1
|
Li Y, Yang D, Ren Y, Luo Y, Zheng H, Liu Y, Wang L, Zhang L. Vitamin E in Plants: Biosynthesis Pathways, Biofortification Strategies, and Regulatory Dynamics. Int J Mol Sci 2025; 26:3380. [PMID: 40244263 PMCID: PMC11989935 DOI: 10.3390/ijms26073380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Vitamin E, mainly encompassing tocopherols and tocotrienols, is an essential antioxidant synthesized in the photosynthetic tissues of plants and photosynthetic bacteria, as well as in certain algae, yet dietary intake often falls short of recommended levels. Although synthetic supplements are available, natural vitamin E demonstrates higher bioavailability, creating a need for biofortification strategies to enrich crops with this nutrient. Recent advances in molecular genetics have elucidated key components of the vitamin E biosynthesis pathway, uncovering complex regulatory mechanisms and expanding opportunities for genetic enhancement. This review integrates current advances in vitamin E biosynthesis, novel gene discovery, diverse biofortification strategies, and insights into transporter-mediated regulation to enhance tocopherol and tocotrienol levels in staple crops. By aligning these advances, this review provides a framework to drive innovative biofortification efforts, positioning vitamin E enrichment as a sustainable solution for improved human and animal health.
Collapse
Affiliation(s)
- Yanjiao Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Di Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Yuqing Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Yanzhong Luo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Hongyan Zheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024,China
| | - Yuan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Lei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024,China
| | - Lan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024,China
| |
Collapse
|
2
|
Wróblewska-Łuczka P, Kulenty L, Załuska-Ogryzek K, Góralczyk A, Łuszczki JJ. Screening of the Antimelanoma Activity of Monoterpenes-In Vitro Experiments on Four Human Melanoma Lines. Curr Issues Mol Biol 2025; 47:97. [PMID: 39996818 PMCID: PMC11854273 DOI: 10.3390/cimb47020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
(1) Malignant melanoma is the most aggressive type of malignant tumor caused by a dysfunction of melanocytes. Despite progress in the treatment of melanoma, further research and search for new potential drugs are necessary to optimize the therapy. (2) The aim of this study was to evaluate the antiproliferative activity of eight selected monoterpenes by MTT and LDH assays on four malignant melanoma cell lines. (3) Myrcene, rhodinol and nerol did not show any significant anticancer effect on melanoma cell lines, but citral, carvacrol, citronellol, thymol and geraniol showed a significant anti-viability effect. Our studies have shown that the most effective terpene among those tested in inhibiting melanoma cell viability was carvacrol, with the lowest IC50 in the range of 0.05 ± 0.00 to 0.06 ± 0.01 mM. Moreover, it did not negatively affect normal human keratinocyte cells. (4) Metastatic melanoma is very difficult to treat, and some terpenes have the ability to sensitize cells to other chemicals; so, it is worth investigating their antimelanoma potential, as terpenes could become an adjuvant to traditional treatment.
Collapse
Affiliation(s)
- Paula Wróblewska-Łuczka
- Department of Occupational Medicine, Medical University of Lublin, 20-090 Lublin, Poland (K.Z.-O.); (A.G.); (J.J.Ł.)
| | | | | | | | | |
Collapse
|
3
|
Wang FL, Chang X, Shi Y, Yang T, Li J, Dong H, Wang Q, Zhang S, Liu J. β-Ionone enhances the inhibitory effects of 5-fluorouracil on the proliferation of gastric adenocarcinoma cells by the GSK-3β signaling pathway. PLoS One 2024; 19:e0309014. [PMID: 39241034 PMCID: PMC11379261 DOI: 10.1371/journal.pone.0309014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/03/2024] [Indexed: 09/08/2024] Open
Abstract
5-Fluorouracil (5-FU) is widely used in the treatment of gastric cancer, and the emergence of drug resistance and toxic effects has limited its application. Therefore, there is an urgent need for safe and effective novel drugs or new therapies. β-Ionone (BI) is found in vegetables and fruits and possesses an inhibitory proliferation of tumor cells in vitro and in vivo. In this study, we investigated whether BI could enhance the inhibitory effects of 5-FU on the proliferation of gastric adenocarcinoma cells and the growth of gastric cancer cell xenografts in a mouse model. The effects of BI and 5-FU alone or their combination on the cell viability, apoptosis, and mitochondrial membrane potential, the cell cycle, and its related proteins-Cyclin D1, and CDK4 as well as PCNA and GSK-3β were evaluated in SGC-7901 cells and MKN45 cells by MTT, MB, flow cytometry and Western blot. In addition, the effects of BI and 5-FU alone or their combination on the growth of SGC-7901 cell xenografts in nude mice were investigated. The results showed that BI significantly enhanced the sensitivity of gastric adenocarcinoma cells to 5-FU in vitro and in vivo, i.e. proliferation inhibited, apoptosis induced and GSK-3β protein activated. Therefore, our results suggest that BI increases the antitumor effect of 5-FU on gastric adenocarcinoma cells, at least partly from an activated GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Fa-Lin Wang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Xiaoxia Chang
- Department of Clinical Laboratory, Xi'an No. 9 Hospital, Beilin District, Xi'an City, China
| | - Yuanyang Shi
- Department of Laboratory, Shaoyang Central Hospital, Daxiang District, Shaoyang City, China
| | - Tingting Yang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Juan Li
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Hongwei Dong
- Public Health College, Harbin Medical University, Nangang District, Harbin, China
| | - Qi Wang
- Public Health College, Harbin Medical University, Nangang District, Harbin, China
| | - Shujun Zhang
- Department of Pathology, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Jiaren Liu
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| |
Collapse
|
4
|
Zhang H, Zhao J, Chinnathambi A, Meganathan V, Gu X. Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells. J Biochem Mol Toxicol 2023; 37:e23424. [PMID: 37519128 DOI: 10.1002/jbt.23424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023]
Abstract
Multiple myeloma (MM) is an incurable cancer that is characterized by malignant plasma cell proliferation. Approximately 10% of all blood cancers are MM, and there is no standard curative therapy. In this work, we intended to synthesize, characterize, and assess the anticancer effects of selenium/chitosan/polyethylene glycol-carvacrol nanocomposites (SCP-Car-NCs) on MM U266 cells in vitro. Various characterization techniques were used to characterize the synthesized SCP-Car-NCs. Several in vitro free radical scavenging experiments were conducted to test the ability of synthesized SCP-Car-NCs to scavenge the different free radicals. The cytotoxicity of SCP-Car-NCs was assessed on Vero and U266 cells using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. By using various fluorescence staining techniques, the amount of reactive oxygen species (ROS) generation, MMP, and apoptosis were measured. Using commercial test kits, the levels of oxidative stress and apoptotic biomarkers in control and treated U266 cells were assessed. The highest peak in the UV spectral analysis was found to be at 271 nm, demonstrating the development of SCP-Car-NCs. Fourier transform infrared analysis showed that the synthesized SCP-Car-NCs contained a variety of stretching and bonding. The X-ray diffraction study confirmed the crystallinity of SCP-Car-NCs. The dynamic light scattering analysis showed that the SCP-Car-NCs had an average size of 171 nm. The different free radicals, such as the 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, and peroxyl radicals, were significantly scavenged by the SCP-Car-NCs. According to the MTT assay results, the SCP-Car-NCs decreased the viability of U266 cells while having no impact on the proliferation of Vero cells. The SCP-Car-NCs significantly boosted ROS production, decreased the MMP level, and promoted apoptosis, as evidenced by the fluorescence staining experiments. In U266 cells treated with SCP-Car-NCs, the level of thiobarbituric acid reactive substances increased while superoxide dismutases and glutathione levels were reduced. In the SCP-Car-NCs treated U266 cells, it was found that the Bax, caspase-3, and -9 activities had increased while the Bcl-2 level had decreased. In conclusion, our findings show that SCP-Car-NCs treatment reduced the viability and increased apoptosis in the U266 cells, providing a new insight on SCP-Car-NCs' potential for usage in the future to treat MM.
Collapse
Affiliation(s)
- Haixi Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
- Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
- Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Xuezhong Gu
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
- Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Silva GDSE, de Jesus Marques JN, Moreira Linhares EP, Bonora CM, Costa ÉT, Saraiva MF. Review of anticancer activity of monoterpenoids: Geraniol, nerol, geranial and neral. Chem Biol Interact 2022; 362:109994. [DOI: 10.1016/j.cbi.2022.109994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
|
7
|
Fatima K, Luqman S, Meena A. Carvacrol Arrests the Proliferation of Hypopharyngeal Carcinoma Cells by Suppressing Ornithine Decarboxylase and Hyaluronidase Activities. Front Nutr 2022; 9:857256. [PMID: 35464036 PMCID: PMC9028219 DOI: 10.3389/fnut.2022.857256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Carvacrol, a monoterpene known for its pharmacological activities, is present in the essential oil of Origanum majorana, Origanum vulgare, Thymus vulgaris, and Lippia graveolens. It is used in food as a flavoring and preservative agent in cosmetics and medicines because of its useful bioactivities in clinical practice. However, carvacrol was not much explored for its anticancer potential. Targeting enzymes involved in carcinogenesis, such as ornithine decarboxylase (ODC), cyclooxygenase-2 (COX-2), lipoxygenase-5 (LOX-5), and hyaluronidase (HYAL) by monoterpenes are amongst the efficient approaches for cancer prevention and treatment. In this study, the efficacy of carvacrol was investigated against deregulated cancer biomarkers/targets in organ-specific human cancer cell lines (FaDu, K562, and A549) utilizing in vitro, in silico, and in vivo approaches. The efficacy of carvacrol was evaluated on human cancer cell lines using neutral red uptake (NRU), sulpho rhodamine B (SRB), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. The mechanistic study was carried out in cell-based test systems. Further, the potency of carvacrol was confirmed by the quantitative real-time PCR analysis and molecular docking studies. The in vivo anti-tumor potential of carvacrol was performed on mice S-180 model, and the toxicity examination was accomplished through in silico approach. Carvacrol significantly impeded the growth of FaDu, K562, and A549 cell lines with IC50 values ranging from 9.61 ± 0.05 to 81.32 ± 11.83 μM. Further, the efficacy of carvacrol was explored against different cancer targets in FaDu, K562, and A549 cell lines. Carvacrol inhibits the ODC, COX-2, LOX-5, and HYAL activities in FaDu cell line and ODC, COX-2, and HYAL activities in K562 cell line. The results were validated by expression analysis revealing the downregulation of the targeted gene with a significant change in the transcript level of ODC and HYAL in FaDu cell line with a fold change of 1.56 and 1.61, respectively. A non-significant effect of carvacrol was observed on the downstream signaling pathway of PI3K and HIF-1α/vascular endothelial growth factor (VEGF) in FaDu cells. The cell cycle, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and Annexin V-fluorescein isothiocyanate (FITC) experiments demonstrate that carvacrol induces apoptosis of FaDu cells. Further, the potency of carvacrol was also evaluated in vivo on mice S-180 tumor model, wherein it inhibits tumor growth (72%) at 75 mg/kg body weight (bw). ADMET studies predicted carvacrol as a safe molecule. Overall, carvacrol delayed the growth of FaDu, K562, and A549 cell lines by targeting enzymes involved in the carcinogenesis process. The existence of one hydroxyl group at the para position of carvacrol could be responsible for the anti-proliferative activity. Thus, carvacrol could be used as a pharmacophore to develop a safe and effective multi-targeted anti-cancer medicament.
Collapse
Affiliation(s)
- Kaneez Fatima
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: Suaib Luqman
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Ahmad A, Saeed M, Ansari IA. Molecular insights on chemopreventive and anticancer potential of carvacrol: Implications from solid carcinomas. J Food Biochem 2021; 45:e14010. [PMID: 34796513 DOI: 10.1111/jfbc.14010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
Abstract
Globally, cancer is one of the deadliest diseases, estimated to cause 9.9 million deaths in 2020. Conventional cancer treatments commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search for new therapeutic drugs. Over the past few years, numerous dietary agents, medicinal plants, and their phytochemicals gained considerable therapeutic importance because of their anticancer, antiviral, anti-inflammatory, and antioxidant activities. Recent years have shown that essential oils possess therapeutic effects against numerous cancers. They are primarily used due to their lesser side effects than standard chemotherapeutic drugs. Carvacrol (CRV) is a phenolic monoterpenoid found in essential oils of oregano, thyme, pepperwort, wild bergamot, and other plants. Numerous anticancer reports of CRV substantiated that the main mechanistic action of CRV involves reduction in the viability of cancer cells and induction of apoptosis via both intrinsic and extrinsic pathways. CRV also obstructs the migration and invasion of cells leading to the suppressed proliferation rate. Furthermore, CRV mediates augmented ROS generation resulting in DNA damage and also halts the progression of cell cycle. Treatment of CRV modulates the expression of apoptotic proteins (Bax, Bad) and molecular targets of various signaling pathways (PI3K/AKT/mTOR, MAPKs, and Notch) in multiple solid carcinomas. Hence, this review aimed to acquire and disseminate the knowledge of chemopreventive and anticancer effects of CRV and the mechanisms of action already described for the compound against numerous cancers, including solid carcinomas, to guide future research. PRACTICAL APPLICATIONS: Development and formulation of phytocompound based anticancer drug agents to counteract the aftereffects of chemotherapeutic drugs is a propitious approach. CRV is a monoterpenoid consisting of a phenolic group obtained from the essential oils of oregano and thyme. These plants are being used as food flavoring spice and as fragrance ingredient in various cosmetic formulations. For the use of CRV as an efficient chemopreventive agent, different therapeutic interactions of CRV along with its targeted pathways and molecules, involved in the regulation of onset and progression of various types of solid carcinomas, need to be studied and explored thoroughly.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Irfan A Ansari
- Department of Biosciences, Integral University, Lucknow, India
| |
Collapse
|
9
|
de Carvalho FO, Silva JPR, Silva ÉR, de Albuquerque Júnior RLC, Nunes PS, de Souza Araújo AA. Would carvacrol be a supporting treatment option effective in minimizing the deleterious effects of COVID-19? Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2471-2474. [PMID: 34669001 PMCID: PMC8526353 DOI: 10.1007/s00210-021-02170-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022]
Abstract
The pathophysiological process of the disease, Covid-19, is mediated by innate immunity, with the presence of macrophages responsible for secreting type 1 and 6 interleukins (IL), tumor necrosis factor (TNF) leading to dilation of endothelial cells with a consequent increase in capillary permeability. The treatment of this disease has been much discussed, but the variability in the clinical picture, the difficulties for diagnosis and treatment, especially of those patients who have the most severe clinical condition of the disease. Immunization is an effective tool for controlling the spread and overload of health services, but its effectiveness involves high investments in the acquisition of inputs, development of vaccines, and logistics of storage and distribution. These factors can be obstacles for countries with lower economic, technological, and infrastructure indexes. Reflecting on these difficulties, we raised the possibility of adjuvant therapies with imminent research feasibility, as is the case with the use of carvacrol, a monoterpenic phenol whose has biological properties that serve as a barrier to processes mediated by free radicals, such as irritation and inflammation, due to its antioxidant action. Many authors highlighted the activity of carvacrol as a potent suppressor of COX-2 expression minimizing the acute inflammatory process, decreasing the release of some pro-inflammatory mediators such as IL-1β, TNF-α, PGE2. Anyway, the benefits of carvacrol are numerous and the therapeutic possibilities too. With this description, the question arises: would carvacrol be a supporting treatment option, effective in minimizing the deleterious effects of Covid-19? There is still a lot to discover and research.
Collapse
Affiliation(s)
- Fernanda Oliveira de Carvalho
- Health Sciences Graduate Center of Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil. .,Hospital Universitário de Sergipe (HU-UFS / EBSERH), Aracaju, SE, Brazil. .,Núcleo de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe-UFS, Cidade Universitária Prof. "José Aloísio de Campos", Av. Marechal Rondon, s/n Jardim Rosa Elza, CEP 49.100-000, São Cristovão, SE, Brazil.
| | | | - Érika Ramos Silva
- Health Sciences Graduate Center of Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil.,Núcleo de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe-UFS, Cidade Universitária Prof. "José Aloísio de Campos", Av. Marechal Rondon, s/n Jardim Rosa Elza, CEP 49.100-000, São Cristovão, SE, Brazil.,Physiotherapy Department, Universidade Federal de Sergipe-UFS, Lagarto, SE, Brazil
| | | | - Paula Santos Nunes
- Health Sciences Graduate Center of Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil.,Morphology Department, Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil
| | - Adriano Antunes de Souza Araújo
- Health Sciences Graduate Center of Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil.,Pharmacy Graduate Center, Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil
| |
Collapse
|
10
|
Chan D, Meister ML, Madhani CR, Elfakhani M, Yount ST, Ji X, Feresin RG, Wanders D, Mo H. Synergistic Impact of Xanthorrhizol and d-δ-Tocotrienol on the Proliferation of Murine B16 Melanoma Cells and Human DU145 Prostate Carcinoma Cells. Nutr Cancer 2020; 73:1746-1757. [PMID: 32811212 DOI: 10.1080/01635581.2020.1807573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isoprenoids suppress the mevalonate pathway that provides prenyl groups for the posttranslational modification of growth-regulating proteins. We hypothesize that xanthorrhizol and d-δ-tocotrienol synergistically suppress the growth of murine B16 melanoma and human DU145 prostate carcinoma cells. Xanthorrhizol (0-200 µmol/L; half maximal inhibitory concentration [IC50] = 65 µmol/L) and d-δ-tocotrienol (0-40 µmol/L; IC50 = 20 µmol/L) each induced a concentration-dependent suppression of the proliferation of B16 cells and concurrent cell cycle arrest at the G1 phase. A blend of 16.25 µmol/L xanthorrhizol and 10 µmol/L d-δ-tocotrienol suppressed B16 cell proliferation by 69%, an impact greater than the sum of those induced by xanthorrhizol (15%) and d-δ-tocotrienol (12%) individually. The blend cumulatively reduced the levels of cyclin-dependent kinase four and cyclin D1, key regulators of cell cycle progression at the G1 phase. The expression of RAS and extracellular signal-regulated kinase (ERK1/2) in the proliferation-stimulating RAS-RAF-MEK-ERK pathway was downregulated by the blend. Xanthorrhizol also induced a concentration-dependent suppression of the proliferation of DU145 cells with concomitant morphological changes. Isobologram confirmed the synergistic effect of xanthorrhizol and d-δ-tocotrienol on DU145 cell proliferation with combination index values ranging 0.61-0.94. Novel combinations of isoprenoids with synergistic actions may offer effective approaches in cancer prevention and therapy.
Collapse
Affiliation(s)
- Darren Chan
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Maureen L Meister
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Chappell R Madhani
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Manal Elfakhani
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Xiangming Ji
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Rafaela G Feresin
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Desiree Wanders
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Phulara SC, Pandey S, Jha A, Chauhan PS, Gupta P, Shukla V. Hemiterpene compound, 3,3-dimethylallyl alcohol promotes longevity and neuroprotection in Caenorhabditis elegans. GeroScience 2020; 43:791-807. [PMID: 32725551 PMCID: PMC8110639 DOI: 10.1007/s11357-020-00241-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/22/2020] [Indexed: 10/23/2022] Open
Abstract
Terpenes and their derivatives have been used conventionally as potential dietary supplements to boost the nutritional value of endless food products. Several plant-based complex terpenoid and their derivatives have been reported for a wide range of medicinal and nutritional properties. However, their simple counterparts, whose production is relatively easy, sustainable, and economic from food-grade microbial sources, have not been studied yet for any such biological activities. The present study aimed to investigate the longevity-promoting property and neuromodulatory effects of 3,3-dimethylallyl alcohol (Prenol), one of the simplest forms of terpenoid and a constituent of fruit aroma, in the animal model Caenorhabditis elegans. Prenol supplementation (0.25 mM) augmented the lifespan of wild-type nematodes by 22.8% over the non-treated worms. Moreover, a suspended amyloid-β induced paralysis and reduced α-synuclein aggregation were observed in Prenol-treated worms. The lifespan extending properties of Prenol were correlated with ameliorated physiological parameters and increased stress (heat and oxidative) tolerance in C. elegans. In silico and gene-specific mutant studies showed that pro-longevity transcription factors DAF-16, HSF-1, and SKN-1 were involved in the improved lifespan and health-span of Prenol-treated worms. Transgenic green fluorescent protein-reporter gene expression analysis and relative mRNA quantification (using real-time PCR) demonstrated an increase in the expression of DAF-16, HSF-1, and SKN-1 transcription factors and their downstream target genes in Prenol-treated worms. Together, the findings suggest that small molecules, like Prenol, could be explored as a potential alternate to develop therapeutics against aging and age-related ailments.
Collapse
Affiliation(s)
- Suresh Chandra Phulara
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Swapnil Pandey
- Microbial Technology Division, CSIR-National Botanical Research Institute, 436, Rana Pratap Marg, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anubhuti Jha
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh, 492010, India
| | - Puneet Singh Chauhan
- Microbial Technology Division, CSIR-National Botanical Research Institute, 436, Rana Pratap Marg, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh, 492010, India.
| | - Virendra Shukla
- Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, 9112102, Jerusalem, Israel.
| |
Collapse
|
12
|
Wallert M, Kluge S, Schubert M, Koeberle A, Werz O, Birringer M, Lorkowski S. Diversity of Chromanol and Chromenol Structures and Functions: An Emerging Class of Anti-Inflammatory and Anti-Carcinogenic Agents. Front Pharmacol 2020; 11:362. [PMID: 32372948 PMCID: PMC7187200 DOI: 10.3389/fphar.2020.00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Natural chromanols and chromenols comprise a family of molecules with enormous structural diversity and biological activities of pharmacological interest. A recently published systematic review described more than 230 structures that are derived from a chromanol ortpd chromenol core. For many of these compounds structure-activity relationships have been described with mostly anti-inflammatory as well as anti-carcinogenic activities. To extend the knowledge on the biological activity and the therapeutic potential of these promising class of natural compounds, we here present a report on selected chromanols and chromenols based on the availability of data on signaling pathways involved in inflammation, apoptosis, cell proliferation, and carcinogenesis. The chromanol and chromenol derivatives seem to bind or to interfere with several molecular targets and pathways, including 5-lipoxygenase, nuclear receptors, and the nuclear-factor "kappa-light-chain-enhancer" of activated B-cells (NFκB) pathway. Interestingly, available data suggest that the chromanols and chromenols are promiscuitively acting molecules that inhibit enzyme activities, bind to cellular receptors, and modulate mitochondrial function as well as gene expression. It is also noteworthy that the molecular modes of actions by which the chromanols and chromenols exert their effects strongly depend on the concentrations of the compounds. Thereby, low- and high-affinity molecular targets can be classified. This review summarizes the available knowledge on the biological activity of selected chromanols and chromenols which may represent interesting lead structures for the development of therapeutic anti-inflammatory and chemopreventive approaches.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Fulda, Germany
- Regionales Innovationszentrum Gesundheit und Lebensqualität (RIGL), Fulda, Germany
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|
13
|
Microbiological Advances in Bioactives from High Altitude. MICROBIOLOGICAL ADVANCEMENTS FOR HIGHER ALTITUDE AGRO-ECOSYSTEMS & SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-1902-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Heidor R, Affonso JM, Ong TP, Moreno FS. Nutrition and Liver Cancer Prevention. NUTRITION AND CANCER PREVENTION 2019:339-367. [DOI: 10.1039/9781788016506-00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Liver cancer represents a major public health problem. Hepatocarcinogenesis is a complex process that comprises several stages and is caused by multiple factors. Both progressive genetic and epigenetic alterations are described in liver cancer development. The most effective strategy to reduce the impact of this disease is through prevention. In addition to vaccination against HBV and treatment of HCV infection, other preventive measures include avoiding ingesting aflatoxin-contaminated foods and drinking alcoholic beverages, as well as maintaining healthy body weight and practicing physical exercise. Bioactive compounds from fruits and vegetables present great potential for liver cancer chemoprevention. Among them, tea catechins, carotenoids, retinoids, β-ionone, geranylgeraniol and folic acid can be highlighted. In addition, butyric acid, tributyrin and structured lipids based on butyric acid and other fatty acids represent additional promising chemopreventive agents. These bioactive food compounds have been shown to modulate key cellular and molecular processes that are deregulated in hepatocarcinogenesis. Furthermore, combinations of different classes of bioactive food compounds or of bioactive food compounds with synthetic drugs could lead to synergistic liver cancer chemopreventive effects.
Collapse
Affiliation(s)
- R. Heidor
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - J. M. Affonso
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - T. P. Ong
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - F. S. Moreno
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| |
Collapse
|
15
|
Abstract
Vitamin E is a natural lipophilic vitamin, and the most famous function of vitamin E is an antioxidant activity. Because we have α-tocopherol transfer protein, many vitamin E-related reports are about α-tocopherol. Recently, other vitamin E isoforms, tocotrienols are focusing. Because tocotrienols have unique biological functions such as induction of apoptosis, neuroprotective and anti-obesity effects. Tocotrienols contain in annatto, palm, whole wheat and rice bran. Rice is a typical food in the East Asian countries and Japan. Recently, intake of whole rice is a popular in young women of Japan. Previously, we demonstrated that treatment with tocotrienols on the neuronal cells shows a strong antioxidant effect compared to the tocopherols. In this review, I introduce about neuroprotective and anti-obesity effects of tocotrienols. I would like to show daily intake of whole rice is very good for our health in this review.
Collapse
Affiliation(s)
- Koji Fukui
- Molecular Cell Biology Laboratory, Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology
| |
Collapse
|
16
|
Dong HW, Wang K, Chang XX, Jin FF, Wang Q, Jiang XF, Liu JR, Wu YH, Yang C. Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity. Arch Toxicol 2019; 93:2993-3003. [PMID: 31506784 DOI: 10.1007/s00204-019-02550-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/14/2019] [Indexed: 01/22/2023]
Abstract
As one of the isoprenoids and widely derived from many fruits and vegetables, β-ionone (BI) has a potent inhibitory proliferation of cancer cells in vitro and in vivo. However, its exact mechanism is still uncompleted understood and needs to be further verified. Cyclooxygenase-2 (COX-2), as a potential target of cancer chemoprevention, has been played pivotal roles in proliferation of tumor cells and carcinogenesis. Thus, the objective of present study was to determine that BI inhibited the activity of COX-2 in breast cancer and related to cancer cell models. Cell proliferation, DNA synthesis, the distribution of cell cycle, apoptosis induction and the expression of P38-MAPK protein were determined in MCF-7 cells by methylene blue, 3H-thymidine (TdR) incorporation, flow cytometry, TUNEL and Western blotting assays. Quinone reductase (QR) activity was determined in murine hepatoma Hepa1c1c7 cells by enzyme-linked immunosorbent assay (ELISA). The expression of COX-2 in a phorbol-12-myristate-13-acetate (PMA)-induced cell model and mammary tumor tissues was examined by Western blotting and immunohistochemistry. The results showed that BI significantly inhibited cell proliferation and DNA synthesis, arrested the distribution of cell cycle at the S phase or decreased proteins related to cell cycle such as cyclin D1 and CDK4, induced apoptosis and increased the expression of p-P38 in MCF-7 cells. BI at low doses (< 50 μmol/L) significantly increased QR activity, decreased the expression of COX-2 protein and prostaglandin E2 (PEG2) release in cell models. In addition, BI also significantly decreased the expression of COX-2 protein in rat mammary tumor tissues. Therefore, our findings indicate that BI possesses inhibitory proliferation of breast cancer cells through down-regulation of COX-2 activity.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Kai Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of GuangZhou Medical University, 151 YanJiang West Road, YueXiu District, Guangzhou, 510120, People's Republic of China
| | - Xiao-Xia Chang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China
| | - Fei-Fei Jin
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China
| | - Qi Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Xiao-Feng Jiang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China
| | - Jia-Ren Liu
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China.
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China.
| | - Chun Yang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China.
| |
Collapse
|
17
|
|
18
|
Factorial design-assisted supercritical carbon-dioxide extraction of cytotoxic active principles from Carica papaya leaf juice. Sci Rep 2019; 9:1716. [PMID: 30737457 PMCID: PMC6368614 DOI: 10.1038/s41598-018-37171-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
The aims of this study are to investigate the selective cytotoxic activity of supercritical carbon dioxide (scCO2)-extracted freeze-dried leaf juice (FDLJ) of Carica papaya on squamous cell carcinoma (SCC25) cells, and to delineate the best small scale extraction parameters allowing maximal extract activity. Using scCO2 as a solvent, six operating parameters were studied and the supercritical fluid extraction (SFE) process investigated using a factorial design 26-2. The processing values promoting cytotoxic activity towards SCC-25 are: high pressure (250 bar), low temperature (35 °C), extended processing time (180 minutes), as well as a large amount of starting material (5 g). The factorial experimental design successfully identified the key parameters controlling the SFE of molecules cytotoxic to SCC cells from C. papaya juice. This study also validated the extraction method and showed that the SFE yield was reproducible. The chromatographic and mass spectrometric profiles of the scCO2 extract acquired with high-resolution quadrupole time-of-flight mass spectrometry (LC-QToF-MS) were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds were likely to be mainly vitamins and phytosterols, some of which are documented to be cytotoxic to cancer cells.
Collapse
|
19
|
Sun WG, Song RP, Wang Y, Zhang YH, Wang HX, Ge S, Liu JR, Liu LX. γ-Tocotrienol-Inhibited Cell Proliferation of Human Gastric Cancer by Regulation of Nuclear Factor-κB Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:441-451. [PMID: 30562020 DOI: 10.1021/acs.jafc.8b05832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
γ-Tocotrienol (γ-T3) exhibits the activity of anticancer via regulating cell signaling pathways. Nuclear factor-κB (NF-κB), one of the crucial pro-inflammatory factors, is involved in the regulation of cell proliferation, apoptosis, invasion, and migration of tumor. In the present study, NF-κB activity inhibited by γ-T3 was investigated in gastric cancer cells. Cell proliferation, NF-κB activity, active protein phosphatase type 2A (PP2A), and ataxia-telangiectasia mutated (ATM) protein were explored using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), methylene blue, enzyme-linked immunosorbent assay (ELISA), malachite green, luciferase, and Western blotting assays. The effects of γ-T3 on tumor growth and the expression of NF-κB and PP2A proteins were also further examined by implanting human gastric cancer cells in a BALB/c nude mouse model. The results showed that γ-T3 significantly inhibited the cell proliferation and attenuated the NF-κB activity in vitro and in vivo. γ-T3 dramatically increased PP2A activity and protein expression, which suppressed ATM phosphorylation and its translocation to the cytoplasm in gastric cancer cells. Thus, our findings may provide mechanistic insight into effects of γ-T3 on the regulation of NF-κB activity by a PP2A-dependent mechanism and suggest that PP2A may serve as a molecular target for a potential chemopreventive agent.
Collapse
Affiliation(s)
- Wen-Guang Sun
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Rui-Peng Song
- Department of General Surgery , The First Affiliated Hospital of University of Science and Technology , 17 LuJiang Road , LuYang District, HeFei 230031 , P. R. China
| | - Yong Wang
- Harbin Center for Disease Control and Prevention , 30 WeiXing Road , DaoWai District, Harbin 150056 , P. R. China
| | - Ya-Hui Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Hai-Xia Wang
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Sheng Ge
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Jia-Ren Liu
- Department of Clinical Laboratory , The Fourth Affiliated Hospital of Harbin Medical University , 37 YiYuan Street , NanGang District, Harbin 150001 , P. R. China
| | - Lian-Xin Liu
- Department of General Surgery , The First Affiliated Hospital of University of Science and Technology , 17 LuJiang Road , LuYang District, HeFei 230031 , P. R. China
| |
Collapse
|
20
|
Mo H, Jeter R, Bachmann A, Yount ST, Shen CL, Yeganehjoo H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front Pharmacol 2019; 9:1515. [PMID: 30662405 PMCID: PMC6328495 DOI: 10.3389/fphar.2018.01515] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), “mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.
Collapse
Affiliation(s)
- Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, United States
| | - Rayna Jeter
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrea Bachmann
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hoda Yeganehjoo
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
21
|
Song IS, Lee JE, Park JB. The Effects of Various Mouthwashes on Osteoblast Precursor Cells. Open Life Sci 2019; 14:376-383. [PMID: 33817172 PMCID: PMC7874790 DOI: 10.1515/biol-2019-0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
This study examined whether or not various mouthwashes have significant effects on the viability or morphology of mouse osteoblast-like cells. Mouse calvarial preosteoblast cells were cultured and prepared, then treated with a 0.12% chlorhexidine digluconate solution containing essential oils with or without alcohol, and a cetylpyridinium chloride solution, and sodium fluoride, respectively. Each well was treated with one of six mouthwashes for either 30 sec, 1.5 min, or 4.5 min. The viability of the treated cells was quantitatively analyzed by a Cell Counting Kit-8. The viability of osteogenic progenitor cells decreased significantly irrespectively of the types of mouthwashes. The changes of cell morphology were seen in all groups of mouthwashes; however, they were more noticeable on the chlorhexidine digluconate-treated group. A progressive increase in treatment time over 30 sec did not seem to deteriorate cellular viability. There was no significant difference in viability or morphological change between different formulations of the same brand. Although various mouthwashes without alcohol as an ingredient are available, nonalcoholic mouthwashes were not likely to be less harmful to the cells. Collectively, commercially available mouthwashes could inhibit cell viability and alter the morphology of osteoblastic precursor cells irrespectively of brands, treatment time, or alcohol content.
Collapse
Affiliation(s)
- In-Seok Song
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Ji Eun Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| |
Collapse
|
22
|
Pavithra PS, Mehta A, Verma RS. Essential oils: from prevention to treatment of skin cancer. Drug Discov Today 2018; 24:644-655. [PMID: 30508640 DOI: 10.1016/j.drudis.2018.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
The increasing incidence of cutaneous malignancies signifies the need for multiple treatment options. Several available reviews have emphasized the potential role of various botanical extracts and naturally occurring compounds as anti-skin-cancer agents. Few studies relate to the role of chemoprevention and therapeutic activity of essential oils (EOs) and EO components. The present review summarizes an overview of chemopreventive, anti-melanoma and anti-nonmelanoma activities of EOs from various plants and EO components in in vitro and in vivo models with special emphasis on skin cancer. Also, the mechanisms by which EOs and EO components exert their effects to induce cell death are presented.
Collapse
Affiliation(s)
- P S Pavithra
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Alka Mehta
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Rama S Verma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
23
|
Chen L, Liang R, Wang Y, Yokoyama W, Chen M, Zhong F. Characterizations on the Stability and Release Properties of β-ionone Loaded Thermosensitive Liposomes (TSLs). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8336-8345. [PMID: 29847116 DOI: 10.1021/acs.jafc.7b06130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liposomes with phase transition temperatures, Tm, near pathogenic site temperature are potential chemoprophylactic delivery vehicles. We prepared and characterized the thermal properties of liposomes composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and hydrogenated soy phosphatidylcholine (HSPC) incorporating β-ionone with Tm at 42 °C. Liposomes with β-ionone/lipid ratio (w/w) of 1:20 and 1:8 had the necessary stability and released most of the β-ionone. The molecular architecture surrounding Tm was studied by fluorescent probes, Raman spectroscopy, and differential scanning calorimeter (DSC). β-Ionone was found to be preferentially located in the deep regions of the lipid bilayer (toward the long chain alkyl of the lipid) at moderate loading. The results showed that β-ionone encapsulated liposomes have a superior release at higher loading amount. Increasing β-ionone leads to disorder in the liquid crystalline state and accelerates the release rate. These studies provide information on the membrane structural properties of β-ionone loaded liposomes that guide rational bioactive molecular delivery systems design for health products.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , P.R. China
| | - Yihan Wang
- Zhejiang Institute for Food and Drug Control , Zhejiang 310000 , P.R. China
| | - Wallace Yokoyama
- Western Regional Research Center, ARS , USDA , Albany , California 94710 , United States
| | - Maoshen Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Fang Zhong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| |
Collapse
|
24
|
Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, Del Mar Contreras M, Salehi B, Soltani-Nejad A, Rajabi S, Tajbakhsh M, Sharifi-Rad J. Carvacrol and human health: A comprehensive review. Phytother Res 2018; 32:1675-1687. [PMID: 29744941 DOI: 10.1002/ptr.6103] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Carvacrol (CV) is a phenolic monoterpenoid found in essential oils of oregano (Origanum vulgare), thyme (Thymus vulgaris), pepperwort (Lepidium flavum), wild bergamot (Citrus aurantium bergamia), and other plants. Carvacrol possesses a wide range of bioactivities putatively useful for clinical applications such antimicrobial, antioxidant, and anticancer activities. Carvacrol antimicrobial activity is higher than that of other volatile compounds present in essential oils due to the presence of the free hydroxyl group, hydrophobicity, and the phenol moiety. The present review illustrates the state-of-the-art studies on the antimicrobial, antioxidant, and anticancer properties of CV. It is particularly effective against food-borne pathogens, including Escherichia coli, Salmonella, and Bacillus cereus. Carvacrol has high antioxidant activity and has been successfully used, mainly associated with thymol, as dietary phytoadditive to improve animal antioxidant status. The anticancer properties of CV have been reported in preclinical models of breast, liver, and lung carcinomas, acting on proapoptotic processes. Besides the interesting properties of CV and the toxicological profile becoming definite, to date, human trials on CV are still lacking, and this largely impedes any conclusions of clinical relevance.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, 61663-335, Iran
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, School of Pharmacy, University of Concepcion, Concepcion, Chile
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - María Del Mar Contreras
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.,Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Bioregión Building, Avenida del Conocimiento s/n, Granada, Spain
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Soltani-Nejad
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | - Sadegh Rajabi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mercedeh Tajbakhsh
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Potočnjak I, Gobin I, Domitrović R. Carvacrol induces cytotoxicity in human cervical cancer cells but causes cisplatin resistance: Involvement of MEK-ERK activation. Phytother Res 2018; 32:1090-1097. [DOI: 10.1002/ptr.6048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Iva Potočnjak
- Department of Chemistry and Biochemistry, Faculty of Medicine; University of Rijeka; Rijeka 51000 Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine; University of Rijeka; Rijeka 51000 Croatia
| | - Robert Domitrović
- Department of Chemistry and Biochemistry, Faculty of Medicine; University of Rijeka; Rijeka 51000 Croatia
| |
Collapse
|
26
|
Birringer M, Siems K, Maxones A, Frank J, Lorkowski S. Natural 6-hydroxy-chromanols and -chromenols: structural diversity, biosynthetic pathways and health implications. RSC Adv 2018; 8:4803-4841. [PMID: 35539527 PMCID: PMC9078042 DOI: 10.1039/c7ra11819h] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
We present the first comprehensive and systematic review on the structurally diverse toco-chromanols and -chromenols found in photosynthetic organisms, including marine organisms, and as metabolic intermediates in animals. The focus of this work is on the structural diversity of chromanols and chromenols that result from various side chain modifications. We describe more than 230 structures that derive from a 6-hydroxy-chromanol- and 6-hydroxy-chromenol core, respectively, and comprise di-, sesqui-, mono- and hemiterpenes. We assort the compounds into a structure-activity relationship with special emphasis on anti-inflammatory and anti-carcinogenic activities of the congeners. This review covers the literature published from 1970 to 2017.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Karsten Siems
- AnalytiCon Discovery GmbH Hermannswerder Haus 17 14473 Potsdam Germany
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim Garbenstr. 28 70599 Stuttgart Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena Dornburger Str. 25 07743 Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig Germany
| |
Collapse
|
27
|
Demir C, Anil C, Bozkus Y, Mousa U, Kut A, Nar A, Tutuncu NB. Do Statins Affect Thyroid Volume and Nodule Size in Patients with Hyperlipidemia in a Region with Mild-to-Moderate Iodine Deficiency? A Prospective Study. Med Princ Pract 2018; 27:1-7. [PMID: 29402848 PMCID: PMC5968300 DOI: 10.1159/000486748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 01/07/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective of this study was to assess the antiproliferative pleiotropic effects of statins on thyroid function, volume, and nodularity. SUBJECTS AND METHODS One hundred and six hyperlipidemic patients were included in this prospective study. The 69 patients in the statin groups received atorvastatin (16 received 10 mg and 18 received 20 mg) or rosuvastatin (20 received 10 mg and 15 received 20 mg). The 37 patients in the control group, assessed as not requiring drugs, made only lifestyle changes. Upon admission and after 6 months, all patients were evaluated by ultrasonography as well as for lipid variables (total cholesterol, high- and low-density lipoprotein cholesterol, and triglycerides) and thyroid function and structure. RESULTS After 6 months, no differences in thyroid function, thyroid volume, the number of thyroid nodules, or nodule size were observed in the statin and control groups. In a subgroup analysis, total thyroid volume had decreased more in patients receiving 20 mg of rosuvastatin than that in the control group (p < 0.05). Maximum nodule size had decreased more in those receiving 10 mg of rosuvastatin (p < 0.05). CONCLUSIONS Our results suggest an association between rosuvastatin treatment and smaller thyroid volume and maximum nodule diameter; this could be attributable to the antiproliferative effects of statin therapy on the thyroid.
Collapse
Affiliation(s)
- Canan Demir
- Department of Endocrinology and Metabolism, Baskent University School of Medicine, Ankara, Turkey
| | - Cuneyd Anil
- Department of Endocrinology and Metabolism, Baskent University School of Medicine, Ankara, Turkey
- *Cuneyd Anil, Department of Endocrinology and Metabolism, Baskent University School of Medicine, Fevzi Cakmak Cad., 10. Sok., No. 45, Bahcelievler, TR-06490 Ankara (Turkey), E-Mail
| | - Yusuf Bozkus
- Department of Endocrinology and Metabolism, Baskent University School of Medicine, Ankara, Turkey
| | - Umut Mousa
- Department of Endocrinology and Metabolism, Baskent University School of Medicine, Ankara, Turkey
| | - Altug Kut
- Department Family Medicine, Baskent University School of Medicine, Ankara, Turkey
| | - Asli Nar
- Department of Endocrinology and Metabolism, Baskent University School of Medicine, Ankara, Turkey
| | - Neslihan B. Tutuncu
- Department of Endocrinology and Metabolism, Baskent University School of Medicine, Ankara, Turkey
| |
Collapse
|
28
|
Liu X, Ma Z, Zhang J, Yang L. Antifungal Compounds against Candida Infections from Traditional Chinese Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4614183. [PMID: 29445739 PMCID: PMC5763084 DOI: 10.1155/2017/4614183] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from TCM might be a potential library for antifungal drug development.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jingxiao Zhang
- Department of Emergency, The Second Hospital of Jilin University, Changchun 130041, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
29
|
Govindaraju S, Arulselvi PI. Characterization ofColeus aromaticusessential oil and its major constituent carvacrol forin vitroantidiabetic and antiproliferative activities. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/10496475.2017.1369483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Govindaraju
- Plant and Microbial Biotechnology Lab, Department of Biotechnology, Periyar palkalai nagar, Periyar University, Salem, Tamilnadu, India
| | - P. Indra Arulselvi
- Plant and Microbial Biotechnology Lab, Department of Biotechnology, Periyar palkalai nagar, Periyar University, Salem, Tamilnadu, India
| |
Collapse
|
30
|
Abstract
Initial research on vitamin E and cancer has focused on α-tocopherol (αT), but recent clinical studies on cancer-preventive effects of αT supplementation have shown disappointing results, which has led to doubts about the role of vitamin E, including different vitamin E forms, in cancer prevention. However, accumulating mechanistic and preclinical animal studies show that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE), and δ-tocotrienol (δTE), have far superior cancer-preventive activities than does αT. These vitamin E forms are much stronger than αT in inhibiting multiple cancer-promoting pathways, including cyclo-oxygenase (COX)- and 5-lipoxygenase (5-LOX)-catalyzed eicosanoids, and transcription factors such as nuclear transcription factor κB (NF-κB) and signal transducer and activator of transcription factor 3 (STAT3). These vitamin E forms, but not αT, cause pro-death or antiproliferation effects in cancer cells via modulating various signaling pathways, including sphingolipid metabolism. Unlike αT, these vitamin E forms are quickly metabolized to various carboxychromanols including 13'-carboxychromanols, which have even stronger anti-inflammatory and anticancer effects than some vitamin precursors. Consistent with mechanistic findings, γT, δT, γTE, and δTE, but not αT, have been shown to be effective for preventing the progression of various types of cancer in preclinical animal models. This review focuses on cancer-preventive effects and mechanisms of γT, δT, γTE, and δTE in cells and preclinical models and discusses current progress in clinical trials. The existing evidence strongly indicates that these lesser-known vitamin E forms are effective agents for cancer prevention or as adjuvants for improving prevention, therapy, and control of cancer.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
31
|
Perspectives on medicinal properties of natural phenolic monoterpenoids and their hybrids. Mol Divers 2017; 22:225-245. [PMID: 28988386 DOI: 10.1007/s11030-017-9787-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
Abstract
Carvacrol, thymol and eugenol belong to a class of naturally presenting phenols with a ten-carbon unit, which are present in essential oils of many plants. These versatile molecules are incorporated as useful ingredients in many food products and find applications in agricultural, pharmaceutical, fragrance, cosmetic, flavor and other industries. They are wide ranging of biological and pharmaceutical activities: anti-inflammatory, antimicrobial, analgesic, anticancer and antioxidant. This review summarizes pharmacological and medicinal activities of these phytochemicals and their synthetic hybrids.
Collapse
|
32
|
Kim HL, Jung Y, Park J, Youn DH, Kang J, Lim S, Lee BS, Jeong MY, Choe SK, Park R, Ahn KS, Um JY. Farnesol Has an Anti-obesity Effect in High-Fat Diet-Induced Obese Mice and Induces the Development of Beige Adipocytes in Human Adipose Tissue Derived-Mesenchymal Stem Cells. Front Pharmacol 2017; 8:654. [PMID: 29033835 PMCID: PMC5627035 DOI: 10.3389/fphar.2017.00654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022] Open
Abstract
Brown adipocytes dissipate energy as heat and hence have an important therapeutic capacity for obesity. Development of brown-like adipocytes (also called beige) is also another attractive target for obesity treatment. Here, we investigated the effect of farnesol, an isoprenoid, on adipogenesis in adipocytes and on the browning of white adipose tissue (WAT) as well as on the weight gain of high-fat diet (HFD)-induced obese mice. Farnesol inhibited adipogenesis and the related key regulators including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α through the up-regulation of AMP-activated protein kinase in 3T3-L1 murine adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). Farnesol markedly increased the expression of uncoupling protein 1 and PPARγ coactivator 1 α in differentiated hAMSCs. In addition, farnesol limited the weight gain in HFD obese mice and induced the development of beige adipocytes in both inguinal and epididymal WAT. These results suggest that farnesol could be a potential therapeutic agent for obesity treatment.
Collapse
Affiliation(s)
- Hye-Lin Kim
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Yunu Jung
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Jinbong Park
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Dong-Hyun Youn
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - JongWook Kang
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Beom Su Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Mi-Young Jeong
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, School of Medicine, Wonkwang UniversityIksan, South Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Jae-Young Um
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| |
Collapse
|
33
|
Xu W, Mi Y, He P, He S, Niu L. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis Via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells. Molecules 2017; 22:molecules22081299. [PMID: 28777347 PMCID: PMC6152108 DOI: 10.3390/molecules22081299] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022] Open
Abstract
γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC50) of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose) polymerase (PARP) cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.
Collapse
Affiliation(s)
- Weili Xu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.
| | - Yaqing Mi
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.
| | - Pan He
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.
| | - Shenghua He
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.
| | - Lingling Niu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.
| |
Collapse
|
34
|
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol 2017; 8:380. [PMID: 28694777 PMCID: PMC5483461 DOI: 10.3389/fphar.2017.00380] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hasan Al Taee
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
35
|
Yeganehjoo H, DeBose-Boyd R, McFarlin BK, Mo H. Synergistic Impact of d-δ-Tocotrienol and Geranylgeraniol on the Growth and HMG CoA Reductase of Human DU145 Prostate Carcinoma Cells. Nutr Cancer 2017; 69:682-691. [PMID: 28362175 DOI: 10.1080/01635581.2017.1299876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The growth-suppressive effect of d-δ-tocotrienol and geranylgeraniol is at least partially attributed to their impact on 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway that provides essential intermediates for the posttranslational modification of growth-related proteins including RAS. We hypothesize that these agents synergistically impact cell growth based on their complementary mechanisms of action with HMG CoA reductase. d-δ-tocotrienol (0-40 µmol/L; half maximal inhibitory concentration [IC50] = 15 µmol/L) and geranylgeraniol (0-100 µmol/L; IC50 = 60 µmol/L) each induced concentration-dependent suppression of the growth of human DU145 prostate carcinoma cells. Blends of the two agents synergistically suppressed the growth of DU145 cells, with combination index values ranging 0.67-0.75. While 7.5 µmol/L d-δ-tocotrienol and 30 µmol/L geranylgeraniol individually had no impact on cell cycle distribution in DU145 cells, a blend of the agents induced cell cycle arrest at the G1 phase. The synergistic downregulation of the expression of HMG CoA reductase by 7.5 µmol/L d-δ-tocotrienol and 30 µmol/L geranylgeraniol was accompanied by a reduction in membrane K-RAS protein. Our finding supports the cancer chemopreventive action of plant-based diets and their isoprenoid constituents. Properly formulated isoprenoids and derivatives may provide novel approaches in prostate cancer prevention and therapy.
Collapse
Affiliation(s)
- Hoda Yeganehjoo
- a Department of Nutrition and Food Sciences , Texas Woman's University , Denton , Texas , USA.,b Department of Molecular Genetics , University of Texas Southwestern Medical Center , Dallas , Texas , USA
| | - Russell DeBose-Boyd
- b Department of Molecular Genetics , University of Texas Southwestern Medical Center , Dallas , Texas , USA
| | - Brian K McFarlin
- c Department of Kinesiology , Health Promotion, and Recreation, University of North Texas , Denton , Texas , USA
| | - Huanbiao Mo
- d Department of Nutrition , Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University , Atlanta , Georgia , USA.,e Center for Obesity Reversal, Georgia State University , Atlanta , Georgia , USA
| |
Collapse
|
36
|
Safwat S, Ishak RAH, Hathout RM, Mortada ND. Nanostructured lipid carriers loaded with simvastatin: effect of PEG/glycerides on characterization, stability, cellular uptake efficiency and in vitro cytotoxicity. Drug Dev Ind Pharm 2017; 43:1112-1125. [DOI: 10.1080/03639045.2017.1293681] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassiah, Cairo, Egypt
| | - Rania A. H. Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassiah, Cairo, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassiah, Cairo, Egypt
| | - Nahed D. Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassiah, Cairo, Egypt
| |
Collapse
|
37
|
Gliszczyńska A, Niezgoda N, Gładkowski W, Świtalska M, Wietrzyk J. Isoprenoid-phospholipid conjugates as potential therapeutic agents: Synthesis, characterization and antiproliferative studies. PLoS One 2017; 12:e0172238. [PMID: 28196124 PMCID: PMC5308787 DOI: 10.1371/journal.pone.0172238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of this research was to extend application field of isoprenoid compounds by their introduction into phospholipid structure as the transport vehicle. The series of novel isoprenoid phospholipids were synthesized in high yields (24–97%), their structures were fully characterized and its anticancer activity was investigated in vitro towards several cell lines of different origin. Most of synthesized compounds showed a significantly higher antiproliferative effect on tested cell lines than free terpene acids. The most active phosphatidylcholine analogue, containing 2,3-dihydro-3-vinylfarnesoic acids instead of fatty acids in both sn-1 and sn-2 position, inhibits the proliferation of colon cancer cells at 13.6 μM.
Collapse
Affiliation(s)
- Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- * E-mail:
| | - Natalia Niezgoda
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Świtalska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Wrocław, Poland
| | - Joanna Wietrzyk
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Wrocław, Poland
| |
Collapse
|
38
|
Fabbri J, Maggiore MA, Pensel PE, Denegri GM, Gende LB, Elissondo MC. In vitro and in vivo efficacy of carvacrol against Echinococcus granulosus. Acta Trop 2016; 164:272-279. [PMID: 27650960 DOI: 10.1016/j.actatropica.2016.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/17/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
Currently, benzimidazoles are used as chemotherapeutic agents and as a complement to surgery and PAIR in the treatment of cystic echinococcosis (CE). They are generally applied at high doses causing side effects and, 50% of cases do not respond favorably to such chemotherapy. The use of essential oils obtained by distillation from aromatic plants would be an effective alternative or complementary to the synthetic compounds, because would not bring the appearance of side effects. Carvacrol and his isomer thymol are the main phenolic components from essential oils of Origanum vulgare (oregano) and Thymus vulgaris (thyme). The aim of the present work was to evaluate the in vitro and in vivo efficacy of carvacrol against Echinococcus granulosus metacestodes. For the in vitro assay, protoscoleces and cysts of E. granulosus were incubated with carvacrol at the following final concentrations: 10, 5 and 1μg/ml of carvacrol. The maximum protoscolicidal effect was found with 10μg/ml of carvacrol. Results of viability tests were consistent with the structural and ultrastructural damage observed in protoscoleces. Ultrastructural studies revealed that the germinal layer of cysts treated with carvacrol lost the multicellular structure feature. In the clinical efficacy study, a reduction in cyst weight was observed after the administration of 40mg/kg of carvacrol during 20days in mice with cysts developed during 4 months, compared to that of those collected from control mice. Given that the in vivo effect of carvacrol was comparable with the treatment of reference with ABZ and the fact that is a safe compound, we postulated that carvacrol may be an alternative option for treatment of human CE.
Collapse
|
39
|
Andersen A. Final Report on the Safety Assessment of Sodium p -Chloro- m -Cresol, p -Chloro- m -Cresol, Chlorothymol, Mixed Cresols, m -Cresol, o -Cresol, p -Cresol, Isopropyl Cresols, Thymol, o -Cymen-5-ol, and Carvacrol1. Int J Toxicol 2016; 25 Suppl 1:29-127. [PMID: 16835130 DOI: 10.1080/10915810600716653] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sodium p -Chloro- m -Cresol, p -Chloro- m -Cresol (PCMC), Mixed Cresols, m -Cresol, o -Cresol, p -Cresol, Isopropyl Cresols, Thymol, Chlorothymol, o -Cymen-5-ol, and Carvacrol are substituted phenols used as cosmetic biocides/preservatives and/or fragrance ingredients. Only PCMC, Thymol, and o -Cymen-5-ol are reported to be in current use, with the highest concentration of use at 0.5% for o -Cymen-5-ol in perfumes. The use of PCMC in cosmetics is restricted in Europe and Japan. Cresols can be absorbed through skin, the respiratory tract, and the digestive tract; metabolized by the liver; and excreted by the kidney as glucuronide and sulfate metabolites. Several of these cresols increase the dermal penetration of other agents, including azidothymidine. In acute oral toxicity studies, LD50 values were in the 200 to 5000 mg/kg day-1 range across several species. In short-term studies in rats and mice, an o -Cresol, m -Cresol, p -Cresol or m -Cresol/ p -Cresol mixture at 30,000 ppm in the diet produced increases in liver and kidney weights, deficits in liver function, bone marrow hypocellularity, irritation to the gastrointestinal tract and nasal epithelia, and atrophy of female reproductive organs. The no observed effect levels (NOEL) of o -Cresol was 240 mg/kg in mink and 778 mg/kg in ferrets in short-term feeding studies, with no significant dose-related toxicity (excluding body weight parameters). In mice, 0.5% p -Cresol, but neither m -Cresol nor o -Cresol, caused loss of pigmentation. Short-term and subchronic oral toxicity tests performed with various cresols using mice, rats, hamsters, and rabbits resulted in no observed adverse effect levels (NOAELs) for mice of 625 ppm and rats of 50 mg/kg day -1, although the NOEL was 2000 ppm ina chronic study using rats. In rabbits, 160 mg/kg PCMC was found to produce irritation and erythema, but no systemic effects. Hamsters dosed with 1.5% p -Cresol in diet for 20 weeks had a greater incidence of mild and moderate forestomach hyperplasia as compared to the control. Acute inhalation toxicity studies using rats yielded LC50 values ranging from > 20 mg/m3 for o -Cresol to > 583 mg/m3 for PCMC. No deaths were recorded in mice given o -Cresol at 50 mg/m3. Cats exposed (short-term) to 9 to 50 mg/m3 of o -Cresol developed inflammation and irritation of the upper respiratory tract, pulmonary edema, and hemorrhage and perivascular sclerosis in the lungs. Rats exposed (subchronic) to o -Cresol at 9 mg/m3 had changes in leukocytes, spinal cord smears, nervous activity, liver function, blood effects, clinical signs, and neurological effects. In guinea pigs, exposure to 9 mg/m3 produced changes in hemoglobin concentrations and electrocardiograms (EKGs). Rats exposed (subchronic) to 0.05 mg/m3 Mixed Cresols by inhalation exhibited central nervous system (CNS) excitation, denaturation of lung protein, and decreased weight gain. All cresols appear to be ocular irritants. Numerous sensitization studies have been reported and most positive reactions were seen with higher concentrations of Cresol ingredients. Developmental toxicity is seen in studies of m -Cresol, o -Cresol, and p -Cresol, but only at maternally toxic levels. In a reproductive toxicity study of a mixture of m -Cresol and p -Cresol using mice under a continuous breeding protocol, 1.0% caused minimal adult reproductive and significant postnatal toxicity in the presence of systemic maternal toxicity. The o -Cresol NOAEL was 0.2% for both reproductive and general toxicity in both generations. Cresol ingredients were generally nongenotoxic in bacterial, fruit fly, and mammalian cell assays. Thymol did not induce primary lung tumors in mice. No skin tumors were found in mice exposed dermally to m -Cresol, o -Cresol, or p -Cresol for 12 weeks. In the tryphan blue exclusion assay, antitumor effects were observed for Thymol and Carvacrol. Clinical patch testing with 2% PCMC may produce irritant reactions, particularly in people with multiple patch test reactions, that are misinterpreted as allergic responses. o -Cresol, p -Cresol, Thymol, Carvacrol, and o -Cymen-5-ol caused no dermal irritation at or above use concentrations. In two predictive patch tests, PCMC did not produce a sensitization reaction. Overall, these ingredients are not significant sensitizing or photosensitizing agents. The Cosmetic Ingredient Review (CIR) Expert Panel noted some of these ingredients may increase the penetration of other cosmetic ingredients and advised cosmetic formulators to take this into consideration. The CIR Expert Panel concluded that the toxic effects of these ingredients are observed at doses higher than would be available from cosmetics. A concentration limitation of 0.5% was chosen to ensure the absence of a chemical leukoderma effect. For p -Cresol and Mixed Cresols (which contain p -Cresol), the Panel considered that the available data are insufficient to support the safety of these two ingredients in cosmetics. Studies that would demonstrate no chemical leukoderma at concentrations of use of p -Cresol and Mixed Cresols, or would demonstrate a dose response from which a safe concentration could be derived, are needed.
Collapse
Affiliation(s)
- Alan Andersen
- Cosmetic Ingredient Review, Washington, DC 20036, USA
| |
Collapse
|
40
|
Faezizadeh Z, Gharib A, Godarzee M. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/zjrms-7364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
Cho M, So I, Chun JN, Jeon JH. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review). Int J Oncol 2016; 48:1772-82. [PMID: 26983575 PMCID: PMC4809657 DOI: 10.3892/ijo.2016.3427] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/18/2016] [Indexed: 12/30/2022] Open
Abstract
Geraniol is a dietary monoterpene alcohol that is found in the essential oils of aromatic plants. To date, experimental evidence supports the therapeutic or preventive effects of geraniol on different types of cancer, such as breast, lung, colon, prostate, pancreatic, and hepatic cancer, and has revealed the mechanistic basis for its pharmacological actions. In addition, geraniol sensitizes tumor cells to commonly used chemotherapy agents. Geraniol controls a variety of signaling molecules and pathways that represent tumor hallmarks; these actions of geraniol constrain the ability of tumor cells to acquire adaptive resistance against anticancer drugs. In the present review, we emphasize that geraniol is a promising compound or chemical moiety for the development of a safe and effective multi-targeted anticancer agent. We summarize the current knowledge of the effects of geraniol on target molecules and pathways in cancer cells. Our review provides novel insight into the challenges and perspectives with regard to geraniol research and to its application in future clinical investigation.
Collapse
Affiliation(s)
- Minsoo Cho
- Undergraduate Research Program, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
42
|
Khallouki F, de Medina P, Caze-Subra S, Bystricky K, Balaguer P, Poirot M, Silvente-Poirot S. Molecular and Biochemical Analysis of the Estrogenic and Proliferative Properties of Vitamin E Compounds. Front Oncol 2016; 5:287. [PMID: 26779438 PMCID: PMC4700278 DOI: 10.3389/fonc.2015.00287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/06/2015] [Indexed: 12/14/2022] Open
Abstract
Tocols are vitamin E compounds that include tocopherols (TPs) and tocotrienols (TTs). These lipophilic compounds are phenolic antioxidants and are reportedly able to modulate estrogen receptor β (ERβ). We investigated the molecular determinants that control their estrogenicity and effects on the proliferation of breast cancer cells. Docking experiments highlighted the importance of the tocol phenolic groups for their interaction with the ERs. Binding experiments confirmed that they directly interact with both ERα and ERβ with their isoforms showing potencies in the following order: δ-tocols > γ-tocols > α-tocols. We also found that tocols activated the transcription of an estrogen-responsive reporter gene that had been stably transfected into cells expressing either ERα or ERβ. The role of the phenolic group in tocol-ER interaction was further established using δ-tocopherylquinone, the oxidized form of δ-TP, which had no ER affinity and did not induce ER-dependent transcriptional modulation. Tocol activity also required the AF1 transactivation domain of ER. We found that both δ-TP and δ-TT stimulated the expression of endogenous ER-dependent genes. However, whereas δ-TP induced the proliferation of ER-positive breast cancer cells but not ER-negative breast cancer cells, δ-TT inhibited the proliferation of both ER-positive and ER-negative breast cancer cells. These effects of δ-TT were found to act through the down regulation of HMG-CoA reductase (HMGR) activity, establishing that ERs are not involved in this effect. Altogether, these data show that the reduced form of δ-TP has estrogenic properties which are lost when it is oxidized, highlighting the importance of the redox status in its estrogenicity. Moreover, we have shown that δ-TT has antiproliferative effects on breast cancer cells independently of their ER status through the inhibition of HMGR. These data clearly show that TPs can be discriminated from TTs according to their structure.
Collapse
Affiliation(s)
- Farid Khallouki
- INSERM UMR 1037, Cancer Research Center of Toulouse, University of Toulouse III, Toulouse, France; Université Paul Sabatier, Toulouse, France; Institut Claudius Regaud, Toulouse, France
| | - Philippe de Medina
- INSERM UMR 1037, Cancer Research Center of Toulouse, University of Toulouse III , Toulouse , France
| | | | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS , Toulouse , France
| | - Patrick Balaguer
- Université de Montpellier, Montpellier, France; INSERM U1194, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Marc Poirot
- INSERM UMR 1037, Cancer Research Center of Toulouse, University of Toulouse III, Toulouse, France; Université Paul Sabatier, Toulouse, France; Institut Claudius Regaud, Toulouse, France
| | - Sandrine Silvente-Poirot
- INSERM UMR 1037, Cancer Research Center of Toulouse, University of Toulouse III, Toulouse, France; Université Paul Sabatier, Toulouse, France; Institut Claudius Regaud, Toulouse, France
| |
Collapse
|
43
|
Zhang Q, Fan K, Wang P, Yu J, Liu R, Qi H, Sun H, Cao Y. Carvacrol induces the apoptosis of pulmonary artery smooth muscle cells under hypoxia. Eur J Pharmacol 2016; 770:134-46. [DOI: 10.1016/j.ejphar.2015.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022]
|
44
|
Farnesol attenuates lipopolysaccharide-induced neurodegeneration in Swiss albino mice by regulating intrinsic apoptotic cascade. Brain Res 2015; 1620:42-56. [PMID: 25935694 DOI: 10.1016/j.brainres.2015.04.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 04/06/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
Abstract
Neuronal apoptosis occurs as a sequel of oxidative stress associated with various neuropathies. In this study, we have investigated the protective effect of farnesol, a sequisterpene on lipopolysaccharide (LPS) induced neurodegeneration through modulation of intrinsic apoptotic cascade in the cortex and hippocampus of Swiss albino mice. Intraperitoneal (i.p.) injection of LPS (250 μg/kg b.wt. for 7 days) resulted in elevated levels of lipid peroxidation, protein carbonyls and 8-Hydroxydeoxyguanosine (8OHdG), with subsequent depletion in the antioxidant status and severe histological aberrations. These anomalies were accompanied by increased expressions of pro-apoptotic Bax, caspase-3 and p53 with decrease in anti-apoptotic Bcl-2. Farnesol treatment (100mg/kg b.wt.) ameliorated LPS-induced oxidative stress by enhancing the antioxidant defense system as evident from the increased levels of SOD, CAT, GSH and GST and exhibited protected cellular morphology manifested from histopathological and nissl staining analyses. Farnesol treatment also reduced the expulsion of cytochrome c from mitochondria and downregulated caspase 3 activation as revealed by immunoblot analysis. Furthermore, farnesol treatment reduced the expression of Bax and antagonized LPS-induced decrease in anti-apoptotic Bcl-2. Results of this study show that farnesol exerts neuroprotective effect by regulating intrinsic apoptotic cascade through its antioxidant effect during LPS-induced neurodegeneration.
Collapse
|
45
|
Suntres ZE, Coccimiglio J, Alipour M. The Bioactivity and Toxicological Actions of Carvacrol. Crit Rev Food Sci Nutr 2014; 55:304-18. [DOI: 10.1080/10408398.2011.653458] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Lesgards JF, Baldovini N, Vidal N, Pietri S. Anticancer Activities of Essential Oils Constituents and Synergy with Conventional Therapies: A Review. Phytother Res 2014; 28:1423-46. [DOI: 10.1002/ptr.5165] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/09/2014] [Accepted: 04/11/2014] [Indexed: 01/19/2023]
Affiliation(s)
| | - Nicolas Baldovini
- Faculté des Sciences; University of Nice-Sophia Antipolis, CNRS UMR 7272, Institut de Chimie de Nice; Avenue Valrose 06108 Nice Cedex 2 France
| | - Nicolas Vidal
- Aix Marseille Université, CNRS, ICR UMR 7273; 13397 Marseille France
| | - Sylvia Pietri
- Aix Marseille Université, CNRS, ICR UMR 7273; 13397 Marseille France
| |
Collapse
|
47
|
Beukes N, Levendal RA, Frost CL. Selected terpenoids from medicinal plants modulate endoplasmic reticulum stress in metabolic disorders. J Pharm Pharmacol 2014; 66:1505-25. [DOI: 10.1111/jphp.12267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/16/2014] [Indexed: 12/20/2022]
Abstract
Abstract
Objectives
The majority of research performed on cellular stress and apoptosis focuses on mitochondrial dysfunction; however, the importance of the endoplasmic reticulum dysfunction and the link to metabolic diseases has gained a substantial interest. This review focuses on the potential of terpenoids to influence endoplasmic reticulum stress and the possible role terpenoids play as the treatment of metabolic diseases.
Key findings
Metabolic diseases develop as a result of a cascade of cellular pathways. In most cases, cells are able to compensate for the disruption of the cellular homeostasis although the initiation of response pathways; however, chronic stress initiates apoptotic pathways. This reviewed (1) showed the importance of phytoterpenoids to influence endoplasmic reticulum (ER) stress and homeostasis, (2) showed how regulating ER stress affect the cell survival and death, and (3) highlighted some examples of how the progression of metabolic diseases can be influenced by ER.
Summary
Due to the substantial number of terpenoids that have been identified in literature, this review gave examples of 21 terpenoids that have been documented to have an effect on the different proteins associated with ER stress, how these plant terpenoids influence ER dysfunction and metabolic diseases such as diabetes, cancer, liver, and neurological diseases and parasitic infections.
Collapse
Affiliation(s)
- Natasha Beukes
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
| | - Ruby-Ann Levendal
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
| | - Carminita L Frost
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
| |
Collapse
|
48
|
Chakraborty K, Ramsauer VP, Stone W, Krishnan K. Tocotrienols in Pancreatic Cancer Treatment and Prevention. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Jones S, Fernandes NV, Yeganehjoo H, Katuru R, Qu H, Yu Z, Mo H. β-ionone induces cell cycle arrest and apoptosis in human prostate tumor cells. Nutr Cancer 2013; 65:600-10. [PMID: 23659452 DOI: 10.1080/01635581.2013.776091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase is the rate-limiting activity in the mevalonate pathway that provides essential intermediates for posttranslational modification of growth-associated proteins. Assorted dietary isoprenoids found in plant foods suppress HMG CoA reductase and have cancer chemopreventive activity. β-Ionone, a cyclic sesquiterpene and an end-ring analog of β-carotene, induced concentration-dependent inhibition of the proliferation of human DU145 (IC50 = 210 μmol/L) and LNCaP (IC50 = 130 μmol/L) prostate carcinoma cells and PC-3 prostate adenocarcinoma cells (IC50 = 130 μmol/L). Concomitantly, β-ionone-induced apoptosis and cell cycle arrest at the G1 phase in DU145 and PC-3 cells were shown by fluorescence microscopy, flow cytometry, and TUNEL reaction, and downregulation of cyclin-dependent kinase 4 (Cdk4) and cyclin D1 proteins. Growth suppression was accompanied by β-ionone-induced downregulation of reductase protein. A blend of β-ionone (150 μmol/L) and trans, trans-farnesol (25 μmol/L), an acyclic sesquiterpene that putatively initiates the degradation of reductase, suppressed the net growth of DU145 cells by 73%, an impact exceeding the sum of those of β-ionone (36%) and farnesol (22%), suggesting a synergistic effect. β-ionone, individually or in combination with other HMG CoA reductase suppressors, may have potential in prostate cancer chemoprevention and/or therapy.
Collapse
Affiliation(s)
- Sheila Jones
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas 76204, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Scolastici C, de Conti A, Cardozo MT, Ong TP, Purgatto E, Horst MA, Heidor R, Furtado KS, Bassoli BK, Moreno FS. β-ionone inhibits persistent preneoplastic lesions during the early promotion phase of rat hepatocarcinogenesis: TGF-α, NF-κB, and p53 as cellular targets. Nutr Cancer 2013; 66:234-41. [PMID: 24364727 DOI: 10.1080/01635581.2014.863364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dietary isoprenic derivatives such as β-ionone (βI) are a promising class of chemopreventive agents. In this study, cellular aspects of βI protective activities during early hepatocarcinogenesis were evaluated. Male Wistar rats were submitted to "resistant hepatocyte" model and then received daily 16 mg/100 g body weight (b.w.) of βI (βI group) or only 0.25 mL/100 g b.w. of corn oil (vehicle, control group [CO]) during 4 wk, specifically during early promotion phase. Compared to controls, βI inhibited (P < 0.05) the development of persistent preneoplastic lesions (pPNL), considered to be potential hepatocellular carcinoma (HCC) progression sites, and increased remodeling PNL (rPNL) (P < 0.05) that tend to regress to a normal phenotype. Increased βI hepatic levels (P < 0.05), in the βI group, were associated with its chemopreventive actions. Compared to control rats, βI reduced the frequency of both pPNL and rPNL positive for tumor growth factor (TGF)-α (P < 0.05), reduced the frequency of pPNL stained for p65 (nuclear factor-kappaB; NF-κB) (P < 0.05), and reduced the frequency of pPNL positive for cytoplasmic p53 (P < 0.05). Our data demonstrated that βI targets TGF-α, NF-κB, and p53 in initial phases of hepatocarcinogenesis and specifically inhibits PNL with increased probability to progress to HCC. This isoprenoid may represent a chemopreventive agent of choice for HCC control.
Collapse
Affiliation(s)
- Clarissa Scolastici
- a Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|