1
|
Park S, Jin Y, Ko KS. Effect of colistin-tigecycline combination on colistin-resistant and carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii. Microbiol Spectr 2025; 13:e0202124. [PMID: 39699248 PMCID: PMC11792479 DOI: 10.1128/spectrum.02021-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024] Open
Abstract
There is a critical need for treatment strategies to combat carbapenem-resistant Gram-negative pathogens. This study investigates the efficacy of combining low concentrations of colistin with tigecycline against colistin- and carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii strains. We used two strains of KPC-2-producing K. pneumoniae and OXA-23-producing A. baumannii, both of which are highly colistin-resistant. In the in vitro time-killing assays, monotherapy with colistin (2 mg/L) and tigecycline (4 or 8 mg/L) was ineffective against all strains. However, the combination of colistin (2 mg/L) and tigecycline (4 or 8 mg/L) inhibited bacterial growth. Survival analysis of Galleria mellonella larvae also demonstrated the efficacy of low concentrations of colistin and tigecycline against colistin- and carbapenem-resistant strains. All larvae survived when treated with a combination of colistin and tigecycline, whereas monotherapy with either colistin or tigecycline did not increase larval survival rates. This study proposes using a combination of tigecycline and colistin at clinical concentrations to treat carbapenem-resistant K. pneumoniae and A. baumannii, regardless of colistin resistance. IMPORTANCE Colistin resistance in carbapenem-resistant Gram-negative pathogens is a serious challenge in clinical settings. Our study showed that low concentration of colistin can be effective when combined with tigecycline. It presents the possibility of an available treatment option for antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Suyeon Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yanhong Jin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
2
|
Roy S, Cakmak ZS, Mahmoud S, Sadeghzadeh M, Wang G, Ren D. Eradication of Pseudomonas aeruginosa Persister Cells by Eravacycline. ACS Infect Dis 2024; 10:4127-4136. [PMID: 39537364 PMCID: PMC11650763 DOI: 10.1021/acsinfecdis.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Pseudomonas aeruginosa is a leading bacterial pathogen that causes persistent infections. One major reason that antibiotics fail to clear such infections is the presence of a dormant subpopulation called persister cells. To eradicate persister cells, it is important to change drug development from traditional strategies that focus on growth inhibition to the search for new leads that can kill dormant cells. In this study, we demonstrate that eravacycline can effectively accumulate in P. aeruginosa persister cells, leading to strong killing during wakeup, including persister cells in both planktonic cultures and biofilms of the wild-type strain and its mucoid mutant. The effects of eravacycline on persister control were further validated in vivo using a lung infection model in mice. Collectively, these results demonstrate the possibility to control persister cells of bacterial pathogens by targeting dormancy.
Collapse
Affiliation(s)
- Sweta Roy
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Zeynep S Cakmak
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Salma Mahmoud
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Mahsa Sadeghzadeh
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York 13210, United States
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BionInspired Institute, Syracuse University, Syracuse, New York 13244, United States
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
3
|
Yang J, Xu JF, Liang S. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. Crit Rev Microbiol 2024:1-19. [PMID: 39556143 DOI: 10.1080/1040841x.2024.2429599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/22/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Pseudomonas aeruginosa, able to survive on the surfaces of medical devices, is a life-threatening pathogen that mainly leads to nosocomial infection especially in immunodeficient and cystic fibrosis (CF) patients. The antibiotic resistance in P. aeruginosa has become a world-concerning problem, which results in reduced and ineffective therapy efficacy. Besides intrinsic properties to decrease the intracellular content and activity of antibiotics, P. aeruginosa develops acquired resistance by gene mutation and acquisition, as well as adaptive resistance under specific situations. With in-depth research on drug resistance mechanisms and the development of biotechnology, innovative strategies have emerged and yielded benefits such as screening for new antibiotics based on artificial intelligence technology, utilizing drugs synergistically, optimizing administration, and developing biological therapy. This review summarizes the recent advances in the mechanisms of antibiotic resistance and emerging treatments for combating resistance, aiming to provide a reference for the development of therapy against drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Jian Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Liu JD, VanTreeck KE, Marston WA, Papadopoulou V, Rowe SE. Ultrasound-Mediated Antibiotic Delivery to In Vivo Biofilm Infections: A Review. Chembiochem 2024; 25:e202400181. [PMID: 38924307 PMCID: PMC11483220 DOI: 10.1002/cbic.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Bacterial biofilms are a significant concern in various medical contexts due to their resilience to our immune system as well as antibiotic therapy. Biofilms often require surgical removal and frequently lead to recurrent or chronic infections. Therefore, there is an urgent need for improved strategies to treat biofilm infections. Ultrasound-mediated drug delivery is a technique that combines ultrasound application, often with the administration of acoustically-active agents, to enhance drug delivery to specific target tissues or cells within the body. This method involves using ultrasound waves to assist in the transportation or activation of medications, improving their penetration, distribution, and efficacy at the desired site. The advantages of ultrasound-mediated drug delivery include targeted and localized delivery, reduced systemic side effects, and improved efficacy of the drug at lower doses. This review scrutinizes recent advances in the application of ultrasound-mediated drug delivery for treating biofilm infections, focusing on in vivo studies. We examine the strengths and limitations of this technology in the context of wound infections, device-associated infections, lung infections and abscesses, and discuss current gaps in knowledge and clinical translation considerations.
Collapse
Affiliation(s)
- Jamie D. Liu
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kelly E. VanTreeck
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William A. Marston
- Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Department of Radiology, The University of North Carolina at Chapel Hill, NC, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
5
|
Zhao C, Kristoffersson AN, Khan DD, Lagerbäck P, Lustig U, Cao S, Annerstedt C, Cars O, Andersson DI, Hughes D, Nielsen EI, Friberg LE. Quantifying combined effects of colistin and ciprofloxacin against Escherichia coli in an in silico pharmacokinetic-pharmacodynamic model. Sci Rep 2024; 14:11706. [PMID: 38778123 PMCID: PMC11111785 DOI: 10.1038/s41598-024-61518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Co-administering a low dose of colistin (CST) with ciprofloxacin (CIP) may improve the antibacterial effect against resistant Escherichia coli, offering an acceptable benefit-risk balance. This study aimed to quantify the interaction between ciprofloxacin and colistin in an in silico pharmacokinetic-pharmacodynamic model from in vitro static time-kill experiments (using strains with minimum inhibitory concentrations, MICCIP 0.023-1 mg/L and MICCST 0.5-0.75 mg/L). It was also sought to demonstrate an approach of simulating concentrations at the site of infection with population pharmacokinetic and whole-body physiologically based pharmacokinetic models to explore the clinical value of the combination when facing more resistant strains (using extrapolated strains with lower susceptibility). The combined effect in the final model was described as the sum of individual drug effects with a change in drug potency: for ciprofloxacin, concentration at half maximum killing rate (EC50) in combination was 160% of the EC50 in monodrug experiments, while for colistin, the change in EC50 was strain-dependent from 54.1% to 119%. The benefit of co-administrating a lower-than-commonly-administrated colistin dose with ciprofloxacin in terms of drug effect in comparison to either monotherapy was predicted in simulated bloodstream infections and pyelonephritis. The study illustrates the value of pharmacokinetic-pharmacodynamic modelling and simulation in streamlining rational development of antibiotic combinations.
Collapse
Affiliation(s)
- Chenyan Zhao
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - David D Khan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Ulrika Lustig
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Otto Cars
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Coandă M, Limban C, Nuță DC. Small Schiff Base Molecules-A Possible Strategy to Combat Biofilm-Related Infections. Antibiotics (Basel) 2024; 13:75. [PMID: 38247634 PMCID: PMC10812491 DOI: 10.3390/antibiotics13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects.
Collapse
Affiliation(s)
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (M.C.); (D.C.N.)
| | | |
Collapse
|
7
|
Etemad A, Kalani BS, Ghafourian S, Khodaei N, Davari M, Sadeghifard N. GNAT toxin may have a potential role in Pseudomonas aeruginosa persistence: an in vitro and in silico study. Future Microbiol 2024; 19:21-31. [PMID: 38294294 DOI: 10.2217/fmb-2023-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 02/01/2024] Open
Abstract
Aims: Persistent cells are primarily responsible for developing antibiotic resistance and the recurrence of Pseudomonas aeruginosa. This study investigated the possible role of GNAT toxin in persistence. Materials & methods: P. aeruginosa was exposed to five MIC concentrations of ciprofloxacin. The expression levels of target genes were assessed. The GNAT/HTH system was bioinformatically studied, and an inhibitory peptide was designed to disrupt this system. Results: Ciprofloxacin can induce bacterial persistence. There was a significant increase in the expression of the GNAT toxin during the persistence state. A structural study of the GNAT/HTH system determined that an inhibitory peptide could be designed to block this system effectively. Conclusion: The GNAT/HTH system shows promise as a novel therapeutic target for combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Anahita Etemad
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sobhan Ghafourian
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Niloofar Khodaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Davari
- IT Unit of Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
8
|
Seo J, Na IY, Ko KS. Antibiotic Efficacy in Escherichia coli and Klebsiella pneumoniae Under Nutrient Limitation and Effectiveness of Colistin-Based Antibiotic Combinations to Eradicate Persister Cells. Curr Microbiol 2023; 81:34. [PMID: 38064019 DOI: 10.1007/s00284-023-03551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
Persister cells are responsible for recurrent or chronic infections resulting in antibiotic treatment failure. We aimed to investigate antibiotic efficacy in Escherichia coli and Klebsiella pneumoniae strains with limited metabolic activity. Bacterial cells cultured in nutrient-limited media showed characteristic persister phenotypes, including low intracellular ATP concentration, maintenance of antibiotic susceptibility, and an increase of (p)ppGpp levels. Amikacin showed no bactericidal activity under nutrient limitation conditions; however, metabolism-dependent ciprofloxacin exhibited metabolism-independent activity. The activity of colistin was metabolism-dependent, but it was retained under limited nutrient conditions. Nutrient limitation and antibiotic stress were related to the SOS response through recA expression in all four strains of E. coli and K. pneumoniae. However, the mRNA expression patterns of relA and spoT (associated with (p)ppGpp synthesis) and hpf and rpoS (downstream target genes of (p)ppGpp signaling) varied according to bacterial species, strain, and antibiotics, indicating diverse responses to nutrient stress in various persister cells. We also investigated the efficacy of antibiotic combinations to eradicate persister cells. As a result, colistin-based combinations were effective in the eradication of both E. coli and K. pneumoniae persister cells. In this study, persister cells were shown to be induced by metabolic stress, reducing antibiotic efficacy. We identified that combinations of colistin with amikacin or ciprofloxacin were effective to eliminate E. coli and K. pneumoniae persister cells.
Collapse
Affiliation(s)
- Jungyu Seo
- Department of Microbiology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-Gu, Suwon, 16419, Republic of Korea
| | - In Young Na
- Department of Microbiology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-Gu, Suwon, 16419, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-Gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
9
|
Jayakumar D, Mini M, Kumar P, Vaikkathillam P, Mohan A, Khan S. Synergistic Effect of Thymol-Ciprofloxacin Combination on Planktonic Cells and Biofilm of Pseudomonas aeruginosa. Curr Microbiol 2023; 81:23. [PMID: 38019310 DOI: 10.1007/s00284-023-03546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic bacteria causing severe and life-threatening infections in individuals with weakened immune systems. P. aeruginosa forms antibiotic-resistant biofilms, rendering it challenging to treat; hence, alternate therapies are required to eliminate it. Treatment of infections using a combination of drugs is gaining momentum to combat drug-resistant pathogens, including P. aeruginosa. This study explores the synergistic effects of Thymol in combination with Ciprofloxacin, Amikacin and Colistin against planktonic cells and biofilm of P. aeruginosa. Thymol in combination with Ciprofloxacin yields the fractional inhibitory concentration index values 0.156 and 0.375 in P. aeruginosa strains, GC14 and ATCC 9027, respectively, highlighting a robust synergistic effect on both the planktonic and biofilm of P. aeruginosa. The results showed that Thymol (512 μg/mL) and Ciprofloxacin (0.125 μg/mL) were the most effective combination with 95 and 93.5% total biofilm inhibition in GC14 and PA27, respectively, compared to the Thymol (512 μg/mL) and Ciprofloxacin (0.125 μg/mL) alone. Our findings suggest that the combinations of Thymol and Ciprofloxacin may be a potential therapeutic strategy to address the issue of infections caused by P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Devi Jayakumar
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - Minsa Mini
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - Praveen Kumar
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India.
| | - Parvathi Vaikkathillam
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - Aparna Mohan
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - Sajeeb Khan
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
10
|
Mattiello SP, Barth VC, Scaria J, Ferreira CAS, Oliveira SD. Fluoroquinolone and beta-lactam antimicrobials induce different transcriptome profiles in Salmonella enterica persister cells. Sci Rep 2023; 13:18696. [PMID: 37907566 PMCID: PMC10618250 DOI: 10.1038/s41598-023-46142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023] Open
Abstract
Here, we investigate the transcriptome profiles of two S. Enteritidis and one S. Schwarzengrund isolates that present different persister levels when exposed to ciprofloxacin or ceftazidime. It was possible to note a distinct transcript profile among isolates, time of exposure, and treatment. We could not find a commonly expressed transcript profile that plays a role in persister formation after S. enterica exposure to beta-lactam or fluoroquinolone, as only three DEGs presented the same behavior under the conditions and isolates tested. It appears that the formation of persisters in S. enterica after exposure to ciprofloxacin is linked to the overexpression of genes involved in the SOS response (recA), cell division inhibitor (sulA), iron-sulfur metabolism (hscA and iscS), and type I TA system (tisB). On the other hand, most genes differentially expressed in S. enterica after exposure to ceftazidime appeared to be downregulated and were part of the flagellar assembly apparatus, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, carbon metabolism, bacterial secretion system, quorum sensing, pyruvate metabolism pathway, and biosynthesis of secondary metabolites. The different transcriptome profiles found in S. enterica persisters induced by ciprofloxacin and ceftazidime suggest that these cells modulate their response differently according to each stress.
Collapse
Affiliation(s)
- S P Mattiello
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- College of Mathematics and Science, The University of Tennessee Southern, UTS, Pulaski, TN, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, SDSU, Brookings, SD, USA
| | - V C Barth
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - J Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, SDSU, Brookings, SD, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| | - C A S Ferreira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - S D Oliveira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, 90619-900, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Jo J, Lee JY, Cho H, Ko KS. Treatment of Colistin Dependence-Developing Acinetobacter baumannii with Antibiotic Combinations at Subinhibitory Concentrations. Microb Drug Resist 2023; 29:448-455. [PMID: 37379479 DOI: 10.1089/mdr.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Recent studies have revealed that colistin dependence frequently develops in colistin-susceptible Acinetobacter baumannii isolates. Despite resistance in parental strains, colistin-dependent mutants showed increased susceptibility to several antibiotics, which suggests the possibility of developing strategies to eliminate multidrug-resistant (MDR) A. baumannii. We investigated in vitro and in vivo efficacy of combinations of colistin and other antibiotics using MDR A. baumannii strains H08-391, H06-855, and H09-94, which are colistin-susceptible but develops colistin dependence upon exposure to colistin. An in vitro time-killing assay, a checkerboard assay, and an antibiotic treatment assay using Galleria mellonella larvae were performed. Although a single treatment of colistin at a high concentration did not prevent colistin dependence, combinations of colistin with other antibiotics at subinhibitory concentrations, especially amikacin, eradicated the strains by inhibiting the development of colistin dependence, in the in vitro time-killing assay. Only 40% of G. mellonella larvae infected by A. baumannii survived with colistin treatment alone; however, all or most of them survived following treatment with the combination of colistin and other antibiotics (amikacin, ceftriaxone, and tetracycline). Our results suggest the possibility of the combination of colistin and amikacin or other antibiotics as one of therapeutic options against A. baumannii infections by eliminating colistin-dependent mutants.
Collapse
Affiliation(s)
- Jeongwoo Jo
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Lee
- Research Institute for Future Medical Science, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
12
|
Pan X, Liu W, Du Q, Zhang H, Han D. Recent Advances in Bacterial Persistence Mechanisms. Int J Mol Sci 2023; 24:14311. [PMID: 37762613 PMCID: PMC10531727 DOI: 10.3390/ijms241814311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The recurrence of bacterial infectious diseases is closely associated with bacterial persisters. This subpopulation of bacteria can escape antibiotic treatment by entering a metabolic status of low activity through various mechanisms, for example, biofilm, toxin-antitoxin modules, the stringent response, and the SOS response. Correspondingly, multiple new treatments are being developed. However, due to their spontaneous low abundance in populations and the lack of research on in vivo interactions between persisters and the host's immune system, microfluidics, high-throughput sequencing, and microscopy techniques are combined innovatively to explore the mechanisms of persister formation and maintenance at the single-cell level. Here, we outline the main mechanisms of persister formation, and describe the cutting-edge technology for further research. Despite the significant progress regarding study techniques, some challenges remain to be tackled.
Collapse
Affiliation(s)
- Xiaozhou Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
13
|
Armengol E, Kragh KN, Tolker-Nielsen T, Sierra JM, Higazy D, Ciofu O, Viñas M, Høiby N. Colistin Enhances Rifampicin's Antimicrobial Action in Colistin-Resistant Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother 2023; 67:e0164122. [PMID: 36856424 PMCID: PMC10112245 DOI: 10.1128/aac.01641-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa infections has urged the need to find new strategies, such as the use of combinations of antibiotics. Among these, the combination of colistin with other antibiotics has been studied. Here, the action of combinations of colistin and rifampicin on both planktonic and sessile cells of colistin-resistant P. aeruginosa was studied. Dynamic biofilms were formed and treated with such a combination, resulting in an active killing effect of both colistin-resistant and colistin-susceptible P. aeruginosa in biofilms. The results suggest that the action of colistin on the outer membrane facilitates rifampicin penetration, regardless of the colistin-resistant phenotype. Based on these in vitro data, we propose a colistin-rifampicin combination as a promising treatment for infections caused by colistin-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Eva Armengol
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School and IDIBELL, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Josep M. Sierra
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School and IDIBELL, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Doaa Higazy
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School and IDIBELL, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Niels Høiby
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Hanafin PO, Abdul Rahim N, Sharma R, Cess CG, Finley SD, Bergen PJ, Velkov T, Li J, Rao GG. Proof-of-concept for incorporating mechanistic insights from multi-omics analyses of polymyxin B in combination with chloramphenicol against Klebsiella pneumoniae. CPT Pharmacometrics Syst Pharmacol 2023; 12:387-400. [PMID: 36661181 PMCID: PMC10014067 DOI: 10.1002/psp4.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Carbapenemase-resistant Klebsiella pneumoniae (KP) resistant to multiple antibiotic classes necessitates optimized combination therapy. Our objective is to build a workflow leveraging omics and bacterial count data to identify antibiotic mechanisms that can be used to design and optimize combination regimens. For pharmacodynamic (PD) analysis, previously published static time-kill studies (J Antimicrob Chemother 70, 2015, 2589) were used with polymyxin B (PMB) and chloramphenicol (CHL) mono and combination therapy against three KP clinical isolates over 24 h. A mechanism-based model (MBM) was developed using time-kill data in S-ADAPT describing PMB-CHL PD activity against each isolate. Previously published results of PMB (1 mg/L continuous infusion) and CHL (Cmax : 8 mg/L; bolus q6h) mono and combination regimens were evaluated using an in vitro one-compartment dynamic infection model against a KP clinical isolate (108 CFU/ml inoculum) over 24 h to obtain bacterial samples for multi-omics analyses. The differentially expressed genes and metabolites in these bacterial samples served as input to develop a partial least squares regression (PLSR) in R that links PD responses with the multi-omics responses via a multi-omics pathway analysis. PMB efficacy was increased when combined with CHL, and the MBM described the observed PD well for all strains. The PLSR consisted of 29 omics inputs and predicted MBM PD response (R2 = 0.946). Our analysis found that CHL downregulated metabolites and genes pertinent to lipid A, hence limiting the emergence of PMB resistance. Our workflow linked insights from analysis of multi-omics data with MBM to identify biological mechanisms explaining observed PD activity in combination therapy.
Collapse
Affiliation(s)
- Patrick O Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Rajnikant Sharma
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Colin G Cess
- Department of Biomedical Engineering Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Stacey D Finley
- Department of Biomedical Engineering Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences and Biomedicine Discovery Institute, Monash University, Parkville, Victoria, Australia
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Xiao C, Li X, Huang L, Cao H, Han L, Ni Y, Xia H, Yang Z. Prevalence and molecular characteristics of polymyxin-resistant Enterobacterales in a Chinese tertiary teaching hospital. Front Cell Infect Microbiol 2023; 13:1118122. [PMID: 37143741 PMCID: PMC10151768 DOI: 10.3389/fcimb.2023.1118122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Polymyxin-resistant Enterobacterales poses a significant threat to public health globally, but its prevalence and genomic diversity within a sole hospital is less well known. In this study, the prevalence of polymyxin-resistant Enterobacterales in a Chinese teaching hospital was investigated with deciphering of their genetic determinants of drug resistance. Methods Polymyxin-resistant Enterobacterales isolates identified by matrix-assisted laser desorption were collected in Ruijin Hospital from May to December in 2021. Both the VITEK 2 Compact and broth dilution methods were used to determine polymyxin B (PMB) susceptibility. Polymyxin-resistant isolates were further characterized by molecular typing using PCR, multi-locus sequence typing, and sequencing of the whole genome. Results Of the 1,216 isolates collected, 32 (2.6%) across 12 wards were polymyxin-resistant (minimum inhibitory concentration (MIC) range, PMB 4-256 mg/ml, and colistin 4 ≥ 16 mg/ ml). A total of 28 (87.5%) of the polymyxin-resistant isolates had reduced susceptibility to imipenem and meropenem (MIC ≥ 16 mg/ml). Of the 32 patients, 15 patients received PMB treatment and 20 survived before discharge. The phylogenetic tree of these isolates showed they belonged to different clones and had multiple origins. The polymyxin-resistant Klebsiella pneumoniae isolates belonged to ST-11 (85.72%), ST-15 (10.71%), and ST-65 (3.57%), and the polymyxin-resistant Escherichia coli belonged to four different sequence types, namely, ST-69 (25.00%), ST-38 (25.00%), ST-648 (25.00%), and ST-1193 (25.00%). In addition, six mgrB specific mutations (snp_ALT c.323T>C and amino acid change p.Val8Ala) were identified in 15.6% (5/32) of the isolates. mcr-1, a plasmid-mediated polymyxin-resistant gene, was found in three isolates, and non-synonymous mutations including T157P, A246T, G53V, and I44L were also observed. Discussion In our study, a low prevalence of polymyxin-resistant Enterobacterales was observed, but these isolates were also identified as multidrug resistant. Therefore, efficient infection control measures should be implemented to prevent the further spread of resistance to last-line polymyxin therapy.
Collapse
Affiliation(s)
- Chenlu Xiao
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuming Li
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Lianjiang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Huiluo Cao
- Department of Microbiology, The University of Hongkong, Hong Kong, Hong Kong SAR, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxing Ni
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhitao Yang,
| |
Collapse
|
16
|
Chiu S, Hancock AM, Schofner BW, Sniezek KJ, Soto-Echevarria N, Leon G, Sivaloganathan DM, Wan X, Brynildsen MP. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot (Tokyo) 2022; 75:593-609. [PMID: 36123537 DOI: 10.1038/s41429-022-00561-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.
Collapse
Affiliation(s)
- Selena Chiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna M Hancock
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Bob W Schofner
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
17
|
Patel H, Buchad H, Gajjar D. Pseudomonas aeruginosa persister cell formation upon antibiotic exposure in planktonic and biofilm state. Sci Rep 2022; 12:16151. [PMID: 36168027 PMCID: PMC9515113 DOI: 10.1038/s41598-022-20323-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Persister cell (PC) is dormant, tolerant to antibiotics, and a transient reversible phenotype. These phenotypes are observed in P. aeruginosa and cause bacterial chronic infection as well as recurrence of biofilm-mediated infection. PC formation requires stringent response and toxin-antitoxin (TA) modules. This study shows the P. aeruginosa PC formation in planktonic and biofilm stages on ceftazidime, gentamicin, and ciprofloxacin treatments. The PC formation was studied using persister assay, flow cytometry using Redox Sensor Green, fluorescence as well as Confocal Laser Scanning Microscopy, and gene expression of stringent response and TA genes. In the planktonic stage, ceftazidime showed a high survival fraction, high redox activity, and elongation of cells was observed followed by ciprofloxacin and gentamicin treatment having redox activity and rod-shaped cells. The gene expression of stringent response and TA genes were upregulated on gentamicin followed by ceftazidime treatment and varied among the isolates. In the biofilm stage, gentamicin and ciprofloxacin showed the biphasic killing pattern, redox activity, gene expression level of stringent response and TA varied across the isolates. Ceftazidime treatment showed higher persister cells in planktonic growth while all three antibiotics were able to induce persister cell formation in the biofilm stage.
Collapse
Affiliation(s)
- Hiral Patel
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Hasmatbanu Buchad
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Devarshi Gajjar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
18
|
Cao Z, Chen X, Chen J, Xia A, Bacacao B, Tran J, Sharma D, Bekale LA, Santa Maria PL. Gold nanocluster adjuvant enables the eradication of persister cells by antibiotics and abolishes the emergence of resistance. NANOSCALE 2022; 14:10016-10032. [PMID: 35796201 PMCID: PMC9578678 DOI: 10.1039/d2nr01003h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Persister cells are responsible for relapses of infections common in cystic fibrosis and chronic suppurative otitis media (CSOM). Yet, there are no Food and Drug Administration (FDA) approved antibiotics to eradicate persister cells. Frustratingly, the global preclinical bacterial pipeline does not contain antibacterial agents targeting persister cells. Therefore, we report a nontraditional antimicrobial chemotherapy strategy based on gold nanoclusters adjuvant to eradicate persister cells by existing antibiotics belonging to that different class. Compared to killing with antibiotics alone, combining antibiotics and AuNC@CPP sterilizes persister cells and biofilms. Enhanced killing of up to 4 orders of magnitude in a validated mouse model of CSOM with Pseudomonas aeruginosa infection was observed when combining antibiotics and AuNC@CPP, informing a potential approach to improve the treatment of CSOM. We established that the mechanism of action of AuNC@CPP is due to disruption of the proton gradient and membrane hyperpolarization. The method presented here could compensate for the lack of new antibiotics to combat persister cells. This method could also benefit the current effort to slow resistance development because AuNC@CPP abolished the emergence of drug-resistant strains induced by antibiotics.
Collapse
Affiliation(s)
- Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Xiaohua Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Brian Bacacao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Jessica Tran
- The Protein and Nucleic Acid Biotechnology Facility, Beckman Center Stanford University, 279 Campus Drive, West Stanford, CA 94305, USA
| | - Devesh Sharma
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| |
Collapse
|
19
|
Vatansever C, Ozer B, Atac N, Guler OU, Kilicoglu BK, Berkkan M, Baskurt D, Sever E, Dogan O, Can F. Efficacy of Amikacin and Meropenem on Colistin-Induced Klebsiella pneumoniae Persisters. Microb Drug Resist 2022; 28:765-772. [PMID: 35759379 DOI: 10.1089/mdr.2021.0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colistin-based antibiotic therapies have been recommended for the treatment of multidrug-resistant Klebsiella pneumoniae infections. During colistin treatment, persister cells that tolerate antibiotics may arise. Here we designed an in vitro study to assess the killing activity of colistin, meropenem, and amikacin on colistin-induced K. pneumoniae persisters in comparison with starvation-induced persisters. Colistin-induced persisters were generated under exposure to 10 × minimum inhibitory concentration dose of colistin, whereas starvation-induced persisters were produced by limitation of nutrients. In colistin-induced persisters, amikacin totally inhibited cell growth in 6 hours, whereas 98% of the cell population was inhibited by meropenem, and total eradication with meropenem was observed after 24 hours. Both antibiotics also inhibited metabolic activity >88%. The lack of killing effect under colistin exposure suggested to us that these cells could protect themselves from further colistin stress. There was no significant permeabilization change in the cellular membrane with all antibiotics. There was no killing effect on starvation-induced persister cells with the exposure to all antibiotics. In 6 hours, the metabolic activity of the persisters with meropenem and colistin increased 99% and 40%, respectively, whereas there was no increase with amikacin. The sustained inhibition with amikacin was an important finding for antipersister effect of amikacin. Amikacin had rapid and sustained antipersister activity on colistin-induced persister cells. During the colistin treatment of K. pneumoniae infection, the addition of amikacin to the regimen seems to be an effective approach to prevent a recurrence.
Collapse
Affiliation(s)
- Cansel Vatansever
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Berna Ozer
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Nazlı Atac
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | | | | | | | - Defne Baskurt
- Koç University, School of Medicine, Istanbul, Turkey
| | - Egemen Sever
- Koç University, School of Medicine, Istanbul, Turkey
| | - Ozlem Dogan
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Fusun Can
- Department of Medical Microbiology, Koç University School of Medicine, Istanbul, Turkey.,Koç University-İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| |
Collapse
|
20
|
Xiao C, Zhu Y, Yang Z, Shi D, Ni Y, Hua L, Li J. Prevalence and Molecular Characteristics of Polymyxin-Resistant Pseudomonas aeruginosa in a Chinese Tertiary Teaching Hospital. Antibiotics (Basel) 2022; 11:antibiotics11060799. [PMID: 35740205 PMCID: PMC9219935 DOI: 10.3390/antibiotics11060799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
Polymyxin-resistant Pseudomonas aeruginosa is a major threat to public health globally. We investigated the prevalence of polymyxin-resistant P. aeruginosa in a Chinese teaching hospital and determined the genetic and drug-resistant phenotypes of the resistant isolates. P. aeruginosa isolates identified by MALDI-TOF MS were collected across a 3-month period in Ruijin Hospital. Antimicrobial susceptibility was determined by a Vitek-2 Compact system with broth dilution used to determine polymyxin B (PMB) susceptibility. Polymyxin-resistant isolates were further characterized by molecular typing using PCR, multi-locus sequence typing (MLST) and whole-genome sequencing. Phylogenetic relationships were analyzed using single nucleotide polymorphism (SNP) from the whole-genome sequencing. Of 362 P. aeruginosa isolates collected, 8 (2.2%) isolates from separate patients across six wards were polymyxin-resistant (MIC range, PMB 4–16 μg/mL and colistin 4–≥16 μg/mL). Four patients received PMB treatments (intravenous, aerosolized and/or topical) and all patients survived to discharge. All polymyxin-resistant isolates were genetically related and were assigned to five different clades (Isolate 150 and Isolate 211 being the same ST823 type). Genetic variations V51I, Y345H, G68S and R155H in pmrB and L71R in pmrA were identified, which might confer polymyxin resistance in these isolates. Six of the polymyxin-resistant isolates showed reduced susceptibility to imipenem and meropenem (MIC range ≥ 16 μg/mL), while two of the eight isolates were resistant to ceftazidime. We revealed a low prevalence of polymyxin-resistant P. aeruginosa in a Chinese teaching hospital with most polymyxin-resistant isolates being multidrug-resistant. Therefore, effective infection control measures are urgently needed to prevent further spread of resistance to the last-line polymyxins.
Collapse
Affiliation(s)
- Chenlu Xiao
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia;
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Dake Shi
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (D.S.); (Y.N.)
| | - Yuxing Ni
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (D.S.); (Y.N.)
| | - Li Hua
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (L.H.); (J.L.)
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia;
- Correspondence: (L.H.); (J.L.)
| |
Collapse
|
21
|
Amara AAAF. The Role of Divalent Cations in Antibiotic Sensitivity. BIOMOLECULES FROM NATURAL SOURCES 2022:252-277. [DOI: 10.1002/9781119769620.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Urbaniec J, Xu Y, Hu Y, Hingley-Wilson S, McFadden J. Phenotypic heterogeneity in persisters: a novel 'hunker' theory of persistence. FEMS Microbiol Rev 2022; 46:fuab042. [PMID: 34355746 PMCID: PMC8767447 DOI: 10.1093/femsre/fuab042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Persistence has been linked to treatment failure since its discovery over 70 years ago and understanding formation, nature and survival of this key antibiotic refractory subpopulation is crucial to enhancing treatment success and combatting the threat of antimicrobial resistance (AMR). The term 'persistence' is often used interchangeably with other terms such as tolerance or dormancy. In this review we focus on 'antibiotic persistence' which we broadly define as a feature of a subpopulation of bacterial cells that possesses the non-heritable character of surviving exposure to one or more antibiotics; and persisters as cells that possess this characteristic. We discuss novel molecular mechanisms involved in persister cell formation, as well as environmental factors which can contribute to increased antibiotic persistence in vivo, highlighting recent developments advanced by single-cell studies. We also aim to provide a comprehensive model of persistence, the 'hunker' theory which is grounded in intrinsic heterogeneity of bacterial populations and a myriad of 'hunkering down' mechanisms which can contribute to antibiotic survival of the persister subpopulation. Finally, we discuss antibiotic persistence as a 'stepping-stone' to AMR and stress the urgent need to develop effective anti-persister treatment regimes to treat this highly clinically relevant bacterial sub-population.
Collapse
Affiliation(s)
- J Urbaniec
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Ye Xu
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Y Hu
- Farnborough Sensonic limited, Farnborough road, GU14 7NA, UK
| | - S Hingley-Wilson
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - J McFadden
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
- Quantum biology doctoral training centre, University of Surrey, Guildford, Surrey, GU27XH, UK
| |
Collapse
|
23
|
She P, Li S, Liu Y, Xu L, Zhou L, Zeng X, Li Y, Liu S, Li Z, Hussain Z, Wu Y. Repurposing Sitafloxacin, Prulifloxacin, Tosufloxacin, and Sisomicin as Antimicrobials Against Biofilm and Persister Cells of Pseudomonas aeruginosa. Curr Microbiol 2021; 79:12. [PMID: 34905092 DOI: 10.1007/s00284-021-02729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium found in hospitals and the surrounding environment. The ability of P. aeruginosa to form biofilms confers high-level resistance to antibiotics, and the persister cells formed in the presence of high antibacterial drug concentrations make P. aeruginosa-related infections more refractory. Further, there rarely is an effective antimicrobial alternative when biofilm- and persister cell-targeting treatment fails. Using a high-throughput screening assay, we previously identified fluoroquinolones sitafloxacin, prulifloxacin, and tosufloxacin as well as aminoglycoside sisomicin among FDA-approved drugs with significant bactericidal activity against P. aeruginosa. In addition, in our current study, these antibiotics exhibited an effective time- and dose-dependent eradication effects against the preformed biofilms of P. aeruginosa at the concentrations of 2-4 μM. These agents also exhibited bactericidal efficacy against CCCP-induced P. aeruginosa persister cells with the viable cell count decreased from 9.14 log10 CFU/mL to 6.15 (sitafloxacin), 7.59 (prulifloxacin), 4.27 (tosufloxacin), and 6.17 (sisomicin) log10 CFU/mL, respectively, following 4 h of treatment. Furthermore, sisomicin was also effective against conventional antibiotics induced persister cells in a time-dependent manner within 24 h. In addition, we confirmed the in vivo anti-biofilm efficacy of the identified antibiotics in a subcutaneous implantation biofilm-related infection model. Tosufloxacin exhibited the greatest in vivo bactericidal activity against P. aeruginosa biofilms with a reduction of 4.54 ΔLog10 CFU/mL compared to the vehicle group, followed by prulifloxacin, sitafloxacin, and sisomicin. Taken together, our results indicate that sitafloxacin, prulifloxacin, tosufloxacin, and sisomicin have great potential as alternatives for the treatment of refractory infections caused by P. aeruginosa biofilms and persister cells.
Collapse
Affiliation(s)
- Pengfei She
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Shijia Li
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yaqian Liu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Lanlan Xu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Linying Zhou
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xianghai Zeng
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yimin Li
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Shasha Liu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zehao Li
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zubiar Hussain
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
24
|
Žiemytė M, Carda-Diéguez M, Rodríguez-Díaz JC, Ventero MP, Mira A, Ferrer MD. Real-time monitoring of Pseudomonas aeruginosa biofilm growth dynamics and persister cells' eradication. Emerg Microbes Infect 2021; 10:2062-2075. [PMID: 34663186 PMCID: PMC8583918 DOI: 10.1080/22221751.2021.1994355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023]
Abstract
Biofilm formation and the appearance of persister cells with low metabolic rates are key factors affecting conventional treatment failure and antibiotic resistance. Using impedance-based measurements, crystal violet staining and traditional culture we have studied the biofilm growth dynamics of 13 Pseudomonas aeruginosa strains under the effect of seven conventional antibiotics. Real-time growth quantifications revealed that the exposure of established P. aeruginosa biofilms to certain concentrations of ciprofloxacin, ceftazidime and tobramycin induced the emergence of persister cells, that showed different morphology and pigmentation, as well increased antibiotic resistance. Whole-genome sequencing of wildtype and persister cells identified several SNPs, a genomic inversion and a genomic duplication in one of the strains. However, these mutations were not uniquely associated with persisters, suggesting that the persistent phenotype may be related to metabolic and transcriptional changes. Given that mannitol has been proposed to activate bacterial metabolism, the synergistic combination of mannitol and ciprofloxacin was evaluated on clinical 48 h P. aeruginosa biofilms. When administered at doses ≥320 mg/L, mannitol was capable of preventing persister cell formation by efficiently activating dormant bacteria and making them susceptible to the antibiotic. These results were confirmed using viable colony counting. As the tested ciprofloxacin-mannitol combination appeared to fully eradicate mature biofilms, we conclude that impedance-based biofilm diagnostics, which permits antibiotic susceptibility testing and the identification of persister cells, is of great potential for the clinical practice and could aid in establishing treatment breakpoints for emerging biofilm-related infections.
Collapse
Affiliation(s)
- Miglė Žiemytė
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | | | - Juan C. Rodríguez-Díaz
- Servicio de Microbiología, Hospital General Universitario de Alicante, ISABIAL, Alicante, Spain
| | - Maria P. Ventero
- Servicio de Microbiología, Hospital General Universitario de Alicante, ISABIAL, Alicante, Spain
| | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| | - María D. Ferrer
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
25
|
Patel RR, Kandel PP, Traverso E, Hockett KL, Triplett LR. Pseudomonas syringae pv. phaseolicola Uses Distinct Modes of Stationary-Phase Persistence To Survive Bacteriocin and Streptomycin Treatments. mBio 2021; 12:e00161-21. [PMID: 33849974 PMCID: PMC8092213 DOI: 10.1128/mbio.00161-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial treatment of bacteria often results in a small population of surviving tolerant cells, or persisters, that may contribute to recurrent infection. Antibiotic persisters are metabolically dormant, but the basis of their persistence in the presence of membrane-disrupting biological compounds is less well understood. We previously found that the model plant pathogen Pseudomonas syringae pv. phaseolicola 1448A (Pph) exhibits persistence to tailocin, a membrane-disrupting biocontrol compound with potential for sustainable disease control. Here, we compared physiological traits associated with persistence to tailocin and to the antibiotic streptomycin and established that both treatments leave similar frequencies of persisters. Microscopic profiling of treated populations revealed that while tailocin rapidly permeabilizes most cells, streptomycin treatment results in a heterogeneous population in the redox and membrane permeability state. Intact cells were sorted into three fractions according to metabolic activity, as indicated by a redox-sensing reporter dye. Streptomycin persisters were cultured from the fraction associated with the lowest metabolic activity, but tailocin persisters were cultured from a fraction associated with an active metabolic signal. Cells from culturable fractions were able to infect host plants, while the nonculturable fractions were not. Tailocin and streptomycin were effective in eliminating all persisters when applied sequentially, in addition to eliminating cells in other viable states. This study identifies distinct metabolic states associated with antibiotic persistence, tailocin persistence, and loss of virulence and demonstrates that tailocin is highly effective in eliminating dormant cells.IMPORTANCE Populations of genetically identical bacteria encompass heterogeneous physiological states. The small fraction of bacteria that are dormant can help the population survive exposure to antibiotics and other stresses, potentially contributing to recurring infection cycles in animal or plant hosts. Membrane-disrupting biological control treatments are effective in killing dormant bacteria, but these treatments also leave persister-like survivors. The current work demonstrates that in Pph, persisters surviving treatment with membrane-disrupting tailocin proteins have an elevated redox state compared to that of dormant streptomycin persisters. Combination treatment was effective in killing both persister types. Culturable persisters corresponded closely with infectious cells in each treated population, whereas the high-redox and unculturable fractions were not infectious. In linking redox states to heterogeneous phenotypes of tailocin persistence, streptomycin persistence, and infection capability, this work will inform the search for mechanisms and markers for each phenotype.
Collapse
Affiliation(s)
- Ravikumar R Patel
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Prem P Kandel
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eboni Traverso
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Martin I, Waters V, Grasemann H. Approaches to Targeting Bacterial Biofilms in Cystic Fibrosis Airways. Int J Mol Sci 2021; 22:ijms22042155. [PMID: 33671516 PMCID: PMC7926955 DOI: 10.3390/ijms22042155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of lung infection in the context of cystic fibrosis (CF) is limited by a biofilm mode of growth of pathogenic organisms. When compared to planktonically grown bacteria, bacterial biofilms can survive extremely high levels of antimicrobials. Within the lung, bacterial biofilms are aggregates of microorganisms suspended in a matrix of self-secreted proteins within the sputum. These structures offer both physical protection from antibiotics as well as a heterogeneous population of metabolically and phenotypically distinct bacteria. The bacteria themselves and the components of the extracellular matrix, in addition to the signaling pathways that direct their behaviour, are all potential targets for therapeutic intervention discussed in this review. This review touches on the successes and failures of current anti-biofilm strategies, before looking at emerging therapies and the mechanisms by which it is hoped they will overcome current limitations.
Collapse
Affiliation(s)
- Isaac Martin
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Correspondence:
| | - Valerie Waters
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
27
|
Kashyap S, Kaur S, Sharma P, Capalash N. Combination of colistin and tobramycin inhibits persistence of Acinetobacter baumannii by membrane hyperpolarization and down-regulation of efflux pumps. Microbes Infect 2021; 23:104795. [PMID: 33567337 DOI: 10.1016/j.micinf.2021.104795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 01/03/2023]
Abstract
Acinetobacter baumannii, a leading cause of nosocomial infections, is a serious health threat. Limited therapeutic options due to multi-drug resistance and tolerance due to persister cells have urged the scientific community to develop new strategies to combat infections caused by this pathogen effectively. Since combination antibiotic therapy is an attractive strategy, the effect of combinations of antibiotics, belonging to four classes, was investigated on eradication of persister cells in A. baumannii. Among the antibiotics included in the study, tobramycin-based combinations were found to be the most effective. Tobramycin, in combination with colistin or ciprofloxacin, eradicated persister cells in A. baumannii in late exponential and stationary phases of growth. Mechanistically, colistin facilitated the entry of tobramycin into cells by increasing membrane permeability and inducing hyperpolarization of the inner membrane accompanied by increase in ROS production. Expression of the genes encoding universal stress protein and efflux pumps was down-regulated in response to tobramycin and colistin, suggesting increased lethality of their combination that might be responsible for eradication of persister cells. Thus, a combination of tobramycin and colistin could be explored as a promising option for preventing the relapse of A. baumannii infections due to persister cells.
Collapse
Affiliation(s)
- Shruti Kashyap
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Sukhvir Kaur
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
28
|
Imipenem/Cilastatin/Relebactam Alone and in Combination against Pseudomonas aeruginosa in the In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother 2020; 64:AAC.01764-20. [PMID: 33139283 DOI: 10.1128/aac.01764-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Combination therapy may enhance imipenem/cilastatin/relebactam's (I/R) activity against Pseudomonas aeruginosa and suppress resistance development. Human-simulated unbound plasma concentrations of I/R at 1.25 g every 6 h (h), colistin at 360 mg daily, and amikacin at 25 mg/kg daily were reproduced alone and in combination against six imipenem-nonsusceptible P. aeruginosa isolates in an in vitro pharmacodynamic model over 24 h. For I/R alone, the mean reductions in CFU ± the standard errors by 24 h were -2.52 ± 0.49, -1.49 ± 0.49, -1.15 ± 0.67, and -0.61 ± 0.10 log10 CFU/ml against isolates with MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. Amikacin alone also resulted in 24 h CFU reductions consistent with its MIC, while colistin CFU reductions did not differ. Resistant subpopulations were observed after 24 h in 1, 4, and 3 I/R-, colistin-, and amikacin-exposed isolates, respectively. The combination of I/R and colistin resulted in synergistic (n = 1) or additive (n = 2) interactions against three isolates with 24-h CFU reductions ranging from -2.62 to -4.67 log10 CFU/ml. The combination of I/R and amikacin exhibited indifferent interactions against all isolates, with combined drugs achieving -0.51- to -3.33-log10 CFU/ml reductions. No resistant subpopulations were observed during I/R and colistin combination studies, and when added to amikacin, I/R prevented the emergence of amikacin resistance. Against these six multidrug-resistant P. aeruginosa, I/R alone achieved significant CFU reductions against I/R-susceptible isolates. Combinations of I/R plus colistin resulted in additivity or synergy against some P. aeruginosa, whereas the addition of amikacin did not provide further antibacterial efficacy against these isolates.
Collapse
|
29
|
Soares A, Alexandre K, Etienne M. Tolerance and Persistence of Pseudomonas aeruginosa in Biofilms Exposed to Antibiotics: Molecular Mechanisms, Antibiotic Strategies and Therapeutic Perspectives. Front Microbiol 2020; 11:2057. [PMID: 32973737 PMCID: PMC7481396 DOI: 10.3389/fmicb.2020.02057] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa biofilm-related infections are difficult to treat with antibiotics. Along the different layers of the biofilm, the P. aeruginosa population is heterogeneous, exhibiting an extreme ability to adapt his metabolic activity to the local microenvironment. At the deepest layers of the biofilm is a subset of dormant cells, called persister cells. Though antimicrobial failure might be multifactorial, it is now demonstrated that these persister cells, genetically identical to a fully susceptible strain, but phenotypically divergent, are highly tolerant to antibiotics, and contribute to antimicrobial failure. By eradicating susceptible, metabolically active cells, antibiotics bring out pre-existing persister cells. The biofilm mode of growth creates microenvironment conditions that activate stringent response mechanisms, SOS response and toxin-antitoxin systems that render the bacterial population highly tolerant to antibiotics. Using diverse, not standardized, models of biofilm infection, a large panel of antibiotic regimen has been evaluated. They demonstrated that biofilm growth had an unequal impact of antibiotic activity, colistin and meropenem being the less impacted antibiotics. Different combination and sequential antimicrobial therapies were also evaluated, and could be partially efficient, but none succeeded in eradicating persister cells, so that non-antibiotic alternative strategies are currently under development. This article reviews the molecular mechanisms involved in antibiotic tolerance and persistence in P. aeruginosa biofilm infections. A review of the antimicrobial regimen evaluated for the treatment of P. aeruginosa biofilm infection is also presented. While tremendous progress has been made in the understanding of biofilm-related infections, alternative non-antibiotic strategies are now urgently needed.
Collapse
Affiliation(s)
- Anaïs Soares
- GRAM 2.0, EA 2656, Normandie University, UNIROUEN, Rouen, France
| | - Kévin Alexandre
- GRAM 2.0, EA 2656, Normandie University, UNIROUEN, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| | - Manuel Etienne
- GRAM 2.0, EA 2656, Normandie University, UNIROUEN, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| |
Collapse
|