1
|
Li X, Huang L, Mao M, Xu H, Liu C, Liu Y, Liu H. HucMSCs-derived Exosomes Promote Lung Development in Premature Birth via Wnt5a/ROCK1 Axis. Stem Cell Rev Rep 2025; 21:520-535. [PMID: 39565502 PMCID: PMC11872993 DOI: 10.1007/s12015-024-10824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Bronchopulmonary dysplasia (BPD) frequently affects extremely preterm and low birth weight infants, with current treatments lacking specificity. Enhancing extra-uterine preterm alveoli development and repairing damage are crucial for BPD management. Here we show that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-Exos) can enhance fetal lung development in mice by delivering specific contents. Briefly, hucMSCs-Exos were extracted using ultracentrifugation and identified by transmission electron microscopy (TEM), flow cytometry, Western blot (WB), and nanoparticle tracking analysis (NTA). These exosomes were then administered to pregnant mice via tail vein injection. Embryonic lung tissues were collected at E13.5 and E18.5 via cesarean section and analyzed using hematoxylin-eosin (HE) staining, immunofluorescence, and TEM. Proteomic analysis was conducted to identify protein components in the exosomes, and WB was used to assess protein expression changes. hucMSCs-Exos from full-term infants were more effective in promoting cell proliferation than those from preterm infants. In vivo, full-term hucMSCs-Exos significantly enhanced alveolarization in fetal lung tissues. Proteomic analysis revealed higher Wnt5a expression in full-term hucMSCs-Exos, and further experiments confirmed a direct interaction between Wnt5a and ROCK1. WB also showed increased expression of the autophagy marker LC3B in the lung tissues of mice treated with full-term exosomes. In conclusion, term hucMSCs-Exos may directly regulate the phosphorylation of ROCK1 in mouse lung tissue through naturally enriched Wnt5a, thus promoting autophagy of AT2 cells and lamellar body development, and ultimately enhance the alveolarization and reducing the incidence of BPD in premature infants.
Collapse
Affiliation(s)
- Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lidong Huang
- University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hong Xu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Caijun Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Calyeca J, Hussein Z, Tan ZH, Liu L, Dharmadhikari S, Shontz KM, Vetter TA, Breuer CK, Reynolds SD, Chiang T. Orchestrated response from heterogenous fibroblast subsets contributes to repair from surgery-induced stress after airway reconstruction. JCI Insight 2025; 10:e186263. [PMID: 39836476 PMCID: PMC11949024 DOI: 10.1172/jci.insight.186263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Surgery of the tracheobronchial tree carries high morbidity, with over half of the complications occurring at the anastomosis. Although fibroblasts are crucial in airway wound healing, the underlying cellular and molecular mechanisms in airway reconstruction remain unknown. We hypothesized that airway reconstruction initiates a surgery-induced stress (SIS) response, altering fibroblast communication within airway tissues. Using single-cell RNA-Seq, we analyzed native and reconstructed airways and identified 5 fibroblast subpopulations, each with distinct spatial distributions across anastomotic, submucosal, perichondrial, and paratracheal areas. During homeostasis, adventitial and airway fibroblasts (Adventitial-Fb and Airway-Fb, respectively) maintained tissue structure and created cellular niches by regulating ECM turnover. Under SIS, perichondrial fibroblasts (PC-Fb) exhibited chondroprogenitor-like gene signatures, and immune-recruiting fibroblasts (IR-Fb) facilitated cell infiltration. Cthrc1-activated fibroblasts (Cthrc1+ Fb), mainly derived from Adventitial-Fb, primarily contributed to fibrotic scar formation and collagen production, mediated by TGF-β. Furthermore, repeated SIS created an imbalance in fibroblast states favoring emergence of CTHRC1+ Fb and leading to impaired fibroblasts-basal cell crosstalk. Collectively, these data identify PC, IR, and Cthrc1+ Fb as a signaling hub, with SIS emerging as a mechanism initiating airway remodeling after reconstruction that, if not controlled, may lead to complications such as stenosis or anastomotic breakdown.
Collapse
Affiliation(s)
- Jazmin Calyeca
- Department of Otolaryngology and
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Zakarie Hussein
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Zheng Hong Tan
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Sayali Dharmadhikari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kimberly M. Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Susan D. Reynolds
- Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Department of Otolaryngology and
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
3
|
Hashemi M, Rezaei M, Rezaeiaghdam H, Jamali B, Koohpar ZK, Tanha M, Bizhanpour A, Asadi S, Jafari AM, Khosroshahi EM, Eslami M, Salimimoghadam S, Nabavi N, Rashidi M, Fattah E, Taheriazam A, Entezari M. Highlighting function of Wnt signalling in urological cancers: Molecular interactions, therapeutic strategies, and (nano)strategies. Transl Oncol 2024; 50:102145. [PMID: 39357465 PMCID: PMC11474201 DOI: 10.1016/j.tranon.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a complex, multistep process characterized by abnormal cell growth and metastasis as well as the capacity of the tumor cells in therapy resistance development. The urological system is particularly susceptible to a group of malignancies known as urological cancers, where an accumulation of genetic alterations drives carcinogenesis. In various human cancers, Wnt singalling is dysregulated; following nuclear transfer of β-catenin, it promotes tumor progression and affects genes expression. Elevated levels of Wnt have been documented in urological cancers, where its overexpression enhances growth and metastasis. Additionally, increased Wnt singalling contributes to chemoresistance in urological cancers, leading to reduced sensitivity to chemotherapy agents like cisplatin, doxorubicin, and paclitaxel. Wnt upregulation can change radiotherapy response of urological cancers. The regulation of Wnt involves various molecular pathways, including Akt, miRNAs, lncRNAs, and circRNAs, all of which play roles in carcinogenesis. Targeting and silencing Wnt or its associated pathways can mitigate tumorigenesis in urological cancers. Anti-cancer compounds such as curcumin and thymoquinone have shown efficacy in suppressing tumorigenesis through the downregulation of Wnt singalling. Notably, nanoparticles have proven effective in treating urological cancers, with several studies in prostate cancer (PCa) using nanoparticles to downregulate Wnt and suppress tumor growth. Future research should focus on developing small molecules that inhibit Wnt singalling to further suppress tumorigenesis and advance the treatment of urological cancers. Moreover, Wnt can be used as reliable biomarker for the diagnosis and prognosis of urological cancers.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Hadi Rezaeiaghdam
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Zeinab Khazaei Koohpar
- Department Of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahsa Tanha
- Department Of Biological Sciences, University Of Alabama, Tuscaloosa, Al, United States
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
5
|
Min J, Jiaqi H, Lihua L, Qianqian C, Shujuan W, Xiang L, Liang L, Liang R, Yiwu Z, Qian L. Proteomics of severe SARS-COV-2 infection and paraquat poisoning in human lung tissue samples: comparison of microbial infected and toxic pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1446305. [PMID: 39301288 PMCID: PMC11410708 DOI: 10.3389/fcimb.2024.1446305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Pulmonary fibrosis (PF) encompasses a spectrum of lung conditions characterized by the abnormal accumulation of scar tissue in the lungs, leading to impaired respiratory function. Various conditions can result in severe PF, among which viral infections have emerged as significant triggers. In addition to viral infections, exposure to toxic substances such as paraquat represents another significant risk factor for PF. Therefore, this study aimed to explore the dissimilarities and similarities between PF triggered by viral infections and chemical toxicants, using the mechanism of PF in IPF as a reference. Methods Data-independent acquisition proteomics technology was employed to identify COVID-19 and paraquat-induced PF from the autopsy of lung tissue samples obtained from individuals who died due to PF. Bioinformatics was employed for differential protein analysis, and selected indicators were validated on pathological sections. Results Our results showed that the differential proteins associated with the two causes of PF were enriched in similar lung fibrosis-related signaling pathways, such as the Wnt signaling pathway. However, differences were observed in proteins such as CACYBP, we verified the consistency of the results with proteomics using the IHC approach. Conclusion This study illuminates distinct protein-level differences by investigating pulmonary fibrosis pathways in severe COVID-19 and paraquat poisoning. Although both conditions activate lung-protective and repair pathways, COVID-19 shows limited phosphorylation-independent ubiquitination of β-catenin compared to paraquat toxicity. These findings shed light on potential therapeutic targets for PF induced via diverse factors.
Collapse
Affiliation(s)
- Jiang Min
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Jiaqi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lihua
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chai Qianqian
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Shujuan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Xiang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Liang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Liang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Yiwu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Qian
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Tran NQV, Le MK, Nakamura Y, Nakao A. Severe asthmatic airways have distinct circadian clock gene expression pattern associated with WNT signaling. Clin Transl Allergy 2024; 14:e12379. [PMID: 38943045 PMCID: PMC11213687 DOI: 10.1002/clt2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Affiliation(s)
| | - Minh Khang Le
- Department of Human PathologyUniversity of YamanashiYamanashiJapan
| | - Yuki Nakamura
- Department of ImmunologyFaculty of MedicineUniversity of YamanashiYamanashiJapan
| | - Atsuhito Nakao
- Department of ImmunologyFaculty of MedicineUniversity of YamanashiYamanashiJapan
- Yamanashi GLIA CenterUniversity of YamanashiYamanashiJapan
- Atopy Research CenterJuntendo University School of MedicineTokyoJapan
| |
Collapse
|
7
|
Singla A, Reuter S, Taube C, Peters M, Peters K. The molecular mechanisms of remodeling in asthma, COPD and IPF with a special emphasis on the complex role of Wnt5A. Inflamm Res 2023; 72:577-588. [PMID: 36658268 PMCID: PMC10023767 DOI: 10.1007/s00011-023-01692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Chronic inflammatory lung diseases are a common cause of suffering and death. Chronic obstructive pulmonary disease (COPD) is the reason for 6% of all deaths worldwide. A total of 262 million people are affected by asthma and 461,000 people died in 2019. Idiopathic pulmonary fibrosis (IPF) is diagnosed in 3 million people worldwide, with an onset over the age of 50 with a mean survival of only 24-30 months. These three diseases have in common that remodeling of the lung tissue takes place, which is responsible for an irreversible decline of lung function. Pathological lung remodeling is mediated by a complex interaction of different, often misguided, repair processes regulated by a variety of mediators. One group of these, as has recently become known, are the Wnt ligands. In addition to their well-characterized role in embryogenesis, this group of glycoproteins is also involved in immunological and structural repair processes. Depending on the combination of the Wnt ligand with its receptors and co-receptors, canonical and noncanonical signaling cascades can be induced. Wnt5A is a mediator that is described mainly in noncanonical Wnt signaling and has been shown to play an important role in different inflammatory diseases and malignancies. OBJECTIVES In this review, we summarize the literature available regarding the role of Wnt5A as an immune modulator and its role in the development of asthma, COPD and IPF. We will focus specifically on what is known about Wnt5A concerning its role in the remodeling processes involved in the chronification of the diseases. CONCLUSION Wnt5A has been shown to be involved in all three inflammatory lung diseases. Since the ligand affects both structural and immunological processes, it is an interesting target for the treatment of lung diseases whose pathology involves a restructuring of the lung tissue triggered in part by an inflammatory immune response.
Collapse
Affiliation(s)
- Abhinav Singla
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Karin Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
8
|
Bronchopulmonary dysplasia and wnt pathway-associated single nucleotide polymorphisms. Pediatr Res 2022; 92:888-898. [PMID: 34853430 DOI: 10.1038/s41390-021-01851-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/04/2021] [Accepted: 11/02/2021] [Indexed: 11/08/2022]
Abstract
AIM Genetic variants contribute to the pathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study is to evaluate the association of 45 SNPs with BPD susceptibility in a Turkish premature infant cohort. METHODS Infants with gestational age <32 weeks were included. Patients were divided into BPD or no-BPD groups according to oxygen need at 28 days of life, and stratified according to the severity of BPD. We genotyped 45 SNPs, previously identified as BPD risk factors, in 192 infants. RESULTS A total of eight SNPs were associated with BPD risk at allele level, two of which (rs4883955 on KLF12 and rs9953270 on CHST9) were also associated at the genotype level. Functional relationship maps suggested an interaction between five of these genes, converging on WNT5A, a member of the WNT pathway known to be implicated in BPD pathogenesis. Dysfunctional CHST9 and KLF12 variants may contribute to BPD pathogenesis through an interaction with WNT5A. CONCLUSIONS We suggest investigating the role of SNPs on different genes which are in relation with the Wnt pathway in BPD pathogenesis. We identified eight SNPs as risk factors for BPD in this study. In-silico functional maps show an interaction of the genes harboring these SNPs with the WNT pathway, supporting its role in BPD pathogenesis. TRIAL REGISTRATION NCT03467828. IMPACT It is known that genetic factors may contribute to the development of BPD in preterm infants. Further studies are required to identify specific genes that play a role in the BPD pathway to evaluate them as a target for therapeutic interventions. Our study shows an association of BPD predisposition with certain polymorphisms on MBL2, NFKBIA, CEP170, MAGI2, and VEGFA genes at allele level and polymorphisms on CHST9 and KLF12 genes at both allele and genotype level. In-silico functional mapping shows a functional relationship of these five genes with WNT5A, suggesting that Wnt pathway disruption may play a role in BPD pathogenesis.
Collapse
|
9
|
Zhang K, Yao E, Chuang E, Chen B, Chuang EY, Volk RF, Hofmann KL, Zaro B, Chuang PT. Wnt5a-Vangl1/2 signaling regulates the position and direction of lung branching through the cytoskeleton and focal adhesions. PLoS Biol 2022; 20:e3001759. [PMID: 36026468 PMCID: PMC9469998 DOI: 10.1371/journal.pbio.3001759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/13/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Lung branching morphogenesis requires reciprocal interactions between the epithelium and mesenchyme. How the lung branches are generated at a defined location and projected toward a specific direction remains a major unresolved issue. In this study, we investigated the function of Wnt signaling in lung branching in mice. We discovered that Wnt5a in both the epithelium and the mesenchyme plays an essential role in controlling the position and direction of lung branching. The Wnt5a signal is mediated by Vangl1/2 to trigger a cascade of noncanonical or planar cell polarity (PCP) signaling. In response to noncanonical Wnt signaling, lung cells undergo cytoskeletal reorganization and change focal adhesions. Perturbed focal adhesions in lung explants are associated with defective branching. Moreover, we observed changes in the shape and orientation of the epithelial sheet and the underlying mesenchymal layer in regions of defective branching in the mutant lungs. Thus, PCP signaling helps define the position and orientation of the lung branches. We propose that mechanical force induced by noncanonical Wnt signaling mediates a coordinated alteration in the shape and orientation of a group of epithelial and mesenchymal cells. These results provide a new framework for understanding the molecular mechanisms by which a stereotypic branching pattern is generated.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Ethan Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Biao Chen
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Evelyn Y. Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Regan F. Volk
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Katherine L. Hofmann
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Balyn Zaro
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| |
Collapse
|
10
|
Duong TE, Wu Y, Sos BC, Dong W, Limaye S, Rivier LH, Myers G, Hagood JS, Zhang K. A single-cell regulatory map of postnatal lung alveologenesis in humans and mice. CELL GENOMICS 2022; 2:100108. [PMID: 35434692 PMCID: PMC9012447 DOI: 10.1016/j.xgen.2022.100108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/05/2021] [Accepted: 02/02/2022] [Indexed: 04/14/2023]
Abstract
Ex-utero regulation of the lungs' responses to breathing air and continued alveolar development shape adult respiratory health. Applying single-cell transposome hypersensitive site sequencing (scTHS-seq) to over 80,000 cells, we assembled the first regulatory atlas of postnatal human and mouse lung alveolar development. We defined regulatory modules and elucidated new mechanistic insights directing alveolar septation, including alveolar type 1 and myofibroblast cell signaling and differentiation, and a unique human matrix fibroblast population. Incorporating GWAS, we mapped lung function causal variants to myofibroblasts and identified a pathogenic regulatory unit linked to lineage marker FGF18, demonstrating the utility of chromatin accessibility data to uncover disease mechanism targets. Our regulatory map and analysis model provide valuable new resources to investigate age-dependent and species-specific control of critical developmental processes. Furthermore, these resources complement existing atlas efforts to advance our understanding of lung health and disease across the human lifespan.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Brandon Chin Sos
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Weixiu Dong
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Siddharth Limaye
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauraine H. Rivier
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Greg Myers
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James S. Hagood
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Chi S, Xue J, Chen X, Liu X, Ji Y. Correlation of plasma and urine Wnt5A with the disease activity and cutaneous lesion severity in patients with systemic lupus erythematosus. Immunol Res 2021; 70:174-184. [PMID: 34860323 PMCID: PMC8917110 DOI: 10.1007/s12026-021-09253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Reliable noninvasive biomarkers are needed to accurately assess disease activity and prognosis in patients with systemic lupus erythematosus (SLE). The purpose of this study was to investigate the clinical relevance of Wnt5A with disease activity and severity with cutaneous involvement in particular in SLE patients; its concentrations in plasma and urine were examined and analyzed. In the cross-sectional study, the clinical relevance of Wnt5A protein was evaluated in both plasma and urine of SLE patients and healthy cohorts using commercial enzyme-linked immunosorbent assays (ELISA). Significantly, more abundances of Wnt5A protein were determined in both of plasmas and urines of SLE patients compared to healthy cohorts (p < 0.0001), which were even higher in active disease (AD) SLE patients relative to low disease activity (LDA) SLE patients (p < 0.0001). Meanwhile, the ROC curve analysis demonstrated that the plasma and urine Wnt5A were potential candidate biomarkers for identifying the disease activity and severity in SLE patients. The discriminant function analysis further revealed that the plasma and urine Wnt5A were separated and distinct for AD SLE patients and healthy controls. In consistence, the disease severity was correlated with the plasma and urine Wnt5A as ascertained by CLASI activity score and the prevalence of serositis in SLE patients. These results suggest that Wnt5A, as a summary measure for different inflammatory processes, could be a potential biomarker for accessing the disease activity, and a noninvasive biomarker for evaluating the disease severity in terms of cutaneous involvement in SLE patients.
Collapse
Affiliation(s)
- Shuhong Chi
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, No. 76 Yanta West Road, Xi'an, 710061, Shanxi, China.,Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jing Xue
- Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, No. 76 Yanta West Road, Xi'an, 710061, Shanxi, China
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA.
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, No. 76 Yanta West Road, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
12
|
Fujioka N, Kitabatake M, Ouji-Sageshima N, Ibaraki T, Kumamoto M, Fujita Y, Hontsu S, Yamauchi M, Yoshikawa M, Muro S, Ito T. Human Adipose-Derived Mesenchymal Stem Cells Ameliorate Elastase-Induced Emphysema in Mice by Mesenchymal-Epithelial Transition. Int J Chron Obstruct Pulmon Dis 2021; 16:2783-2793. [PMID: 34675503 PMCID: PMC8517419 DOI: 10.2147/copd.s324952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a worldwide problem because of its high prevalence and mortality. However, there is no fundamental treatment to ameliorate their pathological change in COPD lung. Recently, adipose-derived mesenchymal stem cells (ADSCs) have attracted attention in the field of regenerative medicine to repair damaged organs. Moreover, their utility in treating respiratory diseases has been reported in some animal models. However, the detailed mechanism by which ADSCs improve chronic respiratory diseases, including COPD, remains to be elucidated. We examined whether human ADSCs (hADSCs) ameliorated elastase-induced emphysema and whether hADSCs differentiated into alveolar epithelial cells in a murine model of COPD. Methods Female SCID-beige mice (6 weeks old) were divided into the following four groups according to whether they received an intratracheal injection of phosphate-buffered saline or porcine pancreatic elastase, and whether they received an intravenous injection of saline or hADSCs 3 days after intratracheal injection; Control group, hADSC group, Elastase group, and Elastase-hADSC group. We evaluated the lung function, assessed histological changes, and compared gene expression between hADSCs isolated from the lung of Elastase-hADSC group and naïve hADSCs 28 days after saline or elastase administration. Results hADSCs improved the pathogenesis of COPD, including the mean linear intercept and forced expiratory volume, in an elastase-induced emphysema model in mice. Furthermore, hADSCs were observed in the lungs of elastase-treated mice at 25 days after administration. These cells expressed genes related to mesenchymal–epithelial transition and surface markers of alveolar epithelial cells, such as TTF-1, β-catenin, and E-cadherin. Conclusion hADSCs have the potential to improve the pathogenesis of COPD by differentiating into alveolar epithelial cells by mesenchymal–epithelial transition.
Collapse
Affiliation(s)
- Nobuhiro Fujioka
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | | | | | - Takahiro Ibaraki
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Makiko Kumamoto
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yukio Fujita
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shigeto Hontsu
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Motoo Yamauchi
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Masanori Yoshikawa
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
13
|
Rackow AR, Nagel DJ, McCarthy C, Judge J, Lacy S, Freeberg MAT, Thatcher TH, Kottmann RM, Sime PJ. The self-fulfilling prophecy of pulmonary fibrosis: a selective inspection of pathological signalling loops. Eur Respir J 2020; 56:13993003.00075-2020. [PMID: 32943406 PMCID: PMC7931159 DOI: 10.1183/13993003.00075-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022]
Abstract
Pulmonary fibrosis is a devastating, progressive disease and carries a prognosis worse than most cancers. Despite ongoing research, the mechanisms that underlie disease pathogenesis remain only partially understood. However, the self-perpetuating nature of pulmonary fibrosis has led several researchers to propose the existence of pathological signalling loops. According to this hypothesis, the normal wound-healing process becomes corrupted and results in the progressive accumulation of scar tissue in the lung. In addition, several negative regulators of pulmonary fibrosis are downregulated and, therefore, are no longer capable of inhibiting these feed-forward loops. The combination of pathological signalling loops and loss of a checks and balances system ultimately culminates in a process of unregulated scar formation. This review details specific signalling pathways demonstrated to play a role in the pathogenesis of pulmonary fibrosis. The evidence of detrimental signalling loops is elucidated with regard to epithelial cell injury, cellular senescence and the activation of developmental and ageing pathways. We demonstrate where these loops intersect each other, as well as common mediators that may drive these responses and how the loss of pro-resolving mediators may contribute to the propagation of disease. By focusing on the overlapping signalling mediators among the many pro-fibrotic pathways, it is our hope that the pulmonary fibrosis community will be better equipped to design future trials that incorporate the redundant nature of these pathways as we move towards finding a cure for this unrelenting disease.
Collapse
Affiliation(s)
- Ashley R Rackow
- Dept of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Authors contributed equally to this work
| | - David J Nagel
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA.,Authors contributed equally to this work
| | | | | | - Shannon Lacy
- US Army of Veterinary Corps, Fort Campbell, KY, USA
| | | | - Thomas H Thatcher
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - R Matthew Kottmann
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
14
|
Wang Y, Zheng X, Wang Q, Zheng M, Pang L. GSK3β-Ikaros-ANXA4 signaling inhibits high-glucose-induced fibroblast migration. Biochem Biophys Res Commun 2020; 531:543-551. [PMID: 32807499 DOI: 10.1016/j.bbrc.2020.07.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Previous studies showed that the activation of Wnt signaling reduced high glucose (HG)-mediated fibroblast damage, but the molecular basis for this phenomenon remains elusive. This study aimed to analyze the level of phosphorylation of GSK3β Ser9 (pGSK3β Ser9) during HG damage. Moreover, the phosphomimic form of pGSK3β Ser9 was expressed to analyze its effect on cell migration via the phosphorylation of Ikaros. The results revealed that HG treatment significantly reduced the pGSK3β Ser9 level. The overexpression of GSK3β Ser9D and GSK3β Ser9A accelerated and inhibited fibroblast cell migration, respectively. P110α knockdown or treatment with SP600125, an inhibitor of JNK, also reduced the pGSK3β Ser9 level under HG condition. Treatment with SP600125 inhibited the migration of fibroblasts, but not in GSK3β Ser9D-expressing cells. Further, yeast two-hybrid screening and biochemical analysis identified that GSK3β interacted and phosphorylated Ikaros at Ser391. Besides, GSK3β Ser9D, but not GSK3β Ser9A, activated Ikaros Ser391 phosphorylation. Expressing Ikaros or β-catenin significantly promoted cell migration, suggesting that GSK3β modulated cell migration partially via the activation of Ikaros besides β-catenin signaling under HG condition. The expression of the phosphomimic form of Ikaros Ser391D resulted in a significant increase in the extent of cell migration compared with Ikaros under HG condition. Moreover, the Ikaros Ser391D DNA-binding affinity toward the ANXA4 promoter increased, and ANXA4 suppression promoted cell migration. In conclusion, the results of this study provided a new regulatory mechanism by which GSK3β negatively regulated human skin fibroblast cell migration.
Collapse
Affiliation(s)
- Youpei Wang
- Clinical Examination Center, The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiang Zheng
- Emergency Department of Children, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qing Wang
- Function Experiment Teaching Center, Wenzhou Medical University, Wenzhou, 325305, China
| | - Meiqin Zheng
- Clinical Examination Center, The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lingxia Pang
- Function Experiment Teaching Center, Wenzhou Medical University, Wenzhou, 325305, China.
| |
Collapse
|
15
|
Gaikwad AV, Eapen MS, McAlinden KD, Chia C, Larby J, Myers S, Dey S, Haug G, Markos J, Glanville AR, Sohal SS. Endothelial to mesenchymal transition (EndMT) and vascular remodeling in pulmonary hypertension and idiopathic pulmonary fibrosis. Expert Rev Respir Med 2020; 14:1027-1043. [PMID: 32659128 DOI: 10.1080/17476348.2020.1795832] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fibrotic disease associated with respiratory failure. The disease remains idiopathic, but repeated alveolar epithelium injury, disruption of alveolar-capillary integrity, abnormal vascular repair, and pulmonary vascular remodeling are considered possible pathogenic mechanisms. Also, the development of comorbidities such as pulmonary hypertension (PH) could further impact disease outcome, quality of life and survival rates in IPF. AREAS COVERED The current review provides a comprehensive literature survey of the mechanisms involved in the development and manifestations of IPF and their links to PH pathology. This review also provides the current understanding of molecular mechanisms that link the two pathologies and will specifically decipher the role of endothelial to mesenchymal transition (EndMT) along with the possible triggers of EndMT. The possibility of targeting EndMT as a therapeutic option in IPF is discussed. EXPERT OPINION With a steady increase in prevalence and mortality, IPF is no longer considered a rare disease. Thus, it is of utmost importance and urgency that the underlying profibrotic pathways and mechanisms are fully understood, to enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Kielan D McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Josie Larby
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - James Markos
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Allan R Glanville
- Lung Transplant Unit, Department of Thoracic Medicine, St Vincent's Hospital , Sydney, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| |
Collapse
|
16
|
Zhang K, Yao E, Lin C, Chou YT, Wong J, Li J, Wolters PJ, Chuang PT. A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. eLife 2020; 9:e53688. [PMID: 32394892 PMCID: PMC7217702 DOI: 10.7554/elife.53688] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Alveolar formation increases the surface area for gas-exchange and is key to the physiological function of the lung. Alveolar epithelial cells, myofibroblasts and endothelial cells undergo coordinated morphogenesis to generate epithelial folds (secondary septa) to form alveoli. A mechanistic understanding of alveologenesis remains incomplete. We found that the planar cell polarity (PCP) pathway is required in alveolar epithelial cells and myofibroblasts for alveologenesis in mammals. Our studies uncovered a Wnt5a-Ror2-Vangl2 cascade that endows cellular properties and novel mechanisms of alveologenesis. This includes PDGF secretion from alveolar type I and type II cells, cell shape changes of type I cells and migration of myofibroblasts. All these cellular properties are conferred by changes in the cytoskeleton and represent a new facet of PCP function. These results extend our current model of PCP signaling from polarizing a field of epithelial cells to conferring new properties at subcellular levels to regulate collective cell behavior.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Yu-Ting Chou
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Julia Wong
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Jianying Li
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Paul J Wolters
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
17
|
WNT5a-ROR Signaling Is Essential for Alveologenesis. Cells 2020; 9:cells9020384. [PMID: 32046118 PMCID: PMC7072327 DOI: 10.3390/cells9020384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
WNT5a is a mainly “non-canonical” WNT ligand whose dysregulation is observed in lung diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma. Germline deletion of Wnt5a disrupts embryonic lung development. However, the temporal-specific function of WNT5a remains unknown. In this study, we generated a conditional loss-of-function mouse model (Wnt5aCAG) and examined the specific role of Wnt5a during the saccular and alveolar phases of lung development. The lack of Wnt5a in the saccular phase blocked distal airway expansion and attenuated differentiation of endothelial and alveolar epithelial type I (AT1) cells and myofibroblasts. Postnatal Wnt5a inactivation disrupted alveologenesis, producing a phenotype resembling human bronchopulmonary dysplasia (BPD). Mutant lungs showed hypoalveolization, but endothelial and epithelial differentiation was unaffected. The major impact of Wnt5a inactivation on alveologenesis was on myofibroblast differentiation and migration, with reduced expression of key regulatory genes. These findings were validated in vitro using isolated lung fibroblasts. Conditional inactivation of the WNT5a receptors Ror1 and Ror2 in alveolar myofibroblasts recapitulated the Wnt5aCAG phenotype, demonstrating that myofibroblast defects are the major cause of arrested alveologenesis in Wnt5aCAG lungs. Finally, we show that WNT5a is reduced in human BPD lung samples, indicating the clinical relevance and potential role for WNT5a in pathogenesis of BPD.
Collapse
|
18
|
Li YF, Zhang J, Yu L. Circular RNAs Regulate Cancer Onset and Progression via Wnt/β-Catenin Signaling Pathway. Yonsei Med J 2019; 60:1117-1128. [PMID: 31769242 PMCID: PMC6881706 DOI: 10.3349/ymj.2019.60.12.1117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer remains to be a major challenge for public health providers, and is the second leading cause of death worldwide. Therefore, it is imperative to explore the mechanisms underlying cancer initiation and development, and design novel diagnostics and therapeutics. Circular RNAs (circRNAs), which exhibit a covalently closed loop structure, are involved in a variety of diseases, including cancer. The aberrant expression of circRNAs contributes to the initiation and development of various cancers by disrupting the interplay of specific signaling pathways, including the Wnt/β-catenin pathway, which controls a plethora of cellular processes that drive cancer development. The interactions between circRNAs (specifically expressed in different cancer tissues) and Wnt/β-catenin signaling pathway presents potential diagnostic biomarkers and novel therapeutic targets. In this review, we have summarized research discoveries on the functions of Wnt/β-catenin pathway-related circRNAs in the modulation of oncogenesis and progression of different types of cancer. We anticipate that our findings will contribute to the improvement or development of circRNAs-based strategies for cancer treatment.
Collapse
Affiliation(s)
- Yun Feng Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A 2019; 116:25697-25706. [PMID: 31776260 DOI: 10.1073/pnas.1911071116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/β-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.
Collapse
|
20
|
Tenjin Y, Kudoh S, Kubota S, Yamada T, Matsuo A, Sato Y, Ichimura T, Kohrogi H, Sashida G, Sakagami T, Ito T. Ascl1-induced Wnt11 regulates neuroendocrine differentiation, cell proliferation, and E-cadherin expression in small-cell lung cancer and Wnt11 regulates small-cell lung cancer biology. J Transl Med 2019; 99:1622-1635. [PMID: 31231131 DOI: 10.1038/s41374-019-0277-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/03/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023] Open
Abstract
The involvement of Wnt signaling in human lung cancer remains unclear. This study investigated the role of Wnt11 in neuroendocrine (NE) differentiation, cell proliferation, and epithelial-to-mesenchymal transition (EMT) in human small-cell lung cancer (SCLC). Immunohistochemical staining of resected specimens showed that Wnt11 was expressed at higher levels in SCLCs than in non-SCLCs; 58.8% of SCLC, 5.2% of adenocarcinoma (ADC), and 23.5% of squamous cell carcinoma tissues stained positive for Wnt11. A positive relationship was observed between Achaete-scute complex homolog 1 (Ascl1) and Wnt11 expression in SCLC cell lines, and this was supported by transcriptome data from SCLC tissue. The expression of Wnt11 and some NE markers increased after the transfection of ASCL1 into the A549 ADC cell line. Knockdown of Ascl1 downregulated Wnt11 expression in SCLC cell lines. Ascl1 regulated Wnt11 expression via lysine H3K27 acetylation at the enhancer region of the WNT11 gene. Wnt11 controlled NE differentiation, cell proliferation, and E-cadherin expression under the regulation of Ascl1 in SCLC cell lines. The phosphorylation of AKT and p38 mitogen-activated protein kinase markedly increased after transfection of WNT11 into the SBC3 SCLC cell line, which suggests that Wnt11 promotes cell proliferation in SCLC cell lines. Ascl1 plays an important role in regulating the Wnt signaling pathway and is one of the driver molecules of Wnt11 in human SCLC. Ascl1 and Wnt11 may employ a cooperative mechanism to control the biology of SCLC. The present results indicate the therapeutic potential of targeting the Ascl1-Wnt11 signaling axis and support the clinical utility of Wnt11 as a biological marker in SCLC.
Collapse
Affiliation(s)
- Yuki Tenjin
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Respiratory Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tatsuya Yamada
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takaya Ichimura
- Department of Pathology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Hirotsugu Kohrogi
- Department of Respiratory Medicine, Omuta Tenryo Hospital, Tenryo 1-100, Omuta, Fukuoka, 836-8556, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
21
|
Jia XX, Zhu TT, Huang Y, Zeng XX, Zhang H, Zhang WX. Wnt/β-catenin signaling pathway regulates asthma airway remodeling by influencing the expression of c-Myc and cyclin D1 via the p38 MAPK-dependent pathway. Exp Ther Med 2019; 18:3431-3438. [PMID: 31602218 PMCID: PMC6777302 DOI: 10.3892/etm.2019.7991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
Airway remodeling is the main characteristic of asthma; however, the mechanisms underlying this pathophysiological change have not been fully elucidated. Previous studies have indicated that the Wnt/β-catenin and mitogen-activated protein kinase (MAPK) signaling pathway are involved in the development of airway remodeling during asthma. Therefore, the present study established an airway remodeling rat model, after which β-catenin, cyclin D1 and c-Myc protein expressions were analyzed via western blotting in the lung tissue and airway smooth muscle cells (ASMCs) of rats. The mRNA expression of the aforementioned proteins were evaluated via reverse transcription-quantitative PCR. β-catenin, cyclin D1 and c-Myc are core transcription factors and target genes of the Wnt/β-catenin and MAPK signaling pathways. Furthermore, β-catenin, c-Myc and cyclin D1 protein expression were determined following blocking of the p38 MAPK signaling pathway in vitro. The results demonstrated that higher expressions of β-catenin, cyclin D1 and c-Myc were detected in lung tissues and ASMCs in the asthma group compared with the control. Blocking the p38 MAPK signaling pathway with a specific inhibitor SB203580 also downregulated the expressions of β-catenin, cyclin D1 and c-Myc in vitro. Taken together, these results indicated that the Wnt/β-catenin signaling pathway may regulate the process of airway remodeling via the p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Xiao-Xiao Jia
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ting-Ting Zhu
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yue Huang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xin-Xin Zeng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hong Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wei-Xi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
22
|
Kim GL, Lee S, Kim SJ, Lee SO, Pyo S, Rhee DK. Pulmonary Colonization Resistance to Pathogens via Noncanonical Wnt and Interleukin-17A by Intranasal pep27 Mutant Immunization. J Infect Dis 2019; 217:1977-1986. [PMID: 29579238 DOI: 10.1093/infdis/jiy158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023] Open
Abstract
Background Previous studies have focused on colonization resistance of the gut microbiota against antibiotic resistant strains. However, less research has been performed on respiratory colonization resistance. Methods Because respiratory colonization is the first step of respiratory infections, intervention to prevent colonization would represent a new approach for preventive and therapeutic measures. The Th17 response plays an important role in clearance of respiratory pathogens. Thus, harnessing the Th17 immune response in the mucosal site would be an effective method to design a respiratory mucosal vaccine. Results In this study, we show that intranasal Δpep27 immunization induces noncanonical Wnt and subsequent interleukin (IL)-17 secretion, and it inhibits Streptococcus pneumoniae, Staphylococcus aureus, and Klebsiella pneumoniae colonization. Moreover, IL-17A neutralization or nuclear factor of activated T-cell inhibition augmented bacterial colonization, indicating that noncanonical Wnt signaling is involved in pulmonary colonization resistance. Conclusions Therefore, Δpep27 immunization can provide nonspecific respiratory colonization resistance via noncanonical Wnt signaling and IL-17A-related pathways.
Collapse
Affiliation(s)
- Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Seungyeop Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Se-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Si-On Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
23
|
Wigén J, Elowsson-Rendin L, Karlsson L, Tykesson E, Westergren-Thorsson G. Glycosaminoglycans: A Link Between Development and Regeneration in the Lung. Stem Cells Dev 2019; 28:823-832. [PMID: 31062651 DOI: 10.1089/scd.2019.0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
What can we learn from embryogenesis to increase our understanding of how regeneration of damaged adult lung tissue could be induced in serious lung diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma? The local tissue niche determines events in both embryogenesis and repair of the adult lung. Important constituents of the niche are extracellular matrix (ECM) molecules, including proteoglycans and glycosaminoglycans (GAGs). GAGs, strategically located in the pericellular and extracellular space, bind developmentally active growth factors (GFs) and morphogens such as fibroblast growth factors (FGFs), transforming growth factor-β (TGF-β), and bone morphogenetic proteins (BMPs) aside from cytokines. These interactions affect activities in many cells, including stem cells, important in development and tissue regeneration. Moreover, it is becoming clear that the "inherent code," such as sulfation of disaccharides of GAGs, is a strong determinant of cellular outcome. Sulfation patterns, deacetylations, and epimerizations of GAG chains function as tuning forks in gradient formation of morphogens, growth factors, and cytokines. Learning to tune these fine instruments, that is, interactions between GFs, chemokines, and cytokines with the specific disaccharide code of GAGs in the adult lung, could become the key to unlock inherent regenerative forces to override pathological remodeling. This review aims to provide an overview of the role GAGs play during development and similar events in regenerative efforts in the adult lung.
Collapse
Affiliation(s)
- Jenny Wigén
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | | | - Lisa Karlsson
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | - Emil Tykesson
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | | |
Collapse
|
24
|
The effects of tracheal occlusion on Wnt signaling in a rabbit model of congenital diaphragmatic hernia. J Pediatr Surg 2019; 54:937-944. [PMID: 30792093 DOI: 10.1016/j.jpedsurg.2019.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Tracheal occlusion (TO) reverses pulmonary hypoplasia (PH) in congenital diaphragmatic hernia (CDH), but its mechanism of action remains poorly understood. Wnt signaling plays a critical role in lung development, but few studies exist. The purpose of our study was to a) confirm that our CDH rabbit model produced PH which was reversed by TO and b) determine the effects of CDH +/- TO on Wnt signaling. METHODS CDH was created in fetal rabbits at 23 days, TO at 28 days, and lung collection at 31 days. Lung body weight ratio (LBWR) and mean terminal bronchiole density (MTBD) were determined. mRNA and miRNA expression was determined in the left lower lobe using RT-qPCR. RESULTS Fifteen CDH, 15 CDH + TO, 6 sham CDH, and 15 controls survived and were included in the study. LBWR was low in CDH, while CDH + TO was similar to controls (p = 0.003). MTBD was higher in CDH fetuses and restored to control levels in CDH + TO (p < 0.001). Reference genes TOP1, SDHA, and ACTB were consistently expressed within and between treatment groups. miR-33 and MKI67 were increased, and Lgl1 was decreased in CDH + TO. CONCLUSION TO reversed pulmonary hypoplasia and stimulated early Wnt signaling in CDH fetal rabbits. TYPE OF STUDY Basic science, prospective. LEVEL OF EVIDENCE II.
Collapse
|
25
|
Yu M, Guo Y, Zhang P, Xue J, Yang J, Cai Q, You X, Ma J, Yang D, Jia Y, Wang Y, Li F, Chi S, Cao M, Chen J, Liu X. Increased circulating Wnt5a protein in patients with rheumatoid arthritis-associated interstitial pneumonia (RA-ILD). Immunobiology 2019; 224:551-559. [PMID: 31072629 DOI: 10.1016/j.imbio.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
An early diagnosis of interstitial lung disease (ILD) is important for guiding treatments of rheumatoid arthritis (RA)-associated ILD (RA-ILD) in clinical settings. The non-canonical Wnt signaling representative ligand Wnt5a was recently found to involve in idiopathic pulmonary fibrosis (IPF) and pathogenesis of RA. The goal of this study was to examine the clinical relevance of Wnt5a in RA-ILD. In this report, the clinical relevance of plasma Wnt5a protein was evaluated in 40 RA-ILD patients and 41 non-ILD RA cohorts. The results showed an elevated Wnt5a protein in plasmas of RA-ILD patients compared with non-ILD RA patients (p < 0.01), which was positively correlated with the plasma level of rheumatoid factor (RF). Of note, more abundant Wnt5a was also found in patients with usual interstitial pneumonia (UIP) than those with nonspecific interstitial pneumonia (NSIP) and other ILD patterns. More importantly, the disease severity was correlated with the circulating Wnt5a as ascertained by high-resolution computed tomography (HRCT)-UIP scores. The multiple-factor non-conditional logistic regression analysis further revealed that the age, RA duration, smoking and plasma Wnt5a were risk factors with clinical significance for RA-ILD. Interestingly, more Wnt5a-positive patients were identified in RA-ILD smokers relative to RA-ILD never-smokers, and longer smoking duration was strongly correlated with Wnt5a in RA-ILD patients. In consistence, ROC curve also suggested that the Wnt5a was a potential candidate biomarker for identifying patients with RA-UIP. These results demonstrate that the circulating Wnt5a may be a risk factor and potential biomarker for identifying UIP and accessing the severity and progression of ILD in RA patients.
Collapse
Affiliation(s)
- Miao Yu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Yuanyuan Guo
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Peng Zhang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Jing Xue
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Qian Cai
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Xuehong You
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Dandan Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Yuanyuan Jia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Feng Li
- Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shuhong Chi
- Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China.
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
26
|
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP, Thannickal VJ. Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med 2018; 65:56-69. [PMID: 30130563 DOI: 10.1016/j.mam.2018.08.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and terminal lung disease with no known cure. IPF is a disease of aging, with median age of diagnosis over 65 years. Median survival is between 3 and 5 years after diagnosis. IPF is characterized primarily by excessive deposition of extracellular matrix (ECM) proteins by activated lung fibroblasts and myofibroblasts, resulting in reduced gas exchange and impaired pulmonary function. Growing evidence supports the concept of a pro-fibrotic environment orchestrated by underlying factors such as genetic predisposition, chronic injury and aging, oxidative stress, and impaired regenerative responses may account for disease development and persistence. Currently, two FDA approved drugs have limited efficacy in the treatment of IPF. Many of the genes and gene networks associated with lung development are induced or activated in IPF. In this review, we analyze current knowledge in the field, gained from both basic and clinical research, to provide new insights into the disease process, and potential approaches to treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Eva Otoupalova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Samuel R Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas Volckaert
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stijn P De Langhe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
27
|
Skronska-Wasek W, Gosens R, Königshoff M, Baarsma HA. WNT receptor signalling in lung physiology and pathology. Pharmacol Ther 2018; 187:150-166. [PMID: 29458107 DOI: 10.1016/j.pharmthera.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT signalling cascades have emerged as critical regulators of a wide variety of biological aspects involved in lung development as well as in physiological and pathophysiological processes in the adult lung. WNTs (secreted glycoproteins) interact with various transmembrane receptors and co-receptors to activate signalling pathways that regulate transcriptional as well as non-transcriptional responses within cells. In physiological conditions, the majority of WNT receptors and co-receptors can be detected in the adult lung. However, dysregulation of WNT signalling pathways contributes to the development and progression of chronic lung pathologies, including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. The interaction between a WNT and the (co-)receptor(s) present at the cell surface is the initial step in transducing an extracellular signal into an intracellular response. This proximal event in WNT signal transduction with (cell-specific) ligand-receptor interactions is of great interest as a potential target for pharmacological intervention. In this review we highlight the diverse expression of various WNT receptors and co-receptors in the aforementioned chronic lung diseases and discuss the currently available biologicals and pharmacological tools to modify proximal WNT signalling.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Hoeke Abele Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
28
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
29
|
Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling - lung cancer is no exception. Respir Res 2017; 18:167. [PMID: 28870231 PMCID: PMC5584342 DOI: 10.1186/s12931-017-0650-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis. Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling are also reviewed.
Collapse
Affiliation(s)
- Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Luca Jaromi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gyorgy Miskei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
30
|
Novel biomarkers in kidney disease: roles for cilia, Wnt signalling and ATMIN in polycystic kidney disease. Biochem Soc Trans 2017; 44:1745-1751. [PMID: 27913685 DOI: 10.1042/bst20160124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 01/24/2023]
Abstract
Biomarkers, the measurable indicators of biological conditions, are fast becoming a popular approach in providing information to track disease processes that could lead to novel therapeutic interventions for chronic conditions. Inherited, chronic kidney disease affects millions of people worldwide and although pharmacological treatments exist for some conditions, there are still patients whose only option is kidney dialysis and kidney transplantation. In the past 10 years, certain chronic kidney diseases have been reclassified as ciliopathies. Cilia in the kidney are antenna-like, sensory organelles that are required for signal transduction. One of the signalling pathways that requires the primary cilium in the kidney is Wnt signalling and it has three components such as canonical Wnt, non-canonical Wnt/planar cell olarity (PCP) and non-canonical Wnt/Ca2+ signalling. Identification of the novel role of ATM INteractor (ATMIN) as an effector molecule in the non-canonical Wnt/PCP pathway has intrigued us to investigate its potential role in chronic kidney disease. ATMIN could thus be an important biomarker in disease prognosis and treatment that might lighten the burden of chronic kidney disease and also affect on its progression.
Collapse
|
31
|
Distinct Roles of Wnt/ β-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Mediators Inflamm 2017; 2017:3520581. [PMID: 28588349 PMCID: PMC5447271 DOI: 10.1155/2017/3520581] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/29/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling pathways are tightly controlled under a physiological condition, under which they play key roles in many biological functions, including cell fate specification and tissue regeneration. Increasing lines of evidence recently demonstrated that a dysregulated activation of Wnt signaling, particularly the Wnt/β-catenin signaling, was involved in the pathogenesis of chronic pulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). In this respect, Wnt signaling interacts with other cellular signaling pathways to regulate the initiation and pathogenic procedures of airway inflammation and remodeling, pulmonary myofibroblast proliferation, epithelial-to-mesenchymal transition (EMT), and development of emphysema. Intriguingly, Wnt/β-catenin signaling is activated in IPF; an inhibition of this signaling leads to an alleviation of pulmonary inflammation and fibrosis in experimental models. Conversely, Wnt/β-catenin signaling is inactivated in COPD tissues, and its reactivation results in an amelioration of airspace enlargement with a restored alveolar epithelial structure and function in emphysema models. These studies thus imply distinct mechanisms of Wnt/β-catenin signaling in the pathogenesis of these two chronic pulmonary diseases, indicating potential targets for COPD and IPF treatments. This review article aims to summarize the involvement and pathogenic roles of Wnt signaling pathways in the COPD and IPF, with a focus on the implication of Wnt/β-catenin signaling as underlying mechanisms and therapeutic targets in these two incurable diseases.
Collapse
|
32
|
Baarsma HA, Königshoff M. 'WNT-er is coming': WNT signalling in chronic lung diseases. Thorax 2017; 72:746-759. [PMID: 28416592 PMCID: PMC5537530 DOI: 10.1136/thoraxjnl-2016-209753] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
Abstract
Chronic lung diseases represent a major public health problem with only limited therapeutic options. An important unmet need is to identify compounds and drugs that target key molecular pathways involved in the pathogenesis of chronic lung diseases. Over the last decade, there has been extensive interest in investigating Wingless/integrase-1 (WNT) signalling pathways; and WNT signal alterations have been linked to pulmonary disease pathogenesis and progression. Here, we comprehensively review the cumulative evidence for WNT pathway alterations in chronic lung pathologies, including idiopathic pulmonary fibrosis, pulmonary arterial hypertension, asthma and COPD. While many studies have focused on the canonical WNT/β-catenin signalling pathway, recent reports highlight that non-canonical WNT signalling may also significantly contribute to chronic lung pathologies; these studies will be particularly featured in this review. We further discuss recent advances uncovering the role of WNT signalling early in life, the potential of pharmaceutically modulating WNT signalling pathways and highlight (pre)clinical studies describing promising new therapies for chronic lung diseases.
Collapse
Affiliation(s)
- H A Baarsma
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - M Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
33
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
34
|
Wnt5a Increases Properties of Lung Cancer Stem Cells and Resistance to Cisplatin through Activation of Wnt5a/PKC Signaling Pathway. Stem Cells Int 2016; 2016:1690896. [PMID: 27895670 PMCID: PMC5118537 DOI: 10.1155/2016/1690896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resistant A549 cells treated with Wnt5a conditional medium or protein kinase C (PKC) inhibitor GF109203X. Results showed that the noncanonical Wnt signaling ligand, Wnt5a, could promote the proliferation, migration, invasion, and colony formation in A549 lung adenocarcinoma cells and cisplatin-resistant A549/DDP cells and increase the fraction of ALDH-positive cell in A549/DDP cells. An exposure of cells to Wnt5a led to a significant reduction of A549/DDP cell apoptosis but not A549 cells. An addition of GF109203X could both strikingly increase the baseline apoptosis and resensitize the Wnt5a-inhibited cell apoptosis. Interestingly, an inhibition of Wnt/PKC signaling pathway could reduce properties of lung cancer stem cells, promote cell apoptosis, and resensitize cisplatin-resistant cells to cisplatin via a caspase/AIF-dependent pathway. These data thus suggested that the Wnt5a could promote lung cancer cell mobility and cisplatin-resistance through a Wnt/PKC signaling pathway and a blockage of this signaling may be an alternative therapeutic strategy for NSCLC patients with resistance to chemotherapies.
Collapse
|