1
|
Li Q, Wei T, Sun Y, Khan J, Zhang D. Optimizing Cost-Effective Larval Diets for Mass Rearing of Aedes Mosquitoes in Vector Control Programs. INSECTS 2025; 16:483. [PMID: 40429196 DOI: 10.3390/insects16050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
(1) Background: Larval diet composition significantly influences the developmental, physiological, and reproductive traits of Ae. albopictus and Ae. aegypti, major arbovirus vectors. Optimizing larval nutrition is essential for mass-rearing programs supporting the sterile insect technique and incompatible insect technique. This study evaluated the effects of three larval diets on key fitness traits, including pupation rate, male flight ability, adult longevity, female fecundity, pupal size, and wing length, which are critical for the success of SIT and IIT programs. (2) Methods: Ae. albopictus (GT strain) and Ae. aegypti (AEG strain) were reared on three diets with varying protein sources: diet 1 (≈1.23 dollars/kg; porcine liver/shrimp/yeast = 6:3:1), the IAEA-recommended diet; diet 2 (≈1.78 dollars/kg; bovine liver/shrimp/yeast = 6:3:1), a modified IAEA diet; and diet 3 (≈0.55 dollars/kg; tortoise food), a low-cost laboratory formulation. Life history traits were assessed using standardized protocols, and data were analyzed with ANOVA and Tukey's post hoc test. (3) Results: Diet 3 consistently improved pupation rates, adult longevity, and male flight ability compared with diet 2. Mosquitoes reared on diets 1 and 3 exhibited significantly larger pupae and longer wings, while diet 2 performed sub-optimally. Adult eclosion rates (~100%) remained high across all diets. Male flight ability varied by species, with Ae. albopictus performing best on diet 1 and Ae. aegypti on diet 3. Female fecundity was diet-dependent, with diet 1 favoring Ae. albopictus and diet 3 benefitting Ae. aegypti. Longevity was highest in mosquitoes reared on diet 3, with a median survival of 19.5 days for GT males and 37.5 days for GT females. (4) Conclusions: Diet 3 emerged as the most cost-effective option, enhancing key fitness traits essential for SIT and IIT. Future studies should refine nutrient formulations and validate findings under field conditions to optimize mass-rearing efficiency in vector control.
Collapse
Affiliation(s)
- Qianqian Li
- Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tongxin Wei
- Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Sun
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou 510080, China
| | - Jehangir Khan
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou 510080, China
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
- Hainan General Hospital, Hainan Medical University, Haikou 570100, China
| | - Dongjing Zhang
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Kong JD, Ritchie MW, Vadboncoeur É, MacMillan HA, Bertram SM. Growth, development, and life history of a mass-reared edible insect, Gryllodes sigillatus (Orthoptera: Gryllidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf073. [PMID: 40251933 DOI: 10.1093/jee/toaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 04/21/2025]
Abstract
Edible insects offer a viable alternative protein source to help meet the protein demands of a growing population. Optimizing insect mass-rearing for food and feed production depends on an understanding of insect life history. However, supporting data on growth, development, and reproduction from hatch to adulthood is often not available for many farmed insects, such as the decorated cricket (Gryllodes sigillatus Walk.). Here, we describe the life history of G. sigillatus from hatch to adulthood at 30 °C for traits relevant for mass-rearing and colony management. Female crickets first reached adulthood after 29 d and weighed 292.0 mg ± 74.09 mg, and male crickets first reached adulthood after 35 d and weighed 200.96 mg ± 34.51 mg. Crickets had 7 nymphal instars most characterizable by head width. Sex was identified by the development of ovipositors in females, and wings in both sexes. Crickets oviposited 56.74 ± 31.77 eggs every 48 h over 30 d and eggs hatched after 10.6 ± 0.5 d. This information provides the foundation to start and manage a cricket colony, to conduct research on life history and performance, and to facilitate practitioners to make informed decisions about rearing practices or identify arising issues. We highlight ways that a fundamental understanding of cricket biology can be informative for optimizing cricket growth, reducing variability in yield, and informing future precision farming practices.
Collapse
Affiliation(s)
- Jacinta D Kong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | | | - Susan M Bertram
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Kachhwaha N. Single jar for collecting and rearing mosquito life stages: An innovative prototype. J Vector Borne Dis 2024; 61:574-580. [PMID: 38842524 DOI: 10.4103/jvbd.jvbd_57_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND OBJECTIVES Mosquitoes vectors are the key threat that spread viruses, bacteria, nematodes, protozoans, and other infections responsible for the transmission of serious public health ailments including dengue, yellow fever, malaria, and chikungunya. METHODS To rear and cultivate mosquitoes at multiple stages of development (egg, larva, pupa, and adult) to be employed in various biomedical research, an innovative tool mosquito larva adult 2-in-1 rearing jar was designed and developed. The eggs/larvae or adults collected from the field or laboratory cultures can be released into the lower larvae or upper adult-rearing chamber so that they can find a suitable breeding place to oviposit or metamorphose into wrigglers and tumblers attaining the adult stage. Aedes, Anopheles, and Culex are three significant genera (Diptera: Culicidae) that were reared in experiments using this jar (Method I) in contrast to other conventional instruments available (Method II). RESULTS Results of one-way ANOVA showed that the prototype was compatible and competitive for rearing, as the data was non-significant when compared in both groups. However, throughout the trials, it was discovered that the prototype had a greater record of mean percentage of adult emergence (98.33), which supports the novelty of the instrument. INTERPRETATION CONCLUSION This unique device eliminates the need for multiple tools, causes minimum bodily damage to stages during handling, can be used in both the lab and the field, is inexpensive, lightweight, portable, and requires single manpower to operate.
Collapse
Affiliation(s)
- Neetu Kachhwaha
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Liu Q, Wang Y, Deng J, Yan W, Qin C, Du M, Liu M, Liu J. Association of temperature and precipitation with malaria incidence in 57 countries and territories from 2000 to 2019: A worldwide observational study. J Glob Health 2024; 14:04021. [PMID: 38385445 PMCID: PMC10882640 DOI: 10.7189/jogh.14.04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The transmission of malaria is known to be affected by climatic factors. However, existing studies on the impact of temperature and precipitation on malaria incidence offer no clear-cut conclusions, and there is a lack of research on a global scale. We aimed to estimate the association of temperature and precipitation with malaria incidence globally from 2000 to 2019. METHODS We used meteorological data from the National Centers for Environmental Information and malaria incidence data from the Global Burden of Disease Study 2019 to calculate effect sizes through quasi-Poisson generalised linear models while controlling for confounders. RESULTS 231.4 million malaria cases occurred worldwide in 2019. National annual average temperature and precipitation were associated with malaria incidence, with an increase in the age-standardised incidence rate (ASIR) of 2.01% (95% confidence interval (CI) = 2.00, 2.02) and 6.04% (95% CI = 6.00, 6.09) following one unit increase of national annual average temperature and precipitation. In subgroup analysis, we found that malaria incidence in Asian countries was most affected by temperature, while the incidence in African countries was most affected by precipitation (P < 0.05). Stratified by age, children under five were most affected by both temperature and precipitation (P < 0.05). We additionally found that the impact of the national annual average temperature on malaria incidence increased over time (P < 0.05). CONCLUSIONS We advocate for a comprehensive approach to malaria prevention, focussed on addressing the impact of climate factors through international collaboration, adaptive measures, and targeted interventions for vulnerable populations.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yaping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chenyuan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Haidian District, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Haidian District, Beijing, China
- Institute for Global Health and Development, Peking University, Haidian District, Beijing, China
| |
Collapse
|
5
|
Sinclair BJ, Sørensen JG, Terblanche JS. Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:441-450. [PMID: 35346401 DOI: 10.1017/s0007485321000791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insects are mass-reared for release for biocontrol including the sterile insect technique. Insects are usually reared at temperatures that maximize the number of animals produced, are chilled for handling and transport, and released into the field, where temperatures may be considerably different to those experienced previously. Insect thermal biology is phenotypically plastic (i.e. flexible), which means that there may exist opportunities to increase the performance of these programmes by modifying the temperature regimes during rearing, handling, and release. Here we synthesize the literature on thermal plasticity in relation to the opportunities to reduce temperature-related damage and increase the performance of released insects. We summarize how and why temperature affects insect biology, and the types of plasticity shown by insects. We specifically identify aspects of the production chain that might lead to mismatches between the thermal acclimation of the insect and the temperatures it is exposed to, and identify ways to harness physiological plasticity to reduce that potential mismatch. We address some of the practical (especially engineering) challenges to implementing some of the best-supported thermal regimes to maximize performance (e.g. fluctuating thermal regimes), and acknowledge that a focus only on thermal performance may lead to unwanted trade-offs with other traits that contribute to the success of the programme. Together, it appears that thermal physiological plasticity is well-enough understood to allow its implementation in release programmes.
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6G 1L3
| | | | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Bukhari T, Pevsner R, Herren JK. Microsporidia: a promising vector control tool for residual malaria transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.957109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have resulted in a major decrease in malaria transmission. However, it has become apparent that malaria can be effectively transmitted despite high coverage of LLINs/IRS. Residual transmission can occur due to Plasmodium-carrying Anopheles mosquitoes that are insecticide resistant and have feeding and resting behavior that reduces their chance of encountering the currently deployed indoor malaria control tools. Residual malaria transmission is likely to be the most significant hurdle to achieving the goal of malaria eradication and research and development towards new tools and strategies that can control residual malaria transmission is therefore critical. One of the most promising strategies involves biological agents that are part of the mosquito microbiome and influence the ability of Anopheles to transmit Plasmodium. These differ from biological agents previously used for vector control in that their primary effect is on vectoral capacity rather than the longevity and fitness of Anopheles (which may or may not be affected). An example of this type of biological agent is Microsporidia MB, which was identified in field collected Anopheles arabiensis and caused complete inhibition of Plasmodium falciparum transmission without effecting the longevity and fitness of the host. Microsporidia MB belongs to a unique group of rapidly adapting and evolving intracellular parasites and symbionts called microsporidia. In this review we discuss the general biology of microsporidians and the inherent characteristics that make some of them particularly suitable for malaria control. We then discuss the research priorities for developing a transmission blocking strategy for the currently leading microsporidian candidate Microsporidia MB for malaria control.
Collapse
|
7
|
Zengenene MP, Munhenga G, Okumu F, Koekemoer LL. Effect of larval density and additional anchoring surface on the life-history traits of a laboratory colonized Anopheles funestus strain. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:168-175. [PMID: 35015299 DOI: 10.1111/mve.12563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Optimal rearing conditions, inclusive of larval rearing density, are critical for sustained mosquito productivity. There is limited information on favourable conditions for the larval rearing of Anopheles funestus, the dominant malaria vector in east and southern Africa. This work investigated the effects of larval rearing densities and additional anchoring surface on An. funestus development using a life table approach. Larval cohorts were reared at four different larval densities using the same rearing surface area, larval food concentrations and temperature conditions. Rearing larvae at high densities extended the larval developmental time and reduced adult productivity. Adding an extra larval anchoring surface when rearing larvae at high density resulted in extended larval developmental time, increased larval survivorship and produced bigger adults. These findings improve our understanding of the relationship between larval density and developmental traits in An. funestus and provides baseline information for An. funestus rearing under laboratory conditions.
Collapse
Affiliation(s)
- Munyaradzi Prince Zengenene
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Fredros Okumu
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Lizette Leonie Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
8
|
Adult mosquito predation and potential impact on the sterile insect technique. Sci Rep 2022; 12:2561. [PMID: 35169252 PMCID: PMC8847352 DOI: 10.1038/s41598-022-06565-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The sterile insect technique is a promising environmentally friendly method for mosquito control. This technique involves releasing laboratory-produced sterile males into a target field site, and its effectiveness may be affected by the extent of adult mosquito predation. Sterile males undergo several treatments. Therefore, it is vital to understand which treatments are essential in minimizing risks to predation once released. The present study investigates the predation propensity of four mantis species (Phyllocrania paradoxa, Hymenopus coronatus, Blepharopsis mendica, Deroplatys desiccata) and two gecko species (Phelsuma standingi, P. laticauda) on adult Aedes aegypti, Ae. albopictus and Anopheles arabiensis mosquitoes in a laboratory setting. First, any inherent predation preferences regarding mosquito species and sex were evaluated. Subsequently, the effects of chilling, marking, and irradiation, on predation rates were assessed. The selected predators effectively preyed on all mosquito species regardless of the treatment. Predation propensity varied over days for the same individuals and between predator individuals. Overall, there was no impact of laboratory treatments of sterile males on the relative risk of predation by the test predators, unless purposely exposed to double the required sterilizing irradiation dose. Further investigations on standardized predation trials may lead to additional quality control tools for irradiated mosquitoes.
Collapse
|
9
|
Agyekum TP, Arko-Mensah J, Botwe PK, Hogarh JN, Issah I, Dwomoh D, Billah MK, Dadzie SK, Robins TG, Fobil JN. Effects of elevated temperatures on the development of immature stages of Anopheles gambiae (s.l.) mosquitoes. Trop Med Int Health 2022; 27:338-346. [PMID: 35146843 DOI: 10.1111/tmi.13732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study investigated the effects of temperature on the development of the immature stages of An. gambiae (s.l.) mosquitoes. METHODS Mosquito eggs were obtained from laboratory established colonies and reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38 and 40 °C), and 80 ± 10% relative humidity. Larvae were checked daily for development to the next stage and for mortality. Pupation success, number of adults produced, and sex ratio of the newly emerged adults were recorded. Larval survival was monitored every 24 hours, and data were analyzed using Kaplan Meier survival analysis. Analysis of variance was used where data followed normal distribution, and a Kruskal-Wallis test where data were not normally distributed. Larval and pupal measurements were log-transformed and analyzed using ordinary least square regression with robust standard errors. RESULTS Increasing the temperature from 25 to 36 °C decreased the development time by 10.57 days. Larval survival (X2 (6) = 5353.12, P < 0.001) and the number of adults produced (X2 (5) = 28.16, P < 0.001) decreased with increasing temperature. Increasing temperatures also resulted in significantly smaller larvae and pupae (P < 0.001). At higher temperatures disproportionately more male than female mosquitoes were produced. CONCLUSIONS Increased temperature affected different developmental stages in the life cycle of An. gambiae (s.l.) mosquitoes, from larval to adult emergence. This study contributes to the knowledge on the relationship between temperature and Anopheles mosquitoes and provides useful information for modelling vector population dynamics in the light of climate change.
Collapse
Affiliation(s)
- Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Paul K Botwe
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Jonathan N Hogarh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Maxwell K Billah
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| |
Collapse
|
10
|
Martina C, Krenn L, Krupicka L, Yamada H, Hood-Nowotny R, Lahuatte PF, Yar J, Schwemhofer T, Fischer B, Causton CE, Tebbich S. Evaluating Volatile Plant Compounds of Psidium galapageium (Myrtales: Myrtaceae) as Repellents Against Invasive Parasitic Diptera in the Galapagos Islands. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:89-98. [PMID: 34761264 DOI: 10.1093/jme/tjab183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Plant-based repellents represent a safe, economic, and viable alternative to managing invasive insects that threaten native fauna. Observations of self-medication in animals can provide important cues to the medicinal properties of plants. A recent study in the Galapagos Islands found that Darwin's finches apply the leaves of Psidium galapageium (Hooker 1847) to their feathers, extracts of which were repellent to mosquitoes and the parasitic fly Philornis downsi (Dodge & Aitkens 1968; Diptera: Muscidae). Introduced mosquitoes are suspected vectors of avian pathogens in the Galapagos Islands, whereas the larvae of P. downsi are blood-feeders, causing significant declines of the endemic avifauna. In this study, we investigated the volatile compounds found in P. galapageium, testing each against a model organism, the mosquito Anopheles arabiensis (Patton 1905; Diptera: Culicidae), with the aim of singling out the most effective compound for repelling dipterans. Examinations of an ethanolic extract of P. galapageium, its essential oil and each of their respective fractions, revealed a mixture of monoterpenes and sesquiterpenes, the latter consisting mainly of guaiol, trans-nerolidol, and β-eudesmol. Of these, trans-nerolidol was identified as the most effective repellent to mosquitoes. This was subsequently tested at four different concentrations against P. downsi, but we did not find a repellence response. A tendency to avoid the compound was observed, albeit significance was not achieved in any case. The lack of repellence suggests that flies may respond to a combination of the volatile compounds found in P. galapageium, rather than to a single compound.
Collapse
Affiliation(s)
- C Martina
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
- Insect Pest Control Section, International Atomic Energy Agency, 1400, Vienna, Austria
| | - L Krenn
- Department of Pharmacognosy, University of Vienna, A-1090, Vienna, Austria
| | - L Krupicka
- Department of Pharmacognosy, University of Vienna, A-1090, Vienna, Austria
| | - H Yamada
- Insect Pest Control Section, International Atomic Energy Agency, 1400, Vienna, Austria
| | - R Hood-Nowotny
- Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
| | - P F Lahuatte
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - J Yar
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - T Schwemhofer
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - B Fischer
- Department of Evolutionary Biology, Unit for Theoretical Biology, University of Vienna, A-1090, Vienna, Austria
| | - C E Causton
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - S Tebbich
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Khan SA, Kassim NFA, Webb CE, Aqueel MA, Ahmad S, Malik S, Hussain T. Human blood type influences the host-seeking behavior and fecundity of the Asian malaria vector Anopheles stephensi. Sci Rep 2021; 11:24298. [PMID: 34934127 PMCID: PMC8692623 DOI: 10.1038/s41598-021-03765-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
The nutritional requirements of mosquitoes include both sugar (generally derived from the nectar of flowers) and blood (humans or animals). Mosquitoes express different degrees of preferences towards hosts depending on behavioral, ecological, and physiological factors. These preferences have implications for mosquito-borne disease risk. The present study is directed to reveal the effect of the human blood groups on the fecundity and fertility of the malaria vector Anopheles stephensi. In laboratory tests, mosquitoes were fed on ABO blood groups via artificial membrane feeders, and the level of attraction against different blood groups was tested by the electroantennogram and wind tunnel bioassay under control conditions. Results indicate that the female mosquitoes had a strong preference towards the blood group B, while in the case of females fed on O blood group had the highest digestibility rate. Overall, the human blood type had a significant impact on the fecundity and fertility of female An. stephensi. The highest numbers of eggs are laid, in the case of blood group B, (mean (± SD)) 216.3 (8.81) followed by the AB, 104.06 (7.67), and O, 98.01 (7.04). In the case of blood group B, females attain the highest fertility of about 92.1 (9.98). This study provides novel insight into the ABO blood type host choice of the mosquitoes that are still partially unknown and suggests encouraging personal protection for relevant individuals within communities at risk, which is a useful tool for preventing malaria where the An. stephensi is present as a dominant vector.
Collapse
Affiliation(s)
- Shahmshad Ahmed Khan
- Department of Entomology, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Nur Faeza Abu Kassim
- 129 Medical Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Cameron Ewart Webb
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales Australia
| | - Muhammad Anjum Aqueel
- Department of Entomology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saboor Ahmad
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Sadia Malik
- Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Taimoor Hussain
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
12
|
Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, Dwomoh D, Robins TG, Fobil JN. A Systematic Review of the Effects of Temperature on Anopheles Mosquito Development and Survival: Implications for Malaria Control in a Future Warmer Climate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7255. [PMID: 34299706 PMCID: PMC8306597 DOI: 10.3390/ijerph18147255] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
The rearing temperature of the immature stages can have a significant impact on the life-history traits and the ability of adult mosquitoes to transmit diseases. This review assessed published evidence of the effects of temperature on the immature stages, life-history traits, insecticide susceptibility, and expression of enzymes in the adult Anopheles mosquito. Original articles published through 31 March 2021 were systematically retrieved from Scopus, Google Scholar, Science Direct, PubMed, ProQuest, and Web of Science databases. After applying eligibility criteria, 29 studies were included. The review revealed that immature stages of An. arabiensis were more tolerant (in terms of survival) to a higher temperature than An. funestus and An. quadriannulatus. Higher temperatures resulted in smaller larval sizes and decreased hatching and pupation time. The development rate and survival of An. stephensi was significantly reduced at a higher temperature than a lower temperature. Increasing temperatures decreased the longevity, body size, length of the gonotrophic cycle, and fecundity of Anopheles mosquitoes. Higher rearing temperatures increased pyrethroid resistance in adults of the An. arabiensis SENN DDT strain, and increased pyrethroid tolerance in the An. arabiensis SENN strain. Increasing temperature also significantly increased Nitric Oxide Synthase (NOS) expression and decreased insecticide toxicity. Both extreme low and high temperatures affect Anopheles mosquito development and survival. Climate change could have diverse effects on Anopheles mosquitoes. The sensitivities of Anopeheles mosquitoes to temperature differ from species to species, even among the same complex. Notwithstanding, there seem to be limited studies on the effects of temperature on adult life-history traits of Anopheles mosquitoes, and more studies are needed to clarify this relationship.
Collapse
Affiliation(s)
- Thomas P. Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Paul K. Botwe
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Augustine A. Acquah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Jonathan N. Hogarh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana;
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Accra 00233, Ghana;
| | - Thomas G. Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA;
| | - Julius N. Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| |
Collapse
|
13
|
Zengenene MP, Munhenga G, Chidumwa G, Koekemoer LL. Characterization of life-history parameters of an Anopheles funestus (Diptera: Culicidae) laboratory strain. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:24-29. [PMID: 35229578 DOI: 10.52707/1081-1710-46.1.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/19/2020] [Indexed: 06/14/2023]
Abstract
The colonization of the African malaria vector Anopheles funestus has been hampered by inadequate knowledge of its mating and development under laboratory conditions. Life-tables are routinely used to provide baseline biological characteristics needed for colonization. This study characterized age-specific life-table attributes of an existing An. funestus laboratory strain to gain insight into factors that are critical for its colonization. To achieve this, the An. funestus laboratory strain was reared from eggs to adulthood under standard insectary conditions, monitoring and characterizing each developmental stage. The mean insemination rate of females was 74.8% with an average egg load of 67.1 eggs/female and a mean fertility of 86.7%. The mean developmental time from 1st instar larvae (L1) to pupation was 16.4 days. The mean proportion of L1 that survived to pupation was 72.9%. On average, 78.8% of the pupae successfully eclosed as adults. The median longevity for adult males and females was 44 and 28 days, respectively. This work constitutes the first report on life-table characterization of an An. funestus strain. The larval developmental time was within the range reported for wild An. funestus while adult longevity was higher compared to survivorship observed in wild populations. These data demonstrate that the colonized An. funestus strain has potential to be re-colonized under standard insectary conditions. The study provides base-line information for further studies on identifying critical parameters for the maintenance of An. funestus under artificial conditions.
Collapse
Affiliation(s)
- Munyaradzi Prince Zengenene
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Glory Chidumwa
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette Leonie Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,
- Vector Control Reference Laboratory, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
14
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
15
|
Gallichotte EN, Dobos KM, Ebel GD, Hagedorn M, Rasgon JL, Richardson JH, Stedman TT, Barfield JP. Towards a method for cryopreservation of mosquito vectors of human pathogens. Cryobiology 2021; 99:1-10. [PMID: 33556359 DOI: 10.1016/j.cryobiol.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, USA; Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Jennifer P Barfield
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
16
|
Mamai W, Maiga H, Bimbilé Somda NS, Wallner T, Masso OB, Resch C, Yamada H, Bouyer J. Does Tap Water Quality Compromise the Production of Aedes Mosquitoes in Genetic Control Projects? INSECTS 2021; 12:insects12010057. [PMID: 33445407 PMCID: PMC7826741 DOI: 10.3390/insects12010057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Scientists all over the world are continually rearing and producing insects in laboratories for many purposes including pest control programmes. Aedes aegypti and Ae. albopictus are mosquitoes of public health importance due to their ability to vector human and animal pathogens and thus vector control represents an important component of many disease control programmes. Water is a factor of great importance in the larval environment of mosquito species. However, obtaining sufficient water of reliable quality for mosquito rearing is still challenging, especially in developing and least developed countries, where access even to clean drinking water is limited. In prospect of cost-effective methods for improved mass-rearing toward SIT application, we assessed the impact of using tap water on the development and quality of Aedes mosquitoes. Results showed that, tap water with hardness/electrical conductivity beyond certain levels (140 mg/l CaCO3 or 368 µS/cm) was shown to have a negative impact on the production of Ae. albopictus and Ae. aegypti mosquitoes. These results suggest that the quality of water should be checked when using for rearing mosquitoes for release purposes in order to optimize the production performance of mass-rearing facilities. This may have important implications for the implementation of the sterile insect technique in areas where reverse osmosis water is a scarce or costly resource. Abstract A mosquito’s life cycle includes an aquatic phase. Water quality is therefore an important determinant of whether or not the female mosquitoes will lay their eggs and the resulting immature stages will survive and successfully complete their development to the adult stage. In response to variations in laboratory rearing outputs, there is a need to investigate the effect of tap water (TW) (in relation to water hardness and electrical conductivity) on mosquito development, productivity and resulting adult quality. In this study, we compared the respective responses of Aedes aegypti and Ae. albopictus to different water hardness/electrical conductivity. First-instar larvae were reared in either 100% water purified through reverse osmosis (ROW) (low water hardness/electrical conductivity), 100% TW (high water hardness/electrical conductivity) or a 80:20, 50:50, 20:80 mix of ROW and TW. The immature development time, pupation rate, adult emergence, body size, and longevity were determined. Overall, TW (with higher hardness and electrical conductivity) was associated with increased time to pupation, decreased pupal production, female body size in both species and longevity in Ae. albopictus only. However, Ae. albopictus was more sensitive to high water hardness/EC than Ae. aegypti. Moreover, in all water hardness/electrical conductivity levels tested, Ae. aegypti developed faster than Ae. albopictus. Conversely, Ae. albopictus adults survived longer than Ae. aegypti. These results imply that water with hardness of more than 140 mg/l CaCO3 or electrical conductivity more than 368 µS/cm cannot be recommended for the optimal rearing of Aedes mosquitoes and highlight the need to consider the level of water hardness/electrical conductivity when rearing Aedes mosquitoes for release purposes.
Collapse
Affiliation(s)
- Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
- Institut de Recherche Agricole pour le Développement (IRAD), PO. Box 2123 Yaoundé, Cameroon
- Correspondence:
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS/DRO), 01 PO. Box 545 Bobo-Dioulasso, Burkina Faso
| | - Nanwintoum Sévérin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS/DRO), 01 PO. Box 545 Bobo-Dioulasso, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA), Université Joseph Ki-Zerbo, 03 PO. Box 7021 Ouagadougou, Burkina Faso
| | - Thomas Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| | - Odet Bueno Masso
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| | - Christian Resch
- Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria;
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| |
Collapse
|
17
|
Zhang D, Xi Z, Li Y, Wang X, Yamada H, Qiu J, Liang Y, Zhang M, Wu Y, Zheng X. Toward implementation of combined incompatible and sterile insect techniques for mosquito control: Optimized chilling conditions for handling Aedes albopictus male adults prior to release. PLoS Negl Trop Dis 2020; 14:e0008561. [PMID: 32881871 PMCID: PMC7470329 DOI: 10.1371/journal.pntd.0008561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/04/2020] [Indexed: 01/30/2023] Open
Abstract
Combined incompatible and sterile insect technique (IIT-SIT) has been considered to be an effective and safe approach to control mosquito populations. Immobilization of male adults by chilling is a crucial process required for the packing, transportation and release of the mosquitoes during the implementation of IIT-SIT for mosquito control. In this study, effects of chilling on the Aedes albopictus males with triple Wolbachia infections (HC line), a powerful weapon to fight against the wild type Ae. albopictus population via IIT-SIT, were evaluated under both laboratory and field conditions. Irradiated HC (IHC) males were exposed to 1, 5 and 10°C for 1, 2, 3, 6 and 24 h. The survival rate of the post-chilled IHC males was then monitored. Longevity of post-chilled IHC males was compared to non-chilled males under laboratory and semi-field conditions. Mating competitiveness of IHC/HC males after exposure to 5 or 10°C for 0, 3 and 24 h was then evaluated. Effects of compaction and transportation under chilled conditions on the survival rate of IHC males were also monitored. The optimal chilling conditions for handling IHC males were temperatures between 5 and 10°C for a duration of less than 3 h with no negative impacts on survival rate, longevity and mating competitiveness when compared to non-chilled males. However, the overall quality of post-chilled IHC/HC males decreased when exposed to low temperatures for 24 h. Reduced survival was observed when IHC males were stored at 5°C under a compaction height of 8 cm. Transportation with chilling temperatures fluctuating from 8 to 12°C has no negative impact on the survival of IHC males. This study identified the optimal chilling temperature and duration for the handling and transportation of Ae. albopictus IHC male adults without any detrimental effect on their survival, longevity and mating competitiveness. Further studies are required to develop drone release systems specific for chilled mosquitoes to improve release efficiency, as well as to compare the population suppression efficiency between release of post-chilled and non-chilled males in the field.
Collapse
Affiliation(s)
- Dongjing Zhang
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University–Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Guangzhou, China
| | - Zhiyong Xi
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University–Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Guangzhou, China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Guangzhou Wolbaki Biotech, Guangzhou, China
| | - Yongjun Li
- Lingnan Statistical Science Research Institute, Guangzhou University, Guangzhou, China
| | | | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Jieru Qiu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongkang Liang
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University–Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Guangzhou, China
| | - Meichun Zhang
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University–Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Guangzhou, China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Yu Wu
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University–Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Guangzhou, China
| | - Xiaoying Zheng
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University–Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Guangzhou, China
| |
Collapse
|
18
|
Mamai W, Maiga H, Somda NSB, Wallner T, Konczal A, Yamada H, Bouyer J. Aedes aegypti larval development and pupal production in the FAO/IAEA mass-rearing rack and factors influencing sex sorting efficiency. ACTA ACUST UNITED AC 2020; 27:43. [PMID: 32553098 PMCID: PMC7301634 DOI: 10.1051/parasite/2020041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 11/14/2022]
Abstract
The production of a large number of mosquitoes of high biological qualities and reliable sex sorting before release are key challenges when applying the sterile insect technique as part of an area-wide integrated pest management approach. There is a need to fully evaluate the production capacity of the equipment developed in order to plan and maintain a daily production level for large-scale operational release activities. This study aimed to evaluate the potential use of the FAO/IAEA larval rearing unit for Aedes aegypti and the subsequent female contamination rate after sex sorting with a Fay–Morlan glass separator. Trays from each rack were tilted and their contents sorted either for each individual tray or after mixing the content of all trays from the rack. The pupal production and the female contamination rate were estimated with respect to day of collection, position of the tray, type of pupae collection, and sorting operator. Results showed significant daily variability of pupal production and female contamination rate, with a high male pupal production level achieved on the second day of collection and estimated female contamination of male pupae reached around 1%. Neither tray position nor type of pupae collection affected the pupal production and female contamination rate. However, the operator had a significant effect on the female contamination rate. These results highlight the need to optimize pupal production at early days of collection and to develop a more effective and automated method of sex separation.
Collapse
Affiliation(s)
- Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 1400 Vienna, Austria - Institut de Recherche Agricole pour le Développement (IRAD), PO Box 2123, Yaoundé, Cameroun
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 1400 Vienna, Austria - Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 PO Box 545, Bobo-Dioulasso, Burkina Faso
| | - Nanwintoum Séverin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 1400 Vienna, Austria - Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 PO Box 545, Bobo-Dioulasso, Burkina Faso - Laboratoire d'Entomologie Fondamentale et Appliquée (LEFA), Université Joseph Ki-Zerbo, 03 PO Box 7021, Ouagadougou, Burkina Faso
| | - Thomas Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 1400 Vienna, Austria
| | - Anna Konczal
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 1400 Vienna, Austria
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 1400 Vienna, Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 1400 Vienna, Austria - CIRAD, UMR ASTRE CIRAD-INRA "Animals, Health, Territories, Risks and Ecosystems", Campus International de Baillarguet, 34398 Montpellier Cedex 05, France
| |
Collapse
|
19
|
Culbert NJ, Kaiser M, Venter N, Vreysen MJB, Gilles JRL, Bouyer J. A standardised method of marking male mosquitoes with fluorescent dust. Parasit Vectors 2020; 13:192. [PMID: 32293537 PMCID: PMC7158013 DOI: 10.1186/s13071-020-04066-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/09/2020] [Indexed: 11/06/2022] Open
Abstract
Background Prior to a major release campaign of sterile insects, including the sterile insect technique, male mosquitoes must be marked and released (small scale) to determine key parameters including wild population abundance, dispersal and survival. Marking insects has been routinely carried out for over 100 years; however, there is no gold standard regarding the marking of specific disease-transmitting mosquitoes including Anopheles arabiensis, Aedes aegypti and Aedes albopictus. The research presented offers a novel dusting technique and optimal dust colour and quantities, suitable for small-scale releases, such as mark-release-recapture studies. Methods We sought to establish a suitable dust colour and quantity for batches of 100 male An. arabiensis, that was visible both by eye and under UV light, long-lasting and did not negatively impact longevity. A set of lower dust weights were selected to conduct longevity experiments with both Ae. aegypti and Ae. albopictus to underpin the optimal dust weight. A further study assessed the potential of marked male An. arabiensis to transfer their mark to undusted males and females. Results The longevity of male An. arabiensis marked with various dust colours was not significantly reduced when compared to unmarked controls. Furthermore, the chosen dust quantity (5 mg) did not negatively impact longevity (P = 0.717) and provided a long-lasting mark. Dust transfer was found to occur from marked An. arabiensis males to unmarked males and females when left in close proximity. However, this was only noticeable when examining individuals under a stereomicroscope and thus deemed negligible. Overall, male Ae. aegypti and Ae. albopictus displayed a greater sensitivity to dusting. Only the lowest dust weight (0.5 mg) did not significantly reduce longevity (P = 0.888) in Ae. aegypti, whilst the lowest two dust weights (0.5 and 0.75 mg) had no significant impact on longevity (P = 0.951 and 0.166, respectively) in Ae. albopictus. Conclusion We have devised a fast, inexpensive and simple marking method and provided recommended dust quantities for several major species of disease-causing mosquitoes. The novel technique provides an evenly distributed, long-lasting mark which is non-detrimental. Our results will be useful for future MRR studies, prior to a major release campaign.![]()
Collapse
Affiliation(s)
- Nicole J Culbert
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria. .,Institute of Integrative Biology & The Centre for Genomic Research, University of Liverpool, Liverpool, Merseyside, UK.
| | - Maria Kaiser
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - Nelius Venter
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Jeremie R L Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria.,CIRAD, UMR ASTRE CIRAD-INRA, Animals, Health, Territories, Risks and Ecosystems, Campus International de Baillarguet, 34398, Montpellier, France
| |
Collapse
|
20
|
Bouyer J, Yamada H, Pereira R, Bourtzis K, Vreysen MJB. Phased Conditional Approach for Mosquito Management Using Sterile Insect Technique. Trends Parasitol 2020; 36:325-336. [PMID: 32035818 DOI: 10.1016/j.pt.2020.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
Mosquito-borne diseases represent a major threat to humankind. Recently, the incidence of malaria has stopped decreasing while that of dengue is increasing exponentially. Alternative mosquito-control methods are urgently needed. The sterile insect technique (SIT) has seen significant developments recently and may play an important role. However, testing and implementing SIT for vector control is challenging, and a phased conditional approach (PCA) is recommended, that is, advancement to the next phase depends on completion of activities in the previous one. We herewith present a PCA to test the SIT against mosquitoes within an area-wide-integrated pest-management programme, taking into account the experience gained with plant and livestock pests and the recent developments of the technique against mosquitoes.
Collapse
Affiliation(s)
- Jérémy Bouyer
- Insect Pest Control Sub-programme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria; CIRAD, UMR ASTRE CIRAD-INRA 'AnimalS, health, Territories, Risks and Ecosystems', Campus International de Baillarguet, 34398 Montpellier Cedex 05, France.
| | - Hanano Yamada
- Insect Pest Control Sub-programme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - Rui Pereira
- Insect Pest Control Sub-programme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Sub-programme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Sub-programme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| |
Collapse
|
21
|
Sasmita HI, Tu WC, Bong LJ, Neoh KB. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Parasit Vectors 2019; 12:578. [PMID: 31823817 PMCID: PMC6905064 DOI: 10.1186/s13071-019-3830-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Producing high quality sterile males is vital in Aedes aegypti rear-and-release birth control strategies. Larval diets, rearing temperatures, and their interactions determine the accumulation rates of essential nutrients in larvae, but these factors have been understudied in relation to mass-rearing techniques for producing eminent males. Methods We compared the effects of two larval diets, a cereal-legume-based diet (Khan’s diet) and a standard larval diet developed in the FAO/IAEA Insect Pest Control Laboratory (IAEA 2 diet). Diets were tested at selected temperatures for both larval and male adult life history traits, adult extreme temperature tolerance, and mating capacity relative to energy reserves of reared male adult Ae. aegypti. Results Khan’s diet resulted in shorter immature development time at each test temperature (except for 25 °C) than an IAEA 2 diet. Larvae reared at 28 °C and 32 °C with Khan’s diet demonstrated low pupation rates (c.80%). We accounted for these phenomena as secondary sex ratio manipulation, because a higher proportion of male adults emerged at 28 °C and 32 °C than that for the IAEA 2 diet. In general, the pupal development time shortened as temperature increased, resulting in higher teneral energy reserves in male mosquitoes. High energy reserves allowed male mosquitoes reared with Khan’s diet to have higher adult longevity (5–6 days longer when sugar-fed and 2–3 days longer when water-fed) and tolerance of heat stress than those fed on the IAEA 2 diet. The IAEA 2 diet produced larger male mosquitoes than Khan’s diet did: mosquitoes fed on Khan’s diet were 1.03–1.05 times smaller than those fed on the IAEA 2 diet at 28 °C and 32 °C. No evidence indicated reduced mating capacity for small mosquitoes fed on Khan’s diet. Conclusions Larvae reared at 28 °C and 32 °C with Khan’s diet were characterized by shorter immature development time compared with those fed on the IAEA 2 diet. Adult mosquitoes produced from that larval rearing condition exhibited a significant male bias, long lifespan, and better endurance against extreme temperatures relative to energy reserves. Thus, the larval diet at rearing temperature of 28 °C and 32 °C optimized rearing techniques for the sterile insect programmes. However, mating competitiveness and flight performance of adult males require further investigation.
Collapse
Affiliation(s)
- Hadian Iman Sasmita
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan.,Center for Isotopes and Radiation Application (CIRA), National Nuclear Energy Agency (BATAN), Jl. Lebak Bulus Raya No. 49, Jakarta, 12440, Indonesia
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan
| | - Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan.
| |
Collapse
|
22
|
González-López GI, Solís-Echeverría E, Díaz-Fleischer F, Pérez-Staples D. When Less Is More: Sex Ratios for the Mass-Rearing of Anastrepha ludens (Diptera: Tephritidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2997-3001. [PMID: 31298285 DOI: 10.1093/jee/toz185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 06/10/2023]
Abstract
Anastrepha ludens (Loew) is one of the most important pests of citrus and mango crops in Mexico. A method used to control this pest is the sterile insect technique, which consists in the mass production, irradiation, and release of insects in affected areas. The production of insects begins with the establishment of colonies to produce eggs, which must be highly fertile to ensure an adequate production of larvae. However, female fecundity and fertility can be affected by adult density and sex ratio, thus an optimal sex ratio in mass-rearing cages must be used. The genetic sexing strain of A. ludens (Tapachula-7) allows the identification of the sex at the pupal stage, making it possible to establish rearing cages with different sex ratios. We determined if different sex ratios have an effect on egg production. Two sex ratios (4♀: 1♂ and 1♀: 1♂) were compared. Fecundity, fertility and survival at different ages were also determined. Higher fertility and fecundity per female were observed at a ratio of 4:1. However, females with higher fecundity had reduced survival probabilities. In conclusion, maintaining colonies with a lower proportion of males in cages ensures a greater fecundity and fertility. Further research is necessary to understand whether results can be attributed to lower male harassment in cages.
Collapse
Affiliation(s)
- G I González-López
- Facultad de Ciencias Agrícolas, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, México
- Programa Moscafrut DGSV-SENASICA, Camino a los Cacahotales S/N, Metapa de Domínguez, Chiapas, México
| | - E Solís-Echeverría
- Programa Moscafrut DGSV-SENASICA, Camino a los Cacahotales S/N, Metapa de Domínguez, Chiapas, México
| | - F Díaz-Fleischer
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas, Col. E. Zapata, Xalapa, Veracruz, México
| | - D Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas, Col. E. Zapata, Xalapa, Veracruz, México
| |
Collapse
|
23
|
Mamai W, Bimbilé Somda NS, Maiga H, Konczal A, Wallner T, Bakhoum MT, Yamada H, Bouyer J. Black soldier fly (Hermetia illucens) larvae powder as a larval diet ingredient for mass-rearing Aedes mosquitoes. Parasite 2019; 26:57. [PMID: 31535969 PMCID: PMC6752115 DOI: 10.1051/parasite/2019059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
The mass production of mosquitoes is becoming more wide-spread due to the increased application of the sterile insect technique (SIT) and other genetic control programmes. Due to the variable availability and high cost of the bovine liver powder (BLP) constituent of many current larval diets, there is an urgent demand for new ingredients in order to support sustainable and efficient mosquito production while reducing rearing cost, without affecting the quality of the insects produced. Two black soldier fly (BSF) powder-based diet formulations (50% tuna meal, 35% BSF powder, 15% brewer's yeast and 50% tuna meal + 50% BSF powder) were tested for their suitability to support the development of Aedes aegypti and Ae. albopictus mosquitoes in mass-rearing conditions. Overall, the results indicate that the use of the BSF powder did not negatively impact the development and quality of the produced insects in terms of time to pupation, adult production and male flight ability. Furthermore, depending on the species and diet formulations, there were improvements in some parameters such as female body size, egg production, egg hatch rate and male longevity. BSF powder is a valuable ingredient that can effectively replace costly BLP for the mass production of high quality Ae. aegypti and Ae. albopictus mosquitoes. Both diet formulations can be used for Ae. aegypti showing high plasticity to nutrition sources. However, for Ae. albopictus we recommend the combination including brewer's yeast.
Collapse
Affiliation(s)
- Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture PO Box 100 1400 Vienna Austria
- Institut de Recherche Agricole pour le Développement (IRAD) PO Box 2123 Yaoundé Cameroun
| | - Nanwintoum Sévérin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture PO Box 100 1400 Vienna Austria
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS/DRO) 01 PO Box 545 Bobo-Dioulasso Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA) Université Joseph Ki-Zerbo Ouagadougou 03 PO Box 7021 Burkina Faso
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture PO Box 100 1400 Vienna Austria
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS/DRO) 01 PO Box 545 Bobo-Dioulasso Burkina Faso
| | - Anna Konczal
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture PO Box 100 1400 Vienna Austria
| | - Thomas Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture PO Box 100 1400 Vienna Austria
| | - Mame Thierno Bakhoum
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture PO Box 100 1400 Vienna Austria
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture PO Box 100 1400 Vienna Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture PO Box 100 1400 Vienna Austria
| |
Collapse
|
24
|
Culbert NJ, Maiga H, Somda NSB, Gilles JRL, Bouyer J, Mamai W. Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasit Vectors 2018; 11:603. [PMID: 30463624 PMCID: PMC6249817 DOI: 10.1186/s13071-018-3191-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/08/2018] [Indexed: 11/25/2022] Open
Abstract
Background To ensure the success of a mosquito control programme that integrates the sterile insect technique (SIT), it is highly desirable to release sterile males with a maximal lifespan to increase release effectiveness. Understanding sterile male survival under field conditions is thus critical for determining the number of males to be released. Our study aimed to investigate the effect of mass rearing, irradiation, chilling, packing and release time on irradiated male mosquito longevity. Methods Anopheles arabiensis and Aedes aegypti immature stages were mass-reared using a rack and tray system. Batches of 50 males irradiated at the pupal stage were immobilised, packed into canisters and chilled for 6 hours at 6 °C. Mosquitoes were then transferred either in the early morning or early evening into climate chambers set to simulate the weather conditions, typical of the beginning of the rainy season in Khartoum, Sudan and Juazeiro, Brazil for An. arabiensis and Ae. aegypti, respectively. The longevity of experimental males was assessed and compared to mass-reared control males subjected either to simulated field or laboratory conditions. Results The combined irradiation, chilling and packing treatments significantly reduced the longevity of both An. arabiensis and Ae. aegypti under simulated field conditions (P < 0.001). However, packing alone did not significantly reduce longevity of Ae. aegypti (P = 0.38) but did in An. arabiensis (P < 0.001). Overall, the longevity of mass reared, irradiated and packed males was significantly reduced, with the median survival time (days) lower following an early morning introduction (4.62 ± 0.20) compared to an evening (7.34 ± 0.35) in An. arabiensis (P < 0.001). However, there was no significant difference in longevity between morning (9.07 ± 0.54) and evening (7.76 ± 0.50) in Ae. aegypti (P = 0.14). Conclusions Our study showed that sterile mass-reared males have a reduced lifespan in comparison to laboratory-maintained controls under simulated field conditions, and that An. arabiensis appeared to be more sensitive to the handling process and release time than Ae. aegypti. Longevity and release time are important parameters to be considered for a successful area-wide integrated vector control programme with a SIT component.
Collapse
Affiliation(s)
- Nicole Jean Culbert
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria. .,Institute of Integrative Biology & the Centre for Genomic Research, University of Liverpool, Liverpool, Merseyside, UK.
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), Bobo-Dioulasso, Burkina Faso
| | - Nanwintoum Sévérin Bimbile Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), Bobo-Dioulasso, Burkina Faso
| | - Jeremie Roger Lionel Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria. .,Institut de Recherche Agricole pour le Développement (IRAD), Yaoundé, Cameroon.
| |
Collapse
|