1
|
Bissoli I, Alabiso F, Cosentino C, Seragnoli Chystyakova A, Ferré F, Alviano F, Marrazzo P, Pignatti C, Agnetti G, Regazzi R, Flamigni F, D'Adamo S, Cetrullo S. Modeling heart failure by induced pluripotent stem cell-derived organoids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167861. [PMID: 40254266 DOI: 10.1016/j.bbadis.2025.167861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cardiac organoids offer significant advantages for in vitro studies, as their 3D structure and cellular composition more closely replicate tissue complexity compared to 2D models. This is particularly relevant for studying complex diseases like heart failure (HF), which involve multiple cell types and cardiac structures. Thus, the primary aim of this study was to produce self-assembled, scaffold-free cardiac organoids from induced pluripotent stem cells (iPSCs), capable of simulating key aspects of HF in vitro. Gene expression analysis confirmed a transition from stemness markers (OCT4, NANOG) to cardiac markers (TNNT2, DES), validating their cardiac phenotype. To induce hallmark HF features, endothelin-1 (ET-1) treatment was applied. Key findings indicate that this experimental model successfully reproduced HF pathological markers, including the upregulation of genes encoding atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and the cytoskeletal protein α-skeletal actin (ACTA1), along with changes in microRNA (miR) expression profiles. Functionally, ET-1 treatment reduced organoid contractility, indicating a decline in contractile function-a hallmark of HF. Furthermore, histological analyses by Thioflavin T (ThT) staining, ThT fluorescence assay and filter trap assay on protein extracts demonstrated protein aggregation following ET-1 treatment. Co-administration of various nutraceuticals was shown to mitigate these effects. These findings underscore the value of this ET-1-stimulated cardiac organoid model as a powerful platform for studying HF mechanisms and evaluating novel therapeutic approaches.
Collapse
Affiliation(s)
- Irene Bissoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| | - Francesco Alabiso
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Cosentino
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Fabrizio Ferré
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pasquale Marrazzo
- Department of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulio Agnetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania D'Adamo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Priya A, Mol N, Singh AK, Aditya AK, Ray AK. "Unveiling the impacts of climatic cold events on the cardiovascular health in animal models". THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179028. [PMID: 40073773 DOI: 10.1016/j.scitotenv.2025.179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Climate change is increasingly driving extreme weather events, leading to drastic temperature fluctuations worldwide. While overall temperatures rise, many regions are simultaneously experiencing severe cold spells that threaten the health of human populations, especially to vulnerable populations including the elderly and those with pre-existing conditions. Exposure to cold stress triggers significant physiological and biochemical disruptions. As cardiovascular diseases (CVDs) rank among the leading causes of global morbidity and mortality, the exacerbation of these conditions by cold exposure underscores critical public health challenges. The complex pathophysiological processes in cold-induced CVDs require careful analysis at an organ-system level, making animal models an ideal tool for replicating human physiological and molecular responses in a controlled environment. However, a detailed mechanism linking cold exposure and cardiovascular dysfunction remains incompletely understood, particularly in the context of animal models. Therefore, this comprehensive review aims to address and analyze from traditional rodent models to less conventional ruminants, broilers, canines, and primate animal models to understand cold stress-induced CVDs, with an extensive account of the potential molecular mechanisms and pathways such as oxidative stress, inflammation, vasomotor dysfunction, and apoptosis, along with emerging roles of cold shock proteins (CSPs), etc. We also delve into various potential therapeutic approaches and preventive measures in cold stress conditions. In conclusion, this review is the first to comprehensively address the underexplored cardiovascular complications arising from cold stress and their underlying mechanisms, particularly using animal models. Furthermore, it provides a foundation for advancing the development of more effective and targeted therapies through translational research.
Collapse
Affiliation(s)
- Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Nidhi Mol
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Centre, Mathura, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
3
|
Jiang P, Cheng B, Wang Z, Zheng Z, Duan Q. Distinct effects of physical and functional ablation of brown adipose tissue on T3-dependent pathological cardiac remodeling. Biochem Biophys Res Commun 2024; 735:150844. [PMID: 39432923 DOI: 10.1016/j.bbrc.2024.150844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Heart failure tends to deteriorate in colder climates, heightening the risk of major adverse cardiovascular events. Brown adipose tissue (BAT) serves as both a thermogenic organ and an atypical site for triiodothyronine (T3) synthesis in response to cold. This study investigates the potential role of BAT in contributing to abdominal aortic constriction (AAC)-induced pathological cardiac remodeling during cold exposure. In this study, we developed a mouse model of pathological cardiac remodeling using AAC. Physical excision of interscapular BAT (iBATx) was performed during cold exposure, and T3 synthesis levels were measured. Additionally, the impact of uncoupling protein 1 (UCP1) knockout on thermogenic function and pathological cardiac remodeling was investigated. In vitro studies were conducted to assess the effect of T3 on cardiomyocyte hypertrophy induced by phenylephrine (PE). Physical removal of interscapular BAT during cold exposure decreased T3 synthesis and mitigated pathological cardiac remodeling. Conversely, UCP1 knockout eliminated thermogenic function during cold exposure, while preserving BAT integrity increased T3 synthesis and exacerbated pathological cardiac remodeling. In vitro, T3 further aggravated cardiomyocyte hypertrophy caused by PE. These findings underscore the distinct effects of physical and functional BAT ablation on pathological cardiac remodeling, primarily through altering T3 levels rather than thermogenesis in cold environments. This research provides new insights into the differential roles of BAT in cardiac health, particularly under cold exposure conditions.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Medical College of Nanchang University, Nanchang, 330006, China
| | - Banghong Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Department of Cardiology, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine), Zhuzhou, China
| | - Zhichao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Medical College of Nanchang University, Nanchang, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Medical College of Nanchang University, Nanchang, 330006, China.
| | - Qiong Duan
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Medical College of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Voronkov NS, Popov SV, Naryzhnaya NV, Prasad NR, Petrov IM, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Maslov LN. Effect of Cold Adaptation on the State of Cardiovascular System and Cardiac Tolerance to Ischemia/Reperfusion Injury. IRANIAN BIOMEDICAL JOURNAL 2024; 28:59-70. [PMID: 38770843 PMCID: PMC11186613 DOI: 10.61186/ibj.3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/08/2023] [Indexed: 05/22/2024]
Abstract
Despite the unconditional success achieved in the treatment and prevention of AMI over the past 40 years, mortality in this disease remains high. Hence, it is necessary to develop novel drugs with mechanism of action different from those currently used in clinical practices. Studying the molecular mechanisms involved in the cardioprotective effect of adapting to cold could contribute to the development of drugs that increase cardiac tolerance to the impact of ischemia/reperfusion. An analysis of the published data shows that the long-term human stay in the Far North contributes to the occurrence of cardiovascular diseases. At the same time, chronic and continuous exposure to cold increases tolerance of the rat heart to ischemia/ reperfusion. It has been demonstrated that the cardioprotective effect of cold adaptation depends on the activation of ROS production, stimulation of the β2-adrenergic receptor and protein kinase C, MPT pore closing, and KATP channel.
Collapse
Affiliation(s)
- Nikita S. Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
- Department of Physiology, Tomsk State University, Tomsk, Russia
| | - Sergey V. Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | | | | | | | | | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
5
|
Pei Z, Xiong Y, Jiang S, Guo R, Jin W, Tao J, Zhang Z, Zhang Y, Zou Y, Gong Y, Ren J. Heavy Metal Scavenger Metallothionein Rescues Against Cold Stress-Evoked Myocardial Contractile Anomalies Through Regulation of Mitophagy. Cardiovasc Toxicol 2024; 24:85-101. [PMID: 38356081 DOI: 10.1007/s12012-023-09823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/24/2023] [Indexed: 02/16/2024]
Abstract
Cold stress prompts an increased prevalence of cardiovascular morbidity yet the underneath machinery remains unclear. Oxidative stress and autophagy appear to contribute to cold stress-induced cardiac anomalies. Our present study evaluated the effect of heavy metal antioxidant metallothionein on cold stress (4 °C)-induced in cardiac remodeling and contractile anomalies and cell signaling involved including regulation of autophagy and mitophagy. Cold stress (3 weeks) prompted interstitial fibrosis, mitochondrial damage (mitochondrial membrane potential and TEM ultrastructure), oxidative stress (glutathione, reactive oxygen species and superoxide), lipid peroxidation, protein injury, elevated left ventricular (LV) end systolic and diastolic diameters, decreased fractional shortening, ejection fraction, Langendorff heart function, cardiomyocyte shortening, maximal velocities of shortening/relengthening, and electrically stimulated intracellular Ca2+ rise along with elongated relaxation duration and intracellular Ca2+ clearance, the responses of which were overtly attenuated or mitigated by metallothionein. Levels of apoptosis, cell death (Bax and loss of Bcl2, IL-18), and autophagy (LC3BII-to-LC3BI ratio, Atg7 and Beclin-1) were overtly upregulated with comparable p62 under cold stress. Cold stress also evoked elevated mitophagy (decreased TOM20, increased Parkin and FUNDC1 with unaltered BNIP3). Cold stress overtly dampened phosphorylation of autophagy/mitophagy inhibitory molecules Akt and mTOR, stimulated and suppressed phosphorylation of ULK1 and eNOS, respectively, in the absence of altered pan protein levels. Cold stress-evoked responses in cell death, autophagy, mitophagy and their regulatory domains were overtly attenuated or ablated by metallothionein. Suppression of autophagy and mitophagy with 3-methyladenine, bafilomycin A1, cyclosporine A, and liensinine rescued hypothermia-instigated cardiomyocyte LC3B puncta formation and mechanical anomalies. Our findings support a protective nature for metallothionein in deep hypothermia-evoked cardiac abnormalities associated with regulation of autophagy and mitophagy.
Collapse
Affiliation(s)
- Zhaohui Pei
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China.
| | - Yayuan Xiong
- The First Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Shasha Jiang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Wei Jin
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zhenzhong Zhang
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yingmei Zhang
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yan Gong
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Jun Ren
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Portes AMO, Paula ABR, Miranda DCD, Resende LT, Coelho BIC, Teles MC, Jardim IABA, Natali AJ, Castrucci AMDL, Isoldi MC. A systematic review of the effects of cold exposure on pathological cardiac remodeling in mice. J Therm Biol 2023; 114:103598. [PMID: 37321023 DOI: 10.1016/j.jtherbio.2023.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Exposure to cold promotes cardiac remodeling, characterized by deleterious effects on structure and function, contributing to increased mortality from cardiovascular diseases. The mechanisms associated with these changes are poorly understood. This review gathers the literature data on the main alterations and mechanisms associated with the adverse cardiac structural and functional remodeling induced by cold exposure in mice. Original studies were identified by searching PubMed, Scopus, and Embase databases from January 1990 to June 2022. This systematic review was conducted in accordance with the criteria established by PRISMA and registered in PROSPERO (CRD42022350637). The risk of bias was evaluated by the SYRCLE. Eligible studies included original papers published in English that evaluated cardiac outcomes in mice submitted to short- or long-time cold exposure and had a control group at room temperature. Seventeen original articles were included in this review. Cold exposure induces pathological cardiac remodeling, characterized by detrimental structural and functional parameters, changes in metabolism and autophagy process, and increases in oxidative stress, inflammation, and apoptosis. In addition, Nppa, AT1A, Fbp3, BECN, ETA, and MT, appear to play fundamental roles in regulating cardiac remodeling. We suggest that strategies that seek to minimize the CVD risk and adverse effects of cold exposure should target these agents.
Collapse
Affiliation(s)
- Alexandre Martins Oliveira Portes
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil; Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil.
| | | | - Denise Coutinho de Miranda
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil; Department of Nutrition, Governador Ozanam Coelho University Center, Uba, Brazil
| | | | | | - Maria Cecília Teles
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| | - Ana Maria de Lauro Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, United States
| | - Mauro César Isoldi
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
7
|
Sun G, Su W, Bao J, Teng T, Song X, Wang J, Shi B. Dietary full-fat rice bran prevents the risk of heart ferroptosis and imbalance of energy metabolism induced by prolonged cold stimulation. Food Funct 2023; 14:1530-1544. [PMID: 36655680 DOI: 10.1039/d2fo03673h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The threat to human health from cold stimulation is increasing due to the frequent occurrence of temperature extremes. It is a challenge for people to resist the negative effects of prolonged cold stimulation on the heart. In this study, we created prolonged cold stimulation pig models to investigate the cardiac energy metabolism and injury during prolonged cold stimulation, and the molecular mechanisms by which dietary supplementation with full-fat rice bran reduces cardiac injury. The results showed that lesions in the morphological structure of the heart were detected under prolonged cold stimulation. At the same time, dystrophin was downregulated under the effect of prolonged cold stimulation. Cardiac fatty acid transport and utilization were promoted, and oxidative stress was increased under prolonged cold stimulation. It also increased MDA content and decreased T-AOC level in the heart, while promoting the mRNA expression of Nrf2 and NQO1, as well as the protein content of Nrf2 and HO-1. Prolonged cold stimulation induced mitochondrial lesions, mitochondrial fusion, and mitophagy in the heart. Prolonged cold stimulation promoted the mRNA expression of PTGS2, TLR4, MyD88, NLRP3, and IL-1β; and protein expression of PTGS2, NLRP3, and mature-IL-1β. GCH1 and FtH inhibited by prolonged cold stimulation caused the activation of heart ferroptosis. In addition, dietary supplementation with full-fat rice bran improved oxidative stress in the heart and inhibited mitophagy, ferroptosis, and pyroptosis. In conclusion, prolonged cold stimulation heightens the risk of cardiac ferroptosis and imbalance of energy metabolism, whereas dietary supplementation with full-fat rice bran mitigates the adverse effects of prolonged cold stimulation on the heart.
Collapse
Affiliation(s)
- Guodong Sun
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Wei Su
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Jiaxin Bao
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Teng Teng
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Xin Song
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Jiawei Wang
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Baoming Shi
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Lv H, He Y, Wu J, Zhen L, Zheng Y. Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis. J Vet Sci 2022; 24:e2. [PMID: 36726274 PMCID: PMC9899938 DOI: 10.4142/jvs.22185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. OBJECTIVES This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. METHODS In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4°C) for three hours per day for three weeks. RESULTS CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stress-involved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. CONCLUSIONS These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.
Collapse
Affiliation(s)
- Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Yvxi He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Jingjing Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| | - Yvwei Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| |
Collapse
|
9
|
Ruperez C, Blasco-Roset A, Kular D, Cairo M, Ferrer-Curriu G, Villarroya J, Zamora M, Crispi F, Villarroya F, Planavila A. Autophagy is Involved in Cardiac Remodeling in Response to Environmental Temperature Change. Front Physiol 2022; 13:864427. [PMID: 35514342 PMCID: PMC9061941 DOI: 10.3389/fphys.2022.864427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: To study the reversibility of cold-induced cardiac hypertrophy and the role of autophagy in this process. Background: Chronic exposure to cold is known to cause cardiac hypertrophy independent of blood pressure elevation. The reversibility of this process and the molecular mechanisms involved are unknown. Methods: Studies were performed in two-month-old mice exposed to cold (4°C) for 24 h or 10 days. After exposure, the animals were returned to room temperature (21°C) for 24 h or 1 week. Results: We found that chronic cold exposure significantly increased the heart weight/tibia length (HW/TL) ratio, the mean area of cardiomyocytes, and the expression of hypertrophy markers, but significantly decreased the expression of genes involved in fatty acid oxidation. Echocardiographic measurements confirmed hypertrophy development after chronic cold exposure. One week of deacclimation for cold-exposed mice fully reverted the morphological, functional, and gene expression indicators of cardiac hypertrophy. Experiments involving injection of leupeptin at 1 h before sacrifice (to block autophagic flux) indicated that cardiac autophagy was repressed under cold exposure and re-activated during the first 24 h after mice were returned to room temperature. Pharmacological blockage of autophagy for 1 week using chloroquine in mice subjected to deacclimation from cold significantly inhibited the reversion of cardiac hypertrophy. Conclusion: Our data indicate that mice exposed to cold develop a marked cardiac hypertrophy that is reversed after 1 week of deacclimation. We propose that autophagy is a major mechanism underlying the heart remodeling seen in response to cold exposure and its posterior reversion after deacclimation.
Collapse
Affiliation(s)
- C Ruperez
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - A Blasco-Roset
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - D Kular
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - M Cairo
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - G Ferrer-Curriu
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - J Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - M Zamora
- Fetal Medicine Research Center, BCNatal -Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - F Crispi
- Fetal Medicine Research Center, BCNatal -Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - F Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - A Planavila
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
10
|
Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S, Busceti CL, Fornai F, Rubattu S. Uncoupling Protein 2 as a Pathogenic Determinant and Therapeutic Target in Cardiovascular and Metabolic Diseases. Curr Neuropharmacol 2022; 20:662-674. [PMID: 33882809 PMCID: PMC9878956 DOI: 10.2174/1570159x19666210421094204] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
Uncoupling protein 2 (UCP2) is a mitochondrial protein that acts as an anion carrier. It is involved in the regulation of several processes, including mitochondrial membrane potential, generation of reactive oxygen species within the inner mitochondrial membrane and calcium homeostasis. UCP2 expression can be regulated at different levels: genetic (gene variants), transcriptional [by peroxisome proliferator-activated receptors (PPARs) and microRNAs], and post-translational. Experimental evidence indicates that activation of UCP2 expression through the AMPK/PPAR-α axis exerts a protective effect toward renal damage and stroke occurrence in an animal model of ischemic stroke (IS) associated with hypertension. UCP2 plays a key role in heart diseases (myocardial infarction and cardiac hypertrophy) and metabolic disorders (obesity and diabetes). In humans, UCP2 genetic variants (-866G/A and Ala55Val) associate with an increased risk of type 2 diabetes mellitus and IS development. Over the last few years, many agents that modulate UCP2 expression have been identified. Some of them are natural compounds of plant origin, such as Brassica oleracea, curcumin, berberine and resveratrol. Other molecules, currently used in clinical practice, include anti-diabetic (gliptin) and chemotherapeutic (doxorubicin and taxol) drugs. This evidence highlights the relevant role of UCP2 for the treatment of a wide range of diseases, which affect the national health systems of Western countries. We will review current knowledge on the physiological and pathological implications of UCP2 with particular regard to cardiovascular and metabolic disorders and will focus on the available therapeutic approaches affecting UCP2 level for the treatment of human diseases.
Collapse
Affiliation(s)
- Rosita Stanzione
- IRCCS Neuromed, Pozzilli Isernia, Italy,,Address correspondence to these authors at the IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Is, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail: and Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, 00189 Rome, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail:
| | | | | | | | | | | | - Francesco Fornai
- IRCCS Neuromed, Pozzilli Isernia, Italy,,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli Isernia, Italy,,Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy,Address correspondence to these authors at the IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Is, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail: and Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, 00189 Rome, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail:
| |
Collapse
|
11
|
Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, Aslkhodapasandhokmabad H, Bi Y, Ge J, Ren J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr Rev 2021; 42:839-871. [PMID: 33693711 DOI: 10.1210/endrev/bnab006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - James R Sowers
- Dalton and Diabetes and Cardiovascular Center, University of Missouri Columbia, Columbia, Missouri 65212, USA
| | | | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
12
|
Kukula O, Çiçekli MN, Şafak S, Günaydın C. Role of TRPV1 channels on glycogen synthase kinase-3β and oxidative stress in ouabain-induced bipolar disease. J Recept Signal Transduct Res 2021; 42:338-348. [PMID: 34304690 DOI: 10.1080/10799893.2021.1955928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder (BD) is a multifactorial chronic and refractory disease characterized by manic, depressive, and mixed mood episodes. Although epidemiological, and pathophysiological studies demonstrated a strong correlation between bipolar disorder and oxidative stress, precise etiology is still missing. Recent studies suggested the possible role of transient receptor potential channels (TRP) in the BD but, current knowledge is limited. Therefore, the current study investigates the possible role of TRPV1 in the ouabain-induced model of BD. The model was created with intracerebroventricular single dose ouabain (10-3 M) administration. Animals were treated with capsaicin, capsazepine, and lithium for seven days. Mania and depressive-like states were investigated with open-field, sucrose preference, and elevated plus maze tests. Oxidative stress was assessed by measuring total antioxidant and oxidant states, spectrophotometrically. The phosphorylation Glycogen synthase kinase-3β (GSK-3β) evaluated by western blotting. Our results demonstrated that capsaicin dose-dependently inhibited the ouabain-induced hyperlocomotion and depression. Although capsazepine exacerbated behavioral impairment, it did not show a significant effect on the antioxidant and oxidant states, and the effects of capsazepine on behaviors were abolished by combination with capsaicin. Additionally, capsaicin potently prevented the ouabain-induced decrease in GSK-3β phosphorylation. In contrast, capsazepine potentiated ouabain-induced decrease in GSK-3β phosphorylation and combination with capsaicin, suppressed the effect of capsazepine on GSK-3β phosphorylation. The effects of TRPV1 activation on oxidative stress and mania-like behaviors in the ouabain-induced BD model might be regulated by GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Osman Kukula
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Nusret Çiçekli
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Sinan Şafak
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
13
|
Yan Q, Tang J, Zhang X, Wu L, Xu Y, Wang L. Does Transient Receptor Potential Vanilloid Type 1 Alleviate or Aggravate Pathological Myocardial Hypertrophy? Front Pharmacol 2021; 12:681286. [PMID: 34040539 PMCID: PMC8143375 DOI: 10.3389/fphar.2021.681286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel, which is involved in the endogenous stress adaptation mechanism for protection of the heart as well as the occurrence and development of some heart diseases. Although the effect of activation of the TRPV1 channel on different types of non-neural cells in the heart remains unclear, most data show that stimulation of sensory nerves expressing TRPV1 or stimulation/overexpression of the TRPV1 channel has a beneficial role in heart disease. Some studies have proven that TRPV1 has an important relationship with pathological myocardial hypertrophy, but the specific mechanism and effect are not clear. In order to help researchers better understand the relationship between TRPV1 and pathological myocardial hypertrophy, this paper aims to summarize the effect of TRPV1 and the related mechanism in the occurrence and development of pathological myocardial hypertrophy from the following three points of view: 1) role of TRPV1 in alleviation of pathological myocardial hypertrophy; 2) role of TRPV1 in aggravation of pathological myocardial hypertrophy; and 3) the point of view of our team of researchers. It is expected that new therapies can provide potential targets for pathological myocardial hypertrophy.
Collapse
Affiliation(s)
- Qiqi Yan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun Tang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Liuyang Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunyi Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
14
|
Yin Z, Ding G, Chen X, Qin X, Xu H, Zeng B, Ren J, Zheng Q, Wang S. Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury. Metabolism 2020; 113:154397. [PMID: 33058849 DOI: 10.1016/j.metabol.2020.154397] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cold exposure provokes cardiac remodeling and cardiac dysfunction. Autophagy participates in cold stress-induced cardiovascular dysfunction. This study was designed to examine the impact of Beclin1 haploinsufficiency (BECN+/-) in cold stress-induced cardiac geometric and contractile responses. METHODS AND MATERIALS Wild-type (WT) and BECN+/- mice were assigned to normal or cold exposure (4 °C) environment for 4 weeks prior to evaluation of cardiac geometry, contractile and mitochondrial properties. Autophagy, apoptosis and ferroptosis were evaluated. RESULTS Our data revealed that cold stress triggered cardiac remodeling, compromised myocardial contractile capacity including ejection fraction, fractional shortening, peak shortening and maximal velocity of shortening/relengthening, duration of shortening and relengthening, intracellular Ca2+ release, intracellular Ca2+ decay, mitochondrial ultrastructural disarray, superoxide production, unchecked autophagy, apoptosis and ferroptosis, the effects of which were negated by Beclin1 haploinsufficiency. Circulating levels of corticosterone were elevated in both WT and BECN+/- mice. Treatment of corticosterone synthesis inhibitor metyrapone or ferroptosis inhibitor liproxstatins-1 rescued cold stress-induced cardiac dysfunction and mitochondrial injury. In vitro study noted that corticosterone challenge compromised cardiomyocyte function, provoked lipid peroxidation and mitochondrial injury, the effects of which were nullified by Beclin1 haploinsufficiency, inhibitors of lipoxygenase, ferroptosis and autophagy. In addition, ferroptosis inducer erastin abrogated Beclin1 deficiency-offered cardioprotection. CONCLUSION These data suggest that Beclin1 haploinsufficiency protects against cold exposure-induced cardiac dysfunction possibly through corticosterone- and ferroptosis-mediated mechanisms.
Collapse
Affiliation(s)
- Zhiqiang Yin
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science, Shenzhen 518020, China
| | - Gangbing Ding
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science, Shenzhen 518020, China
| | - Xu Chen
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science, Shenzhen 518020, China
| | - Xing Qin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haixia Xu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Biru Zeng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science, Shenzhen 518020, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science, Shenzhen 518020, China.
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
15
|
Kong X, Liu H, He X, Sun Y, Ge W. Unraveling the Mystery of Cold Stress-Induced Myocardial Injury. Front Physiol 2020; 11:580811. [PMID: 33250775 PMCID: PMC7674829 DOI: 10.3389/fphys.2020.580811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
Exposure to low ambient temperature imposes great challenge to human health. Epidemiological evidence has noted significantly elevated emergency admission and mortality rate in cold climate in many regions, in particular, adverse events in cardiovascular system. Cold stress is becoming one of the important risk factors for cardiovascular death. Through recent advance in echocardiography and myocardial histological techniques, both clinical and experimental experiments have unveiled that cold stress triggers a variety of pathological and pathophysiological injuries, including ventricular wall thickening, cardiac hypertrophy, elevated blood pressure, decreased cardiac function, and myocardial interstitial fibrosis. In order to examine the potential mechanism of action behind cold stress-induced cardiovascular anomalies, ample biochemical and molecular biological experiments have been conducted to denote a role for mitochondrial injury, intracellular Ca2+ dysregulation, generation of reactive oxygen species (ROS) and other superoxide, altered gene and protein profiles for apoptosis and autophagy, and increased adrenergic receptor sensitivity in cold stress-induced cardiovascular anomalies. These findings suggest that cold stress may damage the myocardium through mitochondrial injury, apoptosis, autophagy, metabolism, oxidative stress, and neuroendocrine pathways. Although the precise nature remains elusive for cold stress-induced cardiovascular dysfunction, endothelin (ET-A) receptor, endoplasmic reticulum (ER) stress, transient receptor potential vanilloid, mitochondrial-related protein including NRFs and UCP-2, ROS, Nrf2-Keap1 signaling pathway, Bcl-2/Bax, and lipoprotein lipase (LPL) signaling may all play a pivotal role. For myocardial injury evoked by cold stress, more comprehensive and in-depth mechanisms are warranted to better define the potential therapeutic options for cold stress-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Xue Kong
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haitao Liu
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaole He
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Singh S, Nandi A, Banerjee O, Bhattacharjee A, Prasad SK, Maji BK, Saha A, Mukherjee S. Cold stress modulates redox signalling in murine fresh bone marrow cells and promotes osteoclast transformation. Arch Physiol Biochem 2020; 126:348-355. [PMID: 30468085 DOI: 10.1080/13813455.2018.1538249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: Alteration of redox signalling and RANK-L expression in FBMCs of mice exposed to different intensities of cold stress (15 °C, 8 °C and 4 °C) were studied.Objective: To understand the effects of varying intensities of cold stress on murine FBMCs and its impact on osteoclastogenesis.Materials and methods: FBMCs were isolated from mice exposed to different intensities of cold stress and used for immunoblotting and biochemical assays. Bone histometry was also done.Results: Different intensities of cold stress perturb redox signalling in FBMCs and alters bone histometry. Higher RANK-L expressions were noted in FBMCs of mice exposed to 8 °C and 4 °C as compared with 15 °C.Discussion and conclusion: Cold stress boosts free radical production in FBMC's, which might enhance RANK-L expression, an indicator of osteoclastogenesis. Thus, we speculate that stronger cold stress (8 °C and 4 °C) contributes to the development of early bone loss.
Collapse
Affiliation(s)
| | - Ajeya Nandi
- Department of Physiology, Serampore College, Serampore, India
| | - Oly Banerjee
- Department of Physiology, Serampore College, Serampore, India
| | | | | | | | - Adipa Saha
- Department of Physiology, Serampore College, Serampore, India
| | | |
Collapse
|
17
|
Hong J, Lisco AM, Rudebush TL, Yu L, Gao L, Kitzerow O, Zucker IH, Wang HJ. Identification of Cardiac Expression Pattern of Transient Receptor Potential Vanilloid Type 1 (TRPV1) Receptor using a Transgenic Reporter Mouse Model. Neurosci Lett 2020; 737:135320. [PMID: 32841712 DOI: 10.1016/j.neulet.2020.135320] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) channels are structurally related, non-selective cation channels that exhibit a high permeability to calcium. Sensory nerve endings expressing TRPV1 channels play a prominent role in regulating the cardiac sympathetic afferent reflex and contribute to cardiac remodeling and dysfunction in chronic heart failure. However, the precise expression of TRPV1 channels in cardiomyocytes vs. non-cardiomyocytes remains debated. Here we utilized a tdTomato-GFP reporter mouse crossed with a mouse line expressing Cre recombinase under the control of the TRPV1 promoter to map the TRPV1 expression pattern in heart. In this model, TRPV1-negative cells express tdTomato protein (red), whereas TRPV1-positive cells express GFP protein (green). As we expected, substantial GFP expression was found in many small and medium diameter dorsal root ganglia neurons in heterozygous TRPV1-Cre +/-, tdTomato flox/flox +/- male mice, suggesting that this heterozygous model is sufficient for labeling TRPV1-positive cells. Furthermore, these results showed that GFP green staining was not detectable in cardiomyocytes. Instead, we found strong GFP green staining in cardiac blood vessels-thought to be arterioles-in the heart. We also observed strong GFP signals on PGP9.5-positive cardiac nerve endings in the epicardium. In summary, this study does not support the concept that TRPV1 channels are strongly expressed in mouse cardiomyocytes. We conclude that TRPV1 channels in mouse heart are mostly expressed on non-cardiomyocyte cells including cardiac nerve endings and vessels. These data have important implications for the modulations of cardiogenic reflexes.
Collapse
Affiliation(s)
- Juan Hong
- Department of Anesthesiology, University of Nebraska Medical Center, NE, 68198, USA
| | - Amanda M Lisco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, NE, 68198, USA
| | - Tara L Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, NE, 68198, USA
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, NE, 68198, USA
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, NE, 68198, USA
| | - Oliver Kitzerow
- Department of Anesthesiology, University of Nebraska Medical Center, NE, 68198, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, NE, 68198, USA
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, NE, 68198, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, NE, 68198, USA.
| |
Collapse
|
18
|
Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:836. [PMID: 32903613 PMCID: PMC7438729 DOI: 10.3389/fphys.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is one of the chronic conditions with the highest mortality rate in the world. Underlying conditions such as hypertension, metabolic disorders, and habits like smoking are contributors to the manifestation of cardiovascular diseases. The treatment of cardiovascular diseases is inseparable from the development of drugs. Consequently, this has led to many researchers to focus on the search for effective drug targets. The transient receptor potential channel Ankyrin 1 (TRPA1) subtype is a non-selective cation channel, which belongs to the transient receptor potential (TRP) ion channel. Previous studies have shown that members of the TRP family contribute significantly to cardiovascular disease. However, many researchers have not explored the role of TRPA1 as a potential target for the treatment of cardiovascular diseases. Furthermore, recent studies revealed that TRPA1 is commonly expressed in the vascular endothelium. The endothelium is linked to the causes of some cardiovascular diseases, such as atherosclerosis, myocardial fibrosis, heart failure, and arrhythmia. The activation of TRPA1 has a positive effect on atherosclerosis, but it has a negative effect on other cardiovascular diseases such as myocardial fibrosis and heart failure. This review introduces the structural and functional characteristics of TRPA1 and its importance on vascular physiology and common cardiovascular diseases. Moreover, this review summarizes some evidence that TRPA1 is correlated to cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Song Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Institute of Sport Science, Harbin Sport University, Harbin, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
19
|
Sakaguchi R, Mori Y. Transient receptor potential (TRP) channels: Biosensors for redox environmental stimuli and cellular status. Free Radic Biol Med 2020; 146:36-44. [PMID: 31682917 DOI: 10.1016/j.freeradbiomed.2019.10.415] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022]
Abstract
Transient receptor potential (TRP) channels are a family of cation channels that depolarizes the membrane potential and regulates intracellular concentrations of cations such as Ca2+. TRP channels are also known to function as "biosensors" to detect changes of the surrounding environment and cellular status. Lines of evidence have unveiled that numerous proteins are subject to redox modification and subsequent signaling. For example, TRPM2, TRPC5, TRPV1, and TRPA1 are known as redox sensors activated by hydrogen peroxide (H2O2), nitric oxide (NO), and electrophiles. Thus, these channels facilitate the influx of cations which in turn triggers the appropriate cellular responses against environmental redox stimuli and cellular redox status. In this review, we focus on the recent findings regarding the functions of TRP channels in relation to other ion channels, and other proteins which also go through redox modification of cysteine (Cys) residues. We aim to understand the structural and molecular basis of the redox-sensing mechanisms of TRP channels in exerting various functions under physiological conditions as well as pathological conditions such as cancer malignancy. Their future potential as drug targets will also be discussed.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan; The World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 615-8510, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan; The World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 615-8510, Japan.
| |
Collapse
|
20
|
Statins with different lipophilic indices exert distinct effects on skeletal, cardiac and vascular smooth muscle. Life Sci 2019; 242:117225. [PMID: 31881229 DOI: 10.1016/j.lfs.2019.117225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/20/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023]
Abstract
AIMS Data concerning the influence of statin lipophilicity on the myotoxic and pleiotropic effects of statins is conflicting, and mechanistic head-to-head comparison studies evaluating this parameter are limited. In order to address the disparity, this mechanistic investigation aimed to assess the effects of two short-acting statins with different lipophilic indices on skeletal, cardiac and vascular smooth muscle physiology. MATERIALS AND METHODS Young female Wistar rats were randomised to simvastatin (80 mg kg-1 day-1), pravastatin (160 mg kg-1 day-1) or control treatment groups. Changes in functional muscle performance were assessed, as well as mRNA levels of genes relating to atrophy, hypertrophy, mitochondrial function and/or oxidative stress. KEY FINDINGS There were no significant differences in the mRNA profiles of isolated skeletal muscles amongst the treatment groups. In terms of skeleletal muscle performance, simvastatin reduced functionality but treatment with pravastatin significantly improved force production. Rodents given simvastatin demonstrated comparable myocardial integrity to the control group. Conversely, pravastatin reduced left ventricular action potential duration, diastolic stiffness and Mhc-β expression. Pravastatin improved endothelium-dependent relaxation, particularly in muscular arteries, but this effect was absent in the simvastatin-treated rats. The responsiveness of isolated blood vessels to noradrenaline also differed between the statin groups. The findings of this study support that the effects of statins on skeletal, cardiac and vascular smooth muscle vary with their lipophilic indices. SIGNIFICANCE The results of this work have important implications for elucidating the mechanisms responsible for the myotoxic and pleiotropic effects of statins.
Collapse
|
21
|
Short-term effects of ambient air pollution and outdoor temperature on biomarkers of myocardial damage, inflammation and oxidative stress in healthy adults. Environ Epidemiol 2019; 3:e078. [PMID: 33778346 PMCID: PMC7939428 DOI: 10.1097/ee9.0000000000000078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023] Open
Abstract
Supplemental Digital Content is available in the text. The mechanisms whereby ambient air pollution and temperature changes promote cardiac events remain incompletely described. Seventy-three nonsmoking healthy adults (mean age 23.3, SD 5.4 years) were followed with up to four repeated visits across 15 months in Beijing in 2014–2016. Biomarkers relevant to myocardial damage (high-sensitivity cardiac troponin I [hs-cTnI]), inflammation (growth differentiation factor-15 [GDF-15]), and oxidative stress (8-hydroxy-2′-deoxyguanosine [8-OHdG]) were measured at each visit, while ambient air pollution and temperature were monitored throughout the study. Linear mixed-effects models coupled with distributed lag nonlinear models were used to assess the impacts of each exposure measure on study outcomes. During follow-up, average daily concentrations of fine particulate matter and outdoor temperature were 62.9 µg/m3 (8.1–331.0 µg/m3) and 10.1 °C (−6.5°C to 29.5°C). Serum hs-cTnI levels were detectable in 18.2% of blood samples, with 27.4% of individuals having ≥1 detectable values. Higher levels of ambient particulates and gaseous pollutants (per interquartile range) up to 14 days before clinical visits were associated with significant alterations in hs-cTnI levels of 22.9% (95% CI, 6.4, 39.4) to 154.7% (95% CI, 94.4, 215.1). These changes were accompanied by elevations of circulating GDF-15 and urinary 8-OHdG levels. Both low (5th percentile, −2.5 °C) and high (95th percentile, 24.8°C) outdoor temperatures, with breakpoint at ~13.0°C as the reference level, were also associated with elevations of hs-cTnI levels. Short-term exposure to ambient air pollution and temperature was associated with cardiac troponin, a biomarker of myocardial damage, along with increased inflammation and oxidative stress responses. These findings extend our understanding of the biological mechanisms linking pervasive environmental exposure to adverse cardiac events.
Collapse
|
22
|
Heger LA, Kerber M, Hortmann M, Robinson S, Mauler M, Stallmann D, Duerschmied D, Bode C, Hehrlein C, Ahrens I. Expression of the oxygen-sensitive transcription factor subunit HIF-1α in patients suffering from secondary Raynaud syndrome. Acta Pharmacol Sin 2019; 40:500-506. [PMID: 29991707 DOI: 10.1038/s41401-018-0055-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
Anti-ischemic therapy remains a challenge due to the complexity of hypoxia response pathways. Hypoxia-inducible factor (HIF)-1 is a heterodimer transcription factor consisting of 2 subunits, HIF-1α and HIF-1β. Hypoxia-dependent activation of HIF-1α regulates cellular O2 homeostasis. Raynaud syndrome (RS), as a comorbidity of the autoimmune disease systemic sclerosis (SS), is characterized by vasospasms that limit blood flow to the limbs, resulting in hypoxia. A single-center randomized study was conducted to compare prostaglandin E1 (PgE1) therapy with a treatment combining PgE1 and an endothelin-1 blocker, bosentan. A total of 30 patients suffering from SS with RS were enrolled. We examined the regulation of HIF-1α, its target heme oxygenase-1 (HMOX-1), and the serum levels of the HIF-1α protein in a subset of patients as well as in ten healthy individuals. The expression of HIF-1α and HMOX-1 in monocytes was measured using absolute plasmid-based quantitative real-time PCR, whereas serum HIF-1α levels were measured with ELISA. Samples were taken at the time of randomization and after 24 weeks. We found that HIF-1α and HMOX-1 mRNA expression in monocytes and serum HIF-1α protein levels were significantly higher in the SS/RS patients compared to the healthy control group. Single-drug therapy significantly increased HIF-1α and HMOX-1 mRNA expression in monocytes and serum HIF-1α protein levels in the SS/RS patients compared to those at the time of randomization, whereas combining PgE1 with an endothelin-1 blocker prevented the further increases in HIF-1α and HMOX-1 expression. We propose HIF-1α and HMOX-1 as novel markers for anti-ischemic therapy in RS.
Collapse
|
23
|
Falcón D, Galeano-Otero I, Calderón-Sánchez E, Del Toro R, Martín-Bórnez M, Rosado JA, Hmadcha A, Smani T. TRP Channels: Current Perspectives in the Adverse Cardiac Remodeling. Front Physiol 2019; 10:159. [PMID: 30881310 PMCID: PMC6406032 DOI: 10.3389/fphys.2019.00159] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Calcium is an important second messenger required not only for the excitation-contraction coupling of the heart but also critical for the activation of cell signaling pathways involved in the adverse cardiac remodeling and consequently for the heart failure. Sustained neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart’s structural and molecular adaptation might elevate the risk of developing heart failure and malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by numerous physical and/or chemical stimuli. TRP channels participate to the handling of the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different cardiovascular alterations. This review provides an overview of the current knowledge of TRP proteins implication in the pathologic process of some frequent cardiac diseases associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, and conduction alteration.
Collapse
Affiliation(s)
- Debora Falcón
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Eva Calderón-Sánchez
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Raquel Del Toro
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Marta Martín-Bórnez
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Abdelkrim Hmadcha
- Department of Generation and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain.,CIBERDEM, Madrid, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
24
|
Ren J, Pei Z, Chen X, Berg MJ, Matrougui K, Zhang QH, Zhang Y. Inhibition of CYP2E1 attenuates myocardial dysfunction in a murine model of insulin resistance through NLRP3-mediated regulation of mitophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:206-217. [DOI: 10.1016/j.bbadis.2018.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 01/28/2023]
|
25
|
Ceylan AF, Wang S, Kandadi MR, Chen J, Hua Y, Pei Z, Nair S, Ren J. Cardiomyocyte-specific knockout of endothelin receptor a attenuates obesity cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3339-3352. [DOI: 10.1016/j.bbadis.2018.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
|
26
|
Li X, Hou J, Du J, Feng J, Yang Y, Shen Y, Chen S, Feng J, Yang D, Li D, Pei H, Yang Y. Potential Protective Mechanism in the Cardiac Microvascular Injury. Hypertension 2018; 72:116-127. [PMID: 29735636 DOI: 10.1161/hypertensionaha.118.11035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/02/2018] [Accepted: 03/31/2018] [Indexed: 01/22/2023]
Abstract
Cardiac microvascular injury often occurs in patients with type 2 diabetes mellitus (T2DM) who develop hyperglycemia and hyperlipidemia. However, besides reported contradictory roles in cardiac diseases, the function of TRPV1 (transient receptor potential vanilloid 1) in cardiac microvessels is not well defined. This study was performed to determine the detailed role of TRPV1 in cardiac microvascular endothelial cells (CMECs) in T2DM. T2DM mice were established by multiple injections of low-dose streptozotocin and high-fat feeding. CMECs were cultured separately in mediums of normal glucose, high glucose (HG), high fatty acid (HF), and HG plus HF (HG-HF). HG-HF inhibited TRPV1 expression in CMECs, reducing cellular Ca2+ content ([Ca2+]i). T2DM impaired cardiac function, disturbed glucose uptake, and damaged microvascular barrier, which were further aggravated by TRPV1-/- Exposure to HG-HF, particularly in TRPV1-/- CMECs, led to a higher level of apoptosis and a lower level of nitric oxide production in viable CMECs. HG-HF markedly enhanced generation of reactive oxygen species and nitrotyrosine, especially in the absence of TRPV1. H2O2 administration reduced TRPV1 expression in CMECs. HG-HF significantly depressed expression of PGC-1α (peroxisome proliferator-activated receptor-γ coactivator-1α) and OPA1 (optic atrophy 1) by reducing [Ca2+]i, whereas OPA1 supplementation partly reversed those detrimental effects induced by TRPV1-/- Furthermore, capsaicin treatment not only attenuated CMECs injury induced by HG-HF but also mitigated cardiac microvascular injury induced by T2DM. Collectively, T2DM leads to cardiac microvascular injury by exacerbating the vicious circle of TRPV1 blockage and reactive oxygen species overload. Long-term capsaicin can protect cardiac microvessels against T2DM via suppressing oxidative/nitrative stress mediated by TRPV1/Ca2+/PGC-1α/OPA1 pathway in CMECs.
Collapse
Affiliation(s)
- Xiuchuan Li
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Juanni Hou
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Jin Du
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Jian Feng
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Yi Yang
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Yang Shen
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Sha Chen
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Juan Feng
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Haifeng Pei
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Yongjian Yang
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| |
Collapse
|
27
|
Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, Du Z, Cai B. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Res Ther 2018; 9:44. [PMID: 29482607 PMCID: PMC5828435 DOI: 10.1186/s13287-018-0773-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the past years, cardiac mortality has decreased, but cardiac diseases are still responsible for millions of deaths every year worldwide. Bone-marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapeutic strategy because of its capacity to differentiate into cardiac cells. Current research indicates that chemical substances, microRNAs, and cytokines have biological functions that regulate the cardiomyocytes differentiation of BMSCs. In this review, we chiefly summarize the regulatory factors that induce BMSCs to differentiate into cardiomyocytes.
Collapse
Affiliation(s)
- Xiaofei Guo
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yan Bai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Li Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Bo Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Naufal Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Katherine Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Brazil
| | - Zhimin Du
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Benzhi Cai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| |
Collapse
|
28
|
Hu N, Ren J, Zhang Y. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α. Oncotarget 2018; 7:76398-76414. [PMID: 27634872 PMCID: PMC5363518 DOI: 10.18632/oncotarget.11977] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on insulin resistance-induced myocardial damage and mechanisms involved with a focus on autophagy. Wild-type (WT) and transgenic mice overexpressing ALDH2 were fed sucrose or starch diet for 8 weeks and cardiac function and intracellular Ca2+ handling were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate Akt, heme oxygenase-1 (HO-1), PGC-1α and Sirt-3. Our data revealed that sucrose intake provoked insulin resistance and compromised fractional shortening, cardiomyocyte function and intracellular Ca2+ handling (p < 0.05) along with unaltered cardiomyocyte size (p > 0.05), mitochondrial injury (elevated ROS generation, suppressed NAD+ and aconitase activity, p < 0.05 for all), the effect of which was ablated by ALDH2. In vitro incubation of the ALDH2 activator Alda-1, the Sirt3 activator oroxylin A and the histone acetyltransferase inhibitor CPTH2 rescued insulin resistance-induced changes in aconitase activity and cardiomyocyte function (p < 0.05). Inhibiting Sirt3 deacetylase using 5-amino-2-(4-aminophenyl) benzoxazole negated Alda-1-induced cardioprotective effects. Taken together, our data suggest that ALDH2 serves as an indispensable cardioprotective factor against insulin resistance-induced cardiomyopathy with a mechanism possibly associated with facilitation of the Sirt3-dependent PGC-1α deacetylation.
Collapse
Affiliation(s)
- Nan Hu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| |
Collapse
|
29
|
Cong P, Liu Y, Liu N, Zhang Y, Tong C, Shi L, Liu X, Shi X, Liu Y, Tong Z, Hou M. Cold exposure induced oxidative stress and apoptosis in the myocardium by inhibiting the Nrf2-Keap1 signaling pathway. BMC Cardiovasc Disord 2018; 18:36. [PMID: 29448942 PMCID: PMC5815212 DOI: 10.1186/s12872-018-0748-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exposure to cold weather is associated with infaust cardiovascular responses, including myocardial infarction and arrhythmias. However, the exact mechanisms of these adverse changes in the myocardium under cold stress are unknown. This study was designed to investigate the mechanisms of cardiac injury induced by cold stress in mice. METHODS The mice were randomly divided into three groups, normal control (no handling), 1-week cold stress and 2-week cold stress. We observed physiological changes of the mice and morphological changes of myocardium tissues, and we measured the changes of 3'-nitrotyrosine and 4-hydroxynonenal, the expression levels of superoxide dismutase-1, superoxide dismutase-2, Bax, Bad, Bcl-2, Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch like-ECH-associated protein 1 (Keap1) in myocardium by western blot. Besides, we detected mRNA of superoxide dismutase-1, superoxide dismutase-2, Bax, Bad, Bcl-2, Nrf2 and Keap1 by real-time PCR. One-way analysis of variance, followed by LSD-t test, was used to compare each variable for differences among the groups. RESULTS Echocardiography analyses demonstrated left ventricle dysfunction in the groups receiving cold stress. Histological analyses witnessed inflammation, vacuolar and eosinophilic degeneration occurred in left ventricle tissues. Western blotting results showed increased 3'-nitrotyrosine and 4-hydroxynonenal and decreased antioxidant enzymes (superoxide dismutase-1 and superoxide dismutase-2) in the myocardium. Expression of Nrf2 and Keap1 followed a downward trend under cold exposure, as indicated by western blotting and real-time PCR. Expression of anti-apoptotic protein Bcl-2 also showed the same trend. In contrast, expression of pro-apoptotic proteins Bax and Bad followed an upward trend under cold exposure. The results of real-time PCR were consistent with those of western blotting. CONCLUSIONS These findings were very significant, showing that cold exposure induced cardiac injury by inhibiting the Nrf2-Keap1 signaling pathway.
Collapse
Affiliation(s)
- Peifang Cong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Yunen Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Nannan Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Yubiao Zhang
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Changci Tong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Lin Shi
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Xuelei Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Zhou Tong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Mingxiao Hou
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China.
| |
Collapse
|
30
|
Deletion of protein tyrosine phosphatase 1B obliterates endoplasmic reticulum stress-induced myocardial dysfunction through regulation of autophagy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3060-3074. [PMID: 28941626 DOI: 10.1016/j.bbadis.2017.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/01/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
Endoplasmic reticulum (ER) stress has been demonstrated to prompt various cardiovascular risks although the underlying mechanism remains elusive. Protein tyrosine phosphatase-1B (PTP1B) serves as an essential negative regulator for insulin signaling. This study examined the role of PTP1B in ER stress-induced myocardial anomalies and underlying mechanism involved with a focus on autophagy. WT and PTP1B knockout mice were subjected to the ER stress inducer tunicamycin (1mg/kg). Cardiac function was evaluated with echocardiography and an Ion-Optix MyoCam system. Western blot analysis was used to monitor the levels of ER stress, autophagy and insulin signaling including insulin receptor substrate (IRS), tribbles homolog 3 (TRIB3), Atg5/7, p62 and LC3-II. Our results showed that ER stress resulted in compromised echocardiographic and cardiomyocyte contractile function, intracellular Ca2+ mishandling, ER stress, O2- production, apoptosis, the effects of which (with the exception of ER stress) were significantly attenuated or negated by PTP1B ablation. Levels of serine phosphorylation of IRS-1, TRIB3, Atg5/7, LC3B and the autophagy adaptor p62 were significantly upregulated while IRS-1 tyrosine phosphorylation was reduced by tunicamycin, the effect of which were obliterated by PTP1B ablation. In vitro study revealed that the autophagy inducer rapamycin and TRIB3 overexpression cancelled PTP1B ablation-offered beneficial effects on cardiomyocyte function or O2- production in murine cardiomyocytes or H9C2 myoblasts. Antioxidant or gene silencing of TRIB3 mimicked PTP1B ablation-induced protective effects. These findings collectively suggested that PTP1B ablation protects against ER stress-induced cardiac anomalies through regulation of autophagy.
Collapse
|
31
|
Ren M, Wang T, Huang L, Ye X, Xv Z, Ouyang C, Han Z. Role of VR1 in the differentiation of bone marrow-derived mesenchymal stem cells into cardiomyocytes associated with Wnt/β-catenin signaling. Cardiovasc Ther 2017; 34:482-488. [PMID: 27662603 DOI: 10.1111/1755-5922.12228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Accumulating evidence showed that transient receptor potential channels play an important role in the regulation of cardiomyocyte differentiation. The vanilloid receptor 1 (VR1) is a member of the transient receptor channel super family and is expressed in cardiomyocytes. However, its function in cardiomyocytes remains unclear. METHODS Herein, the aim of this study was to investigate the functional role of VR1 in the cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and to elucidate the potential molecular mechanisms. RESULTS Immunofluorescence assay showed that cardiomyocyte marker cardiac troponin T (cTnT) was found significantly elevated in differentiated BMSCs induced by 5-azacytidine compared with control. Similarly, VR1 expression was also found significantly increased in induced BMSCs differentiation. Additionally, we examined the role of VR1 in BMSC differentiation processes through VR1 siRNAs. We found that the expression of cardiomyocyte marker genes, such as alpha-myosin heavy chain (α-MHC), α-cardiac actin, and Nkx2.5 (cardiac-specific transcription factor), was significantly decreased when VR1 was silenced. Furthermore, we found that inhibition of VR1 expression is associated with downregulation of Wnt/β-catenin signaling. CONCLUSIONS To summarize, our data demonstrate important role of VR1 in BMSCs differentiation into cardiomyocytes in conjunction of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zhifeng Xv
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Chun Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
32
|
Signaling Pathways in Cardiac Myocyte Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9583268. [PMID: 28101515 PMCID: PMC5215135 DOI: 10.1155/2016/9583268] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation.
Collapse
|
33
|
Wang Q, Zhang Y, Li D, Zhang Y, Tang B, Li G, Yang Y, Yang D. Transgenic overexpression of transient receptor potential vanilloid subtype 1 attenuates isoproterenol-induced myocardial fibrosis in mice. Int J Mol Med 2016; 38:601-9. [PMID: 27314441 DOI: 10.3892/ijmm.2016.2648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 06/08/2016] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel with high permeability to Ca2+. Intracellular Ca2+ signaling is an essential regulator of endothelial nitric oxide (NO) synthase (eNOS) that plays a beneficial role in myocardial fibrosis. The aim of the present study was to determine the role of TRPV1 in isoproterenol-induced myocardial fibrosis. Transgenic mice overexpressing TRPV1 were generated on a C57BL/6J genetic background. An animal model of myocardial fibrosis was created by subcutaneously injecting the mice with isoproterenol. We found that the wild-type mice exhibited a significant increase in heart/body weight ratio, left ventricle/body weight ratio, left ventricular end-diastolic pressure (LVEDP), the cardiac fibrotic lesion area and collagen content, as well as a marked decrease in eNOS phosphorylation and NO/cyclic guanosine monophosphate (cGMP) levels at 2 weeks after the administration of isoproterenol (all p<0.01). However, these changes were significantly attenuated in the TRPV1 transgenic mice (p<0.05 or p<0.01). Moreover, the beneficial effects on myocardial fibrosis exerted by the overexpression of TRPV1 were attenuated by the administration of the eNOS inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (all p<0.05). Similar anti-fibrotic effects were observed in in vitro experiments with primary cultured cardiac fibroblasts. The findings of our study suggest that TRPV1 overexpression attenuates isoproterenol‑induced myocardial fibrosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Yunrong Zhang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Yan Zhang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Bing Tang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Gang Li
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
34
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
35
|
Cho GW, Altamirano F, Hill JA. Chronic heart failure: Ca(2+), catabolism, and catastrophic cell death. Biochim Biophys Acta Mol Basis Dis 2016; 1862:763-777. [PMID: 26775029 DOI: 10.1016/j.bbadis.2016.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
Robust successes have been achieved in recent years in conquering the acutely lethal manifestations of heart disease. Many patients who previously would have died now survive to enjoy happy and productive lives. Nevertheless, the devastating impact of heart disease continues unabated, as the spectrum of disease has evolved with new manifestations. In light of this ever-evolving challenge, insights that culminate in novel therapeutic targets are urgently needed. Here, we review fundamental mechanisms of heart failure, both with reduced (HFrEF) and preserved (HFpEF) ejection fraction. We discuss pathways that regulate cardiomyocyte remodeling and turnover, focusing on Ca(2+) signaling, autophagy, and apoptosis. In particular, we highlight recent insights pointing to novel connections among these events. We also explore mechanisms whereby potential therapeutic approaches targeting these processes may improve morbidity and mortality in the devastating syndrome of heart failure.
Collapse
Affiliation(s)
- Geoffrey W Cho
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Ge W, Yuan M, Ceylan AF, Wang X, Ren J. Mitochondrial aldehyde dehydrogenase protects against doxorubicin cardiotoxicity through a transient receptor potential channel vanilloid 1-mediated mechanism. Biochim Biophys Acta Mol Basis Dis 2015; 1862:622-634. [PMID: 26692169 DOI: 10.1016/j.bbadis.2015.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022]
Abstract
Cardiotoxicity is one of the major life-threatening effects encountered in cancer chemotherapy with doxorubicin and other anthracyclines. Mitochondrial aldehyde dehydrogenase (ALDH2) may alleviate doxorubicin toxicity although the mechanism remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on doxorubicin-induced myocardial damage with a focus on mitochondrial injury. Wild-type (WT) and transgenic mice overexpressing ALDH2 driven by chicken β-actin promoter were challenged with doxorubicin (15mg/kg, single i.p. injection, for 6days) and cardiac mechanical function was assessed using the echocardiographic and IonOptix systems. Western blot analysis was used to evaluate intracellular Ca(2+) regulatory and mitochondrial proteins, PKA and its downstream signal eNOS. Doxorubicin challenge altered cardiac geometry and function evidenced by enlarged left ventricular end systolic and diastolic diameters, decreased factional shortening, cell shortening and intracellular Ca(2+) rise, prolonged relengthening and intracellular Ca(2+) decay, the effects of which were attenuated by ALDH2. Doxorubicin challenge compromised mitochondrial integrity and upregulated 4-HNE and UCP-2 levels while downregulating levels of TRPV1, SERCA2a and PGC-1α, the effects of which were alleviated by ALDH2. Doxorubicin-induced cardiac functional defect and apoptosis were reversed by the TRPV1 agonist SA13353 and the ALDH-2 agonist Alda-1 whereas the TRPV1 antagonist capsazepine nullified ALDH2/Alda-1-induced protection. Doxorubicin suppressed phosphorylation of PKA and eNOS, the effect of which was reversed by ALDH2. Moreover, 4-HNE mimicked doxorubicin-induced cardiomyocyte anomalies, the effect of which was ablated by SA13353. Taken together, our results suggested that ALDH2 may rescue against doxorubicin cardiac toxicity possibly through a TRPV1-mediated protection of mitochondrial integrity.
Collapse
Affiliation(s)
- Wei Ge
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Ming Yuan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Asli F Ceylan
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jun Ren
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
37
|
Liu C, Yavar Z, Sun Q. Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circ Physiol 2015; 309:H1793-812. [PMID: 26432837 DOI: 10.1152/ajpheart.00199.2015] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023]
Abstract
A growing number of extreme climate events are occurring in the setting of ongoing climate change, with an increase in both the intensity and frequency. It has been shown that ambient temperature challenges have a direct and highly varied impact on cardiovascular health. With a rapidly growing amount of literature on this issue, we aim to review the recent publications regarding the impact of cold and heat on human populations with regard to cardiovascular disease (CVD) mortality/morbidity while also examining lag effects, vulnerable subgroups, and relevant mechanisms. Although the relative risk of morbidity/mortality associated with extreme temperature varied greatly across different studies, both cold and hot temperatures were associated with a positive mean excess of cardiovascular deaths or hospital admissions. Cause-specific study of CVD morbidity/mortality indicated that the sensitivity to temperature was disease-specific, with different patterns for acute and chronic ischemic heart disease. Vulnerability to temperature-related mortality was associated with some characteristics of the populations, including sex, age, location, socioeconomic condition, and comorbidities such as cardiac diseases, kidney diseases, diabetes, and hypertension. Temperature-induced damage is thought to be related to enhanced sympathetic reactivity followed by activation of the sympathetic nervous system, renin-angiotensin system, as well as dehydration and a systemic inflammatory response. Future research should focus on multidisciplinary adaptation strategies that incorporate epidemiology, climatology, indoor/building environments, energy usage, labor legislative perfection, and human thermal comfort models. Studies on the underlying mechanism by which temperature challenge induces pathophysiological response and CVD await profound and lasting investigation.
Collapse
Affiliation(s)
- Cuiqing Liu
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China; and
| | - Zubin Yavar
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| |
Collapse
|
38
|
Cardiac-specific overexpression of metallothionein attenuates myocardial remodeling and contractile dysfunction in l-NAME-induced experimental hypertension: Role of autophagy regulation. Toxicol Lett 2015; 237:121-32. [DOI: 10.1016/j.toxlet.2015.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
|
39
|
Qi Y, Qi Z, Li Z, Wong CK, So C, Lo IC, Huang Y, Yao X, Tsang SY. Role of TRPV1 in the Differentiation of Mouse Embryonic Stem Cells into Cardiomyocytes. PLoS One 2015. [PMID: 26208267 PMCID: PMC4514823 DOI: 10.1371/journal.pone.0133211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytosolic Ca2+ ([Ca2+]i) is an important signal that regulates cardiomyocyte differentiation during cardiogenesis. TRPV1 is a Ca2+-permeable channel that is expressed in cardiomyocytes. In the present study, we utilized mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) as a model to investigate the functional role of TRPV1 in cardiomyocyte differentiation. Induction of embryonic stem cells into cardiomyocytes was achieved using embryoid body (EB)-based differentiation method. Quantitative PCRs showed an increased TRPV1 expression during the differentiation process. In [Ca2+]i measurement study, application of TRPV1 agonists, capsaicin and camphor, elicited a [Ca2+]i rise in mESC-CMs, the effect of which was abolished by TRPV1-shRNA. In functional study, treatment of EBs with TRPV1 antagonists (capsazepine and SB366791) and TRPV1-shRNA reduced the size of the EBs and decreased the percentage of spontaneously beating EBs. TRPV1 antagonists and TRPV1-shRNA also suppressed the expression of cardiomyocyte marker genes, including cardiac actin, c-TnT, c-TnI, and α-MHC. Taken together, this study demonstrated an important functional role of TRPV1 channels in the differentiation of mESCs into cardiomyocytes.
Collapse
Affiliation(s)
- Yan Qi
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zenghua Qi
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhichao Li
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kit Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chun So
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Iek-Chi Lo
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SYT); (XY)
| | - Suk-Ying Tsang
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
- Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
- Centre of Novel Biomaterials, Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SYT); (XY)
| |
Collapse
|
40
|
Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction. Cardiovasc Toxicol 2015; 16:235-43. [DOI: 10.1007/s12012-015-9331-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Wu Z, He EY, Scott GI, Ren J. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress. ENVIRONMENTAL TOXICOLOGY 2015; 30:638-647. [PMID: 24376112 DOI: 10.1002/tox.21941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism.
Collapse
Affiliation(s)
- Zhenbiao Wu
- Department of Clinical Immunology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China
| | - Emily Y He
- Department of Clinical Immunology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China
- Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, Wyoming, 82071
| | - Glenda I Scott
- Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, Wyoming, 82071
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, Wyoming, 82071
| |
Collapse
|
42
|
Yang K, Xu X, Nie L, Xiao T, Guan X, He T, Yu Y, Liu L, Huang Y, Zhang J, Zhao J. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol Lett 2015; 234:110-9. [DOI: 10.1016/j.toxlet.2015.01.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 12/24/2022]
|
43
|
Samad MA, Kim UK, Kang JJ, Ke Q, Kang PM. Endothelin A receptor antagonist, atrasentan, attenuates renal and cardiac dysfunction in Dahl salt-hypertensive rats in a blood pressure independent manner. PLoS One 2015; 10:e0121664. [PMID: 25775254 PMCID: PMC4361570 DOI: 10.1371/journal.pone.0121664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/02/2015] [Indexed: 02/02/2023] Open
Abstract
Proteinuria is a hallmark of chronic kidney disease (CKD) and cardiovascular disease (CVD), and a good predictor of clinical outcome. Selective endothelin A (ETA) receptor antagonist used with renin-angiotensin system (RAS) inhibitors prevents development of proteinuria in CKD. However, whether the improvement in proteinuria would have beneficial effects on CVD, independent of RAS inhibition, is not well understood. In this study, we investigated whether atrasentan, an ETA receptor antagonist, has renal and cardiovascular effects independent of RAS inhibition. Male Dahl salt sensitive (DSS) rats, at six weeks of age, received water with or without different doses of atrasentan and/or enalapril under high salt (HS) diet or normal diet (ND) for 6 weeks. At the end of 12th week, atrasentan at a moderate dose significantly attenuated proteinuria and serum creatinine without reducing mean arterial pressure (MAP), thereby preventing cardiac hypertrophy and improving cardiac function. ACE inhibitor enalapril at a dose that did not significantly lowered BP, attenuated cardiac hypertrophy while moderately improving cardiac function without reducing proteinuria and serum creatinine level. Nonetheless, combined therapy of atrasentan and enalapril that does not altering BP exerted additional cardioprotective effect. Based on these findings, we conclude that BP independent monotherapy of ETA receptor antagonist attenuates the progression of CKD and significantly mitigates CVD independent of RAS inhibition.
Collapse
Affiliation(s)
- Mohammed A. Samad
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
| | - Ui Kyoung Kim
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua J. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
- * E-mail:
| |
Collapse
|
44
|
Peng C, Zhu J, Sun HC, Huang XP, Zhao WA, Zheng M, Liu LJ, Tian J. Inhibition of histone H3K9 acetylation by anacardic acid can correct the over-expression of Gata4 in the hearts of fetal mice exposed to alcohol during pregnancy. PLoS One 2014; 9:e104135. [PMID: 25101666 PMCID: PMC4125174 DOI: 10.1371/journal.pone.0104135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Background Cardiovascular malformations can be caused by abnormalities in Gata4 expression during fetal development. In a previous study, we demonstrated that ethanol exposure could lead to histone hyperacetylation and Gata4 over-expression in fetal mouse hearts. However, the potential mechanisms of histone hyperacetylation and Gata4 over-expression induced by ethanol remain unclear. Methods and Results Pregnant mice were gavaged with ethanol or saline. Fetal mouse hearts were collected for analysis. The results of ethanol fed groups showed that global HAT activity was unusually high in the hearts of fetal mice while global HDAC activity remained unchanged. Binding of P300, CBP, PCAF, SRC1, but not GCN5, were increased on the Gata4 promoter relative to the saline treated group. Increased acetylation of H3K9 and increased mRNA expression of Gata4, α-MHC, cTnT were observed in these hearts. Treatment with the pan-histone acetylase inhibitor, anacardic acid, reduced the binding of P300, PCAF to the Gata4 promoter and reversed H3K9 hyperacetylation in the presence of ethanol. Interestingly, anacardic acid attenuated over-expression of Gata4, α-MHC and cTnT in fetal mouse hearts exposed to ethanol. Conclusions Our results suggest that P300 and PCAF may be critical regulatory factors that mediate Gata4 over-expression induced by ethanol exposure. Alternatively, P300, PCAF and Gata4 may coordinate over-expression of cardiac downstream genes in mouse hearts exposed to ethanol. Anacardic acid may thus protect against ethanol-induced Gata4, α-MHC, cTnT over-expression by inhibiting the binding of P300 and PCAF to the promoter region of these genes.
Collapse
Affiliation(s)
- Chang Peng
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Jing Zhu
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Hui-Chao Sun
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xu-Pei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Wei-An Zhao
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zheng
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Juan Liu
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China
| | - Jie Tian
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
45
|
Zhang Y, Mi SL, Hu N, Doser TA, Sun A, Ge J, Ren J. Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radic Biol Med 2014; 71:208-220. [PMID: 24675227 PMCID: PMC4068748 DOI: 10.1016/j.freeradbiomed.2014.03.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/22/2023]
Abstract
Cardiac aging is associated with compromised myocardial function and morphology although the underlying mechanism remains elusive. Aldehyde dehydrogenase 2 (ALDH2), an essential mitochondrial enzyme governing cardiac function, displays polymorphism in humans. This study was designed to examine the role of ALDH2 in aging-induced myocardial anomalies. Myocardial mechanical and intracellular Ca(2+) properties were examined in young (4-5 months) and old (26-28 months) wild-type and ALDH2 transgenic mice. Cardiac histology, mitochondrial integrity, O2(-) generation, apoptosis, and signaling cascades, including AMPK activation and Sirt1 level were evaluated. Myocardial function and intracellular Ca(2+) handling were compromised with advanced aging; the effects were accentuated by ALDH2. Hematoxylin and eosin and Masson trichrome staining revealed cardiac hypertrophy and interstitial fibrosis associated with greater left-ventricular mass and wall thickness in aged mice. ALDH2 accentuated aging-induced cardiac hypertrophy but not fibrosis. Aging promoted O2(-) release, apoptosis, and mitochondrial injury (mitochondrial membrane potential, levels of UCP-2 and PGC-1α), and the effects were also exacerbated by ALDH2. Aging dampened AMPK phosphorylation and Sirt1, the effects of which were exaggerated by ALDH2. Treatment with the ALDH2 activator Alda-1 accentuated aging-induced O2(-) generation and mechanical dysfunction in cardiomyocytes, the effects of which were mitigated by cotreatment with activators of AMPK and Sirt1, AICAR, resveratrol, and SRT1720. Examination of human longevity revealed a positive correlation between life span and ALDH2 gene mutation. Taken together, our data revealed that ALDH2 enzyme may accentuate myocardial remodeling and contractile dysfunction in aging, possibly through AMPK/Sirt1-mediated mitochondrial injury.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shou-Ling Mi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Thomas A Doser
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China.
| | - Jun Ren
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
46
|
Guo J, Guo Q, Fang H, Lei L, Zhang T, Zhao J, Peng S. Cardioprotection against doxorubicin by metallothionein Is associated with preservation of mitochondrial biogenesis involving PGC-1α pathway. Eur J Pharmacol 2014; 737:117-24. [PMID: 24858368 DOI: 10.1016/j.ejphar.2014.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 12/23/2022]
Abstract
Metallothionein (MT) has been shown to inhibit cardiac oxidative stress and protect against the cardiotoxicity induced by doxorubicin (DOX), a potent and widely used chemotherapeutic agent. However, the mechanism of MT׳s protective action against DOX still remains obscure. Mitochondrial biogenesis impairment has been implicated to play an important role in the etiology and progression of DOX-induced cardiotoxicity. Increasing evidence indicates an intimate link between MT-mediated cardioprotection and mitochondrial biogenesis. This study was aimed to explore the possible contribution of mitochondrial biogenesis in MT׳s cardioprotective action against DOX. Adult male MT-I/II-null (MT(-/-)) and wild-type (MT(+/+)) mice were given a single dose of DOX intraperitoneally. Our results revealed that MT deficiency significantly sensitized mice to DOX-induced cardiac dysfunction, ultrastructural alterations, and mortality. DOX disrupted cardiac mitochondrial biogenesis indicated by mitochondrial DNA copy number and decreased mitochondrial number, and these effects were greater in MT(-/-) mice. Basal MT effectively protected against DOX-induced inhibition on the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a key regulator of mitochondrial biogenesis, and its downstream factors including mitochondrial transcription factor A. Moreover, MT was found to preserve the protein expression of manganese superoxide dismutase, a transcriptional target of PGC-1α. in vitro study showed that MT absence augmented DOX-induced increase of mitochondrial superoxide production in primary cultured cardiomyocytes. These findings suggest that MT׳s cardioprotection against DOX is mediated, at least in part, by preservation of mitochondrial biogenesis involving PGC-1α pathway.
Collapse
Affiliation(s)
- Jiabin Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Qian Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Haiqing Fang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Lei Lei
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Tingfen Zhang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Jun Zhao
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China.
| |
Collapse
|
47
|
Pei Z, Zhuang Z, Sang H, Wu Z, Meng R, He EY, Scott GI, Maris JR, Li R, Ren J. α,β-Unsaturated aldehyde crotonaldehyde triggers cardiomyocyte contractile dysfunction: role of TRPV1 and mitochondrial function. Pharmacol Res 2014; 82:40-50. [PMID: 24705155 DOI: 10.1016/j.phrs.2014.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/11/2014] [Accepted: 03/26/2014] [Indexed: 11/25/2022]
Abstract
Recent evidence has suggested that cigarette smoking is associated with an increased prevalence of heart diseases. Given that cigarette smoking triggers proinflammatory response via stimulation of the capsaicin-sensitive transient receptor potential cation channel TRPV1, this study was designed to evaluate the effect of an essential α,β-unsaturated aldehyde from cigarette smoke crotonaldehyde on myocardial function and the underlying mechanism with a focus on TRPV1 and mitochondria. Cardiomyocyte mechanical and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), fura-2 fluorescence intensity (FFI), intracellular Ca2+ decay and SERCA activity. Apoptosis and TRPV1 were evaluated using Western blot analysis. Production of reactive oxygen species (ROS) and DNA damage were measured using the intracellular fluoroprobe 5-(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and 8-hydroxy-2'-deoxyguanosine (8-OHdG), respectively. Our data revealed that crotonaldehyde interrupted cardiomyocyte contractile and intracellular Ca2+ property including depressed PS, ±dL/dt, ΔFFI and SERCA activity, as well as prolonged TR90 and intracellular Ca2+ decay. Crotonaldehyde exposure increased TRPV1 and NADPH oxidase levels, promoted apoptosis, mitochondrial injury (decreased aconitase activity, PGC-1α and UCP-2) as well as production of ROS and 8-OHdG. Interestingly, crotonaldehyde-induced cardiac defect was obliterated by the ROS scavenger glutathione and the TRPV1 inhibitor capsazepine. Capsazepine (not glutathione) ablated crotonaldehyde-induced mitochondrial damage. Capsazepine, glutathione and the NADPH inhibitor apocynin negated crotonaldehyde-induced ROS accumulation. Our data suggest a role of crotonaldehyde compromises cardiomyocyte mechanical function possibly through a TRPV1- and mitochondria-dependent oxidative stress mechanism.
Collapse
Affiliation(s)
- Zhaohui Pei
- Department of Cardiology, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, China
| | - Zhiqiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hanfei Sang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Clinical Pharmacology, Bethune International Peace Hospital of People's Liberation Army, Shijiazhuang, Hebei 050082, China
| | - Zhenbiao Wu
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rongsen Meng
- Department of Cardiology, The Second People's Hospital of Guangdong Province, Guangzhou, Guangdong 511442, China
| | - Emily Y He
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Glenda I Scott
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jackie R Maris
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Ruiman Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 511442, China.
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
48
|
Lehmann LH, Stanmore DA, Backs J. The role of endothelin-1 in the sympathetic nervous system in the heart. Life Sci 2014; 118:165-72. [PMID: 24632477 DOI: 10.1016/j.lfs.2014.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/10/2014] [Accepted: 03/01/2014] [Indexed: 12/15/2022]
Abstract
Endothelin-1 (ET1) is a peptide that was initially identified as a strong inductor of vascular contraction. In the last 25 years, there have been several biological processes identified in which ET1 seems to play a critical role. In particular, genetic studies have unveiled that ET1 is important for neuronal development, growth and function. Experimental studies identified ET1 as a regulator of the interaction between sympathetic neurons and cardiac myocytes. This might be of clinical importance since patients suffering from heart failure are characterized by disrupted norepinephrine homeostasis in the heart. This review summarizes the important findings on the role of ET1 for sympathetic neurons and norepinephrine homeostasis in the heart.
Collapse
Affiliation(s)
- Lorenz H Lehmann
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - David A Stanmore
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Abstract
Background Recent evidence has depicted a role of macrophage migration inhibitory factor (MIF) in cardiac homeostasis under pathological conditions. This study was designed to evaluate the role of MIF in doxorubicin‐induced cardiomyopathy and the underlying mechanism involved with a focus on autophagy. Methods and Results Wild‐type (WT) and MIF knockout (MIF−/−) mice were given saline or doxorubicin (20 mg/kg cumulative, i.p.). A cohort of WT and MIF−/− mice was given rapamycin (6 mg/kg, i.p.) with or without bafilomycin A1 (BafA1, 3 μmol/kg per day, i.p.) for 1 week prior to doxorubicin challenge. To consolidate a role for MIF in the maintenance of cardiac homeostasis following doxorubicin challenge, recombinant mouse MIF (rmMIF) was given to MIF−/− mice challenged with or without doxorubicin. Echocardiographic, cardiomyocyte function, and intracellular Ca2+ handling were evaluated. Autophagy and apoptosis were examined. Mitochondrial morphology and function were examined using transmission electron microscopy, JC‐1 staining, MitoSOX Red fluorescence, and mitochondrial respiration complex assay. DHE staining was used to evaluate reactive oxygen species (ROS) generation. MIF knockout exacerbated doxorubicin‐induced mortality and cardiomyopathy (compromised fractional shortening, cardiomyocyte and mitochondrial function, apoptosis, and ROS generation). These detrimental effects of doxorubicin were accompanied by defective autophagolysosome formation, the effect of which was exacerbated by MIF knockout. Rapamycin pretreatment rescued doxorubicin‐induced cardiomyopathy in WT and MIF−/− mice. Blocking autophagolysosome formation using BafA1 negated the cardioprotective effect of rapamycin and rmMIF. Conclusions Our data suggest that MIF serves as an indispensable cardioprotective factor against doxorubicin‐induced cardiomyopathy with an underlying mechanism through facilitating autophagolysosome formation.
Collapse
Affiliation(s)
- Xihui Xu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, School of Pharmacy, Laramie, WY
| | | | | |
Collapse
|
50
|
Higuchi T, Rischpler C, Fukushima K, Isoda T, Xia J, Javadi MS, Szabo Z, Dannals RF, Mathews WB, Bengel FM. Targeting of endothelin receptors in the healthy and infarcted rat heart using the PET tracer 18F-FBzBMS. J Nucl Med 2013; 54:277-82. [PMID: 23315664 DOI: 10.2967/jnumed.112.106096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED The endothelin subtype-A receptor (ET-A) is a promising therapeutic target in cardiovascular disease. We sought to determine the feasibility of an (18)F-labeled ligand, (18)F-(N-[[29-[[(4,5-dimethyl-3-isoxazolyl)amino]sulfonyl]-4-(2-oxazolyl)[1,19-biphenyl]-2-yl]methyl]-N,4-fluorobenzamide) ((18)F-FBzBMS), for imaging ET-A in the healthy and injured rat heart. METHODS Male Wistar rats were used for all experiments. The specificity of cardiac (18)F-FBzBMS uptake was determined in healthy animals (n = 23) using pretreatment with various blocking agents and doses. Myocardial infarction (MI) was induced by permanent left coronary ligation in 32 animals. Autoradiography was conducted to determine regional FBzBMS distribution relative to tissue perfusion at various times after MI. Histology and immunohistochemistry were performed for validation. The feasibility of in vivo detection of the tracer signal was tested using dedicated small-animal PET (n = 6). RESULTS At autoradiography, intravenous pretreatment with the selective ET-A blocker BMS-207940 reduced myocardial FBzBMS uptake by 93% ± 0.7%. Oral pretreatment with the clinical blocker bosentan resulted in a dose-dependent partial blockade (5 mg/kg, 48% ± 6%; 50 mg/kg, 61% ± 7%; and 100 mg/kg, 88% ± 0.7%). After MI, FBzBMS uptake was preserved in the infarct region from day 1 to month 6, whereas the perfusion tracer (201)Tl showed a persistent defect (MI-to-remote ratios: (201)Tl, 0.23 ± 0.28, 0.39 ± 0.07, 0.31 ± 0.07, 0.24 ± 0.12, 0.29 ± 0.10, and 0.23 ± 0.09; and FBzBMS, 0.94 ± 0.28, 0.92 ± 0.20, 0.88 ± 0.13, 0.82 ± 0.12, 0.80 ± 0.11, and 0.84 ± 0.08 at day 1, day 3, week 1, month 1, month 2, and month 6, respectively) (P < 0.01 vs. (201)Tl). Ex vivo analysis confirmed ET-A expression in the infarct area, where the signal was partially colocalized with CD31 expression on endothelial cells. In vivo small-animal PET successfully confirmed specific uptake and blockade of FBzBMS in healthy myocardium. CONCLUSION Cardiac uptake of the PET tracer (18)F-FBzBMS is specific for ET-A expression in rats, shows infarct-related alterations, and can be imaged noninvasively. Further efforts to establish myocardial ET-A imaging methodology are warranted, with the perspective of determining role, efficacy, and benefit of ET-A targeted drug treatment in cardiovascular disease.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|