1
|
Sallam HH, Ramadan AA, Attia NM, ElBaradei A, Shawky SM, El-Kholy MA. Ceftaroline Exhibits Promising In Vitro Activity Against Methicillin-Resistant Staphylococcus aureus Clinical Isolates From Alexandria, Egypt. Int J Microbiol 2025; 2025:4558662. [PMID: 40420854 PMCID: PMC12105897 DOI: 10.1155/ijm/4558662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/09/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction: Ceftaroline is a fifth-generation cephalosporin that was recently introduced into the Egyptian market for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. However, limited data are available regarding the susceptibility of MRSA isolates in Egypt to this antibacterial agent. This study aimed to determine the susceptibility of MRSA strains recovered from different clinical samples to ceftaroline and to investigate the prevalence of the mecA and mecC resistance genes. Methods: A total of 412 MRSA isolates were selected from 520 Staphylococcus aureus (S. aureus) samples. Identification and antibiotic susceptibility testing were performed using the VITEK-2 compact system. Molecular identification of the nuc gene, encoding nuclease enzyme, a species-specific marker for S. aureus, and the mecA and mecC genes associated with methicillin resistance was performed using the polymerase chain reaction (PCR) technique. Moreover, the in vitro activity of ceftaroline was explored using the disc diffusion method, and its minimum inhibitory concentration (MIC) was determined according to the Clinical Laboratory Standards Institute (CLSI) criteria. Staphylococcal Protein A (spa) typing was carried out for ceftaroline nonsusceptible strains as determined by MIC. Results: Most isolates were recovered from skin and soft tissue infections. Of the 412 clinical isolates, 407 (98.7%) were susceptible to ceftaroline, with an MIC of ≤ 1 mg/L, while five isolates (1.3%) showed a susceptible dose-dependent (SDD) profile with MIC values of 2-4 μg/mL. No isolates were resistant to ceftaroline. All isolates carried the nuc gene, 94% harbored mecA, while mecC was undetected. Of the five SDD isolates, three were identified as spa type t037, corresponding to ST-239, ST-240, or ST-241 by multilocus sequence type (MLST), whereas the two remaining isolates were untypeable. Conclusions: From various clinical samples, ceftaroline demonstrated excellent in vitro activity against MRSA strains, positioning it as a promising therapeutic option for managing MRSA infections in Egypt.
Collapse
Affiliation(s)
- Hussien H. Sallam
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Asmaa A. Ramadan
- Department of Microbiology and Biotechnology, Clinical and Biological Sciences Division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt
- Ministry of Health and Population, Alexandria, Egypt
| | - Nancy M. Attia
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amira ElBaradei
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Sherine M. Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammed A. El-Kholy
- Department of Microbiology and Biotechnology, Clinical and Biological Sciences Division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt
| |
Collapse
|
2
|
Jiao F, Xu R, Luo Q, Li X, Tong HHY, Guo J. Elucidating allosteric signal disruption in PBP2a: impact of N146K/E150K mutations on ceftaroline resistance in methicillin-resistant Staphylococcus aureus. J Comput Aided Mol Des 2025; 39:6. [PMID: 39915349 DOI: 10.1007/s10822-025-00584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/30/2025] [Indexed: 05/07/2025]
Abstract
Ceftaroline (CFT) effectively combats methicillin-resistant Staphylococcus aureus (MRSA) by binding to the allosteric site on penicillin-binding protein 2a (PBP2a) and activating allosteric signals that remotely open the active pocket. However, the widespread clinical use of CFT has led to specific mutations, such as N146K/E150K, at the PBP2a allosteric site, which confers resistance to CFT in MRSA by disrupting the transmission of allosteric signals. Herein, computational simulations were employed to elucidate how the mutations disrupt the transmission of allosteric signals, thereby enhancing the resistance of MRSA to CFT. Specifically, the mutations alter the salt bridge network and electrostatic environment, resulting in a dynamic setting and decreased binding affinity of CFT within the allosteric pocket. Additionally, dynamical network analysis and the identification of allosteric pathways revealed that the reduced binding affinity diminishes the propagation of allosteric signals to the active site. Further evaluations demonstrated that this diminished signaling reduces the openness of the active pocket in the mutant systems, with "gatekeeper" residues and functional loops remaining partially closed. Redocking experiments confirmed that mutations lead to decreased docking scores and unfavorable docking poses for CFT within the active pocket. These findings highlight the complex interactions between structural changes induced by mutations and antibiotic resistance, providing crucial insights for developing new therapeutic strategies against MRSA resistance.
Collapse
Affiliation(s)
- Fangfang Jiao
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Ran Xu
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Qing Luo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Xinkang Li
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Henry H Y Tong
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China.
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao, 999078, China.
| |
Collapse
|
3
|
Mirza HC, Öğüç Şanlı Ö. Evaluation of in vitro activity of ceftaroline, ceftobiprole and their combination with trimethoprim/sulfamethoxazole against MRSA isolates: a two center study. J Chemother 2024; 36:457-464. [PMID: 38351629 DOI: 10.1080/1120009x.2024.2316539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 09/20/2024]
Abstract
There is an increasing need for new synergistic antimicrobial combinations against multidrug-resistant bacteria. Our objective was to evaluate the activity of ceftaroline, ceftobiprole and their combination with trimethoprim/sulfamethoxazole against methicillin-resistant Staphylococcus aureus (MRSA) isolates recovered at two centers in Turkey. Activities of ceftaroline and ceftobiprole were tested against 100 MRSA isolates using gradient diffusion method. Activities of ceftaroline and ceftobiprole in combination with trimethoprim/sulfamethoxazole against 20 selected isolates (including all isolates that were non-susceptible to ceftaroline or ceftobiprole, and randomly selected isolates) were investigated using MIC:MIC ratio method. Antimicrobial interactions were interpreted using the fractional inhibitory concentration (FIC) index. The MIC50/MIC90 values for ceftaroline and ceftobiprole were 0.75/1 and 1/1.5 mg/L, respectively. Ceftaroline and ceftobiprole susceptibility rates among 100 MRSA isolates were 94% and 96%, respectively. Ceftaroline, ceftobiprole and trimethoprim/sulfamethoxazole MICs of isolates were not increased when ceftaroline or ceftobiprole was combined with trimethoprim/sulfamethoxazole. Ceftobiprole- trimethoprim/sulfamethoxazole combination demonstrated additivity against 35%, whereas ceftaroline- trimethoprim/sulfamethoxazole combination demonstrated additivity against 10% of 20 MRSA isolates. The remaining interactions for MRSA isolates were indifference. Three (75%) of four ceftobiprole-resistant isolates became susceptible to ceftobiprole after adding trimethoprim/sulfamethoxazole. None of the ceftaroline non-susceptible isolates became susceptible to ceftaroline after adding trimethoprim/sulfamethoxazole. Ceftobiprole- trimethoprim/sulfamethoxazole combination may be a better treatment option than ceftaroline- trimethoprim/sulfamethoxazole combination for MRSA infections. Clinical studies are needed to confirm the results of our in vitro study.
Collapse
Affiliation(s)
- Hasan Cenk Mirza
- Department of Medical Microbiology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Özlem Öğüç Şanlı
- Department of Medical Microbiology, Başkent University Faculty of Medicine, Adana Medical and Research Center, Adana, Turkey
| |
Collapse
|
4
|
Ambade SS, Gupta VK, Bhole RP, Khedekar PB, Chikhale RV. A Review on Five and Six-Membered Heterocyclic Compounds Targeting the Penicillin-Binding Protein 2 (PBP2A) of Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2023; 28:7008. [PMID: 37894491 PMCID: PMC10609489 DOI: 10.3390/molecules28207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen. Methicillin-resistant Staphylococcus aureus (MRSA) infections pose significant and challenging therapeutic difficulties. MRSA often acquires the non-native gene PBP2a, which results in reduced susceptibility to β-lactam antibiotics, thus conferring resistance. PBP2a has a lower affinity for methicillin, allowing bacteria to maintain peptidoglycan biosynthesis, a core component of the bacterial cell wall. Consequently, even in the presence of methicillin or other antibiotics, bacteria can develop resistance. Due to genes responsible for resistance, S. aureus becomes MRSA. The fundamental premise of this resistance mechanism is well-understood. Given the therapeutic concerns posed by resistant microorganisms, there is a legitimate demand for novel antibiotics. This review primarily focuses on PBP2a scaffolds and the various screening approaches used to identify PBP2a inhibitors. The following classes of compounds and their biological activities are discussed: Penicillin, Cephalosporins, Pyrazole-Benzimidazole-based derivatives, Oxadiazole-containing derivatives, non-β-lactam allosteric inhibitors, 4-(3H)-Quinazolinones, Pyrrolylated chalcone, Bis-2-Oxoazetidinyl macrocycles (β-lactam antibiotics with 1,3-Bridges), Macrocycle-embedded β-lactams as novel inhibitors, Pyridine-Coupled Pyrimidinones, novel Naphthalimide corbelled aminothiazoximes, non-covalent inhibitors, Investigational-β-lactam antibiotics, Carbapenem, novel Benzoxazole derivatives, Pyrazolylpyridine analogues, and other miscellaneous classes of scaffolds for PBP2a. Additionally, we discuss the penicillin-binding protein, a crucial target in the MRSA cell wall. Various aspects of PBP2a, bacterial cell walls, peptidoglycans, different crystal structures of PBP2a, synthetic routes for PBP2a inhibitors, and future perspectives on MRSA inhibitors are also explored.
Collapse
Affiliation(s)
- Shraddha S. Ambade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MH, India (P.B.K.)
| | - Vivek Kumar Gupta
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra 282004, UP, India
| | - Ritesh P. Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, MH, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, MH, India
| | - Pramod B. Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MH, India (P.B.K.)
| | | |
Collapse
|
5
|
M Alshabrmi F, Alatawi EA. Unraveling the mechanisms of Cefoxitin resistance in methicillin-resistant Staphylococcus aureus (MRSA): structural and molecular simulation-based insights. J Biomol Struct Dyn 2023; 42:11366-11376. [PMID: 37811561 DOI: 10.1080/07391102.2023.2262591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) severely affects human health, including the skin glands, nasal cavity, wound infections, bone infections, and pneumonia. Among the most effective MRSA drugs, Cefoxitin also develops resistance due to mutations in the mecA gene. Four mutations at positions E229K, E239R, G246K, and E447K are classified as high-level resistance mutations. However, the resistance mechanism of MRSA towards Cefoxitin caused by these mutations is still unclear, as there is less information available regarding the structural and functional effects of the mutations against Cefoxitin. Therefore, our present study was designed to explore the mechanisms of binding interactions between wild-type and mutated PBP2a against Cefoxitin using molecular docking and MD simulations. Subsequently, we identified that the mutant form of PBP2a affects the activity of Cefoxitin. Interestingly, the binding of Cefoxitin with G246K and E239R mutants demonstrates unstable behavior compared to E447K-Cefoxitin and E229K-Cefoxitin. In this study, we propose the resistance mechanism of Cefoxitin at the atomic level. The proposed drug-resistance mechanism will provide valuable guidance for the design of MRSA drugs. This research might provide a new framework for designing new agents against the mutated form of PBP2a.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eid A Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
6
|
Navarro-Carrera P, García-Clemente P, Lázaro-Perona F, Rodríguez JG, Mingorance J, Cendejas-Bueno E. Detection and characterization of two methicillin- and cefoxitin-susceptible mecA + Staphylococcus aureus isolates from blood cultures of two adult patients. J Glob Antimicrob Resist 2022; 31:353-354. [PMID: 36283625 DOI: 10.1016/j.jgar.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Paula Navarro-Carrera
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPaz, Madrid, Spain
| | - Paloma García-Clemente
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPaz, Madrid, Spain
| | - Fernando Lázaro-Perona
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPaz, Madrid, Spain
| | - Julio-García Rodríguez
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPaz, Madrid, Spain
| | - Jesús Mingorance
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPaz, Madrid, Spain
| | - Emilio Cendejas-Bueno
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPaz, Madrid, Spain.
| |
Collapse
|
7
|
Abdizadeh N, Haeili M, Kafil HS, Ahmadi A, Feizabadi MM. Evaluation of in vitro activity of ceftaroline on methicillin resistant Staphylococcus aureus blood isolates from Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:442-448. [PMID: 34557271 PMCID: PMC8421581 DOI: 10.18502/ijm.v13i4.6967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Ceftaroline (CPT) is a novel cephalosporin with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). Despite its recent introduction, CPT resistance in MRSA has been described worldwide. We aimed in the current study to evaluate the in vitro activity of CPT against 91 clinical MRSA and 3 MSSA isolates. Materials and Methods: Susceptibility of isolates to CPT was tested using E-test and disk diffusion (DD) method. The nucleotide sequence of the mecA gene and molecular types of isolates with reduced susceptibility to CPT were further studied to identify resistance conferring mutations in PBP2a and the genetic relatedness of the isolates respectively. Results: Overall, 92.5% of isolates were found to be CPT susceptible (MICs≤1mg/l) and 7 MRSA isolates were characterized with MIC=2mg/l and categorized as susceptible dose dependent. Compared to E-test, DD revealed a categorical agreement rate of 93.6% and the obtained rates for minor, major /very major error were found to be 6.3% and 0% respectively. The MRSA isolates with increased CPT MICs (n=7), belonged to spa types t030 (n=6) and t13927 (n=1) and all carried N146K substitution in PBP2a allosteric domain, except for one isolate which harbored a wild-type PBP2a. Conclusion: While resistance to CPT was not detected we found increased CPT MICs in 7.69% of MRSA isolates. Reduced susceptibility to CPT in the absence of mecA mutations is indicative of contribution of secondary chromosomal mutations in resistance development.
Collapse
Affiliation(s)
- Negin Abdizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Ahmadi
- Pharmaceutical Nanotechnology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Morroni G, Fioriti S, Salari F, Brenciani A, Brescini L, Mingoia M, Giovanetti E, Pocognoli A, Giacometti A, Molinelli E, Offidani A, Simonetti O, Cirioni O. Characterization and Clonal Diffusion of Ceftaroline Non-Susceptible MRSA in Two Hospitals in Central Italy. Antibiotics (Basel) 2021; 10:antibiotics10081026. [PMID: 34439075 PMCID: PMC8388857 DOI: 10.3390/antibiotics10081026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Ceftaroline represents a novel fifth-generation cephalosporin to treat infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Methods: Ceftaroline susceptibility of 239 MRSA isolates was assessed by disk diffusion and a MIC test strip following both EUCAST and CLSI guidelines. Non-susceptible isolates were epidemiologically characterized by pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing, and further investigated by PCR and whole genome sequencing to detect penicillin-binding protein (PBP) mutations as well as antibiotic resistance and virulence genes. Results: Fourteen isolates out of two hundred and thirty-nine (5.8%) were non-susceptible to ceftaroline (MIC > 1 mg/L), with differences between the EUCAST and CLSI interpretations. The characterized isolates belonged to seven different pulsotypes and three different clones (ST228/CC5-t041-SCCmecI, ST22/CC22-t18014-SCCmecIV, and ST22/CC22-t022-SCCmecIV), confirming a clonal diffusion of ceftaroline non-susceptible strains. Mutations in PBPs involved PBP2a for ST228-t041-SCCmecI strains and all the other PBPs for ST22-t18014-SCCmecIV and ST22-t022-SCCmecIV clones. All isolates harbored antibiotic resistance and virulence genes with a clonal distribution. Conclusion: Our study demonstrated that ceftaroline non-susceptibile isolates belonged not only to ST228 strains (the most widespread clone in Italy) but also to ST22, confirming the increasing role of these clones in hospital infections.
Collapse
Affiliation(s)
- Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Federica Salari
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Marina Mingoia
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | | | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Elisa Molinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
| | - Oriana Simonetti
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0715963494
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| |
Collapse
|
9
|
Bonvegna M, Grego E, Sona B, Stella MC, Nebbia P, Mannelli A, Tomassone L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics (Basel) 2021; 10:antibiotics10060676. [PMID: 34198805 PMCID: PMC8227741 DOI: 10.3390/antibiotics10060676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Swine farming as a source of methicillin-resistant Staphylococcus aureus (MRSA) has been well documented. Methicillin-resistant coagulase-negative staphylococci (MRCoNS) have been less studied, but their importance as pathogens is increasing. MRCoNS are indeed considered relevant nosocomial pathogens; identifying putative sources of MRCoNS is thus gaining importance to prevent human health hazards. In the present study, we investigated MRSA and MRCoNS in animals and environment in five pigsties in a high farm-density area of northwestern Italy. Farms were three intensive, one intensive with antibiotic-free finishing, and one organic. We tested nasal swabs from 195 animals and 26 environmental samples from three production phases: post-weaning, finishing and female breeders. Phenotypic tests, including MALDI-TOF MS, were used for the identification of Staphylococcus species; PCR and nucleotide sequencing confirmed resistance and bacterial species. MRCoNS were recovered in 64.5% of nasal swabs, in all farms and animal categories, while MRSA was detected only in one post-weaning sample in one farm. The lowest prevalence of MRCoNS was detected in pigs from the organic farm and in the finishing of the antibiotic-free farm. MRCoNS were mainly Staphylococcus sciuri, but we also recovered S. pasteuri, S. haemolyticus, S. cohnii, S. equorum and S. xylosus. Fifteen environmental samples were positive for MRCoNS, which were mainly S. sciuri; no MRSA was found in the farms’ environment. The analyses of the mecA gene and the PBP2-a protein highlighted the same mecA fragment in strains of S. aureus, S. sciuri and S. haemolyticus. Our results show the emergence of MRCoNS carrying the mecA gene in swine farms. Moreover, they suggest that this gene might be horizontally transferred from MRCoNS to bacterial species more relevant for human health, such as S. aureus.
Collapse
Affiliation(s)
- Miryam Bonvegna
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
- Correspondence:
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Bruno Sona
- Local Veterinary Service, Animal Health, ASL CN1, Via Torino, 137, 12038 Savigliano, Italy;
| | - Maria Cristina Stella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| |
Collapse
|
10
|
Asenjo A, Oteo-Iglesias J, Alós JI. What's new in mechanisms of antibiotic resistance in bacteria of clinical origin? ACTA ACUST UNITED AC 2021; 39:291-299. [PMID: 34088451 DOI: 10.1016/j.eimce.2020.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/22/2020] [Indexed: 11/18/2022]
Abstract
The discovery, commercialization and administration of antibiotics revolutionized the world of medicine in the middle of the last century, generating a significant change in the therapeutic paradigm of the infectious diseases. Nevertheless, this great breakthrough was soon threatened due to the enormous adaptive ability that bacteria have, through which they are able to develop or acquire different mechanisms that allow them to survive the exposure to antibiotics. We are faced with a complex, multifactorial and inevitable but potentially manageable threat. To fight against it, a global and multidisciplinary approach is necessary, based on the support, guidance and training of the next generation of professionals. Nevertheless, the information published regarding the resistance mechanisms to antibiotics are abundant, varied and, unfortunately, not always well structured. The objective of this review is to structure the, in our opinion, most relevant and novel information regarding the mechanisms of resistance to antibiotics that has been published from January 2014 to September 2019, analysing their possible clinical and epidemiological impact.
Collapse
Affiliation(s)
- Alejandra Asenjo
- Servicio de Microbiología, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Juan-Ignacio Alós
- Servicio de Microbiología, Hospital Universitario de Getafe, Getafe, Madrid, Spain.
| |
Collapse
|
11
|
Mutation-Based Antibiotic Resistance Mechanism in Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Pharmaceuticals (Basel) 2021; 14:ph14050420. [PMID: 34062812 PMCID: PMC8147353 DOI: 10.3390/ph14050420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022] Open
Abstract
β-Lactam antibiotics target penicillin-binding proteins and inhibit the synthesis of peptidoglycan, a crucial step in cell wall biosynthesis. Staphylococcus aureus acquires resistance against β-lactam antibiotics by producing a penicillin-binding protein 2a (PBP2a), encoded by the mecA gene. PBP2a participates in peptidoglycan biosynthesis and exhibits a poor affinity towards β-lactam antibiotics. The current study was performed to determine the diversity and the role of missense mutations of PBP2a in the antibiotic resistance mechanism. The methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical samples were identified using phenotypic and genotypic techniques. The highest frequency (60%, 18 out of 30) of MRSA was observed in wound specimens. Sequence variation analysis of the mecA gene showed four amino acid substitutions (i.e., E239K, E239R, G246E, and E447K). The E239R mutation was found to be novel. The protein-ligand docking results showed that the E239R mutation in the allosteric site of PBP2a induces conformational changes in the active site and, thus, hinders its interaction with cefoxitin. Therefore, the present report indicates that mutation in the allosteric site of PBP2a provides a more closed active site conformation than wide-type PBP2a and then causes the high-level resistance to cefoxitin.
Collapse
|
12
|
Optimization of 2-Acylaminocycloalkylthiophene Derivatives for Activity against Staphylococcus aureus RnpA. Antibiotics (Basel) 2021; 10:antibiotics10040369. [PMID: 33807357 PMCID: PMC8066339 DOI: 10.3390/antibiotics10040369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is well-recognized to cause debilitating bacterial infections that are difficult to treat due to the emergence of antibiotic resistance. As such, there is a need to develop new antimicrobials for the therapeutic intervention of S. aureus disease. To that end, S. aureus RnpA is an essential enzyme that is hypothesized to participate in two required cellular processes, precursor tRNA (ptRNA) maturation and mRNA degradation. Corresponding high throughput screening campaigns have identified the phenylcarbamoyl cyclic thiopenes as a chemical class of RnpA inhibitors that display promising antibacterial effects by reducing RnpA ptRNA and mRNA degradation activities and low human cell toxicity. Herein, we perform a structure activity relationship study of the chemical scaffold. Results revealed that the cycloalkane ring size and trifluoroacetamide moiety are required for antibacterial activity, whereas modifications of the para and/or meta positions of the pharmacophore’s phenyl group allowed tuning of the scaffold’s antimicrobial performance and RnpA inhibitory activity. The top performing compounds with respect to antimicrobial activity also did not exhibit cytotoxicity to human cell lines at concentrations up to 100 µM, greater than 100-fold the minimum inhibitory concentration (MIC). Focused studies of one analog, RNP0012, which exhibited the most potent antimicrobial and inhibition of cellular RnpA activities revealed that the compound reduced bacterial burden in a murine model of S. aureus disease. Taken together, the results presented are expected to provide an early framework for optimization of next-generation of RnpA inhibitor analogues that may represent progenitors of a new class of antimicrobials.
Collapse
|
13
|
Weber RE, Fuchs S, Layer F, Sommer A, Bender JK, Thürmer A, Werner G, Strommenger B. Genome-Wide Association Studies for the Detection of Genetic Variants Associated With Daptomycin and Ceftaroline Resistance in Staphylococcus aureus. Front Microbiol 2021; 12:639660. [PMID: 33658988 PMCID: PMC7917082 DOI: 10.3389/fmicb.2021.639660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background As next generation sequencing (NGS) technologies have experienced a rapid development over the last decade, the investigation of the bacterial genetic architecture reveals a high potential to dissect causal loci of antibiotic resistance phenotypes. Although genome-wide association studies (GWAS) have been successfully applied for investigating the basis of resistance traits, complex resistance phenotypes have been omitted so far. For S. aureus this especially refers to antibiotics of last resort like daptomycin and ceftaroline. Therefore, we aimed to perform GWAS for the identification of genetic variants associated with DAP and CPT resistance in clinical S. aureus isolates. Materials/methods To conduct microbial GWAS, we selected cases and controls according to their clonal background, date of isolation, and geographical origin. Association testing was performed with PLINK and SEER analysis. By using in silico analysis, we also searched for rare genetic variants in candidate loci that have previously been described to be involved in the development of corresponding resistance phenotypes. Results GWAS revealed MprF P314L and L826F to be significantly associated with DAP resistance. These mutations were found to be homogenously distributed among clonal lineages suggesting convergent evolution. Additionally, rare and yet undescribed single nucleotide polymorphisms could be identified within mprF and putative candidate genes. Finally, we could show that each DAP resistant isolate exhibited at least one amino acid substitution within the open reading frame of mprF. Due to the presence of strong population stratification, no genetic variants could be associated with CPT resistance. However, the investigation of the staphylococcal cassette chromosome mec (SCCmec) revealed various mecA SNPs to be putatively linked with CPT resistance. Additionally, some CPT resistant isolates revealed no mecA mutations, supporting the hypothesis that further and still unknown resistance determinants are crucial for the development of CPT resistance in S. aureus. Conclusion We hereby confirmed the potential of GWAS to identify genetic variants that are associated with antibiotic resistance traits in S. aureus. However, precautions need to be taken to prevent the detection of spurious associations. In addition, the implementation of different approaches is still essential to detect multiple forms of variations and mutations that occur with a low frequency.
Collapse
Affiliation(s)
- Robert E Weber
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Stephan Fuchs
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch-Institute, Berlin, Germany
| | - Franziska Layer
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Anna Sommer
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Jennifer K Bender
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Andrea Thürmer
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch-Institute, Berlin, Germany
| | - Guido Werner
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Birgit Strommenger
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
14
|
Varela MC, Roch M, Taglialegna A, Long SW, Saavedra MO, Rose WE, Davis JJ, Hoffman LR, Hernandez RE, Rosato RR, Rosato AE. Carbapenems drive the collateral resistance to ceftaroline in cystic fibrosis patients with MRSA. Commun Biol 2020; 3:599. [PMID: 33093601 PMCID: PMC7582194 DOI: 10.1038/s42003-020-01313-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Chronic airways infection with methicillin-resistant Staphylococcus aureus (MRSA) is associated with worse respiratory disease cystic fibrosis (CF) patients. Ceftaroline is a cephalosporin that inhibits the penicillin-binding protein (PBP2a) uniquely produced by MRSA. We analyzed 335 S. aureus isolates from CF sputum samples collected at three US centers between 2015-2018. Molecular relationships demonstrated that high-level resistance of preceding isolates to carbapenems were associated with subsequent isolation of ceftaroline resistant CF MRSA. In vitro evolution experiments showed that pre-exposure of CF MRSA to meropenem with further selection with ceftaroline implied mutations in mecA and additional mutations in pbp1 and pbp2, targets of carbapenems; no effects were achieved by other β-lactams. An in vivo pneumonia mouse model showed the potential therapeutic efficacy of ceftaroline/meropenem combination against ceftaroline-resistant CF MRSA infections. Thus, the present findings highlight risk factors and potential therapeutic strategies offering an opportunity to both prevent and address antibiotic resistance in this patient population.
Collapse
Affiliation(s)
- Maria Celeste Varela
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Melanie Roch
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Agustina Taglialegna
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Scott W Long
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Matthew Ojeda Saavedra
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - James J Davis
- Argonne National Laboratory (DOE), Lemont, IL, USA
- Computation Institute, University of Chicago, Chicago, IL, USA
| | - Lucas R Hoffman
- Department of Pediatrics and Department of Microbiology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rafael E Hernandez
- Department of Pediatrics and Department of Microbiology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, USA
| | - Adriana E Rosato
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA.
- Riverside University Health System-Medical Center, 26520 Cactus Avenue, Moreno Valley, CA, 92555, USA.
| |
Collapse
|
15
|
Wambui J, Eshwar AK, Aalto-Araneda M, Pöntinen A, Stevens MJA, Njage PMK, Tasara T. The Analysis of Field Strains Isolated From Food, Animal and Clinical Sources Uncovers Natural Mutations in Listeria monocytogenes Nisin Resistance Genes. Front Microbiol 2020; 11:549531. [PMID: 33123101 PMCID: PMC7574537 DOI: 10.3389/fmicb.2020.549531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbUG77S and PBPB3V240F amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariella Aalto-Araneda
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Patrick M K Njage
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, Kengens Lyngby, Denmark
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Abstract
The discovery, commercialization and administration of antibiotics revolutionized the world of medicine in the middle of the last century, generating a significant change in the therapeutic paradigm of the infectious diseases. Nevertheless, this great breakthrough was soon threatened due to the enormous adaptive ability that bacteria have, through which they are able to develop or acquire different mechanisms that allow them to survive the exposure to antibiotics. We are faced with a complex, multifactorial and inevitable but potentially manageable threat. To fight against it, a global and multidisciplinary approach is necessary, based on the support, guidance and training of the next generation of professionals. Nevertheless, the information published regarding the resistance mechanisms to antibiotics are abundant, varied and, unfortunately, not always well structured. The objective of this review is to structure the, in our opinion, most relevant and novel information regarding the mechanisms of resistance to antibiotics that has been published from January 2014 to September 2019, analysing their possible clinical and epidemiological impact.
Collapse
|
17
|
Hawser S, Kothari N, Karlowsky JA, Wiktorowicz T, Hamed K. In vitro susceptibility testing of ceftobiprole against 880 European respiratory tract infection isolates of methicillin-resistant Staphylococcus aureus followed by whole genome sequencing of ceftobiprole-resistant isolates. Diagn Microbiol Infect Dis 2020; 96:114978. [DOI: 10.1016/j.diagmicrobio.2019.114978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023]
|
18
|
Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother 2019:AAC.01216-19. [PMID: 31527033 DOI: 10.1128/aac.01216-19] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) result in significant morbidity and mortality for patients in both community and health care settings. This is primarily due to the difficulty in treating MRSA, which is often resistant to multiple classes of antibiotics. Understanding the mechanisms of antimicrobial resistance (AMR) in MRSA provides insight into the optimal use of antimicrobial agents in clinical practice and also underpins critical aspects of antimicrobial stewardship programs. In this review we delineate the mechanisms, prevalence, and clinical importance of resistance to antibiotics licensed in the past 20 years that target MRSA, as well as new drugs in the pipeline which are likely to be licensed soon. Current gaps in scientific knowledge about MRSA resistance mechanisms are discussed, and topics in the epidemiology of AMR in S. aureus that require further investigation are highlighted.
Collapse
|
19
|
Koulenti D, Xu E, Mok IYS, Song A, Karageorgopoulos DE, Armaganidis A, Lipman J, Tsiodras S. Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms 2019; 7:E270. [PMID: 31426596 PMCID: PMC6723731 DOI: 10.3390/microorganisms7080270] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing multidrug-resistance to Gram-positive pathogens, particularly to staphylococci, enterococci and streptococci, is a major problem, resulting in significant morbidity, mortality and healthcare costs. In recent years, only a small number of novel antibiotics effective against Gram-positive bacteria has been approved. This review will discuss the current evidence for novel branded antibiotics that are highly effective in the treatment of multidrug-resistant infections by Gram-positive pathogens, namely ceftobiprole, ceftaroline, telavancin, oritavancin, dalbavancin, tedizolid, besifloxacin, delafloxacin, ozenoxacin, and omadacycline. The mechanism of action, pharmacokinetics, microbiological spectrum, efficacy and safety profile will be concisely presented. As for any emerging antibiotic agent, resistance is likely to develop against these highly effective antibiotics. Only through appropriate dosing, utilization and careful resistance development monitoring will these novel antibiotics continue to treat Gram-positive pathogens in the future.
Collapse
Affiliation(s)
- Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
- 2nd Critical Care Department, Attikon University Hospital, 12462 Athens, Greece.
| | - Elena Xu
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Isaac Yin Sum Mok
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Andrew Song
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | - Jeffrey Lipman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029 Brisbane, Australia
- Anesthesiology and Critical Care, Centre Hospitalier Universitaire De Nîmes (CHU), University of Montpellier, 30029 Nîmes, France
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece
| |
Collapse
|
20
|
Mohamed SB, Adlan TA, Khalafalla NA, Abdalla NI, Ali ZS, Munir Ka A, Hassan MM, Elnour MAB. Proteomics and Docking Study Targeting Penicillin-Binding Protein and Penicillin-Binding Protein2a of Methicillin-Resistant Staphylococcus aureus Strain SO-1977 Isolated from Sudan. Evol Bioinform Online 2019; 15:1176934319864945. [PMID: 31360059 PMCID: PMC6637844 DOI: 10.1177/1176934319864945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
Whole genome sequencing of methicillin-resistant Staphylococcus aureus (MRSA) strain isolated from Sudan has led to a great deal of information, which allows the identification and characterization of some pivotal proteins. The objective of this study was to investigate the penicillin-binding proteins, PBP and PBP2a, of SO-1977 strain to have insights about their physicochemical properties and to assess and describe the interaction of some phytochemicals against them in silico. PBP and PBP2a from MRSA’s Sudan strain were found to be of great resemblance with some other strains. G246E single-nucleotide polymorphism was reported and identified in the allosteric binding site positioned in the non-penicillin-binding domain. The docked compounds demonstrated good binding energies and hydrogen bond interactions with residue Ser404 which plays crucial roles in β-lactam activity. This finding would contribute significantly to designing effective β-lactam drugs, to combat and treat β-lactam–resistant bacteria in the future.
Collapse
Affiliation(s)
- Sofia B Mohamed
- Department of Bioinformatics and Biostatistics, National University Biomedical Research Institute, National University, Khartoum-Sudan
| | - Talal A Adlan
- Department of Bioinformatics and Biostatistics, National University Biomedical Research Institute, National University, Khartoum-Sudan
| | | | - Nusiba I Abdalla
- Department of Bioinformatics and Biostatistics, National University Biomedical Research Institute, National University, Khartoum-Sudan
| | - Zainab Sa Ali
- Department of Bioinformatics and Biostatistics, National University Biomedical Research Institute, National University, Khartoum-Sudan
| | - Abdella Munir Ka
- Department of Bioinformatics and Biostatistics, National University Biomedical Research Institute, National University, Khartoum-Sudan.,Faculty of Medicine, National University, Khartoum, Sudan
| | - Mohamed M Hassan
- Department of Bioinformatics and Biostatistics, National University Biomedical Research Institute, National University, Khartoum-Sudan
| | - Mohammed-Ahmed B Elnour
- Department of Bioinformatics and Biostatistics, National University Biomedical Research Institute, National University, Khartoum-Sudan
| |
Collapse
|
21
|
Wüthrich D, Cuénod A, Hinic V, Morgenstern M, Khanna N, Egli A, Kuehl R. Genomic characterization of inpatient evolution of MRSA resistant to daptomycin, vancomycin and ceftaroline. J Antimicrob Chemother 2019; 74:1452-1454. [PMID: 30726929 DOI: 10.1093/jac/dkz003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Affiliation(s)
- Daniel Wüthrich
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Aline Cuénod
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Vladimira Hinic
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
| | - Mario Morgenstern
- Department of Orthopaedic Surgery and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Nina Khanna
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Richard Kuehl
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
22
|
Schleimer N, Kaspar U, Knaack D, von Eiff C, Molinaro S, Grallert H, Idelevich EA, Becker K. In Vitro Activity of the Bacteriophage Endolysin HY-133 against Staphylococcus aureus Small-Colony Variants and Their Corresponding Wild Types. Int J Mol Sci 2019; 20:E716. [PMID: 30736446 PMCID: PMC6387228 DOI: 10.3390/ijms20030716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 01/06/2023] Open
Abstract
Nasal carriage of methicillin-susceptible (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) represents both a source and a risk factor for subsequent infections. However, existing MRSA decolonization strategies and antibiotic treatment options are hampered by the duration of administration and particularly by the emergence of resistance. Moreover, beyond classical resistance mechanisms, functional resistance as the formation of the small-colony variant (SCV) phenotype may also impair the course and treatment of S. aureus infections. For the recombinant bacteriophage endolysin HY-133, rapid bactericidal and highly selective in vitro activities against MSSA and MRSA has been shown. In order to assess the in vitro efficacy of HY-133 against the SCV phenotype, minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were evaluated on clinical SCVs, their isogenic wild types, as well as on genetically derived and gentamicin-selected SCVs. For all strains and growth phases, HY-133 MIC and MBC ranged between 0.12 and 1 mg/L. Time-kill studies revealed a fast-acting bactericidal activity of HY-133 resulting in a ≥3 - log10 decrease in CFU/mL within 1 h compared to oxacillin, which required 4⁻24 h. Since the mode of action of HY-133 was independent of growth phase, resistance pattern, and phenotype, it is a promising candidate for future S. aureus decolonization strategies comprising rapid activity against phenotypic variants exhibiting functional resistance.
Collapse
Affiliation(s)
- Nina Schleimer
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | - Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | - Dennis Knaack
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | - Christof von Eiff
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | | | | | - Evgeny A Idelevich
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| |
Collapse
|
23
|
Becker K, van Alen S, Idelevich EA, Schleimer N, Seggewiß J, Mellmann A, Kaspar U, Peters G. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg Infect Dis 2019; 24:242-248. [PMID: 29350135 PMCID: PMC5782906 DOI: 10.3201/eid2402.171074] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by β-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne β-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of β-lactams as a main therapeutic application against staphylococcal infections.
Collapse
|
24
|
High Rate of Ceftobiprole Resistance among Clinical Methicillin-Resistant Staphylococcus aureus Isolates from a Hospital in Central Italy. Antimicrob Agents Chemother 2018; 62:AAC.01663-18. [PMID: 30275082 DOI: 10.1128/aac.01663-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/15/2018] [Indexed: 11/20/2022] Open
Abstract
Ceftobiprole is a fifth-generation cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA). One-year surveillance at the Regional Hospital of Ancona (Italy) disclosed a 12% ceftobiprole resistance rate (12/102 isolates; MIC, ≥4 mg/liter). Epidemiological characterization demonstrated that the resistant isolates all belonged to different clones. Penicillin-binding protein (PBP) analysis showed substitutions in all PBPs and a novel insertion in PBP2a. The mecB and mecC genes were not detected. Ceftobiprole susceptibility screening is essential to avoid therapeutic failure and the spread of ceftobiprole-resistant strains.
Collapse
|
25
|
Lee H, Yoon EJ, Kim D, Kim JW, Lee KJ, Kim HS, Kim YR, Shin JH, Shin JH, Shin KS, Kim YA, Uh Y, Jeong SH. Ceftaroline Resistance by Clone-Specific Polymorphism in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2018; 62:e00485-18. [PMID: 29941637 PMCID: PMC6125543 DOI: 10.1128/aac.00485-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023] Open
Abstract
A total of 281 nonduplicated Staphylococcus aureus blood isolates were collected from January to May 2017 from eight hospitals in South Korea to investigate the epidemiological traits of ceftaroline resistance in methicillin-resistant S. aureus (MRSA). Cefoxitin-disk diffusion tests and the mecA gene PCR revealed that 56.6% (159/281) of the S. aureus isolates were MRSA, and most belonged to ST5 (50.3%, 80/281) and ST72 (41.5%, 66/281). Of the MRSA isolates, 44.0% (70/159) were nonsusceptible to ceftaroline (MIC ≥ 2 mg/liter), whereas all of the methicillin-susceptible S. aureus isolates were susceptible to the drug. Eight amino acid substitutions in penicillin-binding protein 2a (PBP2a), including four (L357I, E447K, I563T, and S649A) in the penicillin-binding domain (PBD) and four (N104K, V117I, N146K, and A228V) in the non-PBD (nPBD) of PBP2a, were associated with ceftaroline resistance. The accumulation of substitutions in PBP2a resulted in the elevation of ceftaroline MICs: one substitution at 1 to 2 mg/liter, two or three substitutions at 2 to 4 mg/liter, and five substitutions at 4 or 16 mg/liter. Ceftaroline resistance in MRSA might be the result of clone-specific PBP2a polymorphism, along with substitutions both in PBD and nPBD, and the elevated ceftaroline MICs were associated with the substitution sites and accumulation of substitutions.
Collapse
Affiliation(s)
- Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Dokyun Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Wook Kim
- Division of Antimicrobial Resistance, National Institute of Health, Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Kwang-Jun Lee
- Division of Antimicrobial Resistance, National Institute of Health, Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Hwaseong, South Korea
| | - Young Ree Kim
- Department of Laboratory Medicine, School of Medicine, Jeju National University, Jeju, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine and Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Kyeong Seob Shin
- Department of Laboratory Medicine, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
26
|
Lin LC, Chang SC, Ge MC, Liu TP, Lu JJ. Novel single-nucleotide variations associated with vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Infect Drug Resist 2018; 11:113-123. [PMID: 29403293 PMCID: PMC5783010 DOI: 10.2147/idr.s148335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prolonged vancomycin usage may cause methicillin-resistant Staphylococcus aureus to become vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA (hVISA). Mechanisms of vancomycin resistance of VISA and hVISA are still unclear. In this study, analyses of nucleotide sequence variations in 30 vancomycin-sensitive S. aureus (VSSA), 41 hVISA and 16 VISA isolates revealed 29 single-nucleotide variations in 12 genes (fmtC, graR, graS, htrA, mecA, pbp2, pbp4, srtA, tcaA, upps, vicK and vraR) that are related to cell wall synthesis or the two-component system. Six of these 29 single-nucleotide variations were novel and resulted in the following amino acid changes: Q692E in FmtC; T278I, P306L and I311T in HtrA; and I63V and K101E in Upps. Since P306L and I311T in HtrA and I63V in Upps were present in the majority (76.7%–86.7%) of VSSA isolates, these three amino acid variations may not be associated with vancomycin resistance. The other three amino acid variations (T278I in HtrA, K101E in Upps and Q692E in FmtC) were present in the majority (87.5%–93.8%) of hVISA and VISA isolates, but only in a small number (22.9%–25.7%) of VSSA isolates, suggesting that they are associated with vancomycin resistance.
Collapse
Affiliation(s)
- Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mao-Cheng Ge
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsui-Ping Liu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
27
|
Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2018; 41:430-449. [PMID: 28419231 DOI: 10.1093/femsre/fux007] [Citation(s) in RCA: 451] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/12/2017] [Indexed: 12/11/2022] Open
Abstract
The major targets for antibiotics in staphylococci are (i) the cell envelope, (ii) the ribosome and (iii) nucleic acids. Several novel targets emerged from recent targeted drug discovery programmes including the ClpP protease and FtsZ from the cell division machinery. Resistance can either develop by horizontal transfer of resistance determinants encoded by mobile genetic elements viz plasmids, transposons and the staphylococcal cassette chromosome or by mutations in chromosomal genes. Horizontally acquired resistance can occur by one of the following mechanisms: (i) enzymatic drug modification and inactivation, (ii) enzymatic modification of the drug binding site, (iii) drug efflux, (iv) bypass mechanisms involving acquisition of a novel drug-resistant target, (v) displacement of the drug to protect the target. Acquisition of resistance by mutation can result from (i) alteration of the drug target that prevents the inhibitor from binding, (ii) derepression of chromosomally encoded multidrug resistance efflux pumps and (iii) multiple stepwise mutations that alter the structure and composition of the cell wall and/or membrane to reduce drug access to its target. This review focuses on development of resistance to currently used antibiotics and examines future prospects for new antibiotics and informed use of drug combinations.
Collapse
|
28
|
Andrey DO, François P, Manzano C, Bonetti EJ, Harbarth S, Schrenzel J, Kelley WL, Renzoni A. Antimicrobial activity of ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 2013-2014 at the Geneva University Hospitals. Eur J Clin Microbiol Infect Dis 2017; 36:343-350. [PMID: 27744604 PMCID: PMC5253141 DOI: 10.1007/s10096-016-2807-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/27/2016] [Indexed: 11/30/2022]
Abstract
Ceftaroline is a broad-spectrum antibiotic with activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ceftaroline susceptibility of an MRSA set archived between 1994 and 2003 in the Geneva University Hospitals detected a high percentage (66 %) of ceftaroline resistance in clonotypes ST228 and ST247 and correlated with mutations in PBP2a. The ceftaroline mechanism of action is based on the inhibition of PBP2a; thus, the identification of PBP2a mutations of recently circulating clonotypes in our institution was investigated. We analyzed ceftaroline susceptibility in MRSA isolates (2013 and 2014) and established that resistant strains correlated with PBP2a mutations and specific clonotypes. Ninety-six MRSA strains were analyzed from independent patients and were isolated from blood cultures (23 %), deep infections (38.5 %), and superficial (skin or wound) infections (38.5 %). This sample showed a ceftaroline minimum inhibitory concentration (MIC) range between 0.25 and 2 μg/ml and disk diameters ranging from 10 to 30 mm, with a majority of strains showing diameters ≥20 mm. Based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, 76 % (73/96) of isolates showed susceptibility to ceftaroline. Nevertheless, we still observed 24 % (23/96) of resistant isolates (MIC = 2 μg/ml). All resistant isolates were assigned to clonotype ST228 and carried the N146K mutation in PBP2a. Only two ST228 isolates showed ceftaroline susceptibility. The decreasing percentage of ceftaroline-resistant isolates in our hospital can be explained by the decline of ST228 clonotype circulating in our hospital since 2008. We present evidence that ceftaroline is active against recent MRSA strains from our hospital; however, the presence of PBP2a variants in particular clonotypes may affect ceftaroline efficacy.
Collapse
Affiliation(s)
- D O Andrey
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - P François
- Genomic Research Laboratory, Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - C Manzano
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - E J Bonetti
- Genomic Research Laboratory, Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - S Harbarth
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva, Switzerland
- Infection Control Program, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - J Schrenzel
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva, Switzerland
- Genomic Research Laboratory, Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva, Switzerland
- Bacteriology Laboratory, Department of Laboratories and Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - W L Kelley
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - A Renzoni
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva, Switzerland.
- Service of Infectious Diseases, Geneva University Hospital and Medical School, 4 Rue Gabrielle Perret Gentil, Geneva, Switzerland.
| |
Collapse
|
29
|
Djoudi F, Bonura C, Touati A, Aléo A, Benallaoua S, Mammina C. Staphylococcal cassette chromosome mec typing and mecA sequencing in methicillin-resistant staphylococci from Algeria: a highly diversified element with new mutations in mecA. J Med Microbiol 2017; 65:1267-1273. [PMID: 27902367 DOI: 10.1099/jmm.0.000361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic mechanisms of methicillin resistance are still relevant in staphylococci. The aims of this study are to assess the possible exchanges of staphylococcal cassette chromosome mec (SCCmec) among isolates of methicillin-resistant staphylococci (MRS) and to check for known or new mutations in mecA DNA. A total of 35 MRS non-repetitive isolates were recovered, including 20 Staphylococcushaemolyticus, 7 Staphylococcusaureus, 4 Staphylococcussciuri, 2 Staphylococcussaprophyticus and 1 isolate each of Staphylococcusxylosus and Staphylococcuslentus. Only 16 of the 35 strains were assigned to known SCCmec types: 7 SCCmec VII, 6 SCCmec IV and 3 SCCmec III, with possible horizontal transfer of the SCCmec VII from methicillin-resistant S. haemolyticus to methicillin-susceptible S. aureus. mecA gene sequencing in ten selected isolates allowed description of nine punctual mutations, seven of which were reported for the first time. The most frequent mutation was G246E, identified in isolates of methicillin-resistant S. aureus, S. sciuri, S. saprophyticus and S. lentus. These results emphasized the high degree of genetic diversity of SCCmec element in MRS and describe new missense mutations in mecA, which might be important in understanding the evolution of methicillin and new β-lactam resistance.
Collapse
Affiliation(s)
- Ferhat Djoudi
- Laboratoire d'Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université A/MIRA, Route de Targa-Ouzemour, Bejaia 06000, Algeria
| | - Celestino Bonura
- Department of Sciences for Health Promotion and Mother-Child Care 'G. D'Alessandro', University of Palermo, Via del Vespro 133, I-90127 Palermo, Italy
| | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université A/MIRA, Route de Targa-Ouzemour, Bejaia 06000, Algeria
| | - Aurora Aléo
- Department of Sciences for Health Promotion and Mother-Child Care 'G. D'Alessandro', University of Palermo, Via del Vespro 133, I-90127 Palermo, Italy
| | - Said Benallaoua
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université A/MIRA, Route de Targa-Ouzemour, Bejaia 06000, Algeria
| | - Caterina Mammina
- Department of Sciences for Health Promotion and Mother-Child Care 'G. D'Alessandro', University of Palermo, Via del Vespro 133, I-90127 Palermo, Italy
| |
Collapse
|
30
|
Abstract
Staphylococcus aureus, although generally identified as a commensal, is also a common cause of human bacterial infections, including of the skin and other soft tissues, bones, bloodstream, and respiratory tract. The history of S. aureus treatment is marked by the development of resistance to each new class of antistaphylococcal antimicrobial drugs, including the penicillins, sulfonamides, tetracyclines, glycopeptides, and others, complicating therapy. S. aureus isolates identified in the 1960s were sometimes resistant to methicillin, a ß-lactam antimicrobial active initially against a majority S. aureus strains. These MRSA isolates, resistant to nearly all ß-lactam antimicrobials, were first largely confined to the health care environment and the patients who attended it. However, in the mid-1990s, new strains, known as community-associated (CA-) MRSA strains, emerged. CA-MRSA organisms, compared with health care-associated (HA-) MRSA strain types, are more often susceptible to multiple classes of non ß-lactam antimicrobials. While infections caused by methicillin-susceptible S. aureus (MSSA) strains are usually treated with drugs in the ß-lactam class, such as cephalosporins, oxacillin or nafcillin, MRSA infections are treated with drugs in other antimicrobial classes. The glycopeptide drug vancomycin, and in some countries teicoplanin, is the most common drug used to treat severe MRSA infections. There are now other classes of antimicrobials available to treat staphylococcal infections, including several that have been approved after 2009. The antimicrobial management of invasive and noninvasive S. aureus infections in the ambulatory and in-patient settings is the topic of this review. Also discussed are common adverse effects of antistaphylococcal antimicrobial agents, advantages of one agent over another for specific clinical syndromes, and the use of adjunctive therapies such as surgery and intravenous immunoglobulin. We have detailed considerations in the therapy of noninvasive and invasive S. aureus infections. This is followed by sections on specific clinical infectious syndromes including skin and soft tissue infections, bacteremia, endocarditis and intravascular infections, pneumonia, osteomyelitis and vertebral discitis, epidural abscess, septic arthritis, pyomyositis, mastitis, necrotizing fasciitis, orbital infections, endophthalmitis, parotitis, staphylococcal toxinoses, urogenital infections, and central nervous system infections.
Collapse
|
31
|
Lahiri SD, Alm RA. Identification of non-PBP2a resistance mechanisms in Staphylococcus aureus after serial passage with ceftaroline: involvement of other PBPs. J Antimicrob Chemother 2016; 71:3050-3057. [PMID: 27494915 DOI: 10.1093/jac/dkw282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/12/2016] [Accepted: 06/11/2016] [Indexed: 12/16/2023] Open
Abstract
OBJECTIVES Ceftaroline (the active metabolite of ceftaroline fosamil) is a cephalosporin that possesses activity against MRSA due to its differentiating high affinity for PBP2a. It is known that PBP2a sequence variations, including some outside of the transpeptidase-binding pocket, impact ceftaroline susceptibility and recent evidence suggests involvement of non-PBP2a mechanisms in ceftaroline resistance. This study evaluated the potential of ceftaroline to select for resistant Staphylococcus aureus clones during serial passage. METHODS Selection experiments were performed by up to 20 daily passages of three S. aureus isolates (two MRSA and one MSSA) in broth with increasing selective pressure. Mutants that emerged were tested for changes in ceftaroline susceptibility and genetically characterized. RESULTS The MSSA isolate developed mutations in PBP2 and PBP3 that increased the ceftaroline MIC by 16-fold and increased the MICs of other β-lactams. A Glu447Lys substitution in the PBP2a transpeptidase pocket in one MRSA isolate elevated the ceftaroline MIC to 8 mg/L. Selective pressure in a ceftaroline-resistant MRSA isolate generated mutations in LytD, as well as changes in the pbp4 promoter previously shown to result in PBP4 overexpression, the one PBP not inhibited by ceftaroline. Elevated ceftaroline MIC was reversed when tested in combination with extremely low levels of methicillin or meropenem that could inhibit the function of PBP4. CONCLUSIONS These studies demonstrate that resistance to ceftaroline can be manifested through numerous mechanisms. Further, they support a hypothesis where PBP4 can functionally provide the essential transpeptidase activity required for MRSA cell wall biogenesis when PBP2a is inhibited.
Collapse
Affiliation(s)
- Sushmita D Lahiri
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA
| | - Richard A Alm
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA
| |
Collapse
|
32
|
Karlowsky JA, Biedenbach DJ, Bouchillon SK, Hackel M, Iaconis JP, Sahm DF. In vitro activity of Ceftaroline against bacterial pathogens isolated from patients with skin and soft tissue and respiratory tract infections in African and Middle Eastern countries: AWARE global surveillance program 2012-2014. Diagn Microbiol Infect Dis 2016; 86:194-9. [PMID: 27461798 DOI: 10.1016/j.diagmicrobio.2016.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 11/26/2022]
Abstract
The objective of this report was to document antimicrobial susceptibility testing surveillance data for ceftaroline and comparative agents from the AWARE (Assessing Worldwide Antimicrobial Resistance Evaluation) global surveillance program for bacterial pathogens causing skin and soft tissue and respiratory tract infections in African and Middle Eastern countries from 2012 through 2014. Pathogen identities were confirmed by MALDI-TOF and antimicrobial susceptibility testing performed by CLSI broth microdilution methodology in a central laboratory. All methicillin-susceptible Staphylococcus aureus (MSSA) (n= 923; MIC90, 0.25 μg/mL) and 91.8% of methicillin-resistant S. aureus (MRSA) (n= 1161; MIC90, 1 μg/mL) tested were susceptible to ceftaroline. The maximum ceftaroline MIC observed for isolates of MRSA was 2 μg/mL. All Streptococcus pyogenes (n= 174; MIC90, 0.008 μg/mL), Streptococcus agalactiae (n= 44; MIC90, 0.015 μg/mL), Streptococcus pneumoniae (n= 351; MIC90, 0.25 μg/mL), and Haemophilus influenzae (n= 84; MIC90, ≤0.015 μg/mL) were susceptible to ceftaroline. Rates of susceptibility to ceftaroline among ESBL-negative Escherichia coli (n= 338), Klebsiella pneumoniae (n= 241), and Klebsiella oxytoca (n= 97) were 89.1% (MIC90, 1 μg/mL), 94.2% (MIC90, 0.5 μg/mL), and 99.0% (MIC90, 0.5 μg/mL), respectively.
Collapse
Affiliation(s)
- James A Karlowsky
- International Health Management Associates, Inc., Schaumburg, IL, USA
| | | | | | - Meredith Hackel
- International Health Management Associates, Inc., Schaumburg, IL, USA
| | | | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, IL, USA
| |
Collapse
|
33
|
Koeth LM, Apfalter P, Becker K, Gesu G, Martínez-Martínez L, Lahiri SD, Alm RA, Ambler J, Iaconis J. Multi-center and multi-method evaluation of in vitro activities of ceftaroline against S. aureus. Diagn Microbiol Infect Dis 2016; 85:452-8. [PMID: 27233426 DOI: 10.1016/j.diagmicrobio.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/22/2016] [Accepted: 05/05/2016] [Indexed: 01/25/2023]
Abstract
This five-site study was performed to assess the reproducibility of ceftaroline MIC and disk results for Staphylococcus aureus. Three commercial broth microdilution, three gradient diffusion and ceftaroline 5μg disk diffusion methods were compared to a reference broth microdilution method against challenge isolates (n = 41) and isolates collected at four European sites (n = 30/site). For four MIC methods (Sensititre and three gradient diffusion methods), 99.0% of consolidated MIC results were within +/- 1 dilution of the reference MIC. Categorical agreement rates based on EUCAST breakpoints for the challenge isolates were 75.6-100% and for disk testing were 78.0-92.7%. There was no clear distinction between isolates with MIC results of 1 and 2mg/L with regard to variation in MIC or molecular genotyping results. The addition of an intermediate category for isolates with MIC results of 2mg/L would help to identify these isolates as borderline susceptible/non-susceptible isolates.
Collapse
Affiliation(s)
| | - Petra Apfalter
- Analyse Biolab GmbH and Johannes Kepler University, Linz, Austria
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | | | - Luis Martínez-Martínez
- University Hospital Marqués de Valdecilla-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Department of Molecular Biology, University of Cantabria, Santander, Spain; AstraZeneca, Waltham, MA
| | | | | | | | | |
Collapse
|
34
|
Phaku P, Lebughe M, Strauß L, Peters G, Herrmann M, Mumba D, Mellmann A, Muyembe-Tamfum JJ, Schaumburg F. Unveiling the molecular basis of antimicrobial resistance in Staphylococcus aureus from the Democratic Republic of the Congo using whole genome sequencing. Clin Microbiol Infect 2016; 22:644.e1-5. [PMID: 27102139 DOI: 10.1016/j.cmi.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus from sub-Saharan Africa is frequently resistant to antimicrobial agents that are commonly used to treat invasive infections in resource-limited settings. The underlying mechanisms of resistance are largely unknown. We therefore performed whole genome sequencing (WGS) on S. aureus from the Democratic Republic of the Congo (DRC) to analyse the genetic determinants of antimicrobial resistance. One hundred S. aureus samples were collected from community-associated asymptomatic nasal carriers in the metropolitan area of Kinshasa, DRC, between 2013 and 2014. Phenotypic resistance against 15 antimicrobial agents was compared to the genotypic results that were extracted from WGS data using Mykrobe predictor and the SeqSphere(+) software that screened for 106 target genes associated with resistance. Isolates were phenotypically resistant against penicillin (97%, n=97), trimethoprim (72%, n=72) and tetracycline (54%, n=45). Thirty-three isolates (33%) were methicillin-resistant S. aureus (MRSA). Of these, nine isolates (27.3%) were oxacillin-susceptible MRSA (OS-MRSA) and belonged to ST8 (t1476). The Y195F mutation of FemA was associated with OS-MRSA (p 0.015). The majority of trimethoprim resistant isolates carried dfrG. Tetracycline resistance was associated with tet(K). The concordance between phenotypic susceptibility testing and both WGS analysis tools was similar and ranged between 96% and 100%. In conclusion, a high proportion of OS-MRSA in the DRC was linked to mutations of FemA. Genotypic and phenotypical antimicrobial susceptibility testing showed high concordance. This encourages the future use of WGS in routine antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- P Phaku
- Institut National de Recherche Bio-Médicale, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - M Lebughe
- Institut National de Recherche Bio-Médicale, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - L Strauß
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - G Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - M Herrmann
- Institute of Medical Microbiology and Hygiene, University Hospital of Saarland, Homburg, Germany
| | - D Mumba
- Institut National de Recherche Bio-Médicale, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - A Mellmann
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - J-J Muyembe-Tamfum
- Institut National de Recherche Bio-Médicale, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - F Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
35
|
Idelevich EA, Schaumburg F, Knaack D, Scherzinger AS, Mutter W, Peters G, Peschel A, Becker K. The Recombinant Bacteriophage Endolysin HY-133 Exhibits In Vitro Activity against Different African Clonal Lineages of the Staphylococcus aureus Complex, Including Staphylococcus schweitzeri. Antimicrob Agents Chemother 2016; 60:2551-3. [PMID: 26833148 PMCID: PMC4808236 DOI: 10.1128/aac.02859-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
HY-133 is a recombinant bacteriophage endolysin with bactericidal activity againstStaphylococcus aureus Here, HY-133 showedin vitroactivity against major African methicillin-susceptible and methicillin-resistantS. aureuslineages and ceftaroline/ceftobiprole- and borderline oxacillin-resistant isolates. HY-133 was also active againstStaphylococcus schweitzeri, a recently described species of theS. aureuscomplex. The activity of HY-133 on the tested isolates (MIC50, 0.25 μg/ml; MIC90, 0.5 μg/ml; range, 0.125 to 0.5 μg/ml) was independent of the species and strain background or antibiotic resistance.
Collapse
Affiliation(s)
- Evgeny A Idelevich
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Dennis Knaack
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | | | | | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Department, University of Tübingen, Tübingen, Germany German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
36
|
Abstract
Musculoskeletal infections caused by Staphylococcus aureus are among the most difficult-to-treat infections. S. aureus osteomyelitis is associated with a tremendous disease burden through potential for long-term relapses and functional deficits. Although considerable advances have been achieved in diagnosis and treatment of osteomyelitis, the management remains challenging and impact on quality of life is still enormous. S. aureus acute arthritis is relatively seldom in general population, but the incidence is considerably higher in patients with predisposing conditions, particularly those with rheumatoid arthritis. Rapidly destructive course with high mortality and disability rates makes urgent diagnosis and treatment of acute arthritis essential. S. aureus pyomyositis is a common disease in tropical countries, but it is very seldom in temperate regions. Nevertheless, the cases have been increasingly reported also in non-tropical countries, and the physicians should be able to timely recognize this uncommon condition and initiate appropriate treatment. The optimal management of S. aureus-associated musculoskeletal infections requires a strong interdisciplinary collaboration between all involved specialists.
Collapse
|