barcelona, Spain
| | - Marian Garcia-Nuñez
- Infectious Diseases Unit, Health Sciences Research Institute of the Germans Trias i Pujol Foundation, Badalona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Raül Figueras
- Veterinary, Associació Tecnicosanitària del Porcí (ASSAPORC), Vic, Barcelona, Spain
| | - Carmen Torres
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Gianni Lucchetti
- Department of Internal Medicine, Hospital Universitari de Vic, Barcelona, Spain
| | - Miquel Sabrià
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Infectious Diseases Unit, Health Sciences Research Institute of the Germans Trias i Pujol Foundation, Badalona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| |
Collapse
|
46
|
Schwarz S, Shen J, Kadlec K, Wang Y, Brenner Michael G, Feßler AT, Vester B. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harb Perspect Med 2016; 6:a027037. [PMID: 27549310 PMCID: PMC5088508 DOI: 10.1101/cshperspect.a027037] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lincosamides, streptogramins, phenicols, and pleuromutilins (LSPPs) represent four structurally different classes of antimicrobial agents that inhibit bacterial protein synthesis by binding to particular sites on the 50S ribosomal subunit of the ribosomes. Members of all four classes are used for different purposes in human and veterinary medicine in various countries worldwide. Bacteria have developed ways and means to escape the inhibitory effects of LSPP antimicrobial agents by enzymatic inactivation, active export, or modification of the target sites of the agents. This review provides a comprehensive overview of the mode of action of LSPP antimicrobial agents as well as of the mutations and resistance genes known to confer resistance to these agents in various bacteria of human and animal origin.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Geovana Brenner Michael
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Birte Vester
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
47
|
Dehoux P, Marvaud JC, Abouelleil A, Earl AM, Lambert T, Dauga C. Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BMC Genomics 2016; 17:819. [PMID: 27769168 PMCID: PMC5073890 DOI: 10.1186/s12864-016-3152-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. RESULTS The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. CONCLUSION Genomic comparison of C. bolteae and C. clostridiofrome revealed functional differences in butyrate pathways and in flagellar systems, which play a critical role within human microbiota. Most of the resistance genes detected in both species were previously characterized in other bacterial species. A few of them were related to antibiotics inactive against Clostridium spp. Some were part of mobile genetic elements suggesting that these commensals of the human microbiota act as reservoir of antimicrobial resistances.
Collapse
Affiliation(s)
- Pierre Dehoux
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Jean Christophe Marvaud
- Faculté de Pharmacie, EA4043 “Unité Bactéries Pathogènes et Santé” (UBaPS), Université Paris Sud, Châtenay-Malabry Cedex, 92296 France
| | - Amr Abouelleil
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ashlee M. Earl
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Thierry Lambert
- Faculté de Pharmacie, EA4043 “Unité Bactéries Pathogènes et Santé” (UBaPS), Université Paris Sud, Châtenay-Malabry Cedex, 92296 France
- Antibacterial Agents Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Catherine Dauga
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
- International Group of Data Analysis, Centre for Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| |
Collapse
|
48
|
Multidrug-resistant Staphylococcus haemolyticus isolates from infected eyes and healthy conjunctivae in India. J Glob Antimicrob Resist 2016; 6:154-159. [PMID: 27530859 DOI: 10.1016/j.jgar.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/20/2022] Open
Abstract
This study aimed to determine the presence of antibiotic resistance genes (ARGs), SCCmec elements and genetic relatedness among Staphylococcus haemolyticus isolated from patients with a variety of eye infections (n=11) and from healthy conjunctiva (n=7). Minimum inhibitory concentrations were determined for 14 antimicrobials according to BSAC guidelines. PCR was used to identify the presence of mecA, mecC, SCCmec type and ARGs. Sequencing was used to determine mutations in gyrA, gyrB, topoisomerase IVA and IVB genes. Genetic relatedness was determined by PFGE. Of the 18 isolates, 17 showed resistance to at least one antibiotic, but none showed resistance to vancomycin or rifampicin. Ten isolates were oxacillin-resistant and carried the mecA gene, eight of which belonged to SCCmec type V. The presence of non-mec SCC elements in two meticillin-susceptible isolates and untypeable SCC elements in meticillin-resistant isolates suggests the involvement of S. haemolyticus in the diversification of SCC elements. Sequence analysis revealed point mutations in gyrA (Ser-84→Leu) and topoisomerase IVA genes (Ser-80→Leu) in 13 isolates, and additional variation in the QRDR (Asp-84→Asn) of two isolates, showing good correlation between mutations in gyrA and topoisomerase IV genes and the level of resistance to fluoroquinolones. PFGE analysis showed distinct pulsotypes forming two major clusters, indicating the existence of diversity among isolates, irrespective of the source of isolation. This study suggests that S. haemolyticus isolates from infected eyes and healthy conjunctivae invariably carried ARGs and SCCmec elements and showed diversity in their genomic content, irrespective of the source of isolation.
Collapse
|
49
|
Gómez P, Lozano C, Benito D, Estepa V, Tenorio C, Zarazaga M, Torres C. Characterization of staphylococci in urban wastewater treatment plants in Spain, with detection of methicillin resistant Staphylococcus aureus ST398. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:71-76. [PMID: 26840519 DOI: 10.1016/j.envpol.2016.01.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
The objective of this study was to determine the prevalence of Staphylococcus in urban wastewater treatment plants (UWTP) of La Rioja (Spain), and to characterize de obtained isolates. 16 wastewater samples (8 influent, 8 effluent) of six UWTPs were seeded on mannitol-salt-agar and oxacillin-resistance-screening-agar-base for staphylococci and methicillin-resistant Staphylococcus aureus recovery. Antimicrobial susceptibility profile was determined for 16 antibiotics and the presence of 35 antimicrobial resistance genes and 14 virulence genes by PCR. S. aureus was typed by spa, agr, and multilocus-sequence-typing, and the presence of immune-evasion-genes cluster was analyzed. Staphylococcus spp. were detected in 13 of 16 tested wastewater samples (81%), although the number of CFU/mL decreased after treatment. 40 staphylococci were recovered (1-5/sample), and 8 of them were identified as S. aureus being typed as (number of strains): spa-t011/agr-II/ST398 (1), spa-t002/agr-II/ST5 (2), spa-t3262/agr-II/ST5 (1), spa-t605/agr-II/ST126 (3), and spa-t878/agr-III/ST2849 (1). S. aureus ST398 strain was methicillin-resistant and showed a multidrug resistance phenotype. Virulence genes tst, etd, sea, sec, seg, sei, sem, sen, seo, and seu, were detected among S. aureus and only ST5 strains showed genes of immune evasion cluster. Thirty-two coagulase-negative Staphylococcus of 12 different species were recovered (number of strains): Staphylococcus equorum (7), Staphylococcus vitulinus (4), Staphylococcus lentus (4), Staphylococcus sciuri (4), Staphylococcus fleurettii (2), Staphylococcus haemolyticus (2), Staphylococcus hominis (2), Staphylococcus saprophyticus (2), Staphylococcus succinus (2), Staphylococcus capitis (1), Staphylococcus cohnii (1), and Staphylococcus epidermidis (1). Five presented a multidrug resistance phenotype. The following resistance and virulence genes were found: mecA, lnu(A), vga(A), tet(K), erm(C), msr(A)/(B), mph(C), tst, and sem. We found that Staphylococcus spp. are normal contaminants of urban wastewater, including different lineages of S. aureus and a high diversity of coagulase-negative species. The presence of multiple resistance and virulence genes, including mecA, in staphylococci of wastewater can be a concern for the public health.
Collapse
Affiliation(s)
- Paula Gómez
- Department of Food and Agriculture, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Department of Food and Agriculture, University of La Rioja, Logroño, Spain
| | - Daniel Benito
- Department of Food and Agriculture, University of La Rioja, Logroño, Spain
| | - Vanesa Estepa
- Department of Food and Agriculture, University of La Rioja, Logroño, Spain
| | - Carmen Tenorio
- Department of Food and Agriculture, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Department of Food and Agriculture, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- Department of Food and Agriculture, University of La Rioja, Logroño, Spain.
| |
Collapse
|
50
|
Larsen J, Petersen A, Sørum M, Stegger M, van Alphen L, Valentiner-Branth P, Knudsen LK, Larsen LS, Feingold B, Price LB, Andersen PS, Larsen AR, Skov RL. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. ACTA ACUST UNITED AC 2016; 20:30021. [PMID: 26535590 DOI: 10.2807/1560-7917.es.2015.20.37.30021] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/12/2015] [Indexed: 02/05/2023]
Abstract
Livestock constitutes a potential reservoir of meticillin-resistant Staphylococcus aureus isolates belonging to a recently derived lineage within clonal complex 398 (MRSA CC398-IIa). Since its discovery in the early 2000s, this lineage has become a major cause of human disease in Europe, posing a serious public health challenge in countries with intensive livestock production. To retrace the history of human colonisation and infection with MRSA CC398-IIa in Denmark, we conducted a nationwide, retrospective study of MRSA isolates collected from 1999 to 2011. Among 7,429 MRSA isolates screened, we identified 416 MRSA CC398-IIa isolates. Of these, 148 were from people with infections, including 51 from patients reporting no livestock exposure. The first cases of MRSA CC398-IIa infection in Denmark occurred in 2004. Subsequently, the incidence of MRSA CC398-IIa infection showed a linear annual increase of 66% from 2004 to 2011 (from 0.09 to 1.1 per 100,000 person-years). There were clear temporal and spatial relationships between MRSA CC398-IIa-infected patients with and without livestock exposure. These findings suggest substantial dissemination of MRSA CC398-IIa from livestock or livestock workers into the Danish community and underscore the need for strategies to control its spread both on and off the farm.
Collapse
Affiliation(s)
- Jesper Larsen
- Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|