1
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
2
|
Saleem A, Mumtaz PT, Saleem S, Manzoor T, Taban Q, Dar MA, Bhat B, Ahmad SM. Comparative transcriptome analysis of E. coli & Staphylococcus aureus infected goat mammary epithelial cells reveals genes associated with infection. Int Immunopharmacol 2024; 126:111213. [PMID: 37995572 DOI: 10.1016/j.intimp.2023.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Mastitis, an inflammatory disease of the mammary gland, imposes a significant financial burden on the dairy sector. However, the specific molecular mechanisms underlying their interactions with goat mammary epithelial cells (GMECs) remain poorly understood. This study aimed to investigate the transcriptomic response of GMECs during infection with E. coli and S. aureus, providing insights into the host-pathogen interactions. Differential expression of gene (DEGs) analysis was done to find genes and pathways dysregulated in the wake of infection. E. coli infection triggered a robust upregulation of immune response genes, including pro-inflammatory chemokines and cytokines as well as genes involved in tissue repair and remodeling. Conversely, S. aureus infection showed a more complex pattern, involving the activation of immune-related gene as well as those involved in autophagy, apoptosis and tissue remodeling. Furthermore, several key pathways, such as Toll-like receptor signaling and cytokine-cytokine receptor interaction, were differentially modulated in response to each pathogen. Understanding the specific responses of GMECs to these pathogens will provide a foundation for understanding the complex dynamics of infection and host response, offering potential avenues for the development of novel strategies to prevent and treat bacterial infections in both animals and humans.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | | | - Sahar Saleem
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Qamar Taban
- Nutrition & Health Sciences, University of Nebraska-Lincoln, United States
| | - Mashooq Ahmad Dar
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland
| | - Basharat Bhat
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| |
Collapse
|
3
|
Barroso-Chinea P, Salas-Hernández J, Cruz-Muros I, López-Fernández J, Freire R, Afonso-Oramas D. Expression of RAD9B in the mesostriatal system of rats and humans: Overexpression in a 6-OHDA rat model of Parkinson's disease. Ann Anat 2023; 250:152135. [PMID: 37460044 DOI: 10.1016/j.aanat.2023.152135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder that affects primarily the dopaminergic (DAergic) neurons of the mesostriatal system, among other nuclei of the brain. Although it is considered an idiopathic disease, oxidative stress is believed to be involved in DAergic neuron death and therefore plays an important role in the onset and development of the disease. RAD9B is a paralog of the RAD9 checkpoint, sharing some similar functions related to DNA damage resistance and apoptosis, as well as the ability to form 9-1-1 heterotrimers with RAD1 and HUS1. METHODS In addition to immunohistochemistry, immunofluorescence and Western-blot analysis, we implemented Quantitative RT-PCR and in situ hybridization techniques. RESULTS We demonstrated RAD9B expression in rat and human mesencephalic DAergic cells using specific markers. Additionally, we observed significant overexpression of RAD9B mRNA (p<0.01) and protein (p<0.01) in the midbrain 48 h after inducing damage with 150 µg of 6-hydroxydopamine (6-OHDA) injected in a rat model of PD. Regarding protein expression, the increased levels were observed in neurons of the mesostriatal system and returned to normal 5 days post-injury. CONCLUSIONS This response to a neurotoxin, known to produce oxidative stress specifically on DAergic neurons indicates the potential importance of RAD9B in this highly vulnerable population to cell death. In this model, RAD9B function appears to provide neuroprotection, as the induced lesion resulted in only mild degeneration. This observation highlights the potential of RAD9B checkpoint protein as a valuable target for future therapeutic interventions aimed at promoting neuroprotection.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias (IUNE). Universidad de La Laguna, Tenerife, Spain.
| | - Josmar Salas-Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Jonathan López-Fernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Raimundo Freire
- Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias (IUNE). Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
4
|
Galetzka D, Böck J, Wagner L, Dittrich M, Sinizyn O, Ludwig M, Rossmann H, Spix C, Radsak M, Scholz-Kreisel P, Mirsch J, Linke M, Brenner W, Marron M, Poplawski A, Haaf T, Schmidberger H, Prawitt D. Hypermethylation of RAD9A intron 2 in childhood cancer patients, leukemia and tumor cell lines suggest a role for oncogenic transformation. EXCLI JOURNAL 2022; 21:117-143. [PMID: 35221838 PMCID: PMC8859646 DOI: 10.17179/excli2021-4482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Most childhood cancers occur sporadically and cannot be explained by an inherited mutation or an unhealthy lifestyle. However, risk factors might trigger the oncogenic transformation of cells. Among other regulatory signals, hypermethylation of RAD9A intron 2 is responsible for the increased expression of RAD9A protein, which may play a role in oncogenic transformation. Here, we analyzed the RAD9A intron 2 methylation in primary fibroblasts of 20 patients with primary cancer in childhood and second primary cancer (2N) later in life, 20 matched patients with only one primary cancer in childhood (1N) and 20 matched cancer-free controls (0N), using bisulfite pyrosequencing and deep bisulfite sequencing (DBS). Four 1N patients and one 2N patient displayed elevated mean methylation levels (≥ 10 %) of RAD9A. DBS revealed ≥ 2 % hypermethylated alleles of RAD9A, indicative for constitutive mosaic epimutations. Bone marrow samples of NHL and AML tumor patients (n=74), EBV (Epstein Barr Virus) lymphoblasts (n=6), tumor cell lines (n=5) and FaDu subclones (n=13) were analyzed to substantiate our findings. We find a broad spectrum of tumor entities with an aberrant methylation of RAD9A. We detected a significant difference in mean methylation of RAD9A for NHL versus AML patients (p ≤0.025). Molecular karyotyping of AML samples during therapy with hypermethylated RAD9A showed an evolving duplication of 1.8 kb on Chr16p13.3 including the PKD1 gene. Radiation, colony formation assays, cell proliferation, PCR and molecular karyotyping SNP-array experiments using generated FaDu subclones suggest that hypermethylation of RAD9A intron 2 is associated with genomic imbalances in regions with tumor-relevant genes and survival of the cells. In conclusion, this is the very first study of RAD9A intron 2 methylation in childhood cancer and Leukemia. RAD9A epimutations may have an impact on leukemia and tumorigenesis and can potentially serve as a biomarker.
Collapse
Affiliation(s)
- Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.,Institute of Pathology, Julius Maximilians University, Würzburg, Germany
| | - Lukas Wagner
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| | - Marcus Dittrich
- Bioinformatics Department, Julius Maximilians University, Würzburg, Germany
| | - Olesja Sinizyn
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | | | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre, Mainz, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, University Medical Centre, Mainz, Germany
| | | | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Centre, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Women's Health, University Medical Centre, Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| |
Collapse
|
5
|
Zhu A, Hopkins KM, Friedman RA, Bernstock JD, Broustas CG, Lieberman HB. DNMT1 and DNMT3B regulate tumorigenicity of human prostate cancer cells by controlling RAD9 expression through targeted methylation. Carcinogenesis 2021; 42:220-231. [PMID: 32780107 PMCID: PMC7905840 DOI: 10.1093/carcin/bgaa088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the second most common type of cancer and the second leading cause of cancer death in American men. RAD9 stabilizes the genome, but prostate cancer cells and tumors often have high quantities of the protein. Reduction of RAD9 level within prostate cancer cells decreases tumorigenicity of nude mouse xenographs and metastasis phenotypes in culture, indicating that RAD9 overproduction is essential for the disease. In prostate cancer DU145 cells, CpG hypermethylation in a transcription suppressor site of RAD9 intron 2 causes high-level gene expression. Herein, we demonstrate that DNA methyltransferases DNMT1 and DNMT3B are highly abundant in prostate cancer cells DU145, CWR22, LNCaP and PC-3; yet, these DNMTs bind primarily to the transcription suppressor in DU145, the only cells where methylation is critical for RAD9 regulation. For DU145 cells, DNMT1 or DNMT3B shRNA reduced RAD9 level and tumorigenicity, and RAD9 ectopic expression restored this latter activity in the DNMT knockdown cells. High levels of RAD9, DNMT1, DNMT3B and RAD9 transcription suppressor hypermethylation were significantly correlated in prostate tumors, and not in normal prostate tissues. Based on these results, we propose a novel model where RAD9 is regulated epigenetically by DNMT1 and DNMT3B, via targeted hypermethylation, and that consequent RAD9 overproduction promotes prostate tumorigenesis.
Collapse
Affiliation(s)
- Aiping Zhu
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kevin M Hopkins
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Joshua D Bernstock
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
6
|
Hong H, Yao S, Zhang Y, Ye Y, Li C, Hu L, Sun Y, Huang HY, Ji H. In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor. PLoS Genet 2020; 16:e1009168. [PMID: 33137086 PMCID: PMC7660552 DOI: 10.1371/journal.pgen.1009168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/12/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in the development of various cancers including lung cancer which is one of the devastating diseases worldwide. How miRNAs function in de novo lung tumorigenesis remains largely unknown. We here developed a CRISPR/Cas9-mediated dual guide RNA (dgRNA) system to knockout miRNAs in genetically engineered mouse model (GEMM). Through bioinformatic analyses of human lung cancer miRNA database, we identified 16 downregulated miRNAs associated with malignant progression and performed individual knockout with dgRNA system in KrasG12D/Trp53L/L (KP) mouse model. Using this in vivo knockout screening, we identified miR-30b and miR-146a, which has been previously reported as tumor suppressors and miR-190b, a new tumor-suppressive miRNA in lung cancer development. Over-expression of miR-190b in KP model as well as human lung cancer cell lines significantly suppressed malignant progression. We further found that miR-190b targeted the Hus1 gene and knockout of Hus1 in KP model dramatically suppressed lung tumorigenesis. Collectively, our study developed an in vivo miRNA knockout platform for functionally screening in GEMM and identified miR-190b as a new tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Hui Hong
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shun Yao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Yi Ye
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Cheng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
- Center for Statistical Science, Center for Bioinformatics, Peking University, Beijing, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
7
|
Ghazanfar S, Strbenac D, Ormerod JT, Yang JYH, Patrick E. DCARS: differential correlation across ranked samples. Bioinformatics 2019; 35:823-829. [PMID: 30102408 DOI: 10.1093/bioinformatics/bty698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/19/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Genes act as a system and not in isolation. Thus, it is important to consider coordinated changes of gene expression rather than single genes when investigating biological phenomena such as the aetiology of cancer. We have developed an approach for quantifying how changes in the association between pairs of genes may inform the outcome of interest called Differential Correlation across Ranked Samples (DCARS). Modelling gene correlation across a continuous sample ranking does not require the dichotomisation of samples into two distinct classes and can identify differences in gene correlation across early, mid or late stages of the outcome of interest. RESULTS When we evaluated DCARS against the typical Fisher Z-transformation test for differential correlation, as well as a typical approach testing for interaction within a linear model, on real TCGA data, DCARS significantly ranked gene pairs containing known cancer genes more highly across several cancers. Similar results are found with our simulation study. DCARS was applied to 13 cancers datasets in TCGA, revealing several distinct relationships for which survival ranking was found to be associated with a change in correlation between genes. Furthermore, we demonstrated that DCARS can be used in conjunction with network analysis techniques to extract biological meaning from multi-layered and complex data. AVAILABILITY AND IMPLEMENTATION DCARS R package and sample data are available at https://github.com/shazanfar/DCARS. Publicly available data from The Cancer Genome Atlas (TCGA) was used using the TCGABiolinks R package. Supplementary Files and DCARS R package is available at https://github.com/shazanfar/DCARS. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shila Ghazanfar
- The Judith and David Coffey Life Lab, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - John T Ormerod
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia.,ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Richard Berry Building, The University of Melbourne, Melbourne, Parkville, VIC, Australia
| | - Jean Y H Yang
- The Judith and David Coffey Life Lab, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
8
|
Broustas CG, Hopkins KM, Panigrahi SK, Wang L, Virk RK, Lieberman HB. RAD9A promotes metastatic phenotypes through transcriptional regulation of anterior gradient 2 (AGR2). Carcinogenesis 2019; 40:164-172. [PMID: 30295739 DOI: 10.1093/carcin/bgy131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
RAD9A plays an important role in prostate tumorigenesis and metastasis-related phenotypes. The protein classically functions as part of the RAD9A-HUS1-RAD1 complex but can also act independently. RAD9A can selectively transactivate multiple genes, including CDKN1A and NEIL1 by binding p53-consensus sequences in or near promoters. RAD9A is overexpressed in human prostate cancer specimens and cell lines; its expression correlates with tumor progression. Silencing RAD9A in prostate cancer cells impairs their ability to form tumors in vivo and migrate as well as grow anchorage independently in vitro. We demonstrate herein that RAD9A transcriptionally controls AGR2, a gene aberrantly overexpressed in patients with metastatic prostate cancer. Transient or stable knockdown of RAD9A in PC-3 cells caused downregulation of AGR2 protein abundance. Reduced AGR2 protein levels were due to lower abundance of AGR2 mRNA. The AGR2 genomic region upstream of the coding initiation site contains several p53 consensus sequences. RAD9A bound specifically to the 5'-untranslated region of AGR2 in PC-3 cells at a partial p53 consensus sequence at position +3136 downstream from the transcription start site, determined by chromatin immunoprecipitation, followed by PCR amplification. Binding of RAD9A to the p53 consensus sequence was sufficient to drive AGR2 gene transcription, shown by a luciferase reporter assay. In contrast, when the RAD9A-binding sequence on the AGR2 was mutated, no luciferase activity was detected. Knockdown of RAD9A in PC-3 cells impaired cell migration and anchorage-independent growth. However, ectopically expressed AGR2 in RAD9A-depleted PC-3 cells restored these phenotypes. Our results suggest RAD9A drives metastasis by controlling AGR2 abundance.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin M Hopkins
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunil K Panigrahi
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Li Wang
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Investigation of the Possible Role of RAD9 in Post-Diapaused Embryonic Development of the Brine Shrimp Artemia sinica. Genes (Basel) 2019; 10:genes10100768. [PMID: 31574972 PMCID: PMC6826366 DOI: 10.3390/genes10100768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
Background: The cell cycle checkpoint protein RAD9 is a vital cell cycle regulator in eukaryotic cells. RAD9 is involved in diverse cellular functions by oligomer or monomer. However, the specific mechanism of its activity remains unknown in crustaceans, especially in embryonic diapause resumption of the brine shrimp Artemia sinica. Methods and Results: In the present article, a 1238 bp full-length cDNA of As–RAD9 gene, encoding 376 amino acids, was obtained from A. sinica. The expression pattern of As–RAD9 was analyzed by qPCR and Western blot. The mRNA expression level climbs to the top at the 10 h stage of embryo development, while the protein expression pattern is generally consistent with qPCR results. Moreover, the As–RADd9 related signaling proteins, As–RAD1, As–HUS1, As–RAD17, and As–CHK1, were also detected. Immunofluorescence assay showed that the location of As–RAD9 did not show tissue or organ specificity, and the intracellular expression was concentrated in the cytoplasm more than in the nucleus. We also explored the amount of As–RAD9 under the stresses of cold and high salinity, and the results indicate that As–RAD9 is a stress-related factor, though the mechanisms may be different in response to different stresses. Knocking down of the As–RAD9 gene led to embryonic development delay in A. sinica. Conclusions: All these results reveal that As–RAD9 is necessary for post-diapaused embryonic development in A. sinica.
Collapse
|
10
|
Pussila M, Törönen P, Einarsdottir E, Katayama S, Krjutškov K, Holm L, Kere J, Peltomäki P, Mäkinen MJ, Linden J, Nyström M. Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer. Carcinogenesis 2019; 39:788-797. [PMID: 29701748 PMCID: PMC5973430 DOI: 10.1093/carcin/bgy056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) genome is unstable and different types of instabilities, such as chromosomal instability (CIN) and microsatellite instability (MSI) are thought to reflect distinct cancer initiating mechanisms. Although 85% of sporadic CRC reveal CIN, 15% reveal mismatch repair (MMR) malfunction and MSI, the hallmarks of Lynch syndrome with inherited heterozygous germline mutations in MMR genes. Our study was designed to comprehensively follow genome-wide expression changes and their implications during colon tumorigenesis. We conducted a long-term feeding experiment in the mouse to address expression changes arising in histologically normal colonic mucosa as putative cancer preceding events, and the effect of inherited predisposition (Mlh1+/−) and Western-style diet (WD) on those. During the 21-month experiment, carcinomas developed mainly in WD-fed mice and were evenly distributed between genotypes. Unexpectedly, the heterozygote (B6.129-Mlh1tm1Rak) mice did not show MSI in their CRCs. Instead, both wildtype and heterozygote CRC mice showed a distinct mRNA expression profile and shortage of several chromosomal segregation gene-specific transcripts (Mlh1, Bub1, Mis18a, Tpx2, Rad9a, Pms2, Cenpe, Ncapd3, Odf2 and Dclre1b) in their colon mucosa, as well as an increased mitotic activity and abundant numbers of unbalanced/atypical mitoses in tumours. Our genome-wide expression profiling experiment demonstrates that cancer preceding changes are already seen in histologically normal colon mucosa and that decreased expressions of Mlh1 and other chromosomal segregation genes may form a field-defect in mucosa, which trigger MMR-proficient, chromosomally unstable CRC.
Collapse
Affiliation(s)
- Marjaana Pussila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme
| | - Petri Törönen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Elisabet Einarsdottir
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Folkhälsan Institute of Genetics, Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Kaarel Krjutškov
- Folkhälsan Institute of Genetics, Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Competence Centre on Health Technologies, Tartu, Estonia
| | - Liisa Holm
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Folkhälsan Institute of Genetics, Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Genetics and Molecular Medicine, King's College London, London, UK
| | - Päivi Peltomäki
- Medicum, Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Markus J Mäkinen
- Cancer and Translational Medicine Research Unit, Department of Pathology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Jere Linden
- Department of Basic Veterinary Sciences, FCLAP, University of Helsinki, Helsinki, Finland
| | - Minna Nyström
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme
| |
Collapse
|
11
|
Zhou ZQ, Zhao JJ, Chen CL, Liu Y, Zeng JX, Wu ZR, Tang Y, Zhu Q, Weng DS, Xia JC. HUS1 checkpoint clamp component (HUS1) is a potential tumor suppressor in primary hepatocellular carcinoma. Mol Carcinog 2018; 58:76-87. [PMID: 30182378 DOI: 10.1002/mc.22908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/18/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
Abstract
The HUS1 checkpoint clamp component (HUS1), which is a member of an evolutionarily conserved, genotoxin-activated checkpoint complex (Rad9-Rad1-Hus1 [9-1-1] complex), is involved in cell cycle arrest and DNA repair in response to DNA damage. We conducted this study to investigate the biological significances of HUS1 expression in hepatocellular carcinoma (HCC) development. The mRNA and protein expression levels of HUS1 were determined using Real-time PCR and Western blot, respectively. One hundered and twenty four paraffin sections from HCC tissues were analyzed by immunohistochemistry to assess the association between HUS1 expression and clinicopathological characteristics of patients. The Kaplan-Meier method was performed to calculate the OS and RFS curves. Cell proliferation and colony formation assays, cell migration and invasion assays and cell cycle assays were used to determine the suppressor role of HUS1 in vitro. A mouse model was used to determine the effect of HUS1 on tumorigenesis. The expression of HUS1 was significantly decreased in HCC cell lines and tissues, and low HUS1 expression was associated with poor prognosis of HCC patients. Upregulation of HUS1 expression inhibited the cell proliferation, colony formation, migration, and invasion, as well as arrested cell cycle at G0/G1 in HCC cells in vitro. Moreover, sufficient HUS1 expression inhibited the tumor growth in nude mice. Our study revealed for the first time that HUS1 is a potential tumor suppressor that might produce an antitumor effect in human HCC. Furthermore, HUS1 may serve as a prognostic indicator and could be used for therapeutic application in HCC patients.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Jing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chang-Long Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Xiong Zeng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zheng-Rong Wu
- Department of Pathology, School of Basic Medicine, Southern Medical University, Guangzhou, China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Sheng Weng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
van der Stok EP, Smid M, Sieuwerts AM, Vermeulen PB, Sleijfer S, Ayez N, Grünhagen DJ, Martens JWM, Verhoef C. mRNA expression profiles of colorectal liver metastases as a novel biomarker for early recurrence after partial hepatectomy. Mol Oncol 2016; 10:1542-1550. [PMID: 27692894 DOI: 10.1016/j.molonc.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Identification of specific risk groups for recurrence after surgery for isolated colorectal liver metastases (CRLM) remains challenging due to the heterogeneity of the disease. Classical clinicopathologic parameters have limited prognostic value. The aim of this study was to identify a gene expression signature measured in CRLM discriminating early from late recurrence after partial hepatectomy. METHODS CRLM from two patient groups were collected: I) with recurrent disease ≤12 months after surgery (N = 33), and II) without recurrences and disease free for ≥36 months (N = 30). The patients were clinically homogeneous; all had a low clinical risk score (0-2) and did not receive (neo-) adjuvant chemotherapy. Total RNA was hybridised to Illumina arrays, and processed for analysis. A leave-one-out cross validation (LOOCV) analysis was performed to identify a prognostic gene expression signature. RESULTS LOOCV yielded an 11-gene profile with prognostic value in relation to recurrent disease ≤12 months after partial hepatectomy. This signature had a sensitivity of 81.8%, with a specificity of 66.7% for predicting recurrences (≤12 months) versus no recurrences for at least 36 months after surgery (X2 P < 0.0001). CONCLUSION The current study yielded an 11-gene signature at mRNA level in CRLM discriminating early from late or no relapse after partial hepatectomy.
Collapse
Affiliation(s)
- E P van der Stok
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands.
| | - M Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - A M Sieuwerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - P B Vermeulen
- Translational Cancer Research Group, Sint-Augustinus (GZA Hospitals) & CORE (Antwerp University), Oosterveldlaan 24, 2610 Wilrijk-Antwerp, Belgium
| | - S Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - N Ayez
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - D J Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - J W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - C Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| |
Collapse
|
13
|
Abstract
Breast cancer is already the most common malignancy affecting women worldwide, and evidence is mounting that breast cancer induced by circadian disruption (CD) is a warranted concern. Numerous studies have investigated various aspects of the circadian clock in relation to breast cancer, and evidence from these studies indicates that melatonin and the core clock genes can play a crucial role in breast cancer development. Even though epigenetics has been increasingly recognized as a key player in the etiology of breast cancer and linked to circadian rhythms, and there is evidence of overlap between epigenetic deregulation and breast cancer induced by circadian disruption, only a handful of studies have directly investigated the role of epigenetics in CD-induced breast cancer. This review explores the circadian clock and breast cancer, and the growing role of epigenetics in breast cancer development and circadian rhythms. We also summarize the current knowledge and next steps for the investigation of the epigenetic link in CD-induced breast cancer.
Collapse
Affiliation(s)
- David Z Kochan
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
14
|
Awate S, De Benedetti A. TLK1B mediated phosphorylation of Rad9 regulates its nuclear/cytoplasmic localization and cell cycle checkpoint. BMC Mol Biol 2016; 17:3. [PMID: 26860083 PMCID: PMC4746922 DOI: 10.1186/s12867-016-0056-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/26/2016] [Indexed: 01/09/2023] Open
Abstract
Background The Tousled like kinase 1B (TLK1B) is critical for DNA repair and survival of cells. Upon DNA damage, Chk1 phosphorylates TLK1B at S457 leading to its transient inhibition. Once TLK1B regains its kinase activity it phosphorylates Rad9 at S328. In this work we investigated the significance of this mechanism by overexpressing mutant TLK1B in which the inhibitory phosphorylation site was eliminated. Results and discussion These cells expressing TLK1B resistant to DNA damage showed constitutive phosphorylation of Rad9 S328 that occurred even in the presence of hydroxyurea (HU), and this resulted in a delayed checkpoint recovery. One possible explanation was that premature phosphorylation of Rad9 caused its dissociation from 9-1-1 at stalled replication forks, resulting in their collapse and prolonged activation of the S-phase checkpoint. We found that phosphorylation of Rad9 at S328 results in its dissociation from chromatin and redistribution to the cytoplasm. This results in double stranded breaks formation with concomitant activation of ATM and phosphorylation of H2AX. Furthermore, a Rad9 (S328D) phosphomimic mutant was exclusively localized to the cytoplasm and not the chromatin. Another Rad9 phosphomimic mutant (T355D), which is also a site phosphorylated by TLK1, localized normally. In cells expressing the mutant TLK1B treated with HU, Rad9 association with Hus1 and WRN was greatly reduced, suggesting again that its phosphorylation causes its premature release from stalled forks. Conclusions We propose that normally, the inactivation of TLK1B following replication arrest and genotoxic stress functions to allow the retention of 9-1-1 at the sites of damage or stalled forks. Following reactivation of TLK1B, whose synthesis is concomitantly induced by genotoxins, Rad9 is hyperphosphorylated at S328, resulting in its dissociation and inactivation of the checkpoint that occurs once repair is complete. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0056-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanket Awate
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
15
|
Chk1 Activation Protects Rad9A from Degradation as Part of a Positive Feedback Loop during Checkpoint Signalling. PLoS One 2015; 10:e0144434. [PMID: 26658951 PMCID: PMC4676731 DOI: 10.1371/journal.pone.0144434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of Rad9A at S387 is critical for establishing a physical interaction with TopBP1, and to downstream activation of Chk1 for checkpoint activation. We have previously demonstrated a phosphorylation of Rad9A that occurs at late time points in cells exposed to genotoxic agents, which is eliminated by either Rad9A overexpression, or conversion of S387 to a non-phosphorylatable analogue. Based on this, we hypothesized that this late Rad9A phosphorylation is part of a feedback loop regulating the checkpoint. Here, we show that Rad9A is hyperphosphorylated and accumulates in cells exposed to bleomycin. Following the removal of bleomycin, Rad9A is polyubiquitinated, and Rad9A protein levels drop, indicating an active degradation process for Rad9A. Chk1 inhibition by UCN-01 or siRNA reduces Rad9A levels in cells synchronized in S-phase or exposed to DNA damage, indicating that Chk1 activation is required for Rad9A stabilization in S-phase and during checkpoint activation. Together, these results demonstrate a positive feedback loop involving Rad9A-dependend activation of Chk1, coupled with Chk1-dependent stabilization of Rad9A that is critical for checkpoint regulation.
Collapse
|
16
|
Panigrahi SK, Hopkins KM, Lieberman HB. Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair. Nucleic Acids Res 2015; 43:4531-46. [PMID: 25873625 PMCID: PMC4482081 DOI: 10.1093/nar/gkv327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2015] [Indexed: 11/21/2022] Open
Abstract
RAD9 participates in DNA damage-induced cell cycle checkpoints and DNA repair. As a member of the RAD9-HUS1-RAD1 (9-1-1) complex, it can sense DNA damage and recruit ATR to damage sites. RAD9 binding can enhance activities of members of different DNA repair pathways, including NEIL1 DNA glycosylase, which initiates base excision repair (BER) by removing damaged DNA bases. Moreover, RAD9 can act independently of 9-1-1 as a gene-specific transcription factor. Herein, we show that mouse Rad9−/− relative to Rad9+/+ embryonic stem (ES) cells have reduced levels of Neil1 protein. Also, human prostate cancer cells, DU145 and PC-3, knocked down for RAD9 demonstrate reduced NEIL1 abundance relative to controls. We found that Rad9 is required for Neil1 protein stability in mouse ES cells, whereas it regulates NEIL1 transcription in the human cells. RAD9 depletion enhances sensitivity to UV, gamma rays and menadione, but ectopic expression of RAD9 or NEIL1 restores resistance. Glycosylase/apurinic lyase activity was reduced in Rad9−/− mouse ES and RAD9 knocked-down human prostate cancer whole cell extracts, relative to controls. Neil1 or Rad9 addition restored this incision activity. Thus, we demonstrate that RAD9 regulates BER by controlling NEIL1 protein levels, albeit by different mechanisms in human prostate cancer versus mouse ES cells.
Collapse
Affiliation(s)
- Sunil K Panigrahi
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Howard B Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
17
|
Broustas CG, Lieberman HB. RAD9 enhances radioresistance of human prostate cancer cells through regulation of ITGB1 protein levels. Prostate 2014; 74:1359-70. [PMID: 25111005 PMCID: PMC4142073 DOI: 10.1002/pros.22842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/03/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND Mouse embryonic stem cells null for Rad9 are sensitive to deleterious effects of ionizing radiation exposure. Likewise, integrin β1 is a known radioprotective factor. Previously, we showed that RAD9 downregulation in human prostate cancer cells reduces integrin β1 protein levels and ectopic expression of Mrad9 restores inherent high levels. METHODS We used RNA interference to knockdown Rad9 expression in PC3 and DU145 prostate cancer cells. These cells were then exposed to ionizing radiation, and integrin β1 protein levels were measured by immunoblotting. Survival of irradiated cells was measured by clonogenicity, cell cycle analysis, PARP-1 cleavage, and trypan blue exclusion. RESULTS The function of RAD9 in controlling integrin β1 expression is unique and not shared by the other members of the 9-1-1 complex, HUS1 and RAD1. RAD9 or integrin β1 silencing sensitizes DU145 and PC3 cells to ionizing radiation. Irradiation of DU145 cells with low levels of RAD9 induces cleavage of PARP-1 protein. High levels of ionizing radiation have no effect on integrin β1 protein levels. However, when RAD9 downregulation is combined with 10 Gy of ionizing radiation in DU145 or PC3 cells, there is an additional 50% downregulation of integrin β1 compared with levels in unirradiated RAD9 knockdown cells. Finally, PC3 cells growing on fibronectin display increased radioresistance. However, PC3 cells with RAD9 knockdown are no longer protected by fibronectin after treatment with ionizing radiation. CONCLUSIONS Downregulation of RAD9 when combined with ionizing radiation results in reduction of ITGB1 protein levels in prostate cancer cells, and increased lethality.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| |
Collapse
|
18
|
Jada B, Soitamo AJ, Siddiqui SA, Murukesan G, Aro EM, Salakoski T, Lehto K. Multiple different defense mechanisms are activated in the young transgenic tobacco plants which express the full length genome of the Tobacco mosaic virus, and are resistant against this virus. PLoS One 2014; 9:e107778. [PMID: 25244327 PMCID: PMC4171492 DOI: 10.1371/journal.pone.0107778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489-1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7-8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV replication complex.
Collapse
Affiliation(s)
- Balaji Jada
- Department of Biochemistry, Laboratory of Molecular Plant Biology, University of Turku, Turku, Finland
| | - Arto J. Soitamo
- Department of Biochemistry, Laboratory of Molecular Plant Biology, University of Turku, Turku, Finland
| | | | - Gayatri Murukesan
- Department of Information Technology, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Laboratory of Molecular Plant Biology, University of Turku, Turku, Finland
| | - Tapio Salakoski
- Department of Information Technology, University of Turku, Turku, Finland
| | - Kirsi Lehto
- Department of Biochemistry, Laboratory of Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Vincent-Chong VK, Karen-Ng LP, Abdul Rahman ZA, Yang YH, Anwar A, Zakaria Z, Jayaprasad Pradeep P, Kallarakkal TG, Kiong Tay K, Thomas Abraham M, Mazlipah Ismail S, Zain RB. Distinct pattern of chromosomal alterations and pathways in tongue and cheek squamous cell carcinoma. Head Neck 2014; 36:1268-1278. [PMID: 31615169 DOI: 10.1002/hed.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 05/10/2013] [Accepted: 08/01/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the cause of behavioral difference between tongue and cheek squamous cell carcinomas (SCCs) by verifying the copy number alterations (CNAs). METHODS Array comparative genomic hybridization (aCGH) was used to profile unique deletions and amplifications that are involved with tongue and cheek SCC, respectively. This was followed by pathway analysis relating to CNA genes from both sites. RESULTS The most frequently amplified regions in tongue SCC were 4p16.3, 11q13.4, and 13q34; whereas the most frequently deleted region was 19p12. For cheek SCC, the most frequently amplified region was identified on chromosome 9p24.1-9p23; whereas the most common deleted region was located on chromosome 8p23.1. Further analysis revealed that the most significant unique pathway related to tongue and cheek SCCs was the cytoskeleton remodeling and immune response effect on the macrophage differentiation pathway. CONCLUSION This study has showed the different genetic profiles and biological pathways between tongue and cheek SCCs. © 2013 Wiley Periodicals, Inc. Head Neck 36: 1268-1278, 2014.
Collapse
Affiliation(s)
- Vui King Vincent-Chong
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Peng Karen-Ng
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi-Hsin Yang
- Department of Dental Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung
| | - Arif Anwar
- Sengenics Sdn Bhd, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Zubaidah Zakaria
- Department of Haematology, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Padmaja Jayaprasad Pradeep
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Thomas George Kallarakkal
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Keng Kiong Tay
- Oral Health Division, Ministry of Health, Putrajaya, Malaysia
| | | | - Siti Mazlipah Ismail
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Banerjee P, deJesus R, Gjoerup O, Schaffhausen BS. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA. PLoS Pathog 2013; 9:e1003725. [PMID: 24204272 PMCID: PMC3812037 DOI: 10.1371/journal.ppat.1003725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.
Collapse
Affiliation(s)
- Pubali Banerjee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Rowena deJesus
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ole Gjoerup
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Brian S. Schaffhausen
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Xu X, Guardiani C, Yan C, Ivanov I. Opening pathways of the DNA clamps proliferating cell nuclear antigen and Rad9-Rad1-Hus1. Nucleic Acids Res 2013; 41:10020-31. [PMID: 24038358 PMCID: PMC3905852 DOI: 10.1093/nar/gkt810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proliferating cell nuclear antigen and the checkpoint clamp Rad9-Rad1-Hus1 topologically encircle DNA and act as mobile platforms in the recruitment of proteins involved in DNA damage response and cell cycle regulation. To fulfill these vital cellular functions, both clamps need to be opened and loaded onto DNA by a clamp loader complex—a process, which involves disruption of the DNA clamp’s subunit interfaces. Herein, we compare the relative stabilities of the interfaces using the molecular mechanics Poisson−Boltzmann solvent accessible surface method. We identify the Rad9-Rad1 interface as the weakest and, therefore, most likely to open during clamp loading. We also delineate the dominant interface disruption pathways under external forces in multiple-trajectory steered molecular dynamics runs. We show that, similar to the case of protein folding, clamp opening may not proceed through a single interface breakdown mechanism. Instead, we identify an ensemble of opening pathways, some more prevalent than others, characterized by specific groups of contacts that differentially stabilize the regions of the interface and determine the spatial and temporal patterns of breakdown. In Rad9-Rad1-Hus1, the Rad9-Rad1 and Rad9-Hus1 interfaces share the same dominant unzipping pathway, whereas the Hus1-Rad1 interface is disrupted concertedly with no preferred directionality.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, GA 30302, USA
| | | | | | | |
Collapse
|
22
|
Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress. Oncogene 2013; 33:3688-95. [PMID: 23975433 PMCID: PMC3936004 DOI: 10.1038/onc.2013.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
Abstract
Defective DNA replication can result in genomic instability, cancer, and developmental defects. To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants defective for core DNA replication components, we utilized the Mcm4Chaos3/Chaos3 (“Chaos3”) mouse model which, by virtue of an amino acid alteration in MCM4 that destabilizes the MCM2-7 DNA replicative helicase, has fewer dormant replication origins and an increased number of stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We found that animals doubly mutant for Chaos3 and components of the ATM double strand break response pathway (Atm, p21/Cdkn1a, Chk2/Chek2) had decreased tumor latency and/or increased tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 deficiency than males. ATM deficiency was semilethal in the Chaos3 background and impaired embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against tumors with DNA replication defects. Hypomorphism for the 9-1-1 component Hus1 did not affect tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit impaired ATR pathway signaling. These and other data indicate that under conditions of systemic replication stress, the ATM pathway is particularly important both for cancer suppression and viability during development.
Collapse
|
23
|
Ronald S, Awate S, Rath A, Carroll J, Galiano F, Dwyer D, Kleiner-Hancock H, Mathis JM, Vigod S, De Benedetti A. Phenothiazine Inhibitors of TLKs Affect Double-Strand Break Repair and DNA Damage Response Recovery and Potentiate Tumor Killing with Radiomimetic Therapy. Genes Cancer 2013; 4:39-53. [PMID: 23946870 DOI: 10.1177/1947601913479020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/25/2013] [Indexed: 11/16/2022] Open
Abstract
The Tousled-like kinases (TLKs) are involved in chromatin assembly, DNA repair, and transcription. Two TLK genes exist in humans, and their expression is often dysregulated in cancer. TLKs phosphorylate Asf1 and Rad9, regulating double-strand break (DSB) repair and the DNA damage response (DDR). TLKs maintain genomic stability and are important therapeutic intervention targets. We identified specific inhibitors of TLKs from several compound libraries, some of which belong to the family of phenothiazine antipsychotics. The inhibitors prevented the TLK-mediated phosphorylation of Rad9(S328) and impaired checkpoint recovery and DSB repair. The inhibitor thioridazine (THD) potentiated tumor killing with chemotherapy and also had activity alone. Staining for γ-H2AX revealed few positive cells in untreated tumors, but large numbers in mice treated with low doxorubicin or THD alone, possibly the result of the accumulation of DSBs that are not promptly repaired as they may occur in the harsh tumor growth environment.
Collapse
Affiliation(s)
- Sharon Ronald
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang XL, Li QR, Ning ZB, Zhang Y, Zeng R, Wu JR. Identification of complex relationship between protein kinases and substrates during the cell cycle of HeLa cells by phosphoproteomic analysis. Proteomics 2013; 13:1233-46. [PMID: 23322592 DOI: 10.1002/pmic.201200357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/08/2012] [Accepted: 10/25/2012] [Indexed: 11/07/2022]
Abstract
Each phase of eukaryotic cell cycle is tightly controlled by multicomponent regulatory networks based on complex relationships of protein phosphorylation. In order to better understand the relationships between kinases and their substrate proteins during the progression of cell cycle, we analyzed phosphoproteome of HeLa cells during G1, S, and G2/M phases of cell cycle using our developed quantitative phosphoproteomic approaches. A total of 4776 high-confidence phosphorylation sites (phosphosites) in 1177 proteins were identified. Bioinformatics analysis for predicting kinase groups revealed that 46 kinase groups could be assigned to 4321 phosphosites. The majority of phosphoproteins harboring two or more phosphosites could be phosphorylated by different kinase groups, in which nine major kinase groups accounted for more than 90% phosphosites. Further analyses showed that approximately half of the examined two phosphosite combinations were correlatively regulated, regardless of whether the kinase groups were same or not. In general, the majority of proteins containing correlated phosphosites had solely co-regulated or counter-regulated phosphosites, and co-regulation was significantly more frequent than counter-regulation, suggesting that the former may be more important for regulating the cell cycle. In conclusion, our findings provide new insights into the complex regulatory mechanisms of protein phosphorylation networks during eukaryotic cell cycle.
Collapse
Affiliation(s)
- Xing-Lin Yang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Silva G, Cardoso BA, Belo H, Almeida AM. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms. PLoS One 2013; 8:e53766. [PMID: 23320102 PMCID: PMC3540071 DOI: 10.1371/journal.pone.0053766] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/05/2012] [Indexed: 12/13/2022] Open
Abstract
Background Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. Methodology/Principal Findings Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33+ cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. Conclusion This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.
Collapse
Affiliation(s)
- Gabriela Silva
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Bruno A. Cardoso
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Hélio Belo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - António Medina Almeida
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
27
|
Abstract
Human RAD9 is a key cell-cycle checkpoint protein that participates in DNA repair, activation of multiple cell cycle phase checkpoints, and apoptosis. Aberrant RAD9 expression has been linked to breast, lung, thyroid, skin, and prostate tumorigenesis. Overexpression of RAD9 interacts with BCL-2 proteins and blocks the binding sites of BCL-2 family proteins to interact with chemotherapeutic drugs and leads to drug resistance. Focusing on this interaction, the present study was designed to identify the interaction sites of RAD9 to bind BCL-2 protein and also to inhibit RAD9-BCL-2 interactions by designing novel small molecule inhibitors using pharmacophore modeling and to restore BCL-2 for interacting with anticancer drugs. The bioactive molecules of natural origin act as excellent leads for new drug development. Thus, in the present study, we used the compounds of natural origin like camptothecin, ascididemin, and Dolastatin and also compared them with synthetic molecule NSC15520. The results revealed that camptothecin can act as an effective inhibitor among all the ligands taken and can be used as an RAD9 inhibitor. The amino acids ARG45 and ALA134 of RAD9 protein are interacting commonly with the drugs and BCL-2 protein.
Collapse
|
28
|
Karras GI, Fumasoni M, Sienski G, Vanoli F, Branzei D, Jentsch S. Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol Cell 2012; 49:536-46. [PMID: 23260657 DOI: 10.1016/j.molcel.2012.11.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/20/2012] [Accepted: 11/13/2012] [Indexed: 02/08/2023]
Abstract
Damaged DNA is an obstacle during DNA replication and a cause of genome instability and cancer. To bypass this problem, eukaryotes activate DNA damage tolerance (DDT) pathways that involve ubiquitylation of the DNA polymerase clamp proliferating cell nuclear antigen (PCNA). Monoubiquitylation of PCNA mediates an error-prone pathway by recruiting translesion polymerases, whereas polyubiquitylation activates an error-free pathway that utilizes undamaged sister chromatids as templates. The error-free pathway involves recombination-related mechanisms; however, the factors that act along with polyubiquitylated PCNA remain largely unknown. Here we report that the PCNA-related 9-1-1 complex, which is typically linked to checkpoint signaling, participates together with Exo1 nuclease in error-free DDT. Notably, 9-1-1 promotes template switching in a manner that is distinct from its canonical checkpoint functions and uncoupled from the replication fork. Our findings thus reveal unexpected cooperation in the error-free pathway between the two related clamps and indicate that 9-1-1 plays a broader role in the DNA damage response than previously assumed.
Collapse
Affiliation(s)
- Georgios Ioannis Karras
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Broustas CG, Zhu A, Lieberman HB. Rad9 protein contributes to prostate tumor progression by promoting cell migration and anoikis resistance. J Biol Chem 2012; 287:41324-33. [PMID: 23066031 PMCID: PMC3510830 DOI: 10.1074/jbc.m112.402784] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/12/2012] [Indexed: 01/05/2023] Open
Abstract
Rad9 as part of the Rad9-Hus1-Rad1 complex is known to participate in cell cycle checkpoint activation and DNA repair. However, Rad9 can act as a sequence-specific transcription factor, modulating expression of a number of genes. Importantly, Rad9 is up-regulated in prostate cancer cell lines and clinical specimens. Its expression correlates positively with advanced stage tumors and its down-regulation reduces tumor burden in mice. We show here that transient down-regulation of Rad9 by RNA interference reduces DU145 and PC3 prostate cancer cell proliferation and survival in vitro. In addition, transient or stable down-regulation of Rad9 impairs migration and invasion of the cells. Moreover, stable reduction of Rad9 renders DU145 cell growth anchorage-dependent. It also decreases expression of integrin β1 protein and sensitizes DU145 and LNCaP cells to anoikis and impairs Akt activation. On the other hand, stable expression of Mrad9, the mouse homolog, in DU145/shRNA Rad9 cells restores migration, invasion, anchorage-independent growth, integrin β1 expression, and anoikis resistance with a concomitant elevation of Akt activation. We thus demonstrate for the first time that Rad9 contributes to prostate tumorigenesis by increasing not only tumor proliferation and survival but also tumor migration and invasion, anoikis resistance, and anchorage-independent growth.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- From the Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| | - Aiping Zhu
- From the Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| | - Howard B. Lieberman
- From the Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
- the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
30
|
G-Protein-Coupled Receptor (GPCR)-Dependent ADAM-17 Regulated Ectodomain Shedding. Cancer Biomark 2012. [DOI: 10.1201/b14318-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Zhan Z, He K, Zhu D, Jiang D, Huang YH, Li Y, Sun C, Jin YH. Phosphorylation of Rad9 at serine 328 by cyclin A-Cdk2 triggers apoptosis via interfering Bcl-xL. PLoS One 2012; 7:e44923. [PMID: 23028682 PMCID: PMC3441668 DOI: 10.1371/journal.pone.0044923] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
Cyclin A-Cdk2, a cell cycle regulated Ser/Thr kinase, plays important roles in a variety of apoptoticprocesses. However, the mechanism of cyclin A-Cdk2 regulated apoptosis remains unclear. Here, we demonstrated that Rad9, a member of the BH3-only subfamily of Bcl-2 proteins, could be phosphorylated by cyclin A-Cdk2 in vitro and in vivo. Cyclin A-Cdk2 catalyzed the phosphorylation of Rad9 at serine 328 in HeLa cells during apoptosis induced by etoposide, an inhibitor of topoisomeraseII. The phosphorylation of Rad9 resulted in its translocation from the nucleus to the mitochondria and its interaction with Bcl-xL. The forced activation of cyclin A-Cdk2 in these cells by the overexpression of cyclin A,triggered Rad9 phosphorylation at serine 328 and thereby promoted the interaction of Rad9 with Bcl-xL and the subsequent initiation of the apoptotic program. The pro-apoptotic effects regulated by the cyclin A-Cdk2 complex were significantly lower in cells transfected with Rad9S328A, an expression vector that encodes a Rad9 mutant that is resistant to cyclin A-Cdk2 phosphorylation. These findings suggest that cyclin A-Cdk2 regulates apoptosis through a mechanism that involves Rad9phosphorylation.
Collapse
Affiliation(s)
- Zhuo Zhan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure & Materials, Jilin University, Changchun, China
| | - Kan He
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Dan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Dan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Ying-Hui Huang
- Cancer Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Chao Sun
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure & Materials, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
32
|
Comparative oncogenomics implicates the neurofibromin 1 gene (NF1) as a breast cancer driver. Genetics 2012; 192:385-96. [PMID: 22851646 DOI: 10.1534/genetics.112.142802] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.
Collapse
|
33
|
Abstract
Rad9 plays a crucial role in maintaining genomic stability by regulating cell cycle checkpoints, DNA repair, telomere stability, and apoptosis. Rad9 controls these processes mainly as part of the heterotrimeric 9-1-1 (Rad9-Hus1-Rad1) complex. However, in recent years it has been demonstrated that Rad9 can also act independently of the 9-1-1 complex as a transcriptional factor, participate in immunoglobulin class switch recombination, and show 3'-5' exonuclease activity. Aberrant Rad9 expression has been associated with prostate, breast, lung, skin, thyroid, and gastric cancers. High expression of Rad9 is causally related to, at least, human prostate cancer growth. On the other hand, deletion of Mrad9, the mouse homolog, is responsible for increased skin cancer incidence. These results reveal that Rad9 can act as an oncogene or tumor suppressor. Which of the many functions of Rad9 are causally related to initiation and progression of tumorigenesis and the mechanistic details by which Rad9 induces or suppresses tumorigenesis are presently not known, but are crucial for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
34
|
De Benedetti A. The Tousled-Like Kinases as Guardians of Genome Integrity. ISRN MOLECULAR BIOLOGY 2012; 2012:627596. [PMID: 23869254 PMCID: PMC3712517 DOI: 10.5402/2012/627596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Tousled-like kinases (TLKs) function in processes of chromatin assembly, including replication, transcription, repair, and chromosome segregation. TLKs interact specifically (and phosphorylate) with the chromatin assembly factor Asf1, a histone H3-H4 chaperone, histone H3 itself at Ser10, and also Rad9, a key protein involved in DNA repair and cell cycle signaling following DNA damage. These interactions are believed to be responsible for the action of TLKs in double-stranded break repair and radioprotection and also in the propagation of the DNA damage response. Hence, I propose that TLKs play key roles in maintenance of genome integrity in many organisms of both kingdoms. In this paper, I highlight key issues of the known roles of these proteins, particularly in the context of DNA repair (IR and UV), their possible relevance to genome integrity and cancer development, and as possible targets for intervention in cancer management.
Collapse
Affiliation(s)
- Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
35
|
Young EF, Smilenov LB, Lieberman HB, Hall EJ. Combined haploinsufficiency and genetic control of the G2/M checkpoint in irradiated cells. Radiat Res 2012; 177:743-50. [PMID: 22607586 DOI: 10.1667/rr2875.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
When cells are exposed to a dose of radiation large enough to cause chromosome aberrations, they become arrested at the G(2)/M checkpoint, facilitating DNA repair. Defects in checkpoint control genes can impart radiosensitivity. Arrest kinetics were monitored in mouse embryo fibroblasts at doses ranging from 10 mGy to 5.0 Gy of γ radiation over a time course of 0 to 12 h. We observe no significant checkpoint engagement at doses below 100 mGy. The checkpoint is only fully activated at doses where most of the cells are either bound for mitotic catastrophe or are reproductively dead. Atm null cells with ablated checkpoint function exhibited no robust arrest. Surprisingly, haploinsufficiency for ATM alone or in combination with other radioresistance genes did not alter checkpoint activation. We have shown previously that haploinsufficiency for several radioresistance genes imparts intermediate phenotypes for several end points including apoptosis, transformation and survival. These findings suggest that checkpoint control does not contribute toward these intermediate phenotypes and that different biological processes can be activated at high doses compared to low doses.
Collapse
Affiliation(s)
- Erik F Young
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
36
|
Repair complexes of FEN1 endonuclease, DNA, and Rad9-Hus1-Rad1 are distinguished from their PCNA counterparts by functionally important stability. Proc Natl Acad Sci U S A 2012; 109:8528-33. [PMID: 22586102 DOI: 10.1073/pnas.1121116109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Processivity clamps such as proliferating cell nuclear antigen (PCNA) and the checkpoint sliding clamp Rad9/Rad1/Hus1 (9-1-1) act as versatile scaffolds in the coordinated recruitment of proteins involved in DNA replication, cell-cycle control, and DNA repair. Association and handoff of DNA-editing enzymes, such as flap endonuclease 1 (FEN1), with sliding clamps are key processes in biology, which are incompletely understood from a mechanistic point of view. We have used an integrative computational and experimental approach to define the assemblies of FEN1 with double-flap DNA substrates and either proliferating cell nuclear antigen or the checkpoint sliding clamp 9-1-1. Fully atomistic models of these two ternary complexes were developed and refined through extensive molecular dynamics simulations to expose their conformational dynamics. Clustering analysis revealed the most dominant conformations accessible to the complexes. The cluster centroids were subsequently used in conjunction with single-particle electron microscopy data to obtain a 3D EM reconstruction of the human 9-1-1/FEN1/DNA assembly at 18-Å resolution. Comparing the structures of the complexes revealed key differences in the orientation and interactions of FEN1 and double-flap DNA with the two clamps that are consistent with their respective functions in providing inherent flexibility for lagging strand DNA replication or inherent stability for DNA repair.
Collapse
|
37
|
Weis E, Schoen H, Victor A, Spix C, Ludwig M, Schneider-Raetzke B, Kohlschmidt N, Bartsch O, Gerhold-Ay A, Boehm N, Grus F, Haaf T, Galetzka D. Reduced mRNA and protein expression of the genomic caretaker RAD9A in primary fibroblasts of individuals with childhood and independent second cancer. PLoS One 2011; 6:e25750. [PMID: 21991345 PMCID: PMC3185005 DOI: 10.1371/journal.pone.0025750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/09/2011] [Indexed: 12/20/2022] Open
Abstract
Background The etiology of secondary cancer in childhood cancer survivors is largely unclear. Exposure of normal somatic cells to radiation and/or chemotherapy can damage DNA and if not all DNA lesions are properly fixed, the mis-repair may lead to pathological consequences. It is plausible to assume that genetic differences, i.e. in the pathways responsible for cell cycle control and DNA repair, play a critical role in the development of secondary cancer. Methodology/Findings To identify factors that may influence the susceptibility for second cancer formation, we recruited 20 individuals who survived a childhood malignancy and then developed a second cancer as well as 20 carefully matched control individuals with childhood malignancy but without a second cancer. By antibody microarrays, we screened primary fibroblasts of matched patients for differences in the amount of representative DNA repair-associated proteins. We found constitutively decreased levels of RAD9A and several other DNA repair proteins in two-cancer patients, compared to one-cancer patients. The RAD9A protein level increased in response to DNA damage, however to a lesser extent in the two-cancer patients. Quantification of mRNA expression by real-time RT PCR revealed lower RAD9A mRNA levels in both untreated and 1 Gy γ-irradiated cells of two-cancer patients. Conclusions/Significance Collectively, our results support the idea that modulation of RAD9A and other cell cycle arrest and DNA repair proteins contribute to the risk of developing a second malignancy in childhood cancer patients.
Collapse
Affiliation(s)
- Eva Weis
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Holger Schoen
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Anja Victor
- Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center, Mainz, Germany
| | - Claudia Spix
- Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center, Mainz, Germany
| | - Marco Ludwig
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | | | | | - Oliver Bartsch
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Aslihan Gerhold-Ay
- Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center, Mainz, Germany
| | - Nils Boehm
- Experimental Ophthalmology, Ocular Proteomics and Immunology Center, University Medical Center, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Ocular Proteomics and Immunology Center, University Medical Center, Mainz, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- * E-mail:
| | - Danuta Galetzka
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| |
Collapse
|