1
|
Penning S, Hong Y, Cunliffe T, Hor L, Totsika M, Paxman JJ, Heras B. Unveiling the versatility of the thioredoxin framework: Insights from the structural examination of Francisella tularensis DsbA1. Comput Struct Biotechnol J 2024; 23:4324-4336. [PMID: 39697679 PMCID: PMC11653150 DOI: 10.1016/j.csbj.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis. Here we investigate FtDsbA1, a DsbA homologue from the Gram-negative bacterium Francisella tularensis. Our study shows that FtDsbA1 shares a conserved TRX-like fold bridged by an alpha helical bundle showcased by all DsbA-like proteins. However, FtDsbA1 displays a highly unique variation on this structure, containing an extended and flexible N-terminus and secondary structural elements inserted within the core of the TRX fold itself, which together twist the overall DsbA-like architecture. Additionally, FtDsbA1 exhibits variations to the well conserved active site with an unusual dipeptide in the catalytic CXXC redox centre (CGKC), and a trans configuration for the conserved cis-proline loop, known for governing DsbA-substrate interactions. FtDsbA1's redox properties are comparable to other DsbA enzymes, however, consistent with its atypical structure, functional analysis reveals FtDsbA1 has a high degree of substrate specificity suggesting a specialised role within F. tularensis' oxidative folding pathway. Overall, this work underscores the remarkable malleability of the TRX catalytic core, a ubiquitous and ancestral protein fold. This not only contributes to broadening the structural and functional diversity seen within proteins utilising this core fold but will also enhance the accuracy of AI-driven protein structural prediction tools.
Collapse
Affiliation(s)
- Stephanie Penning
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Taylor Cunliffe
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| |
Collapse
|
2
|
Anjou C, Lotoux A, Morvan C, Martin-Verstraete I. From ubiquity to specificity: The diverse functions of bacterial thioredoxin systems. Environ Microbiol 2024; 26:e16668. [PMID: 38899743 DOI: 10.1111/1462-2920.16668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The thioredoxin (Trx) system, found universally, is responsible for the regeneration of reversibly oxidized protein thiols in living cells. This system is made up of a Trx and a Trx reductase, and it plays a central role in maintaining thiol-based redox homeostasis by reducing oxidized protein thiols, such as disulfide bonds in proteins. Some Trxs also possess a chaperone function that is independent of thiol-disulfide exchange, in addition to their thiol-disulfide reductase activity. These two activities of the Trx system are involved in numerous physiological processes in bacteria. This review describes the diverse physiological roles of the Trx system that have emerged throughout bacterial evolution. The Trx system is essential for responding to oxidative and nitrosative stress. Beyond this primary function, the Trx system also participates in redox regulation and signal transduction, and in controlling metabolism, motility, biofilm formation, and virulence. This range of functions has evolved alongside the diversity of bacterial lifestyles and their specific constraints. This evolution can be characterized by the multiplication of the systems and by the specialization of cofactors or targets to adapt to the constraints of atypical lifestyles, such as photosynthesis, insect endosymbiosis, or spore-forming bacteria.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Aurélie Lotoux
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
3
|
Trostchansky A, Alarcon M. An Overview of Two Old Friends Associated with Platelet Redox Signaling, the Protein Disulfide Isomerase and NADPH Oxidase. Biomolecules 2023; 13:biom13050848. [PMID: 37238717 DOI: 10.3390/biom13050848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress participates at the baseline of different non-communicable pathologies such as cardiovascular diseases. Excessive formation of reactive oxygen species (ROS), above the signaling levels necessary for the correct function of organelles and cells, may contribute to the non-desired effects of oxidative stress. Platelets play a relevant role in arterial thrombosis, by aggregation triggered by different agonists, where excessive ROS formation induces mitochondrial dysfunction and stimulate platelet activation and aggregation. Platelet is both a source and a target of ROS, thus we aim to analyze both the platelet enzymes responsible for ROS generation and their involvement in intracellular signal transduction pathways. Among the proteins involved in these processes are Protein Disulphide Isomerase (PDI) and NADPH oxidase (NOX) isoforms. By using bioinformatic tools and information from available databases, a complete bioinformatic analysis of the role and interactions of PDI and NOX in platelets, as well as the signal transduction pathways involved in their effects was performed. We focused the study on analyzing whether these proteins collaborate to control platelet function. The data presented in the current manuscript support the role that PDI and NOX play on activation pathways necessary for platelet activation and aggregation, as well as on the platelet signaling imbalance produced by ROS production. Our data could be used to design specific enzyme inhibitors or a dual inhibition for these enzymes with an antiplatelet effect to design promising treatments for diseases involving platelet dysfunction.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Marcelo Alarcon
- Thrombosis Research Center, Universidad de Talca, Talca 3460000, Chile
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
4
|
Liu C, Yan Q, Yi K, Hu T, Wang J, Zhang Z, Li H, Luo Y, Zhang D, Meng E. A secretory system for extracellular production of spider neurotoxin huwentoxin-I in Escherichia coli. Prep Biochem Biotechnol 2022; 53:914-922. [PMID: 36573266 DOI: 10.1080/10826068.2022.2158473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to their advantages in structural stability and versatility, cysteine-rich peptides, which are secreted from the venom glands of venomous animals, constitute a naturally occurring pharmaceutical arsenal. However, the correct folding of disulfide bonds is a challenging task in the prokaryotic expression system like Escherichia coli due to the reducing environment. Here, a secretory expression plasmid pSE-G1M5-SUMO-HWTX-I for the spider neurotoxin huwentoxin-I (HWTX-I) with three disulfides as a model of cysteine-rich peptides was constructed. By utilizing the signal peptide G1M5, the fusion protein 6 × His-SUMO-HWTX-I was successfully secreted into extracellular medium of BL21(DE3). After enrichment using cation-exchange chromatography and purification utilizing the Ni-NTA column, 6 × His-SUMO-HWTX-I was digested via Ulp1 kinase to release recombinant HWTX-I (rHWTX-I), which was further purified utilizing RP-HPLC. Finally, both impurities with low and high molecular weights were completely removed. The molecular mass of rHWTX-I was identified as being 3750.8 Da, which was identical to natural HWTX-I with three disulfide bridges. Furthermore, by utilizing whole-cell patch clamp, the sodium currents of hNav1.7 could be inhibited by rHWTX-I and the IC50 value was 419 nmol/L.
Collapse
Affiliation(s)
- Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Genetic Improvement and Multiple Utilization of Economic Crops in Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-polluted Soils, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Qing Yan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Ke Yi
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Tianhao Hu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Jianjie Wang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Zheyang Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Huimin Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Yutao Luo
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Dongyi Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Er Meng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Genetic Improvement and Multiple Utilization of Economic Crops in Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-polluted Soils, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| |
Collapse
|
5
|
Li C, Ban X, Zhang Y, Gu Z, Hong Y, Cheng L, Tang X, Li Z. Rational Design of Disulfide Bonds for Enhancing the Thermostability of the 1,4-α-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13791-13797. [PMID: 33166453 DOI: 10.1021/acs.jafc.0c04798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Disulfide bonds play crucial roles in thermostabilization, recognition, or activation of proteins. They are vital in maintaining the respective conformations of globular structures, thereby enhancing thermostability. Bioinformatic approaches provide practical strategies to build disulfide bonds based on structural information. We constructed nine mutants by rational analysis of the 1,4-α-glucan branching enzyme (EC 2.4.1.18) from Geobacillus thermoglucosidans STB02, which catalyzes the synthesis of α-1,6-glucosidic bonds by acting on α-(1,4) and/or α-(1,6) glucosidic linkages. Four of the mutations enhanced thermostability, and five of them had adverse or negligible effects on stability. Circular dichroism spectra and intrinsic fluorescence analysis showed that introducing disulfide bonds might only affect secondary structures. The results also demonstrated that the distances of Cα carbons and thiol groups, as well as the sequence between the two cysteines, need to be considered when designing disulfide bonds.
Collapse
Affiliation(s)
- Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
- USDA, Agricultural Research Service, WRRC, 800 Buchanan Street, Albany, California 94710, United States
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuzhu Zhang
- USDA, Agricultural Research Service, WRRC, 800 Buchanan Street, Albany, California 94710, United States
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaoshu Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Panis F, Rompel A. Identification of the amino acid position controlling the different enzymatic activities in walnut tyrosinase isoenzymes (jrPPO1 and jrPPO2). Sci Rep 2020; 10:10813. [PMID: 32616720 PMCID: PMC7331820 DOI: 10.1038/s41598-020-67415-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 01/25/2023] Open
Abstract
Polyphenol oxidases (PPOs) are ubiquitously distributed among plants, bacteria, fungi and animals. They catalyze the hydroxylation of monophenols (monophenolase activity) and the oxidation of o-diphenols (diphenolase activity) to o-quinones. PPOs are commonly present as an isoenzyme family. In walnut (Juglans regia), two different genes (jrPPO1 and jrPPO2) encoding PPOs have been identified. In this study, jrPPO2 was, for the first time, heterologously expressed in E. coli and characterized as a tyrosinase (TYR) by substrate scope assays and kinetic investigations, as it accepted tyramine and L-tyrosine as substrates. Moreover, the substrate acceptance and kinetic parameters (kcat and Km values) towards 16 substrates naturally present in walnut were assessed for jrPPO2 (TYR) and its isoenzyme jrPPO1 (TYR). The two isoenzymes prefer different substrates, as jrPPO1 shows a higher activity towards monophenols, whereas jrPPO2 is more active towards o-diphenols. Molecular docking studies performed herein revealed that the amino acid residue in the position of the 1st activity controller (HisB1 + 1; in jrPPO1 Asn240 and jrPPO2 Gly240) is responsible for the different enzymatic activities. Additionally, interchanging the 1st activity controller residue of the two enzymes in two mutants (jrPPO1-Asn240Gly and jrPPO2-Gly240Asn) proved that the amino acid residue located in this position allows plants to selectively target or dismiss substrates naturally present in walnut.
Collapse
Affiliation(s)
- Felix Panis
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
7
|
Panis F, Kampatsikas I, Bijelic A, Rompel A. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis. Sci Rep 2020; 10:1659. [PMID: 32015350 PMCID: PMC6997208 DOI: 10.1038/s41598-020-57671-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Polyphenol oxidases (PPOs) comprise tyrosinases (TYRs) and catechol oxidases (COs), which catalyse the initial reactions in the biosynthesis of melanin. TYRs hydroxylate monophenolic (monophenolase activity) and oxidize diphenolic (diphenolase activity) substrates, whereas COs react only with diphenols. In order to elucidate the biochemical basis for the different reactions in PPOs, cDNA from walnut leaves was synthesized, the target gene encoding the latent walnut tyrosinase (jrPPO1) was cloned, and the enzyme was heterologously expressed in Escherichia coli. Mutations targeting the two activity controller residues (Asn240 and Leu244) as well as the gatekeeper residue (Phe260) were designed to impair monophenolase activity of jrPPO1. For the first time, monophenolase activity of jrPPO1 towards L-tyrosine was blocked in two double mutants (Asn240Lys/Leu244Arg and Asn240Thr/Leu244Arg) while its diphenolase activity was partially preserved, thereby converting jrPPO1 into a CO. Kinetic data show that recombinant jrPPO1 resembles the natural enzyme, and spectrophotometric investigations proved that the copper content remains unaffected by the mutations. The results presented herein provide experimental evidence that a precisely tuned interplay between the amino acids located around the active center controls the substrate specificity and therewith the mono- versus diphenolase activity in the type-III copper enzyme jrPPO1.
Collapse
Affiliation(s)
- Felix Panis
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Ioannis Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria.
| |
Collapse
|
8
|
Production of Extracellular Matrix Proteins in the Cytoplasm of E. coli: Making Giants in Tiny Factories. Int J Mol Sci 2020; 21:ijms21030688. [PMID: 31973001 PMCID: PMC7037224 DOI: 10.3390/ijms21030688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli is the most widely used protein production host in academia and a major host for industrial protein production. However, recombinant production of eukaryotic proteins in prokaryotes has challenges. One of these is post-translational modifications, including native disulfide bond formation. Proteins containing disulfide bonds have traditionally been made by targeting to the periplasm or by in vitro refolding of proteins made as inclusion bodies. More recently, systems for the production of disulfide-containing proteins in the cytoplasm have been introduced. However, it is unclear if these systems have the capacity for the production of disulfide-rich eukaryotic proteins. To address this question, we tested the capacity of one such system to produce domain constructs, containing up to 44 disulfide bonds, of the mammalian extracellular matrix proteins mucin 2, alpha tectorin, and perlecan. All were successfully produced with purified yields up to 6.5 mg/L. The proteins were further analyzed using a variety of biophysical techniques including circular dichroism spectrometry, thermal stability assay, and mass spectrometry. These analyses indicated that the purified proteins are most likely correctly folded to their native state. This greatly extends the use of E. coli for the production of eukaryotic proteins for structural and functional studies.
Collapse
|
9
|
Horváth D, Taricska N, Keszei E, Stráner P, Farkas V, Tóth GK, Perczel A. Compactness of Protein Folds Alters Disulfide-Bond Reducibility by Three Orders of Magnitude: A Comprehensive Kinetic Case Study on the Reduction of Differently Sized Tryptophan Cage Model Proteins. Chembiochem 2019; 21:681-695. [PMID: 31475422 PMCID: PMC7079008 DOI: 10.1002/cbic.201900470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/12/2022]
Abstract
A new approach to monitor disulfide-bond reduction in the vicinity of aromatic cluster(s) has been derived by using the near-UV range (λ=266-293 nm) of electronic circular dichroism (ECD) spectra. By combining the results from NMR and ECD spectroscopy, the 3D fold characteristics and associated reduction rate constants (k) of E19_SS, which is a highly thermostable, disulfide-bond reinforced 39-amino acid long exenatide mimetic, and its N-terminally truncated derivatives have been determined under different experimental conditions. Single disulfide bond reduction of the E19_SS model (with an 18-fold excess of tris(2-carboxyethyl)phosphine, pH 7, 37 °C) takes hours, which is 20-30 times longer than that expected, and thus, would not reach completion by applying commonly used reduction protocols. It is found that structural, steric, and electrostatic factors influence the reduction rate, resulting in orders of magnitude differences in reduction half-lives (900>t1/2 >1 min) even for structurally similar, well-folded derivatives of a small model protein.
Collapse
Affiliation(s)
- Dániel Horváth
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Ernő Keszei
- Chemical Kinetics Laboratory, Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Pál Stráner
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Viktor Farkas
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, Faculty of General Medicine, University of Szeged, Szeged Dóm tér 8, H-6720, Szeged, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| |
Collapse
|
10
|
Karyolaimos A, Ampah-Korsah H, Hillenaar T, Mestre Borras A, Dolata KM, Sievers S, Riedel K, Daniels R, de Gier JW. Enhancing Recombinant Protein Yields in the E. coli Periplasm by Combining Signal Peptide and Production Rate Screening. Front Microbiol 2019; 10:1511. [PMID: 31396164 PMCID: PMC6664373 DOI: 10.3389/fmicb.2019.01511] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
Proteins that contain disulfide bonds mainly mature in the oxidative environment of the eukaryotic endoplasmic reticulum or the periplasm of Gram-negative bacteria. In E. coli, disulfide bond containing recombinant proteins are often targeted to the periplasm by an N-terminal signal peptide that is removed once it passes through the Sec-translocon in the cytoplasmic membrane. Despite their conserved targeting function, signal peptides can impact recombinant protein production yields in the periplasm, as can the production rate. Here, we present a combined screen involving different signal peptides and varying production rates that enabled the identification of more optimal conditions for periplasmic production of recombinant proteins with disulfide bonds. The data was generated from two targets, a single chain antibody fragment (BL1) and human growth hormone (hGH), with four different signal peptides and a titratable rhamnose promoter-based system that enables the tuning of protein production rates. Across the screen conditions, the yields for both targets significantly varied, and the optimal signal peptide and rhamnose concentration differed for each protein. Under the optimal conditions, the periplasmic BL1 and hGH were properly folded and active. Our study underpins the importance of combinatorial screening approaches for addressing the requirements associated with the production of a recombinant protein in the periplasm.
Collapse
Affiliation(s)
- Alexandros Karyolaimos
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Henry Ampah-Korsah
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Tamara Hillenaar
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Anna Mestre Borras
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | | | - Susanne Sievers
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Daniels
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Levin TC, Goldspiel BP, Malik HS. Density-dependent resistance protects Legionella pneumophila from its own antimicrobial metabolite, HGA. eLife 2019; 8:46086. [PMID: 31134893 PMCID: PMC6598767 DOI: 10.7554/elife.46086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
To persist in microbial communities, the bacterial pathogen Legionella pneumophila must withstand competition from neighboring bacteria. Here, we find that L. pneumophila can antagonize the growth of other Legionella species using a secreted inhibitor: HGA (homogentisic acid). Unexpectedly, L. pneumophila can itself be inhibited by HGA secreted from neighboring, isogenic strains. Our genetic approaches further identify lpg1681 as a gene that modulates L. pneumophila susceptibility to HGA. We find that L. pneumophila sensitivity to HGA is density-dependent and cell intrinsic. Resistance is not mediated by the stringent response nor the previously described Legionella quorum-sensing pathway. Instead, L. pneumophila cells secrete HGA only when they are conditionally HGA-resistant, which allows these bacteria to produce a potentially self-toxic molecule while restricting the opportunity for self-harm. We propose that established Legionella communities may deploy molecules such as HGA as an unusual public good that can protect against invasion by low-density competitors. In the environment, bacteria frequently compete with each other for resources and space. These battles often involve the bacteria releasing toxins, antibiotics or other molecules that make it more difficult for their neighbors to grow. The bacteria also carry specific resistance genes that protect them from the effects of the molecules that they produce. Legionella pneumophila is a species of bacteria that infects people and causes a severe form of pneumonia known as Legionnaires’ disease. The bacteria spread in droplets of water from contaminated water systems such as sink faucets, cooling towers, water tanks, and other plumbing systems. In these water systems, L. pneumophila cells live within communities known as biofilms, which contain many different species of bacteria. These communities often include other species of Legionella that compete with L. pneumophila for similar nutrients. However, L. pneumophila was not known to produce any toxins or antibiotics, so it was not clear how it is able to survive in biofilms. Levin et al. used genetic approaches to investigate how L. pneumophila competes with other species of Legionella. The experiments found that this bacterium released a molecule called homogentisic acid (HGA) that reduced the growth of neighboring Legionella bacteria. Unexpectedly, L. pneumophila was not always resistant to HGA, despite secreting large quantities of this molecule. Instead, L. pneumophila cells were only resistant to HGA when the bacteria were living in crowded conditions. Previous studies have shown that HGA is widely produced by bacteria and other organisms – including humans – but this is the first time it has been shown that this molecule limits the ability of bacteria to grow. The work of Levin et al. suggests that HGA may help L. pneumophila bacteria to persist in biofilms, but more work needs to be done to test this idea. A possible next step is to test whether drugs that inhibit the production of HGA can eliminate Legionella bacteria from water systems. If so, similar treatments could potentially be used to stop and prevent outbreaks of Legionnaires’ disease in the future.
Collapse
Affiliation(s)
- Tera C Levin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Brian P Goldspiel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
12
|
Walden PM, Whitten AE, Premkumar L, Halili MA, Heras B, King GJ, Martin JL. The atypical thiol-disulfide exchange protein α-DsbA2 from Wolbachia pipientis is a homotrimeric disulfide isomerase. Acta Crystallogr D Struct Biol 2019; 75:283-295. [PMID: 30950399 PMCID: PMC6450060 DOI: 10.1107/s2059798318018442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Disulfide-bond-forming (DSB) oxidative folding enzymes are master regulators of virulence that are localized to the periplasm of many Gram-negative bacteria. The archetypal DSB machinery from Escherichia coli K-12 consists of a dithiol-oxidizing redox-relay pair (DsbA/B), a disulfide-isomerizing redox-relay pair (DsbC/D) and the specialist reducing enzymes DsbE and DsbG that also interact with DsbD. By contrast, the Gram-negative bacterium Wolbachia pipientis encodes just three DSB enzymes. Two of these, α-DsbA1 and α-DsbB, form a redox-relay pair analogous to DsbA/B from E. coli. The third enzyme, α-DsbA2, incorporates a DsbA-like sequence but does not interact with α-DsbB. In comparison to other DsbA enzymes, α-DsbA2 has ∼50 extra N-terminal residues (excluding the signal peptide). The crystal structure of α-DsbA2ΔN, an N-terminally truncated form in which these ∼50 residues are removed, confirms the DsbA-like nature of this domain. However, α-DsbA2 does not have DsbA-like activity: it is structurally and functionally different as a consequence of its N-terminal residues. Firstly, α-DsbA2 is a powerful disulfide isomerase and a poor dithiol oxidase: i.e. its role is to shuffle rather than to introduce disulfide bonds. Moreover, small-angle X-ray scattering (SAXS) of α-DsbA2 reveals a homotrimeric arrangement that differs from those of the other characterized bacterial disulfide isomerases DsbC from Escherichia coli (homodimeric) and ScsC from Proteus mirabilis (PmScsC; homotrimeric with a shape-shifter peptide). α-DsbA2 lacks the shape-shifter motif and SAXS data suggest that it is less flexible than PmScsC. These results allow conclusions to be drawn about the factors that are required for functionally equivalent disulfide isomerase enzymatic activity across structurally diverse protein architectures.
Collapse
Affiliation(s)
- Patricia M. Walden
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew E. Whitten
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Lakshmanane Premkumar
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Maria A. Halili
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Begoña Heras
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gordon J. King
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer L. Martin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
13
|
Kasli IM, Thomas ORT, Overton TW. Use of a design of experiments approach to optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli: selection of signal peptide and optimal growth conditions. AMB Express 2019; 9:5. [PMID: 30617435 PMCID: PMC6323050 DOI: 10.1186/s13568-018-0727-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022] Open
Abstract
Production of recombinant proteins such as antibody fragments in the periplasm of the bacterium Escherichia coli has a number of advantages, including the ability to form disulphide bonds, aiding correct folding, and the relative ease of release and subsequent capture and purification. In this study, we employed two N-terminal signal peptides, PelB and DsbA, to direct a recombinant scFv antibody (single-chain variable fragment), 13R4, to the periplasm via the Sec and SRP pathways respectively. A design of experiments (DoE) approach was used to optimise process conditions (temperature, inducer concentration and induction point) influencing bacterial physiology and the productivity, solubility and location of scFv. The DoE study indicated that titre and subcellular location of the scFv depend on the temperature and inducer concentration employed, and also revealed the superiority of the PelB signal peptide over the DsbA signal peptide in terms of scFv solubility and cell physiology. Baffled shake flasks were subsequently used to optimise scFv production at higher biomass concentrations. Conditions that minimised stress (low temperature) were shown to be beneficial to production of periplasmic scFv. This study highlights the importance of signal peptide selection and process optimisation for the production of scFv antibodies, and demonstrates the utility of DoE for selection of optimal process parameters.
Collapse
|
14
|
Selas Castiñeiras T, Williams SG, Hitchcock A, Cole JA, Smith DC, Overton TW. Development of a generic β-lactamase screening system for improved signal peptides for periplasmic targeting of recombinant proteins in Escherichia coli. Sci Rep 2018; 8:6986. [PMID: 29725125 PMCID: PMC5934370 DOI: 10.1038/s41598-018-25192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022] Open
Abstract
Targeting of recombinant proteins to the Escherichia coli periplasm is a desirable industrial processing tool to allow formation of disulphide bonds, aid folding and simplify recovery. Proteins are targeted across the inner membrane to the periplasm by an N-terminal signal peptide. The sequence of the signal peptide determines its functionality, but there is no method to predict signal peptide function for specific recombinant proteins, so multiple signal peptides must be screened for their ability to translocate each recombinant protein, limiting throughput. We present a screening system for optimising signal peptides for translocation of a single chain variable (scFv) antibody fragment employing TEM1 β-lactamase (Bla) as a C-terminal reporter of periplasmic localisation. The Pectobacterium carotovorum PelB signal peptide was selected as the starting point for a mutagenic screen. β-lactamase was fused to the C-terminal of scFv and β-lactamase activity was correlated against scFv translocation. Signal peptide libraries were generated and screened for β-lactamase activity, which correlated well to scFv::Bla production, although only some high activity clones had improved periplasmic translocation of scFv::Bla. Selected signal peptides were investigated in fed-batch fermentations for production and translocation of scFv::Bla and scFv without the Bla fusion. Improved signal peptides increased periplasmic scFv activity by ~40%.
Collapse
Affiliation(s)
- Tania Selas Castiñeiras
- Cobra Biologics, Stephenson Building, The Science Park, Keele, ST5 5SP, UK.,School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Institute of Microbiology & Infection, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Steven G Williams
- Cobra Biologics, Stephenson Building, The Science Park, Keele, ST5 5SP, UK
| | - Antony Hitchcock
- Cobra Biologics, Stephenson Building, The Science Park, Keele, ST5 5SP, UK
| | - Jeffrey A Cole
- Institute of Microbiology & Infection, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Daniel C Smith
- Cobra Biologics, Stephenson Building, The Science Park, Keele, ST5 5SP, UK
| | - Tim W Overton
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Institute of Microbiology & Infection, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
15
|
Pavkova I, Kopeckova M, Klimentova J, Schmidt M, Sheshko V, Sobol M, Zakova J, Hozak P, Stulik J. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant. Front Cell Infect Microbiol 2017; 7:503. [PMID: 29322032 PMCID: PMC5732180 DOI: 10.3389/fcimb.2017.00503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain. These proteins comprise a quite heterogeneous group including hypothetical proteins, proteins associated with membrane structures, and potential secreted proteins. Many of them are known to be associated with F. tularensis virulence. Several proteins were selected for further studies focused on their potential role in tularemia's pathogenesis. Of them, only the gene encoding glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolytic pathway, was found to be important for full virulence manifestations both in vivo and in vitro. We next created a viable mutant strain with deleted gapA gene and analyzed its phenotype. The gapA mutant is characterized by reduced virulence in mice, defective replication inside macrophages, and its ability to induce a protective immune response against systemic challenge with parental wild-type strain. We also demonstrate the multiple localization sites of this protein: In addition to within the cytosol, it was found on the cell surface, outside the cells, and in the culture medium. Recombinant GapA was successfully obtained, and it was shown that it binds host extracellular serum proteins like plasminogen, fibrinogen, and fibronectin.
Collapse
Affiliation(s)
- Ivona Pavkova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Monika Kopeckova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Jana Klimentova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Monika Schmidt
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Valeria Sheshko
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia
| | - Jitka Zakova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia.,Microscopy Centre-LM & EM, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia.,Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Vestec, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
16
|
Kampatsikas I, Bijelic A, Pretzler M, Rompel A. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases. Sci Rep 2017; 7:8860. [PMID: 28821733 PMCID: PMC5562730 DOI: 10.1038/s41598-017-08097-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 02/03/2023] Open
Abstract
Tyrosinases and catechol oxidases belong to the polyphenol oxidase (PPO) enzyme family, which is mainly responsible for the browning of fruits. Three cDNAs encoding PPO pro-enzymes have been cloned from leaves of Malus domestica (apple, MdPPO). The three pro-enzymes MdPPO1-3 were heterologously expressed in E. coli yielding substantial amounts of protein and have been characterized with regard to their optimum of activity resulting from SDS, acidic and proteolytic activation. Significant differences were found in the kinetic characterization of MdPPO1-3 when applying different mono- and diphenolic substrates. All three enzymes have been classified as tyrosinases, where MdPPO1 exhibits the highest activity with tyramine (kcat = 9.5 s-1) while MdPPO2 and MdPPO3 are also clearly active on this monophenolic substrate (kcat = 0.92 s-1 and kcat = 1.0 s-1, respectively). Based on the activity, sequence data and homology modelling it is proposed that the monophenolase and diphenolase activity of PPOs can be manipulated by the appropriate combination of two amino acids, which are located within the active site cleft and were therefore named "activity controllers".
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
17
|
Jamrichová D, Tišáková L, Jarábková V, Godány A. How to approach heterogeneous protein expression for biotechnological use: An overview. NOVA BIOTECHNOLOGICA ET CHIMICA 2017. [DOI: 10.1515/nbec-2017-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AbstractProduction of recombinant proteins in Escherichia coli expression systems has shown many advantages, as well as disadvantages, especially for biotechnological and other down-stream applications. The choice of an appropriate vector depends on the gene, to be cloned for purification procedures and other analyses. Selection of a suitable production strain plays an important role in the preparation of recombinant proteins. The main criteria for the selection of the host organism are the properties of the recombinant produced protein, its subsequent use and the total amount desired. The most common problems in eukaryotic gene expression and recombinant proteins purification are, for instance, post-translational modifications, formation of disulphide bonds, or inclusion bodies. Obtaining a purified protein is a key step enabling further characterization of its role in the biological system. Moreover, methods of protein purification have been developed in parallel with the discovery of proteins and the need for their studies and applications. After protein purification, and also between the individual purification steps, it is necessary to test protein stability under different conditions over time. Shortly, all the essential points have been briefly discussed, which could be encountered during production and purification of a recombinant protein of interest, especially from eukaryotic source and expressed heterogeneously in prokaryotic production system.
Collapse
|
18
|
Patel HK, Ferrante P, Xianfa M, Javvadi SG, Subramoni S, Scortichini M, Venturi V. Identification of Loci of Pseudomonas syringae pv. actinidiae Involved in Lipolytic Activity and Their Role in Colonization of Kiwifruit Leaves. PHYTOPATHOLOGY 2017; 107:645-653. [PMID: 28112597 DOI: 10.1094/phyto-10-16-0360-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae, an emerging pathogen of kiwifruit plants, has recently brought about major economic losses worldwide. Genetic studies on virulence functions of P. syringae pv. actinidiae have not yet been reported and there is little experimental data regarding bacterial genes involved in pathogenesis. In this study, we performed a genetic screen in order to identify transposon mutants altered in the lipolytic activity because it is known that mechanisms of regulation, production, and secretion of enzymes often play crucial roles in virulence of plant pathogens. We aimed to identify the set of secretion and global regulatory loci that control lipolytic activity and also play important roles in in planta fitness. Our screen for altered lipolytic activity phenotype identified a total of 58 Tn5 transposon mutants. Mapping all these Tn5 mutants revealed that the transposons were inserted in genes that play roles in cell division, chemotaxis, metabolism, movement, recombination, regulation, signal transduction, and transport as well as a few unknown functions. Several of these identified P. syringae pv. actinidiae Tn5 mutants, notably the functions affected in phosphomannomutase AlgC, lipid A biosynthesis acyltransferase, glutamate-cysteine ligase, and the type IV pilus protein PilI, were also found affected in in planta survival and/or growth in kiwifruit plants. The results of the genetic screen and identification of novel loci involved in in planta fitness of P. syringae pv. actinidiae are presented and discussed.
Collapse
Affiliation(s)
- Hitendra Kumar Patel
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Patrizia Ferrante
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Meng Xianfa
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Sree Gowrinadh Javvadi
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Sujatha Subramoni
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Marco Scortichini
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Vittorio Venturi
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| |
Collapse
|
19
|
Baindara P, Kapoor A, Korpole S, Grover V. Cysteine-rich low molecular weight antimicrobial peptides from Brevibacillus and related genera for biotechnological applications. World J Microbiol Biotechnol 2017; 33:124. [DOI: 10.1007/s11274-017-2291-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/20/2017] [Indexed: 11/28/2022]
|
20
|
Selles B, Zannini F, Couturier J, Jacquot JP, Rouhier N. Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A. PLoS One 2017; 12:e0174753. [PMID: 28362814 PMCID: PMC5375154 DOI: 10.1371/journal.pone.0174753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/14/2017] [Indexed: 11/18/2022] Open
Abstract
Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b’-a’ and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution.
Collapse
Affiliation(s)
- Benjamin Selles
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Flavien Zannini
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Jérémy Couturier
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Jean-Pierre Jacquot
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Nicolas Rouhier
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
21
|
Microcin PDI regulation and proteolytic cleavage are unique among known microcins. Sci Rep 2017; 7:42529. [PMID: 28205647 PMCID: PMC5311971 DOI: 10.1038/srep42529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 11/16/2022] Open
Abstract
Microcin PDI inhibits a diversity of pathogenic Escherichia coli through the action of an effector protein, McpM. In this study we demonstrated that expression of the inhibitory phenotype is induced under low osmolarity conditions and expression is primarily controlled by the EnvZ/OmpR two-component regulatory system. Functional, mutagenesis and complementation experiments were used to empirically demonstrate that EnvZ is required for the inhibitory phenotype and that regulation of mcpM is dependent on binding of the phosphorylated OmpR to the mcpM promoter region. The phosphorylated OmpR may recognize three different binding sites within this promoter region. Site-directed mutagenesis revealed that the McpM precursor peptide includes two leader peptides that undergo sequential cleavage at positions G17/G18 and G35/A36 during export through the type I secretion system. Competition assays showed that both cleaved products are required for the PDI phenotype although we could not distinguish loss of function from loss of secretion in these assays. McpM has four cysteines within the mature peptide and site-directed mutagenesis experiments demonstrated that the first two cysteines are necessary for McpM to inhibit susceptible cells. Together these data combined with previous work indicate that MccPDI is unique amongst the microcins that have been described to date.
Collapse
|
22
|
Soares Moretti AI, Martins Laurindo FR. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Arch Biochem Biophys 2016; 617:106-119. [PMID: 27889386 DOI: 10.1016/j.abb.2016.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
23
|
Abstract
Antibacterial drugs with novel scaffolds and new mechanisms of action are desperately needed to address the growing problem of antibiotic resistance. The periplasmic oxidative folding system in Gram-negative bacteria represents a possible target for anti-virulence antibacterials. By targeting virulence rather than viability, development of resistance and side effects (through killing host native microbiota) might be minimized. Here, we undertook the design of peptidomimetic inhibitors targeting the interaction between the two key enzymes of oxidative folding, DsbA and DsbB, with the ultimate goal of preventing virulence factor assembly. Structures of DsbB - or peptides - complexed with DsbA revealed key interactions with the DsbA active site cysteine, and with a hydrophobic groove adjacent to the active site. The present work aimed to discover peptidomimetics that target the hydrophobic groove to generate non-covalent DsbA inhibitors. The previously reported structure of a Proteus mirabilis DsbA active site cysteine mutant, in a non-covalent complex with the heptapeptide PWATCDS, was used as an in silico template for virtual screening of a peptidomimetic fragment library. The highest scoring fragment compound and nine derivatives were synthesized and evaluated for DsbA binding and inhibition. These experiments discovered peptidomimetic fragments with inhibitory activity at millimolar concentrations. Although only weakly potent relative to larger covalent peptide inhibitors that interact through the active site cysteine, these fragments offer new opportunities as templates to build non-covalent inhibitors. The results suggest that non-covalent peptidomimetics may need to interact with sites beyond the hydrophobic groove in order to produce potent DsbA inhibitors.
Collapse
|
24
|
Abstract
Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| |
Collapse
|
25
|
Flocculation of Escherichia coli Cells in Association with Enhanced Production of Outer Membrane Vesicles. Appl Environ Microbiol 2015; 81:5900-6. [PMID: 26092467 DOI: 10.1128/aem.01011-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/16/2015] [Indexed: 01/02/2023] Open
Abstract
Microbial flocculation is a phenomenon of aggregation of dispersed bacterial cells in the form of flocs or flakes. In this study, the mechanism of spontaneous flocculation of Escherichia coli cells by overexpression of the bcsB gene was investigated. The flocculation induced by overexpression of bcsB was consistent among the various E. coli strains examined, including the K-12, B, and O strains, with flocs that resembled paper scraps in structure being about 1 to 2 mm. The distribution of green fluorescent protein-labeled E. coli cells within the floc structure was investigated by three-dimensional confocal laser scanning microscopy. Flocs were sensitive to proteinase K, indicating that the main component of the flocs was proteinous. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nano-liquid chromatography tandem mass spectrometry analyses of the flocs strongly suggested the involvement of outer membrane vesicles (OMVs) in E. coli flocculation. The involvement of OMVs in flocculation was supported by transmission electron microscopy observation of flocs. Furthermore, bcsB-induced E. coli flocculation was greatly suppressed in strains with hypovesiculation phenotypes (ΔdsbA and ΔdsbB strains). Thus, our results demonstrate the strong correlation between spontaneous flocculation and enhanced OMV production of E. coli cells.
Collapse
|
26
|
Moriyama D, Hosono K, Fujii M, Washida M, Nanba H, Kaino T, Kawamukai M. Production of CoQ10 in fission yeast by expression of genes responsible for CoQ10 biosynthesis. Biosci Biotechnol Biochem 2015; 79:1026-33. [DOI: 10.1080/09168451.2015.1006573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Coenzyme Q10 (CoQ10) is essential for energy production and has become a popular supplement in recent years. In this study, CoQ10 productivity was improved in the fission yeast Schizosaccharomyces pombe. Ten CoQ biosynthetic genes were cloned and overexpressed in S. pombe. Strains expressing individual CoQ biosynthetic genes did not produce higher than a 10% increase in CoQ10 production. In addition, simultaneous expression of all ten coq genes did not result in yield improvements. Genes responsible for the biosynthesis of p-hydroxybenzoate and decaprenyl diphosphate, both of which are CoQ biosynthesis precursors, were also overexpressed. CoQ10 production was increased by overexpression of Eco_ubiC (encoding chorismate lyase), Eco_aroFFBR (encoding 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase), or Sce_thmgr1 (encoding truncated HMG-CoA reductase). Furthermore, simultaneous expression of these precursor genes resulted in two fold increases in CoQ10 production.
Collapse
Affiliation(s)
- Daisuke Moriyama
- QOL division, Kaneka Corporation, Takasago, Japan
- Faculty of Life and Environmental Science, Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Kouji Hosono
- Faculty of Life and Environmental Science, Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Makoto Fujii
- Faculty of Life and Environmental Science, Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | | | | | - Tomohiro Kaino
- Faculty of Life and Environmental Science, Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Faculty of Life and Environmental Science, Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| |
Collapse
|
27
|
Parakh S, Atkin JD. Novel roles for protein disulphide isomerase in disease states: a double edged sword? Front Cell Dev Biol 2015; 3:30. [PMID: 26052512 PMCID: PMC4439577 DOI: 10.3389/fcell.2015.00030] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Protein disulphide isomerase (PDI) is a multifunctional redox chaperone of the endoplasmic reticulum (ER). Since it was first discovered 40 years ago the functions ascribed to PDI have evolved significantly and recent studies have recognized its distinct functions, with adverse as well as protective effects in disease. Furthermore, post translational modifications of PDI abrogate its normal functional roles in specific disease states. This review focusses on recent studies that have identified novel functions for PDI relevant to specific diseases.
Collapse
Affiliation(s)
- Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia ; Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University Bundoora, VIC, Australia
| |
Collapse
|
28
|
Santiago AE, Mann BJ, Qin A, Cunningham AL, Cole LE, Grassel C, Vogel SN, Levine MM, Barry EM. Characterization of Francisella tularensis Schu S4 defined mutants as live-attenuated vaccine candidates. Pathog Dis 2015; 73:ftv036. [PMID: 25986219 PMCID: PMC4462183 DOI: 10.1093/femspd/ftv036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2015] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease. We selected six attenuating genes from the live vaccine strain (LVS; type B), F. novicida and other intracellular bacteria: FTT0507, FTT0584, FTT0742, FTT1019c (guaA), FTT1043 (mip) and FTT1317c (guaB) and created unmarked deletion mutants of each in the highly human virulent Ft strain Schu S4 (Type A) background. FTT0507, FTT0584, FTT0742 and FTT1043 Schu S4 mutants were not attenuated for virulence in vitro or in vivo. In contrast, Schu S4 gua mutants were unable to replicate in murine macrophages and were attenuated in vivo, with an i.n. LD50 > 105 CFU in C57BL/6 mice. However, the gua mutants failed to protect mice against lethal challenge with WT Schu S4, despite demonstrating partial protection in rabbits in a previous study. These results contrast with the highly protective capacity of LVS gua mutants against a lethal LVS challenge in mice, and underscore differences between these strains and the animal models in which they are evaluated, and therefore have important implications for vaccine development. Mutations in guanine biosynthesis genes, but not in four other hypothetical virulence factors in highly virulent Francisella tularensis strain Schu S4 resulted in attenuation in macrophage replication and mouse virulence.
Collapse
Affiliation(s)
- Araceli E Santiago
- Departments of Pediatrics, University of Virginia Children's Hospital, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Barbara J Mann
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Aiping Qin
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Aimee L Cunningham
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Leah E Cole
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christen Grassel
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eileen M Barry
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Loi VV, Rossius M, Antelmann H. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 2015; 6:187. [PMID: 25852656 PMCID: PMC4360819 DOI: 10.3389/fmicb.2015.00187] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins are post-translationally modified to S-glutathionylated proteins under conditions of oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism in eukaryotes and protects active site cysteine residues against overoxidation to sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative bacteria. Advances in mass spectrometry have further facilitated the identification of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively. In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium glutamicum, protein S-mycothiolation was more widespread and affected the functions of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review the current knowledge about the functions of the bacterial thiol-redox buffers glutathione, bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol protection in model and pathogenic bacteria.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Martina Rossius
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| |
Collapse
|
30
|
Xie LX, Williams KJ, He CH, Weng E, Khong S, Rose TE, Kwon O, Bensinger SJ, Marbois BN, Clarke CF. Resveratrol and para-coumarate serve as ring precursors for coenzyme Q biosynthesis. J Lipid Res 2015; 56:909-19. [PMID: 25681964 DOI: 10.1194/jlr.m057919] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coenzyme Q (Q or ubiquinone) is a redox-active polyisoprenylated benzoquinone lipid essential for electron and proton transport in the mitochondrial respiratory chain. The aromatic ring 4-hydroxybenzoic acid (4HB) is commonly depicted as the sole aromatic ring precursor in Q biosynthesis despite the recent finding that para-aminobenzoic acid (pABA) also serves as a ring precursor in Saccharomyces cerevisiae Q biosynthesis. In this study, we employed aromatic (13)C6-ring-labeled compounds including (13)C6-4HB, (13)C6-pABA, (13)C6-resveratrol, and (13)C6-coumarate to investigate the role of these small molecules as aromatic ring precursors in Q biosynthesis in Escherichia coli, S. cerevisiae, and human and mouse cells. In contrast to S. cerevisiae, neither E. coli nor the mammalian cells tested were able to form (13)C6-Q when cultured in the presence of (13)C6-pABA. However, E. coli cells treated with (13)C6-pABA generated (13)C6-ring-labeled forms of 3-octaprenyl-4-aminobenzoic acid, 2-octaprenyl-aniline, and 3-octaprenyl-2-aminophenol, suggesting UbiA, UbiD, UbiX, and UbiI are capable of using pABA or pABA-derived intermediates as substrates. E. coli, S. cerevisiae, and human and mouse cells cultured in the presence of (13)C6-resveratrol or (13)C6-coumarate were able to synthesize (13)C6-Q. Future evaluation of the physiological and pharmacological responses to dietary polyphenols should consider their metabolism to Q.
Collapse
Affiliation(s)
- Letian X Xie
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Kevin J Williams
- Departments of Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles, CA 90095-1569
| | - Cuiwen H He
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Emily Weng
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - San Khong
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Tristan E Rose
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Steven J Bensinger
- Departments of Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles, CA 90095-1569 Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1569
| | - Beth N Marbois
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| |
Collapse
|
31
|
Unzueta U, Vázquez F, Accardi G, Mendoza R, Toledo-Rubio V, Giuliani M, Sannino F, Parrilli E, Abasolo I, Schwartz S, Tutino ML, Villaverde A, Corchero JL, Ferrer-Miralles N. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Appl Microbiol Biotechnol 2015; 99:5863-74. [DOI: 10.1007/s00253-014-6328-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 12/28/2022]
|
32
|
Patil NA, Tailhades J, Hughes RA, Separovic F, Wade JD, Hossain MA. Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci 2015; 16:1791-805. [PMID: 25594871 PMCID: PMC4307334 DOI: 10.3390/ijms16011791] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes--a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor--that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery.
Collapse
Affiliation(s)
- Nitin A Patil
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Julien Tailhades
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Richard Anthony Hughes
- Department of Pharmacology and Therapeutics, the University of Melbourne, Victoria 3010, Australia.
| | - Frances Separovic
- School of Chemistry, the University of Melbourne, Victoria 3010, Australia.
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
33
|
Co-expression of Dsb proteins enables soluble expression of a single-chain variable fragment (scFv) against human type 1 insulin-like growth factor receptor (IGF-1R) in E. coli. World J Microbiol Biotechnol 2014; 30:3221-7. [DOI: 10.1007/s11274-014-1749-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
|
34
|
Grabowska AD, Wywiał E, Dunin-Horkawicz S, Łasica AM, Wösten MMSM, Nagy-Staroń A, Godlewska R, Bocian-Ostrzycka K, Pieńkowska K, Łaniewski P, Bujnicki JM, van Putten JPM, Jagusztyn-Krynicka EK. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS One 2014; 9:e106247. [PMID: 25181355 PMCID: PMC4152235 DOI: 10.1371/journal.pone.0106247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/29/2014] [Indexed: 01/14/2023] Open
Abstract
Background Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA) that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. Methods and Results Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. Conclusions Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re-oxidize CjDsbA1. Altogether the data presented here constitute the considerable insight to the Epsilonproteobacterial Dsb systems, which have been poorly understood so far.
Collapse
Affiliation(s)
- Anna D Grabowska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Ewa Wywiał
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna M Łasica
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Marc M S M Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; World Health Organization Collaborating Centre for Reference and Research on Campylobacter/ World Organisation for Animal Health Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | | | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | | | - Katarzyna Pieńkowska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Paweł Łaniewski
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; World Health Organization Collaborating Centre for Reference and Research on Campylobacter/ World Organisation for Animal Health Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | | |
Collapse
|
35
|
Anwar N, Rouf SF, Römling U, Rhen M. Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615. PLoS One 2014; 9:e106095. [PMID: 25153529 PMCID: PMC4143323 DOI: 10.1371/journal.pone.0106095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3′, 5′-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar) colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK), previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s) as signaling mediators.
Collapse
Affiliation(s)
- Naeem Anwar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Syed Fazle Rouf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Polythioester synthesis in Ralstonia eutropha H16: Novel insights into 3,3′-thiodipropionic acid and 3,3′-dithiodipropionic acid catabolism. J Biotechnol 2014; 184:187-98. [DOI: 10.1016/j.jbiotec.2014.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
|
37
|
Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans. PLoS One 2014; 9:e99038. [PMID: 24911838 PMCID: PMC4049637 DOI: 10.1371/journal.pone.0099038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/09/2014] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3–9) that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana) to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.
Collapse
|
38
|
Pedone E, Fiorentino G, Pirone L, Contursi P, Bartolucci S, Limauro D. Functional and structural characterization of protein disulfide oxidoreductase from Thermus thermophilus HB27. Extremophiles 2014; 18:723-31. [DOI: 10.1007/s00792-014-0652-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/27/2014] [Indexed: 11/28/2022]
|
39
|
Periplasmic disulfide isomerase DsbC is involved in the reduction of copper binding protein CueP from Salmonella enterica serovar Typhimurium. Biochem Biophys Res Commun 2014; 446:971-6. [PMID: 24657263 DOI: 10.1016/j.bbrc.2014.03.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 01/28/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen with the ability to survive and replicate in macrophages. Periplasmic copper binding protein CueP is known to confer copper resistance to S. Typhimurium, and has been implicated in ROS scavenge activity by transferring the copper ion to a periplasmic superoxide dismutase or by directly reducing the copper ion. Structural and biochemical studies on CueP showed that its copper binding site is surrounded by conserved cysteine residues. Here, we present evidence that periplasmic disulfide isomerase DsbC plays a key role in maintaining CueP protein in the reduced state. We observed purified DsbC protein efficiently reduced the oxidized form of CueP, and that it acted on two (Cys104 and Cys172) of the three conserved cysteine residues. Furthermore, we found that a surface-exposed conserved phenylalanine residue in CueP was important for this process, which suggests that DsbC specifically recognizes the residue of CueP. An experiment using an Escherichia coli system confirmed the critical role played by DsbC in the ROS scavenge activity of CueP. Taken together, we propose a molecular insight into how CueP collaborates with the periplasmic disulfide reduction system in the pathogenesis of the bacteria.
Collapse
|
40
|
Walden PM, McMahon RM, Archbold JK. Membrane Protein Structures for Rational Antimicrobial Drug Design. Aust J Chem 2014. [DOI: 10.1071/ch14333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibiotic resistance is a major global health threat. Bacteria have developed novel resistance mechanisms to many of the latest generations of antibiotics and there is an urgent need to develop new therapies to combat these infections. Infections that are caused by multi-drug resistant Gram-negative bacteria result in poor prognosis, prolonged illness, and greater costs for health care. Recent research has pointed to several key bacterial membrane proteins as potential targets for drug and vaccine development. However, determination of the structures of these membrane proteins is not a trivial task. Here we review recent breakthroughs of the structural determination of bacterial membrane proteins and their potential for the future rational design of novel antimicrobial therapies.
Collapse
|
41
|
Yazawa K, Furusawa H, Okahata Y. Real-time monitoring of intermediates reveals the reaction pathway in the thiol-disulfide exchange between disulfide bond formation protein A (DsbA) and B (DsbB) on a membrane-immobilized quartz crystal microbalance (QCM) system. J Biol Chem 2013; 288:35969-81. [PMID: 24145032 PMCID: PMC3861646 DOI: 10.1074/jbc.m113.519876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/18/2013] [Indexed: 11/06/2022] Open
Abstract
Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone.
Collapse
Affiliation(s)
- Kenjiro Yazawa
- From the Innovative Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, Yamagata 992-8510, Japan and Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Furusawa
- From the Innovative Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, Yamagata 992-8510, Japan and Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yoshio Okahata
- From the Innovative Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, Yamagata 992-8510, Japan and Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
42
|
Premkumar L, Kurth F, Neyer S, Schembri MA, Martin JL. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase. J Biol Chem 2013; 289:2563-76. [PMID: 24311786 DOI: 10.1074/jbc.m113.516898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology and
| | | | | | | | | |
Collapse
|
43
|
The α-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in γ-proteobacteria. PLoS One 2013; 8:e81440. [PMID: 24282596 PMCID: PMC3839904 DOI: 10.1371/journal.pone.0081440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb) proteins that introduce disulfide bonds into secreted effector proteins. The genome of the Wolbachia strain wMel encodes two DsbA-like proteins sharing just 21% sequence identity to each other, α-DsbA1 and α-DsbA2, and an integral membrane protein, α-DsbB. α-DsbA1 and α-DsbA2 both have a Cys-X-X-Cys active site that, by analogy with Escherichia coli DsbA, would need to be oxidized to the disulfide form to serve as a disulfide bond donor toward substrate proteins. Here we show that the integral membrane protein α-DsbB oxidizes α-DsbA1, but not α-DsbA2. The interaction between α-DsbA1 and α-DsbB is very specific, involving four essential cysteines located in the two periplasmic loops of α-DsbB. In the electron flow cascade, oxidation of α-DsbA1 by α-DsbB is initiated by an oxidizing quinone cofactor that interacts with the cysteine pair in the first periplasmic loop. Oxidizing power is transferred to the second cysteine pair, which directly interacts with α-DsbA1. This reaction is inhibited by a non-catalytic disulfide present in α-DsbA1, conserved in other α-proteobacterial DsbAs but not in γ-proteobacterial DsbAs. This is the first characterization of the integral membrane protein α-DsbB from Wolbachia and reveals that the non-catalytic cysteines of α-DsbA1 regulate the redox relay system in cooperation with α-DsbB.
Collapse
|
44
|
Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, Fairlie DP, Martin JL. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1981-94. [PMID: 24100317 PMCID: PMC3792642 DOI: 10.1107/s0907444913017800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited substrate-binding specificity.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Begoña Heras
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Wilko Duprez
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Patricia Walden
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Maria Halili
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Fabian Kurth
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Jennifer L. Martin
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| |
Collapse
|
45
|
Sengupta D, Basu B. An efficient metal-free synthesis of organic disulfides from thiocyanates using poly-ionic resin hydroxide in aqueous medium. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Benham AM, van Lith M, Sitia R, Braakman I. Ero1-PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110403. [PMID: 23530257 PMCID: PMC3638393 DOI: 10.1098/rstb.2011.0403] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protein folding machinery of the endoplasmic reticulum (ER) ensures that proteins entering the eukaryotic secretory pathway acquire appropriate post-translational modifications and reach a stably folded state. An important component of this protein folding process is the supply of disulfide bonds. These are introduced into client proteins by ER resident oxidoreductases, including ER oxidoreductin 1 (Ero1). Ero1 is usually considered to function in a linear pathway, by ‘donating’ a disulfide bond to protein disulfide isomerase (PDI) and receiving electrons that are passed on to the terminal electron acceptor molecular oxygen. PDI engages with a range of clients as the direct catalyst of disulfide bond formation, isomerization or reduction. In this paper, we will consider the interactions of Ero1 with PDI family proteins and chaperones, highlighting the effect that redox flux has on Ero1 partnerships. In addition, we will discuss whether higher order protein complexes play a role in Ero1 function.
Collapse
Affiliation(s)
- Adam M Benham
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
47
|
Yazawa K, Furusawa H, Okahata Y. Mechanism of Thiol–Disulfide Exchange Reactions between DsbA and DsbB over a Wide pH Range. CHEM LETT 2013. [DOI: 10.1246/cl.2013.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenjiro Yazawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology
| | - Hiroyuki Furusawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology
| | - Yoshio Okahata
- Department of Biomolecular Engineering, Tokyo Institute of Technology
| |
Collapse
|
48
|
Bodelón G, Palomino C, Fernández LÁ. Immunoglobulin domains inEscherichia coliand other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiol Rev 2013; 37:204-50. [DOI: 10.1111/j.1574-6976.2012.00347.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
|
49
|
Mohorko E, Abicht HK, Bühler D, Glockshuber R, Hennecke H, Fischer HM. Thioredoxin-like protein TlpA from Bradyrhizobium japonicum
is a reductant for the copper metallochaperone ScoI. FEBS Lett 2012; 586:4094-9. [DOI: 10.1016/j.febslet.2012.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 12/17/2022]
|
50
|
Limor-Waisberg K, Alon A, Mehlman T, Fass D. Phylogenetics and enzymology of plant quiescin sulfhydryl oxidase. FEBS Lett 2012; 586:4119-25. [PMID: 23068612 DOI: 10.1016/j.febslet.2012.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/30/2012] [Accepted: 10/03/2012] [Indexed: 11/29/2022]
Abstract
Quiescin Sulfhydryl Oxidase (QSOX), a catalyst of disulfide bond formation, is found in both plants and animals. Mammalian, avian, and trypanosomal QSOX enzymes have been studied in detail, but plant QSOX has yet to be characterized. Differences between plant and animal QSOXs in domain composition and active-site sequences raise the question of whether these QSOXs function by the same mechanism. We demonstrate that Arabidopsis thaliana QSOX produced in bacteria is folded and functional as a sulfhydryl oxidase but does not exhibit the interdomain electron transfer observed for its animal counterpart. Based on this finding, further exploration into the respective roles of the redox-active sites in plant QSOX and the reason for their concatenation is warranted.
Collapse
Affiliation(s)
- Keren Limor-Waisberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|