1
|
Zhou L, Zhu X, Lei S, Wang Y, Xia Z. The role of the ER stress sensor IRE1 in cardiovascular diseases. Mol Cell Biochem 2025; 480:683-691. [PMID: 38717685 DOI: 10.1007/s11010-024-05014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 02/19/2025]
Abstract
Despite enormous advances in the treatment of cardiovascular diseases, including I/R injury and heart failure, heart diseases remain a leading cause of mortality worldwide. Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor endoplasmic reticulum (ER) transmembrane protein that senses ER stress. It manages ER stress induced by the accumulation of unfolded/misfolded proteins via the unfolded protein response (UPR). However, if the stress still persists, the UPR pathways are activated and induce cell death. Emerging evidence shows that, beyond the UPR, IRE1 participates in the progression of cardiovascular diseases by regulating inflammation levels, immunity, and lipid metabolism. Here, we summarize the recent findings and discuss the potential therapeutic effects of IRE1 in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xizi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Le HT, Yu J, Ahn HS, Kim MJ, Chae IG, Cho HN, Kim J, Park HK, Kwon HN, Chae HJ, Kang BH, Seo JK, Kim K, Back SH. eIF2α phosphorylation-ATF4 axis-mediated transcriptional reprogramming mitigates mitochondrial impairment during ER stress. Mol Cells 2025; 48:100176. [PMID: 39756584 PMCID: PMC11786836 DOI: 10.1016/j.mocell.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025] Open
Abstract
Eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, which regulates all 3 unfolded protein response pathways, helps maintain cellular homeostasis and overcome endoplasmic reticulum (ER) stress through transcriptional and translational reprogramming. However, transcriptional regulation of mitochondrial homeostasis by eIF2α phosphorylation during ER stress is not fully understood. Here, we report that the eIF2α phosphorylation-activating transcription factor 4 (ATF4) axis is required for the expression of multiple transcription factors, including nuclear factor erythroid 2-related factor 2 and its target genes responsible for mitochondrial homeostasis during ER stress. eIF2α phosphorylation-deficient (A/A) cells displayed dysregulated mitochondrial dynamics and mitochondrial DNA replication, decreased expression of oxidative phosphorylation complex proteins, and impaired mitochondrial functions during ER stress. ATF4 overexpression suppressed impairment of mitochondrial homeostasis in A/A cells during ER stress by promoting the expression of downstream transcription factors and their target genes. Our findings underscore the importance of the eIF2α phosphorylation-ATF4 axis for maintaining mitochondrial homeostasis through transcriptional reprogramming during ER stress.
Collapse
Affiliation(s)
- Hien Thi Le
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Hee Sung Ahn
- AMC Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Mi-Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - In Gyeong Chae
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Hyun-Nam Cho
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Juhee Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Hye-Kyung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyuk Nam Kwon
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Han-Jung Chae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong Kon Seo
- Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Kyunggon Kim
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Sung Hoon Back
- Basic-Clinical Convergence Research Center, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.
| |
Collapse
|
3
|
Liu W, Zhang Q, Guo S, Wang H. The role of microRNAs regulation of endoplasmic reticulum stress in ischemia-reperfusion injury: A review. Int J Biol Macromol 2024; 283:137566. [PMID: 39542287 DOI: 10.1016/j.ijbiomac.2024.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle in eukaryotic cells, responsible for a range of biological functions such as the secretion, modification and folding of proteins, maintaining Ca2+ homeostasis and the synthesis of steroids/lipids, secreted proteins and membrane proteins. When cells are affected by internal or external factors, including abnormal energy metabolism, disrupted Ca2+ balance, altered glycosylation, drug toxicity, and so on, the unfolded or misfolded proteins accumulate in the ER, leading to the unfolded protein response (UPR) and ER stress. The abnormal ER stress has been reported to be involved in various pathological processes. MicroRNAs (miRNAs) are non-coding RNAs with the length of approximately 19-25 nucleotides. They control the expression of multiple genes through posttranscriptional gene silencing in eukaryotes or some viruses. Increasing evidence indicates that miRNAs are involved in various cellular functions and biological processes, such as cell proliferation and differentiation, growth and development, and metabolic homeostasis. Hence, miRNAs participate in multiple pathological processes. Recently, many studies have shown that miRNAs play an important role by regulating ER stress in ischemia-reperfusion (I/R) injury, but the relevant mechanisms are not fully understood. In this review, we reviewed the current understanding of ER stress, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ER stress in I/R injury, with the aim of providing new targets for the treatment of I/R injury.
Collapse
Affiliation(s)
- Wanying Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Yang Z, Gao W, Yang K, Chen W, Chen Y. The protective role of RACK1 in hepatic ischemia‒reperfusion injury-induced ferroptosis. Inflamm Res 2024; 73:1961-1979. [PMID: 39292271 DOI: 10.1007/s00011-024-01944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Although ferroptosis plays a crucial role in hepatic ischemia‒reperfusion injury (IRI), the molecular mechanisms underlying this process remain unclear. We aimed to explore the potential involvement of the receptor for activated C kinase 1 (RACK1) in hepatic IRI-triggered ferroptosis. Using hepatocyte-specific RACK1 knockout mice and alpha mouse liver 12 (AML12) cells, we conducted a series of in vivo and in vitro experiments. We found that RACK1 has a protective effect on hepatic IRI-induced ferroptosis. Specifically, RACK1 was found to interact with AMPKα through its 1-93 amino acid (aa) region, which facilitates the phosphorylation of AMPKα at threonine 172 (Thr172), ultimately exerting an antiferroptotic effect. Furthermore, the long noncoding RNA (lncRNA) ZNFX1 Antisense 1 (ZFAS1) directly binds to aa 181-317 of RACK1. ZFAS1 has a dual impact on RACK1 by promoting its ubiquitin‒proteasome-mediated degradation and inhibiting its expression at the transcriptional level, which indirectly exacerbates hepatic IRI-induced ferroptosis. These findings underscore the protective role of RACK1 in hepatic IRI-induced ferroptosis and showcase its potential as a prophylactic target for hepatic IRI mitigation.
Collapse
Affiliation(s)
- Zelong Yang
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Wenjie Gao
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Kai Yang
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Weigang Chen
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Le Goupil S, Laprade H, Aubry M, Chevet E. Exploring the IRE1 interactome: From canonical signaling functions to unexpected roles. J Biol Chem 2024; 300:107169. [PMID: 38494075 PMCID: PMC11007444 DOI: 10.1016/j.jbc.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
The unfolded protein response is a mechanism aiming at restoring endoplasmic reticulum (ER) homeostasis and is likely involved in other adaptive pathways. The unfolded protein response is transduced by three proteins acting as sensors and triggering downstream signaling pathways. Among them, inositol-requiring enzyme 1 alpha (IRE1α) (referred to as IRE1 hereafter), an endoplasmic reticulum-resident type I transmembrane protein, exerts its function through both kinase and endoribonuclease activities, resulting in both X-box binding protein 1 mRNA splicing and RNA degradation (regulated ire1 dependent decay). An increasing number of studies have reported protein-protein interactions as regulators of these signaling mechanisms, and additionally, driving other noncanonical functions. In this review, we deliver evolutive and structural insights on IRE1 and further describe how this protein interaction network (interactome) regulates IRE1 signaling abilities or mediates other cellular processes through catalytic-independent mechanisms. Moreover, we focus on newly discovered targets of IRE1 kinase activity and discuss potentially novel IRE1 functions based on the nature of the interactome, thereby identifying new fields to explore regarding this protein's biological roles.
Collapse
Affiliation(s)
- Simon Le Goupil
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France.
| | - Hadrien Laprade
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| | - Marc Aubry
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| |
Collapse
|
6
|
Zhang J, Zhang X, Liu Y, Shi Y, Chen F, Leng Y. Recent insights into the effect of endoplasmic reticulum stress in the pathophysiology of intestinal ischaemia‒reperfusion injury. Biochem Biophys Res Commun 2024; 701:149612. [PMID: 38316091 DOI: 10.1016/j.bbrc.2024.149612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Intestinal ischaemia‒reperfusion (I/R) injury is a surgical emergency. This condition is associated with a high mortality rate. At present, there are limited number of efficient therapeutic measures for this injury, and the prognosis is poor. Therefore, the pathophysiological mechanisms of intestinal I/R injury must be elucidated to develop a rapid and specific diagnostic and treatment protocol. Numerous studies have indicated the involvement of endoplasmic reticulum (ER) stress in the development of intestinal I/R injury. Specifically, the levels of unfolded and misfolded proteins in the ER lumen are increased due to unfolded protein response. However, persistent ER stress promotes apoptosis of intestinal mucosal epithelial cells through three signalling pathways in the ER, impairing intestinal mucosal barrier function and leading to the dysfunction of intestinal tissues and distant organ compartments. This review summarises the mechanisms of ER stress in intestinal I/R injury, diagnostic indicators, and related treatment strategies with the objective of providing novel insights into future therapies for this condition.
Collapse
Affiliation(s)
- Jianmin Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohui Zhang
- The Department of Anaesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yongqiang Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; The Department of Anaesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yajing Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Feng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; The Department of Anaesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Kamińska D, Skrzycki M. Lipid droplets, autophagy, and ER stress as key (survival) pathways during ischemia-reperfusion of transplanted grafts. Cell Biol Int 2024; 48:253-279. [PMID: 38178581 DOI: 10.1002/cbin.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Ischemia-reperfusion injury is an event concerning any organ under a procedure of transplantation. The early result of ischemia is hypoxia, which causes malfunction of mitochondria and decrease in cellular ATP. This leads to disruption of cellular metabolism. Reperfusion also results in cell damage due to reoxygenation and increased production of reactive oxygen species, and later by induced inflammation. In damaged and hypoxic cells, the endoplasmic reticulum (ER) stress pathway is activated by increased amount of damaged or misfolded proteins, accumulation of free fatty acids and other lipids due to inability of their oxidation (lipotoxicity). ER stress is an adaptive response and a survival pathway, however, its prolonged activity eventually lead to induction of apoptosis. Sustaining cell functionality in stress conditions is a great challenge for transplant surgeons as it is crucial for maintaining a desired level of graft vitality. Pathways counteracting negative consequences of ischemia-reperfusion are autophagy and lipid droplets (LD) metabolism. Autophagy remove damaged organelles and molecules driving them to lysosomes, digested simpler compounds are energy source for the cell. Mitophagy and ER-phagy results in improvement of cell energetic balance and alleviation of ER stress. This is important in sustaining metabolic homeostasis and thus cell survival. LD metabolism is connected with autophagy as LD are degraded by lipophagy, a source of free fatty acids and glycerol-thus autophagy and LD can readily remove lipotoxic compounds in the cell. In conclusion, monitoring and pharmaceutic regulation of those pathways during transplantation procedure might result in increased/improved vitality of transplanted organ.
Collapse
Affiliation(s)
- Daria Kamińska
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
8
|
Sachan V, Le Dévéhat M, Roubtsova A, Essalmani R, Laurendeau JF, Garçon D, Susan-Resiga D, Duval S, Mikaeeli S, Hamelin J, Evagelidis A, Chong M, Paré G, Chernetsova E, Gao ZH, Robillard I, Ruiz M, Trinh VQH, Estall JL, Faraj M, Austin RC, Sauvageau M, Prat A, Kiss RS, Seidah NG. PCSK7: A novel regulator of apolipoprotein B and a potential target against non-alcoholic fatty liver disease. Metabolism 2024; 150:155736. [PMID: 37967646 DOI: 10.1016/j.metabol.2023.155736] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7. METHODS We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7. RESULTS Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and β-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results. CONCLUSIONS Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.
Collapse
Affiliation(s)
- Vatsal Sachan
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Maïlys Le Dévéhat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Anna Roubtsova
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Rachid Essalmani
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Jean-Francois Laurendeau
- RNA and Noncoding Mechanisms of Disease, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Damien Garçon
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Delia Susan-Resiga
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Stéphanie Duval
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Sahar Mikaeeli
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Josée Hamelin
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Alexandra Evagelidis
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Michael Chong
- Department of Biochemistry & Biomedical Sciences, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Department of Biochemistry & Biomedical Sciences, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | | | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montréal, QC, Canada
| | - Isabelle Robillard
- Montreal Heart Institute, Metabolomics Platform, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Metabolomics Platform, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Vincent Quoc-Huy Trinh
- Departement of Pathology and Cellular Biology, Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, QC, Canada
| | - Jennifer L Estall
- Molecular Mechanisms of Diabetes, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - May Faraj
- Nutrition Department, Université de Montréal, Research Unit on Nutrition, Lipoproteins and Cardiometabolic Diseases, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, Canada
| | - Martin Sauvageau
- RNA and Noncoding Mechanisms of Disease, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Annik Prat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Robert S Kiss
- McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Nabil G Seidah
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
9
|
Jiang Y, Huang Z, Li X, Zhou L, Zhu X, Chen F, Shi Y. Inhibition of SK2 and ER stress ameliorated inflammation and apoptosis in liver ischemia-reperfusion injury. Liver Transpl 2023; 29:1050-1062. [PMID: 37439666 DOI: 10.1097/lvt.0000000000000210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/14/2023] [Indexed: 07/14/2023]
Abstract
Ischemia-reperfusion injury (IRI) remains a major cause of mortality and morbidity after liver surgery. Endoplasmic reticulum (ER) stress is a critical mechanism of inflammatory injury during hepatic IRI. In this study, we investigated the effect of sphingosine kinases 2 (SK2) on ER stress and hepatic IRI. We established hepatic IRI mice and hepatocellular hypoxia/reoxygenation in vitro model. We observed the SK2 and ER stress protein IRE1α expression. Then, we used an SK2 inhibitor and knocked down IRE1α/SK2, to observe the effect of SK2 during IRI. Our results showed that the expression of ER stress and SK2 was significantly elevated during hepatic IRI. Inhibition of SK2 ameliorated liver inflammation and reduced cell apoptosis in hepatic IRI mice. Consistently, we found that the inhibition of IRE1α also downregulated SK2 expression and reduced mitochondrial membrane permeability. Furthermore, the knockdown of SK2 could also reduce cell damage and reduce the expression of inflammatory factors but did not influence ER stress-related signaling pathway. Taken together, our results suggested that ER stress and SK2 played important and regulatory roles in hepatic IRI. Inhibition of ER stress and SK2 could significantly improve liver function after hepatic IRI.
Collapse
Affiliation(s)
- Yiya Jiang
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoshuai Huang
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianpeng Li
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuzhi Zhou
- Department of Hepato-biliary & Pancreas Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuping Zhu
- Department of Pharmacy, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanjun Shi
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, Ren J. Endoplasmic reticulum stress in liver diseases. Hepatology 2023; 77:619-639. [PMID: 35524448 PMCID: PMC9637239 DOI: 10.1002/hep.32562] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that fosters the correct folding of linear polypeptides and proteins, a process tightly governed by the ER-resident enzymes and chaperones. Failure to shape the proper 3-dimensional architecture of proteins culminates in the accumulation of misfolded or unfolded proteins within the ER, disturbs ER homeostasis, and leads to canonically defined ER stress. Recent studies have elucidated that cellular perturbations, such as lipotoxicity, can also lead to ER stress. In response to ER stress, the unfolded protein response (UPR) is activated to reestablish ER homeostasis ("adaptive UPR"), or, conversely, to provoke cell death when ER stress is overwhelmed and sustained ("maladaptive UPR"). It is well documented that ER stress contributes to the onset and progression of multiple hepatic pathologies including NAFLD, alcohol-associated liver disease, viral hepatitis, liver ischemia, drug toxicity, and liver cancers. Here, we review key studies dealing with the emerging role of ER stress and the UPR in the pathophysiology of liver diseases from cellular, murine, and human models. Specifically, we will summarize current available knowledge on pharmacological and non-pharmacological interventions that may be used to target maladaptive UPR for the treatment of nonmalignant liver diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Panagaki T, Randi EB, Szabo C, Hölscher C. Incretin Mimetics Restore the ER-Mitochondrial Axis and Switch Cell Fate Towards Survival in LUHMES Dopaminergic-Like Neurons: Implications for Novel Therapeutic Strategies in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1149-1174. [PMID: 37718851 PMCID: PMC10657688 DOI: 10.3233/jpd-230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that afflicts more than 10 million people worldwide. Available therapeutic interventions do not stop disease progression. The etiopathogenesis of PD includes unbalanced calcium dynamics and chronic dysfunction of the axis of the endoplasmic reticulum (ER) and mitochondria that all can gradually favor protein aggregation and dopaminergic degeneration. OBJECTIVE In Lund Human Mesencephalic (LUHMES) dopaminergic-like neurons, we tested novel incretin mimetics under conditions of persistent, calcium-dependent ER stress. METHODS We assessed the pharmacological effects of Liraglutide-a glucagon-like peptide-1 (GLP-1) analog-and the dual incretin GLP-1/GIP agonist DA3-CH in the unfolded protein response (UPR), cell bioenergetics, mitochondrial biogenesis, macroautophagy, and intracellular signaling for cell fate in terminally differentiated LUHMES cells. Cells were co-stressed with the sarcoplasmic reticulum calcium ATPase (SERCA) inhibitor, thapsigargin. RESULTS We report that Liraglutide and DA3-CH analogs rescue the arrested oxidative phosphorylation and glycolysis. They mitigate the suppressed mitochondrial biogenesis and hyper-polarization of the mitochondrial membrane, all to re-establish normalcy of mitochondrial function under conditions of chronic ER stress. These effects correlate with a resolution of the UPR and the deficiency of components for autophagosome formation to ultimately halt the excessive synaptic and neuronal death. Notably, the dual incretin displayed a superior anti-apoptotic effect, when compared to Liraglutide. CONCLUSIONS The results confirm the protective effects of incretin signaling in ER and mitochondrial stress for neuronal degeneration management and further explain the incretin-derived effects observed in PD patients.
Collapse
Affiliation(s)
- Theodora Panagaki
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Elisa B. Randi
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Christian Hölscher
- Research & Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
12
|
Chen L, Bi M, Zhang Z, Du X, Chen X, Jiao Q, Jiang H. The functions of IRE1α in neurodegenerative diseases: Beyond ER stress. Ageing Res Rev 2022; 82:101774. [PMID: 36332756 DOI: 10.1016/j.arr.2022.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Inositol-requiring enzyme 1 α (IRE1α) is a type I transmembrane protein that resides in the endoplasmic reticulum (ER). IRE1α, which is the primary sensor of ER stress, has been proven to maintain intracellular protein homeostasis by activating X-box binding protein 1 (XBP1). Further studies have revealed novel physiological functions of the IRE1α, such as its roles in mRNA and protein degradation, inflammation, immunity, cell proliferation and cell death. Therefore, the function of IRE1α is not limited to its role in ER stress; IRE1α is also important for regulating other processes related to cellular physiology. Furthermore, IRE1α plays a key role in neurodegenerative diseases that are caused by the phosphorylation of Tau protein, the accumulation of α-synuclein (α-syn) and the toxic effects of mutant Huntingtin (mHtt). Therefore, targeting IRE1α is a valuable approach for treating neurodegenerative diseases and regulating cell functions. This review discusses the role of IRE1α in different cellular processes, and emphasizes the importance of IRE1α in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China; University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
13
|
Wu J, Yu C, Zeng X, Xu Y, Sun C. Protection of propofol on liver ischemia reperfusion injury by regulating Cyp2b10/ Cyp3a25 pathway. Tissue Cell 2022; 78:101891. [DOI: 10.1016/j.tice.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
|
14
|
Qin W, Zhang T, Ge M, Zhou H, Xu Y, Mu R, Huang C, Liu D, Huang B, Wang Q, Kong Q, Kong Q, Li F, Xiong W. Hepatic RACK1 deletion disturbs lipid and glucose homeostasis independently of insulin resistance. J Endocrinol 2022; 254:137-151. [PMID: 35608066 DOI: 10.1530/joe-22-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022]
Abstract
Receptor for activated C kinase 1 (RACK1) is a versatile protein involved in multiple biological processes. In a previous study by Zhao et al., hepatic RACK1 deletion in mice led to an inhibition of autophagy, blocked autophagy-dependent lipolysis, and caused steatosis. Using the same mouse model (RACK1hep-/-), we revealed new roles of RACK1 in maintaining bile acid homeostasis and hepatic glucose uptake, which further affected circulatory lipid and glucose levels. To be specific, even under hepatic steatosis, the plasma lipids were generally reduced in RACK1hep-/- mouse, which was due to the suppression of intestinal lipid absorption. Accordingly, a decrease in total bile acid level was found in RACK1hep-/- livers, gallbladders, and small intestine tissues, and specific decrease of 12-hydroxylated bile acids was detected by liquid chromatography-mass spectrometry. Consistently, reduced expression of CYP8B1 was found. A decrease in hepatic glycogen storage was also observed, which might be due to the inhibited glucose uptake by GLUT2 insufficiency. Interestingly, RACK1-KO-inducing hepatic steatosis did not raise insulin resistance (IR) nor IR-inducing factors like endoplasmic reticulum stress and inflammation. In summary, this study uncovers that hepatic RACK1 might be required in maintaining bile acid homeostasis and glucose uptake in hepatocytes. This study also provides an additional case of hepatic steatosis disassociation with insulin resistance.
Collapse
Affiliation(s)
- Wanying Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mingxia Ge
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Huimin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Yuhui Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Rongfang Mu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Chaoguang Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Daowei Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Bangrui Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Qinghua Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| |
Collapse
|
15
|
Proteostasis Deregulation in Neurodegeneration and Its Link with Stress Granules: Focus on the Scaffold and Ribosomal Protein RACK1. Cells 2022; 11:cells11162590. [PMID: 36010666 PMCID: PMC9406587 DOI: 10.3390/cells11162590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC—all ribosome-related processes required for proteostasis regulation—can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer’s disease (AD), although some defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that, besides its well characterized function as a scaffold protein, it has an important role in translation and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.
Collapse
|
16
|
Targeting AMPK signaling in ischemic/reperfusion injury: From molecular mechanism to pharmacological interventions. Cell Signal 2022; 94:110323. [DOI: 10.1016/j.cellsig.2022.110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
|
17
|
Zhou Z, Wang Q, Michalak M. Inositol Requiring Enzyme (IRE), a multiplayer in sensing endoplasmic reticulum stress. Anim Cells Syst (Seoul) 2022; 25:347-357. [PMID: 35059134 PMCID: PMC8765250 DOI: 10.1080/19768354.2021.2020901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Zhixin Zhou
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Cai J, Zhang X, Chen P, Li Y, Liu S, Liu Q, Zhang H, Wu Z, Song K, Liu J, Shan B, Liu Y. The ER stress sensor inositol-requiring enzyme 1α in Kupffer cells promotes hepatic ischemia-reperfusion injury. J Biol Chem 2021; 298:101532. [PMID: 34953853 PMCID: PMC8760522 DOI: 10.1016/j.jbc.2021.101532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an inflammation-mediated process arising from ischemia/reperfusion-elicited stress in multiple cell types, causing liver damage during surgical procedures and often resulting in liver failure. Endoplasmic reticulum (ER) stress triggers the activation of the unfolded protein response (UPR) and is implicated in tissue injuries, including hepatic I/R injury. However, the cellular mechanism that links the UPR signaling to local inflammatory responses during hepatic I/R injury remains largely obscure. Here, we report that IRE1α, a critical ER-resident transmembrane signal transducer of the UPR, plays an important role in promoting Kupffer-cell-mediated liver inflammation and hepatic I/R injury. Utilizing a mouse model in which IRE1α is specifically ablated in myeloid cells, we found that abrogation of IRE1α markedly attenuated necrosis and cell death in the liver, accompanied by reduced neutrophil infiltration and liver inflammation following hepatic I/R injury. Mechanistic investigations in mice as well as in primary Kupffer cells revealed that loss of IRE1α in Kupffer cells not only blunted the activation of the NLRP3 inflammasome and IL-1β production, but also suppressed the expression of the inducible nitric oxide synthase (iNos) and proinflammatory cytokines. Moreover, pharmacological inhibition of IRE1α′s RNase activity was able to attenuate inflammasome activation and iNos expression in Kupffer cells, leading to alleviation of hepatic I/R injury. Collectively, these results demonstrate that Kupffer cell IRE1α mediates local inflammatory damage during hepatic I/R injury. Our findings suggest that IRE1α RNase activity may serve as a promising target for therapeutic treatment of ischemia/reperfusion-associated liver inflammation and dysfunction.
Collapse
Affiliation(s)
- Jie Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Xiaoge Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Peng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Yang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Songzi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Qian Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Hanyong Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuyin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China.
| |
Collapse
|
19
|
Structural and molecular bases to IRE1 activity modulation. Biochem J 2021; 478:2953-2975. [PMID: 34375386 DOI: 10.1042/bcj20200919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
The Unfolded Protein response is an adaptive pathway triggered upon alteration of endoplasmic reticulum (ER) homeostasis. It is transduced by three major ER stress sensors, among which the Inositol Requiring Enzyme 1 (IRE1) is the most evolutionarily conserved. IRE1 is an ER-resident type I transmembrane protein exhibiting an ER luminal domain that senses the protein folding status and a catalytic kinase and RNase cytosolic domain. In recent years, IRE1 has emerged as a relevant therapeutic target in various diseases including degenerative, inflammatory and metabolic pathologies and cancer. As such several drugs altering IRE1 activity were developed that target either catalytic activity and showed some efficacy in preclinical pathological mouse models. In this review, we describe the different drugs identified to target IRE1 activity as well as their mode of action from a structural perspective, thereby identifying common and different modes of action. Based on this information we discuss on how new IRE1-targeting drugs could be developed that outperform the currently available molecules.
Collapse
|
20
|
Hamid SM, Citir M, Terzi EM, Cimen I, Yildirim Z, Dogan AE, Kocaturk B, Onat UI, Arditi M, Weber C, Traynor-Kaplan A, Schultz C, Erbay E. Inositol-requiring enzyme-1 regulates phosphoinositide signaling lipids and macrophage growth. EMBO Rep 2020; 21:e51462. [PMID: 33140520 DOI: 10.15252/embr.202051462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
The ER-bound kinase/endoribonuclease (RNase), inositol-requiring enzyme-1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1's one known, specific RNA target, X box-binding protein-1 (XBP1) or the RNA substrates of IRE1-dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide-derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross-talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1's RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3 ) 5-phosphatase-2 (INPPL1) is a direct target of miR-2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3 /PIP2 ratio and anabolic mTOR signaling by the IRE1-induced miR-2137 demonstrates how the ER can provide a critical input into cell growth decisions.
Collapse
Affiliation(s)
| | - Mevlut Citir
- The Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Erdem Murat Terzi
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Ismail Cimen
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre, partner site Munich Heart Alliance Munich, Munich, Germany
| | - Zehra Yildirim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Asli Ekin Dogan
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Begum Kocaturk
- Department of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Umut Inci Onat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Moshe Arditi
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre, partner site Munich Heart Alliance Munich, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexis Traynor-Kaplan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,ATK Innovation, Analytics and Discovery, North Bend, WA, USA
| | - Carsten Schultz
- The Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Ebru Erbay
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
21
|
Yi J, Kim TS, Pak JH, Chung JW. Protective Effects of Glucose-Related Protein 78 and 94 on Cisplatin-Mediated Ototoxicity. Antioxidants (Basel) 2020; 9:686. [PMID: 32748834 PMCID: PMC7465420 DOI: 10.3390/antiox9080686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic drug for treating various solid tumors. Ototoxicity is a major dose-limiting side effect of cisplatin, which causes progressive and irreversible sensorineural hearing loss. Here, we examined the protective effects of glucose-related protein (GRP) 78 and 94, also identified as endoplasmic reticulum (ER) chaperone proteins, on cisplatin-induced ototoxicity. Treating murine auditory cells (HEI-OC1) with 25 μM cisplatin for 24 h increased cell death resulting from excessive intracellular reactive oxygen species (ROS) accumulation and caspase-involved apoptotic signaling pathway activation with subsequent DNA fragmentation. GRP78 and GRP94 expression was increased in cells treated with 3 nM thapsigargin or 0.1 μg/mL tunicamycin for 24 h, referred to as mild ER stress condition. This condition, prior to cisplatin exposure, attenuated cisplatin-induced ototoxicity. The involvement of GRP78 and GRP94 induction was demonstrated by the knockdown of GRP78 or GRP94 expression using small interfering RNAs, which abolished the protective effect of mild ER stress condition on cisplatin-induced cytotoxicity. These results indicated that GRP78 and GRP94 induction plays a protective role in remediating cisplatin-ototoxicity.
Collapse
Affiliation(s)
- Junyeong Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea;
| | - Tae Su Kim
- Department of Otorhinolaryngology, School of Medicine, Kangwon National University, Gangwondaehakgil, Chuncheon, Gangwon-Do 24341, Korea;
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea
| | - Jong Woo Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea;
| |
Collapse
|
22
|
Zhou J, Chen J, Wei Q, Saeb-Parsy K, Xu X. The Role of Ischemia/Reperfusion Injury in Early Hepatic Allograft Dysfunction. Liver Transpl 2020; 26:1034-1048. [PMID: 32294292 DOI: 10.1002/lt.25779] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Liver transplantation (LT) is the only available curative treatment for patients with end-stage liver disease. Early allograft dysfunction (EAD) is a life-threatening complication of LT and is thought to be mediated in large part through ischemia/reperfusion injury (IRI). However, the underlying mechanisms linking IRI and EAD after LT are poorly understood. Most previous studies focused on the clinical features of EAD, but basic research on the underlying mechanisms is insufficient, due, in part, to a lack of suitable animal models of EAD. There is still no consensus on definition of EAD, which hampers comparative analysis of data from different LT centers. IRI is considered as an important risk factor of EAD, which can induce both damage and adaptive responses in liver grafts. IRI and EAD are closely linked and share several common pathways. However, the underlying mechanisms remain largely unclear. Therapeutic interventions against EAD through the amelioration of IRI is a promising strategy, but most approaches are still in preclinical stages. To further study the mechanisms of EAD and promote collaborations between LT centers, optimized animal models and unified definitions of EAD are urgently needed. Because IRI and EAD are closely linked, more attention should be paid to the underlying mechanisms and the fundamental relationship between them. Ischemia/reperfusion-induced adaptive responses may play a crucial role in the prevention of EAD, and more preclinical studies and clinical trials are urgently needed to address the current limitation of available therapeutic interventions.
Collapse
Affiliation(s)
- Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jian Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom.,Cambridge National Institute of Health Research Biomedical research Centre, Cambridge, United Kingdom
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
23
|
Du S, Song X, Li Y, Cao Y, Chu F, Durojaye OA, Su Z, Shi X, Wang J, Cheng J, Wang T, Gao X, Chen Y, Zeng W, Wang F, Wang D, Liu X, Ding X. Celastrol inhibits ezrin-mediated migration of hepatocellular carcinoma cells. Sci Rep 2020; 10:11273. [PMID: 32647287 PMCID: PMC7347585 DOI: 10.1038/s41598-020-68238-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Progression of hepatocellular carcinoma involves multiple genetic and epigenetic alterations that promote cancer invasion and metastasis. Our recent study revealed that hyperphosphorylation of ezrin promotes intrahepatic metastasis in vivo and cell migration in vitro. Celastrol is a natural product from traditional Chinese medicine which has been used in treating liver cancer. However, the mechanism of action underlying celastrol treatment was less clear. Here we show that ROCK2 is a novel target of celastrol and inhibition of ROCK2 suppresses elicited ezrin activation and liver cancer cell migration. Using cell monolayer wound healing, we carried out a phenotype-based screen of natural products and discovered the efficacy of celastrol in inhibiting cell migration. The molecular target of celastrol was identified as ROCK2 using celastrol affinity pull-down assay. Our molecular docking analyses indicated celastrol binds to the active site of ROCK2 kinase. Mechanistically, celastrol inhibits the ROCK2-mediated phosphorylation of ezrin at Thr567 which harnesses liver cancer cell migration. Our findings suggest that targeting ROCK2-ezrin signaling is a potential therapeutic niche for celastrol-based intervention of cancer progression in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shihao Du
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.,Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaoyu Song
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Yuan Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yalei Cao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fuhao Chu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Zeqi Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoguang Shi
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jing Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Juan Cheng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tangshun Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiang Gao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan Chen
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wuzhekai Zeng
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - DongMei Wang
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xing Liu
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. .,Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
24
|
Riaz TA, Junjappa RP, Handigund M, Ferdous J, Kim HR, Chae HJ. Role of Endoplasmic Reticulum Stress Sensor IRE1α in Cellular Physiology, Calcium, ROS Signaling, and Metaflammation. Cells 2020; 9:E1160. [PMID: 32397116 PMCID: PMC7290600 DOI: 10.3390/cells9051160] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases. Thus, further understanding of its molecular structure and mechanism of action during different cell insults helps in designing and developing better therapeutic strategies for the above-mentioned chronic diseases. In this review, recent insights into structure and mechanism of activation of IRE1α along with its complex regulating network were discussed in relation to their basic cellular physiological function. Addressing different binding partners that can modulate IRE1α function, UPRosome triggers different downstream pathways depending on the cellular backdrop. Furthermore, IRE1α are in normal cell activities outside the dominion of ER stress and activities under the weather of inflammation, diabetes, and obesity-related metaflammation. Thus, IRE1 as an ER stress sensor needs to be understood from a wider perspective for comprehensive functional meaning, which facilitates us with assembling future needs and therapeutic benefits.
Collapse
Affiliation(s)
- Thoufiqul Alam Riaz
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju 54907, Korea; (T.A.R.); (R.P.J.)
| | - Raghu Patil Junjappa
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju 54907, Korea; (T.A.R.); (R.P.J.)
| | - Mallikarjun Handigund
- Department of Laboratory Medicine, Jeonbuk National University, Medical School, Jeonju 54907, Korea;
| | - Jannatul Ferdous
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju 54907, Korea; (T.A.R.); (R.P.J.)
| |
Collapse
|
25
|
Xiaolong L, Dongmin G, Liu M, Zuo W, Huijun H, Qiufen T, XueMei H, Wensheng L, Yuping P, Jun L, Zhaolin Z. FGF21 induces autophagy-mediated cholesterol efflux to inhibit atherogenesis via RACK1 up-regulation. J Cell Mol Med 2020; 24:4992-5006. [PMID: 32227589 PMCID: PMC7205825 DOI: 10.1111/jcmm.15118] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) acts as an anti‐atherosclerotic agent. However, the specific mechanisms governing this regulatory activity are unclear. Autophagy is a highly conserved cell stress response which regulates atherosclerosis (AS) by reducing lipid droplet degradation in foam cells. We sought to assess whether FGF21 could inhibit AS by regulating cholesterol metabolism in foam cells via autophagy and to elucidate the underlying molecular mechanisms. In this study, ApoE−/− mice were fed a high‐fat diet (HFD) with or without FGF21 and FGF21 + 3‐Methyladenine (3MA) for 12 weeks. Our results showed that FGF21 inhibited AS in HFD‐fed ApoE−/− mice, which was reversed by 3MA treatment. Moreover, FGF21 increased plaque RACK1 and autophagy‐related protein (LC3 and beclin‐1) expression in ApoE−/− mice, thus preventing AS. However, these proteins were inhibited by LV‐RACK1 shRNA injection. Foam cell development is a crucial determinant of AS, and cholesterol efflux from foam cells represents an important defensive measure of AS. In this study, foam cells were treated with FGF21 for 24 hours after a pre‐treatment with 3MA, ATG5 siRNA or RACK1 siRNA. Our results indicated that FGF21‐induced autophagy promoted cholesterol efflux to reduce cholesterol accumulation in foam cells by up‐regulating RACK1 expression. Interestingly, immunoprecipitation results showed that RACK1 was able to activate AMPK and interact with ATG5. Taken together, our results indicated that FGF21 induces autophagy to promote cholesterol efflux and reduce cholesterol accumulation in foam cells through RACK1‐mediated AMPK activation and ATG5 interaction. These results provided new insights into the molecular mechanisms of FGF21 in the treatment of AS.
Collapse
Affiliation(s)
- Lin Xiaolong
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Guo Dongmin
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| | - Mihua Liu
- Department of infectious Disease, Centre for Lipid Research & Key Laboratory of Molecular Biology for infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing City, China.,Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Wang Zuo
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| | - Hu Huijun
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Tan Qiufen
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Hu XueMei
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Lin Wensheng
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Pan Yuping
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Lin Jun
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Zeng Zhaolin
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China.,Department of Cardiology, Nanchuan People's Hospital, Chongqing Medical University, Chongqing City, China
| |
Collapse
|
26
|
Kerr SR, Katz SG. Activation of the Unfolded Protein Response Pathway in Cytotoxic T Cells: A Comparison Between in vitro Stimulation, Infection, and the Tumor Microenvironment. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:675-685. [PMID: 31866782 PMCID: PMC6913815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IRE1α is an extremely conserved intracellular receptor that regulates one branch of the unfolded protein response (UPR). Homologs of IRE1α are found virtually throughout all eukaryotes. This receptor plays a pivotal role in a cell's reaction to stress, determining whether to take compensatory measures and survive or undergo apoptosis and die. While the role of the unfolded protein response in lower organisms and secretory cells has been comprehensively studied, the precise role of IRE1α in the context of cytotoxic T cells has only begun to be elucidated within the past decade. This review discusses what is known about IRE1α and the unfolded protein response in cytotoxic T cells within the context of development, pathogen response, and cancer cell growth.
Collapse
Affiliation(s)
| | - Samuel G. Katz
- To whom all correspondence should be addressed: Samuel G. Katz, M.D., Ph.D., Yale University School of Medicine, 310 Cedar Street, LH315B, New Haven, CT, 06520; Tel: 203-785-2757, Fax: 203-785-6127,
| |
Collapse
|
27
|
lncRNA AK054386 Functions as a ceRNA to Sequester miR-199 and Induce Sustained Endoplasmic Reticulum Stress in Hepatic Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8189079. [PMID: 31827704 PMCID: PMC6885273 DOI: 10.1155/2019/8189079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/17/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a very complex pathological process that is often associated with liver trauma and surgery, especially liver transplantation surgery. Although endoplasmic reticulum stress (ERS) plays a role in this process, the posttranscriptional regulators and the underlying mechanisms are still unclear. Here, we report that the lncRNA AK054386 was increased in hepatic IRI models. Furthermore, AK054386 can act as a “competing endogenous RNA (ceRNA)” and regulate ERS-related factors by binding and sequestering miR-199, which was shown to inhibit ERS in our previous report. Increased expression of AK054386, which might be mediated by activated NF-κB, resulted in sustained ERS and increased cell apoptosis and death in hepatic IRI mouse and cellular models. In contrast, AK054386 inhibition had protective effects on these models. Our data indicate that AK054386 and miR-199 are critical players in hepatic IRI, and we broadened the scope regarding ceRNA mechanisms. We hope that our results will improve the understanding of hepatic IRI and may provide potential therapeutic targets.
Collapse
|
28
|
Agellon LB, Michalak M. Avoiding raising the ire of IRE1α. Cell Calcium 2019; 83:102056. [DOI: 10.1016/j.ceca.2019.102056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 01/06/2023]
|
29
|
Beneficial effect of ER stress preconditioning in protection against FFA-induced adipocyte inflammation via XBP1 in 3T3-L1 adipocytes. Mol Cell Biochem 2019; 463:45-55. [PMID: 31630283 PMCID: PMC6946732 DOI: 10.1007/s11010-019-03627-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023]
Abstract
Adipose tissue inflammation is closely associated with the development of obesity and insulin resistance. Free fatty acids (FFAs) are a major inducer of obesity-related insulin resistance. Previously, we reported that endoplasmic reticulum (ER) stress potentially mediated retinal inflammation in diabetic retinopathy. The unfolded protein response (UPR) protects cells against damage induced by oxidative stress. X-box binding protein 1 (XBP1) plays a major role in protecting cells by modulating the UPR. However, the link between ER stress and adipocyte inflammation has been poorly investigated. In the present study, we found that pretreatment of 3T3-L1 adipocytes with a low dose of ER stress inducer tunicamycin inhibited FFA-induced upregulated expression of inflammatory cytokines. In addition, FFAs induced phosphorylation of the p65 subunit of NF-κB was largely inhibited by pretreatment with tunicamycin in 3T3-L1 adipocytes. Knockdown of XBP1 by siRNA markedly mitigated the protective effects of preconditioning against inflammation. Conversely, overexpression of XBP1 alleviated FFA-induced phosphorylation of IκB-α, IKKα/β, and NF-κB, which was accompanied by decreased inflammatory cytokine expression. Collectively, these results imply a beneficial role of ER stress preconditioning in protecting against FFA-induced 3T3-L1 adipocyte inflammation, which is likely mediated through inhibition of the IKK/NF-κB pathway via XBP1.
Collapse
|
30
|
Yan B, Liu S, Li X, Zhong Y, Tong F, Yang S. Preconditioning with endoplasmic reticulum stress alleviated heart ischemia/reperfusion injury via modulating IRE1/ATF6/RACK1/PERK and PGC-1α in diabetes mellitus. Biomed Pharmacother 2019; 118:109407. [PMID: 31545290 DOI: 10.1016/j.biopha.2019.109407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to observe the functions of preconditioning with endoplasmic reticulum stress (ERS) whether alleviated heart ischemia/reperfusion injury (HI/RI) via modulating IRE1/ATF6/RACK1/PERK and PGC-1α expressions in diabetes mellitus (DM) or not. Diabetic rats were pretreated with 0.6 mg/kg tunicamycin (TM, 0.6 mg/kg tunicamycin was administered via intraperitoneal injection 30 minutes prior to the I/R procedures), and then subjected to 45 minutes of ischemia and 3 hours of reperfusion. Blood and myocardial tissues were collected, myocardial pathological injuries were investigated, serum creatine kinase-MB (CK-MB) and cardiac troponin T (cTnT) levels were measured, left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), maximum rate of left ventricular pressure rise (+dp/dtmax) and maximum rate of left ventricular pressure drop (-dp/dtmax) were evaluated, reactive oxygen species (ROS) and caspase-3 levels were observed, ΔΨm level and ROS expression were measured, and activated transcript factor 6 (ATF6), receptor for activated C kinase 1 (RACK1), PRK-like ER kinase (PERK), glucose regulated protein 78 (GRP78) and peroxisome proliferator-activated receptor γ co-activator 1-α (PGC-1α) expressions were assessed. The TM ameliorated the pathological damages, reduced myocardial oxidative stress damages, restrained apoptosis, and upregulated the expressions of ATF6, RACK1, PERK, GRP78 and PGC-1α compared with those of the ischemia/reperfusion (I/R) group in DM. This study suggested the preconditioning with endoplasmic reticulum stress (TM) strategy that could enhance protection against HI/RI in DM in clinical myocardial diseases.
Collapse
Affiliation(s)
- Bing Yan
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China
| | - Suhuan Liu
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China
| | - Xuejun Li
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China
| | - Yali Zhong
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Fei Tong
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China; Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China.
| | - Shuyu Yang
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
31
|
Zhang Y, Lv J, Wu G, Li W, Zhang Z, Li W, Lei X. MicroRNA-449b-5p targets HMGB1 to attenuate hepatocyte injury in liver ischemia and reperfusion. J Cell Physiol 2019; 234:16367-16375. [PMID: 30805938 DOI: 10.1002/jcp.28305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) participate in the pathological process of liver ischemia/reperfusion (I/R) injury. MiR-449b-5p is the target miRNA of high mobility group box 1 (HMGB1). Its role and molecular mechanism in liver I/R injury remain unidentified. In this study, we found a protective effect of miR-449b-5p against hepatic I/R injury. HMGB1 expression significantly increased, whereas miR-449b-5p dramatically decreased in patients after liver transplant and in L02 cells exposed to hypoxia/reoxygenation (H/R). A dual-luciferase reporter assay confirmed the direct interaction between miR-449b-5p and the 3' untranslated region of HMGB1 messenger RNA. We also found that overexpression of miR-449b-5p significantly promoted cell viability and inhibited cell apoptosis of L02 cells exposed to H/R. Moreover, miR-449b-5p repressed HMGB1 protein expression and nuclear factor-κB (NF-κB) pathway activation in these L02 cells. In an in vivo rat model of hepatic I/R injury, overexpression of miR-449b-5p significantly decreased alanine aminotransferase and aspartate aminotransferase and inhibited the HMGB1/NF-κB pathway. Our study thus suggests that miR-449b-5p alleviated hepatic I/R injury by targeting HMGB1 and deactivating the NF-κB pathway, which may provide a novel and promising therapeutic target for hepatic I/R injury.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianrui Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenni Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoming Lei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
32
|
Fang C, Guo X, Lv X, Yin R, Lv X, Wang F, Zhao J, Bai Q, Yao X, Chen Y. Dysbindin promotes progression of pancreatic ductal adenocarcinoma via direct activation of PI3K. J Mol Cell Biol 2019; 9:504-515. [PMID: 29040676 DOI: 10.1093/jmcb/mjx043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents a biggest challenge in clinic oncology due to its invasiveness and lack of targeted therapeutics. Our recent study showed that schizophrenia susceptibility factor dysbindin exhibited significant higher level in serum of PDAC patients. However, the functional relevance of dysbindin in PDAC is still unclear. Here, we show that dysbindin promotes tumor growth both in vitro and in vivo by accelerating the G1/S phase transition in cell cycle via PI3K/AKT signaling pathway. Mechanistically, dysbindin interacts with PI3K and stimulates the kinase activity of PI3K. Moreover, overexpression of dysbindin in PDAC is correlated with clinicopathological characteristics significantly, such as histological differentiation (P = 0.011) and tumor size (P = 0.007). Kaplan-Meier survival curves show that patients with high dysbindin expression exhibit poorer overall survival, compared to those with low dysbindin expression (P < 0.001). Multivariate analysis reveals that dysbindin is an independent prognostic factor for pancreatic ductal adenocarcinoma (P = 0.001). Thus, our findings reveal that dysbindin is a novel PI3K activator and promotes PDAC progression via stimulation of PI3K/AKT. Dysbindin therefore represents a potential target for prognosis and therapy of PDAC.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Guo
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xing Lv
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ruozhe Yin
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fengsong Wang
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Jun Zhao
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Quan Bai
- Institute of Modern Separation Science, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Xuebiao Yao
- Department of Hefei Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Activation of PERK-eIF2α-ATF4 pathway contributes to diabetic hepatotoxicity: Attenuation of ER stress by Morin. Cell Signal 2019; 59:41-52. [PMID: 30877037 DOI: 10.1016/j.cellsig.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/12/2023]
Abstract
Hyperglycemia associated ER stress has been found as a critical contributor in the pathogenesis of type 2 diabetes mellitus. However, reports regarding molecular mechanisms involved are limited. This study was aimed to identify the role of ER stress in regulating hepatic glucose metabolism and its link with oxidative stress. Further, this study explores the novel role of Morin, a flavonol, in modulating ER stress in STZ/nicotinamide induced type 2 diabetic male Wistar rats. Results demonstrate that hyperglycemia induced ER stress in rats and significantly lowered the expression of glucose transporter proteins resulting in impaired glucose metabolism during diabetes. Morin was found to downregulate PERK-eIF2α-ATF4 pathway by interacting with PERK protein as confirmed through pull-down assay. Additionally, Morin maintained the reducing environment in ER and enhanced PDI activity compared to diabetic rats. Morin prevented cell death by suppressing the expression of PERK dependent pro-apoptotic proteins including ATF4 and CHOP. Findings from this study affirm the role of ER stress in hyperglycemia induced gluco-metabolic aberrations and liver injury as confirmed by ISRIB, a standard chemical ER stress inhibitor. Notably, Morin promoted deactivation of UPR sensors and upregulated PDI activity endorsing its anti-ER stress potential which may allow the development of new therapeutic avenues to target hyperglycemic hepatotoxicity.
Collapse
|
34
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
35
|
Zhao G, Cheng Y, Gui P, Cui M, Liu W, Wang W, Wang X, Ali M, Dou Z, Niu L, Liu H, Anderson L, Ruan K, Hong J, Yao X. Dynamic acetylation of the kinetochore-associated protein HEC1 ensures accurate microtubule-kinetochore attachment. J Biol Chem 2019; 294:576-592. [PMID: 30409912 PMCID: PMC6333894 DOI: 10.1074/jbc.ra118.003844] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/18/2018] [Indexed: 11/06/2022] Open
Abstract
Faithful chromosome segregation during mitosis is critical for maintaining genome integrity in cell progeny and relies on accurate and robust kinetochore-microtubule attachments. The NDC80 complex, a tetramer comprising kinetochore protein HEC1 (HEC1), NDC80 kinetochore complex component NUF2 (NUF2), NDC80 kinetochore complex component SPC24 (SPC24), and SPC25, plays a critical role in kinetochore-microtubule attachment. Mounting evidence indicates that phosphorylation of HEC1 is important for regulating the binding of the NDC80 complex to microtubules. However, it remains unclear whether other post-translational modifications, such as acetylation, regulate NDC80-microtubule attachment during mitosis. Here, using pulldown assays with HeLa cell lysates and site-directed mutagenesis, we show that HEC1 is a bona fide substrate of the lysine acetyltransferase Tat-interacting protein, 60 kDa (TIP60) and that TIP60-mediated acetylation of HEC1 is essential for accurate chromosome segregation in mitosis. We demonstrate that TIP60 regulates the dynamic interactions between NDC80 and spindle microtubules during mitosis and observed that TIP60 acetylates HEC1 at two evolutionarily conserved residues, Lys-53 and Lys-59. Importantly, this acetylation weakened the phosphorylation of the N-terminal HEC1(1-80) region at Ser-55 and Ser-62, which is governed by Aurora B and regulates NDC80-microtubule dynamics, indicating functional cross-talk between these two post-translation modifications of HEC1. Moreover, the TIP60-mediated acetylation was specifically reversed by sirtuin 1 (SIRT1). Taken together, our results define a conserved signaling hierarchy, involving HEC1, TIP60, Aurora B, and SIRT1, that integrates dynamic HEC1 acetylation and phosphorylation for accurate kinetochore-microtubule attachment in the maintenance of genomic stability during mitosis.
Collapse
Affiliation(s)
- Gangyin Zhao
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Yubao Cheng
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Ping Gui
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Meiying Cui
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Wei Liu
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Wenwen Wang
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Xueying Wang
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Mahboob Ali
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Zhen Dou
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Liwen Niu
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Haiyan Liu
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Leonard Anderson
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Ke Ruan
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Jingjun Hong
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Xuebiao Yao
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| |
Collapse
|
36
|
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz‐Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 2019; 286:241-278. [PMID: 30027602 PMCID: PMC7379631 DOI: 10.1111/febs.14608] [Citation(s) in RCA: 651] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Antonio Carlesso
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Chetan Chintha
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | | | - Dimitrios Doultsinos
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Brian Leuzzi
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Nicole McCarthy
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | - Luigi Montibeller
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Sanket More
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Alexandra Papaioannou
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Franziska Püschel
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Maria Livia Sassano
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Josip Skoko
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Patrizia Agostinis
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Jackie de Belleroche
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Leif A. Eriksson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Simone Fulda
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | | | - Sandra Healy
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Cristina Muñoz‐Pinedo
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Markus Rehm
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Eric Chevet
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Afshin Samali
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| |
Collapse
|
37
|
Hu F, Yang D, Qian B, Fan S, Zhu Q, Ren H, Li X, Zhai B. The exogenous delivery of microRNA-449b-5p using spermidine-PLGA nanoparticles efficiently decreases hepatic injury. RSC Adv 2019; 9:35135-35144. [PMID: 35530696 PMCID: PMC9074739 DOI: 10.1039/c9ra06129k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/05/2019] [Indexed: 01/15/2023] Open
Abstract
A notable liver ischemia/reperfusion (I/R) injury is observed during liver transplantation, shock, trauma and other systemic diseases. The main aim of the present study was to evaluate the fact that HMGB1 acts as an early mediator of inflammation in hepatic injury and the potential of the miR-449b-5p mimic in the restoration of liver disorders. Herein, a miR-449b-5p-loaded spermidine/PLGA nanoparticle system was successfully formulated to improve the systemic delivery and performance of encapsulated miRNA. The major findings of the present study were as follows: (i) the HMGB1 levels were elevated upon the occurrence of I/R in vitro and in vivo; (ii) the inhibition of HMGB1 prevented the spread of inflammation; (iii) miR-449b-5p (PN-miR mimic) increased the cell viability of hepatic cells and decreased cell apoptosis; and (iv) the protective ability of the PN-miR mimic was attributed to the inhibition of the pNF-κB and p-p65 pathways. Compared to the case of the I/R group, the serum AST and ALT levels were significantly reduced in the group treated with miR-449b-5p (PN-miR mimic), indicating the extent of reduction in liver inflammation. The present study highlighted the importance of miR-449b-5p in the treatment of hepatic injury and could serve as a guide to effectively attenuate liver disorders. The application of the proposed nanoparticle system in the systemic delivery of miR-449b-5p further enhances the prospect of this treatment strategy. The present study highlights the importance of miR-449b-5p in the inhibition of HMGB1 and thereby it's treatment potential in hepatic injury.![]()
Collapse
Affiliation(s)
- Fengli Hu
- Department of Gastroenterology
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Dongdong Yang
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Bo Qian
- Department of Gastroenterology
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Shengjie Fan
- Department of Gastroenterology
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Qiankun Zhu
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Haiyang Ren
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Xiaodong Li
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Bo Zhai
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| |
Collapse
|
38
|
Li X, Li J, Qian J, Zhang D, Shen H, Li X, Li H, Chen G. Loss of Ribosomal RACK1 (Receptor for Activated Protein Kinase C 1) Induced by Phosphorylation at T50 Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. Stroke 2019; 50:162-171. [PMID: 30580718 DOI: 10.1161/strokeaha.118.022404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and Purpose- RACK1 (receptor for activated protein kinase C 1) is an integral component of ribosomes with neuroprotective functions. The goal of this study was to determine the role of RACK1 in cerebral ischemia-reperfusion (I/R) injury and the underlying mechanisms. Methods- A middle cerebral artery occlusion/reperfusion model in adult male Sprague Dawley rats (250-280 g) was established, and cultured neurons were exposed to oxygen-glucose deprivation/reoxygenation to mimic I/R injury in vitro. Expression vectors encoding wild-type RACK1 and RACK1 with T50A mutation (T50A) were constructed and administered to rats by intracerebroventricular injection. Results- The potential role of RACK1 in cerebral I/R injury was confirmed by the decreased protein levels of RACK1 within penumbra tissue, especially of neurons. Second, there was an increase in the phosphorylation ratio of RACK1 at the threonine/serine residues at 1.5 hours after middle cerebral artery occlusion onset. Third, based on site-specific mutagenesis, we identified T50 as a key site for RACK1 phosphorylation during I/R. Fourth, wild-type RACK1 overexpression reduced infarct size, neuronal death, neuronal tissue loss, and neurobehavioral dysfunction, while RACK1 (T50A) overexpression exerted opposite effects. Finally, we found that RACK1 phosphorylation at T50 induced a loss of ribosomal RACK1, which switched RACK1 from beclin-1 translation inhibition to autophagy induction following I/R. Conclusions- RACK1 phosphorylation may be a potential intervention target for neurons during I/R; thus, exogenous supplementation of RACK1 may be a novel approach for ameliorating I/R injury.
Collapse
Affiliation(s)
- Xiang Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinquan Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhong Qian
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongping Zhang
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
39
|
Akram S, Yang F, Li J, Adams G, Liu Y, Zhuang X, Chu L, Liu X, Emmett N, Thompson W, Mullen M, Muthusamy S, Wang W, Mo F, Liu X. LRIF1 interacts with HP1α to coordinate accurate chromosome segregation during mitosis. J Mol Cell Biol 2018; 10:527-538. [PMID: 30016453 PMCID: PMC6304163 DOI: 10.1093/jmcb/mjy040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/05/2018] [Accepted: 07/14/2018] [Indexed: 01/26/2023] Open
Abstract
Heterochromatin protein 1α (HP1α) regulates chromatin specification and plasticity during cell fate decision. Different structural determinants account for HP1α localization and function during cell division cycle. Our earlier study showed that centromeric localization of HP1α depends on the epigenetic mark H3K9me3 in interphase, while its centromeric location in mitosis relies on uncharacterized PXVXL-containing factors. Here, we identified a PXVXL-containing protein, ligand-dependent nuclear receptor-interacting factor 1 (LRIF1), which recruits HP1α to the centromere of mitotic chromosomes and its interaction with HP1α is essential for accurate chromosome segregation during mitosis. LRIF1 interacts directly with HP1α chromoshadow domain via an evolutionarily conserved PXVXL motif within its C-terminus. Importantly, the LRIF1-HP1α interaction is critical for Aurora B activity in the inner centromere. Mutation of PXVXL motif of LRIF1 leads to defects in HP1α centromere targeting and aberrant chromosome segregation. These findings reveal a previously unrecognized direct link between LRIF1 and HP1α in centromere plasticity control and illustrate the critical role of LRIF1-HP1α interaction in orchestrating accurate cell division.
Collapse
Affiliation(s)
- Saima Akram
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
| | - Fengrui Yang
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Junying Li
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
| | - Gregory Adams
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
- National Institutes of Health, Bethesda, MD, USA
| | - Yingying Liu
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xiaoxuan Zhuang
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- National Institutes of Health, Bethesda, MD, USA
| | - Lingluo Chu
- Department of Molecular Cell Biology, Harvard University, Cambridge, MA, USA
| | - Xu Liu
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Nerimah Emmett
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Winston Thompson
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - McKay Mullen
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Saravana Muthusamy
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wenwen Wang
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Fei Mo
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- National Institutes of Health, Bethesda, MD, USA
| | - Xing Liu
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
40
|
Pandey VK, Mathur A, Kakkar P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci 2018; 216:246-258. [PMID: 30471281 DOI: 10.1016/j.lfs.2018.11.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) is a crucial single membrane organelle that acts as a quality control system for cellular proteins as it is intricately involved in their synthesis, folding and trafficking to the respective targets. Type 2 diabetes is characterized by enhanced blood glucose level that promotes insulin resistance and hampers cellular glucose metabolism. Hyperglycemia provokes mitochondrial ROS production and glycation of proteins which exert a tremendous load on ER for conventional refolding of misfolded/unfolded and nascent proteins that perturb ER homeostasis resulting in apoptotic cell death. Impairment in ER functions is suspected to be through specific ER membrane-bound proteins known as Unfolded Protein Response (UPR) sensor proteins. Conformational changes in these proteins induce oligomerization and cross-autophosphorylation which facilitate processes required for the restoration of ER homeostatic imbalance. Multiple studies have reported the involvement of UPR mediated autophagy and apoptotic pathways in the progression of metabolic disorders including diabetes, cardiac ischemia/reperfusion injury and hypoxia-mediated cell death. In this review, the involvement of UPR pathways in the progression of diabetes associated complications have been addressed, which underscores molecular crosstalks during neuropathy, nephropathy, hepatic injury and retinopathy. A better understanding of these molecular interventions may reveal advanced therapeutic approaches for preventing diabetic comorbidities. The article also highlights the importance of phytochemicals that are emerging as novel ER stress inhibitors and are being explored for targeted interaction in preventing cell death responses during diabetes.
Collapse
Affiliation(s)
- Vivek Kumar Pandey
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Alpana Mathur
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
41
|
Ding M, Jiang J, Yang F, Zheng F, Fang J, Wang Q, Wang J, Yao W, Liu X, Gao X, Mullen M, He P, Rono C, Ding X, Hong J, Fu C, Liu X, Yao X. Holliday junction recognition protein interacts with and specifies the centromeric assembly of CENP-T. J Biol Chem 2018; 294:968-980. [PMID: 30459232 DOI: 10.1074/jbc.ra118.004688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/19/2018] [Indexed: 02/02/2023] Open
Abstract
The centromere is an evolutionarily conserved eukaryotic protein machinery essential for precision segregation of the parental genome into two daughter cells during mitosis. Centromere protein A (CENP-A) organizes the functional centromere via a constitutive centromere-associated network composing the CENP-T complex. However, how CENP-T assembles onto the centromere remains elusive. Here we show that CENP-T binds directly to Holliday junction recognition protein (HJURP), an evolutionarily conserved chaperone involved in loading CENP-A. The binding interface of HJURP was mapped to the C terminus of CENP-T. Depletion of HJURP by CRISPR-elicited knockout minimized recruitment of CENP-T to the centromere, indicating the importance of HJURP in CEPN-T loading. Our immunofluorescence analyses indicate that HJURP recruits CENP-T to the centromere in S/G2 phase during the cell division cycle. Significantly, the HJURP binding-deficient mutant CENP-T6L failed to locate to the centromere. Importantly, CENP-T insufficiency resulted in chromosome misalignment, in particular chromosomes 15 and 18. Taken together, these data define a novel molecular mechanism underlying the assembly of CENP-T onto the centromere by a temporally regulated HJURP-CENP-T interaction.
Collapse
Affiliation(s)
- Mingrui Ding
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China.,the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Jiying Jiang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Fengrui Yang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Fan Zheng
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Jingwen Fang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Qian Wang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Jianyu Wang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China.,the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - William Yao
- the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Xu Liu
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China.,the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Xinjiao Gao
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - McKay Mullen
- the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Ping He
- the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Cathy Rono
- the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Xia Ding
- the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingjun Hong
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Chuanhai Fu
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Xing Liu
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China,
| | - Xuebiao Yao
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China,
| |
Collapse
|
42
|
Ni H, Rui Q, Xu Y, Zhu J, Gao F, Dang B, Li D, Gao R, Chen G. RACK1 upregulation induces neuroprotection by activating the IRE1-XBP1 signaling pathway following traumatic brain injury in rats. Exp Neurol 2018. [DOI: 10.1016/j.expneurol.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Mateus D, Marini ES, Progida C, Bakke O. Rab7a modulates ER stress and ER morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:781-793. [DOI: 10.1016/j.bbamcr.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 02/08/2023]
|
44
|
Ischemic Preconditioning Promotes Autophagy and Alleviates Renal Ischemia/Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8353987. [PMID: 29607326 PMCID: PMC5828321 DOI: 10.1155/2018/8353987] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
Autophagy is important for cellular survival during renal ischemia/reperfusion (I/R) injury. Ischemic preconditioning (IPC) has a strong renoprotective effect during renal I/R. Our study here aimed to explore the effect of IPC on autophagy during renal I/R injury. Rats were subjected to unilateral renal ischemia with or without prior IPC. Hypoxia/reoxygenation (H/R) injury was induced in HK-2 cells with or without prior hypoxic preconditioning (HPC). Autophagy and apoptosis were detected after reperfusion or reoxygenation for different time. The results showed that the levels of LC3II, Beclin-1, SQSTM1/p62, and cleaved caspase-3 were altered in a time-dependent manner during renal I/R. IPC further induced autophagy as indicated by increased levels of LC3II and Beclin-1, decreased level of SQSTM1/p62, and accumulation of autophagosomes compared to I/R groups at corresponding reperfusion time. In addition, IPC reduced the expression of cleaved caspase-3 and alleviated renal cell injury, as evaluated by the levels of serum creatinine (Scr), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) in renal tissues. In conclusion, autophagy and apoptosis are dynamically altered during renal I/R. IPC protects against renal I/R injury and upregulates autophagic flux, thus increasing the possibility for a novel therapy to alleviate I/R-induced acute kidney injury (AKI).
Collapse
|
45
|
Fohlen B, Tavernier Q, Huynh TM, Caradeuc C, Le Corre D, Bertho G, Cholley B, Pallet N. Real-Time and Non-invasive Monitoring of the Activation of the IRE1α-XBP1 Pathway in Individuals with Hemodynamic Impairment. EBioMedicine 2017; 27:284-292. [PMID: 29276149 PMCID: PMC5828547 DOI: 10.1016/j.ebiom.2017.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Many stressors that are encountered upon kidney injury are likely to trigger endoplasmic reticulum (ER) stress, subsequently activating transcriptional, translational and metabolic reprogramming. Monitoring early cellular adaptive responses engaged after hemodynamic impairment yields may represent a clinically relevant approach. However, a non-invasive method for detecting the ER stress response has not been developed. We combined a metabolomic approach with genetic marker analyses using urine from individuals undergoing scheduled cardiac surgery under cardiopulmonary bypass to investigate the feasibility and significance of monitoring the ER stress response in the kidney. We developed an original method based on fragment analysis that measures urinary levels of the spliced X-box binding protein 1 (sXBP1) mRNA as a proxy of inositol-requiring enzyme 1α (IRE1α) activity because sXBP1 is absolutely sensitive and specific for ER stress. The early engagement of the ER stress response after ischemic stress is critical for protecting against tissue damage, and individuals who mount a robust adaptive response are protected against AKI. The clinical consequences of our findings are of considerable importance because ER stress is involved in numerous conditions that lead to AKI and chronic kidney disease; in addition, the detection of ER stress is straightforward and immediately available in routine practice. Endoplasmic Reticulum (ER) stress is involved in the pathophysiology of numerous kidney diseases. We developed a method based on fragment analysis that measures urinary levels of XBP1 mRNA to detect renal ER stress. ER stress occurs early after cardiopulmonary bypass, a procedure leading to acute kidney injury. The detection of renal ER stress in this context can predict the occurrence of acute kidney injury.
The better care of patients with kidney disease requires the identification of biomarkers of ongoing tissue injury to provide therapies to slow disease progression. In this study, we have developed for the first time a non-invasive (urinary) biomarker of a protective cellular process called Endoplasmic Reticulum stress that occurs early in the kidney after ischemic injury. Renal ischemic injury follows cardiac surgery and could lead to acute kidney injury. Our results indicate that the early detection of individuals who do not activate Endoplasmic Reticulum stress could help to identify individuals who will develop acute kidney injury.
Collapse
Affiliation(s)
- Baptiste Fohlen
- Department d'Anésthésie et de Réanimation Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Université Paris Descartes, Paris, France
| | - Quentin Tavernier
- Université Paris Descartes, Paris, France; Institut National de la Santé et la Recherche Médicale (INSERM) U1147, Paris, France
| | - Thi-Mum Huynh
- Department d'Anésthésie et de Réanimation Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Université Paris Descartes, Paris, France
| | - Cédric Caradeuc
- Université Paris Descartes, Paris, France; Centre National pour le Recherche Scientifique (CNRS) U8601, Paris, France
| | - Delphine Le Corre
- Université Paris Descartes, Paris, France; Institut National de la Santé et la Recherche Médicale (INSERM) U1147, Paris, France
| | - Gildas Bertho
- Université Paris Descartes, Paris, France; Centre National pour le Recherche Scientifique (CNRS) U8601, Paris, France
| | - Bernard Cholley
- Department d'Anésthésie et de Réanimation Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Université Paris Descartes, Paris, France
| | - Nicolas Pallet
- Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Université Paris Descartes, Paris, France; Institut National de la Santé et la Recherche Médicale (INSERM) U1147, Paris, France; Service de Néphrologie, Hôpital Européen Georges Pompidou, Paris, France; Service de Biochimie, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
46
|
Panagaki T, Michael M, Hölscher C. Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells. Sci Rep 2017; 7:16158. [PMID: 29170452 PMCID: PMC5700973 DOI: 10.1038/s41598-017-16488-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Growing evidence suggests that agonists of glucagon-like peptide (GLP-1) receptor exert neuroprotective and neurorestorative effects across a range of experimental models of neuronal degeneration, and, recently, a pilot clinical trial of Liraglutide in Alzheimer’s disease patients showed improvements in cerebral glucose consumption that signifies disease progression. However, the exact underlying mechanism of action remains unclear. Chronic endoplasmic reticulum (ER) stress has recently emerged as a mechanism for neuronal injury, rendering it a potent therapeutic target for acute and chronic neurodegenerative disorders. Here, we investigate the neuroprotective effects of Liraglutide along with the signalling network against prolong ER stress and autophagy impairments induced by the non-competitive inhibitor of sarco/ER Ca2+-ATPase, thapsigargin. We show that Liraglutide modulates the ER stress response and elicits ER proteostasis and autophagy machinery homeostasis in human SH-SY5Y neuroblastoma cell line. These effects correlate with resolution of hyper-activity of the antioxidant Nrf2 factor and restoration of the impaired cell viability and proliferation. Mechanistically, Liraglutide engages Akt and signal transducer and activator of transcription 3 (STAT3) signalling to favour adaptive responses and shift cell fate from apoptosis to survival under chronic stress conditions in SH-SY5Y cells.
Collapse
Affiliation(s)
- Theodora Panagaki
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, LA1 4YG, UK
| | - Maria Michael
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, LA1 4YG, UK
| | - Christian Hölscher
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
47
|
Bisoprolol protects myocardium cells against ischemia/reperfusion injury by attenuating unfolded protein response in rats. Sci Rep 2017; 7:11859. [PMID: 28928480 PMCID: PMC5605660 DOI: 10.1038/s41598-017-12366-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/07/2017] [Indexed: 01/02/2023] Open
Abstract
Bisoprolol (B) exerts potential cardioprotective effects against myocardial ischemia/reperfusion (I/R) injury. Unfolded protein response (UPR) attenuates I/R injury induced apoptosis by reducing oxidative damage and inflammation response. The current study investigated whether the protective effects of bisoprolol resulted from modulating UPR and anti-inflammatory during myocardial I/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with B in the absence or presence of the injected UPR activator dithiothreitol (DTT) and then subjected to myocardial I/R surgery. In vitro, cultured H9C2 cells were pretreated with B or DTT and then subjected to simulate ischemia reperfusion (SIR) operation. Bisoprolol conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, suppressing TNF-α and IL-6 secretion, inhibiting UPR signal pathways and downregulating caspase-12 and caspase-3 expressions. Consistently, B conferred similar antioxidative and anti-inflammatory effects against SIR injury in cultured H9C2 cardiomyocytes. Pretreatment with DTT or C/EBP homologous protein (CHOP) overexpression mediated by lentivirus administration both abolished these effects. In summary, our results demonstrate that Bisoprolol protects myocardium cells against ischemia/reperfusion injury partly by attenuating unfolded protein response.
Collapse
|
48
|
Xu P, Zhang J, Wang H, Wang G, Wang CY, Zhang J. CCR2 dependent neutrophil activation and mobilization rely on TLR4-p38 axis during liver ischemia-reperfusion injury. Am J Transl Res 2017; 9:2878-2890. [PMID: 28670376 PMCID: PMC5489888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Liver ischemia-reperfusion injury (IRI) is a common clinical problem in which neutrophil recruitment is an essential event. Our previous study revealed the important role of C-C motif chemokine receptor 2 (CCR2) in neutrophils during liver IRI. The aim of the present study was to further investigate the underlying mechanisms mediating the changes in CCR2 expression in neutrophils during this pathophysiological process. Herein, we found that TLR4 ablation reduced neutrophil mobilization from the bone marrow and the subsequent infiltration into the liver during liver IRI; neutrophil-derived CCR2 expression was also repressed. In addition, neutrophil mobilization was dependent on CCR2 expression in neutrophils, which in turn relied on activation of the TLR4-p38 axis during liver IRI. In conclusion, neutrophil-derived CCR2 expression regulates neutrophil mobilization from the bone marrow and infiltration into the liver, which requires activation of the TLR4-p38 axis during liver IRI.
Collapse
Affiliation(s)
- Peng Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Junbin Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Hui Wang
- Department of Genetics, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Guoliang Wang
- Department of General Surgery, Union Hospital, Huazhong University of Science and TechnologyWuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Huazhong University of Science and TechnologyWuhan, China
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|
49
|
Bolger GB. The RNA-binding protein SERBP1 interacts selectively with the signaling protein RACK1. Cell Signal 2017; 35:256-263. [PMID: 28267599 DOI: 10.1016/j.cellsig.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
The RACK1 protein interacts with numerous proteins involved in signal transduction, the cytoskeleton, and mRNA splicing and translation. We used the 2-hybrid system to identify additional proteins interacting with RACK1 and isolated the RNA-binding protein SERBP1. SERPB1 shares amino acid sequence homology with HABP4 (also known as Ki-1/57), a component of the RNA spicing machinery that has been shown previously to interact with RACK1. Several different isoforms of SERBP1, generated by alternative mRNA splicing, interacted with RACK1 with indistinguishable interaction strength, as determined by a 2-hybrid beta-galactosidase assay. Analysis of deletion constructs of SERBP1 showed that the C-terminal third of the SERBP1 protein, which contains one of its two substrate sites for protein arginine N-methyltransferase 1 (PRMT1), is necessary and sufficient for it to interact with RACK1. Analysis of single amino acid substitutions in RACK1, identified in a reverse 2-hybrid screen, showed very substantial overlap with those implicated in the interaction of RACK1 with the cAMP-selective phosphodiesterase PDE4D5. These data are consistent with SERBP1 interacting selectively with RACK1, mediated by an extensive interaction surface on both proteins.
Collapse
Affiliation(s)
- Graeme B Bolger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA; Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
50
|
Shen NY, Bi JB, Zhang JY, Zhang SM, Gu JX, Qu K, Liu C. Hydrogen-rich water protects against inflammatory bowel disease in mice by inhibiting endoplasmic reticulum stress and promoting heme oxygenase-1 expression. World J Gastroenterol 2017; 23:1375-1386. [PMID: 28293084 PMCID: PMC5330822 DOI: 10.3748/wjg.v23.i8.1375] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the therapeutic effect of hydrogen-rich water (HRW) on inflammatory bowel disease (IBD) and to explore the potential mechanisms involved.
METHODS Male mice were randomly divided into the following four groups: control group, in which the mice received equivalent volumes of normal saline (NS) intraperitoneally (ip); dextran sulfate sodium (DSS) group, in which the mice received NS ip (5 mL/kg body weight, twice per day at 8 am and 5 pm) for 7 consecutive days after IBD modeling; DSS + HRW group, in which the mice received HRW (in the same volume as the NS treatment) for 7 consecutive days after IBD modeling; and DSS + HRW + ZnPP group, in which the mice received HRW (in the same volume as the NS treatment) and ZnPP [a heme oxygenase-1 (HO-1) inhibitor, 25 mg/kg] for 7 consecutive days after IBD modeling. IBD was induced by feeding DSS to the mice, and blood and colon tissues were collected on the 7th d after IBD modeling to determine clinical symptoms, colonic inflammation and the potential mechanisms involved.
RESULTS The DSS + HRW group exhibited significantly attenuated weight loss and a lower extent of disease activity index compared with the DSS group on the 7th d (P < 0.05). HRW exerted protective effects against colon shortening and colonic wall thickening in contrast to the DSS group (P < 0.05). The histological study demonstrated milder inflammation in the DSS + HRW group, which was similar to normal inflammatory levels, and the macroscopic and microcosmic damage scores were lower in this group than in the DSS group (P < 0.05). The oxidative stress parameters, including MDA and MPO in the colon, were significantly decreased in the DSS + HRW group compared with the DSS group (P < 0.05). Simultaneously, the protective indicators, superoxide dismutase and glutathione, were markedly increased with the use of HRW. Inflammatory factors were assessed, and the results showed that the DSS + HRW group exhibited significantly reduced levels of TNF-α, IL-6 and IL-1β compared with the DSS group (P < 0.05). In addition, the pivotal proteins involved in endoplasmic reticulum (ER) stress, including p-eIF2α, ATF4, XBP1s and CHOP, were dramatically reduced after HRW treatment in contrast to the control group (P < 0.05). Furthermore, HRW treatment markedly up-regulated HO-1 expression, and the use of ZnPP obviously reversed the protective role of HRW. In the DSS + HRW + ZnPP group, colon shortening and colonic wall thickening were significantly aggravated, and the macroscopic damage scores were similar to those of the DSS + HRW group (P < 0.05). The histological study also showed more serious colonic damage that was similar to the DSS group.
CONCLUSION HRW has a significant therapeutic potential in IBD by inhibiting inflammatory factors, oxidative stress and ER stress and by up-regulating HO-1 expression.
Collapse
|