1
|
Miyaki M, Komiya Y, Sumiya I, Yamaguchi R, Kuno M, Kojima C, Makino R, Suzuki T, Suzuki Y, Yokoyama I, Arihara K. Effects of Maillard Reaction Products on Skeletal Muscle Cells: An In Vitro Study Using C2C12 Myotubes. Metabolites 2025; 15:316. [PMID: 40422892 DOI: 10.3390/metabo15050316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Maillard reaction products (MRPs) are known for their antioxidant properties; however, their effects on muscle cells remain unclear. This study aims to elucidate the effects of MRPs on muscle hypertrophy and atrophy in C2C12 myotubes. Methods: MRPs were prepared by heating L-lysine and D-glucose, and their antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Subsequently, mouse C2C12 myoblasts were cultured with MRPs until myotubes formed, and their diameters were measured to assess hypertrophic and atrophic changes. Akt phosphorylation was evaluated by Western blotting, and gene expression levels were analyzed via quantitative PCR. Results: The prepared MRPs exhibited high antioxidant activity in the DPPH radical scavenging assay. MRP treatment significantly increased the average myotube diameter by approximately 40% and enlarged the largest myotube diameter by up to 80%, potentially mediated by enhanced Akt phosphorylation. Under dexamethasone-induced atrophy, MRPs modestly attenuated the reduction in myotube diameter by approximately 20%, although the effect was not statistically significant, and did not significantly alter the fusion index either. Quantitative PCR analysis revealed that MRP treatment significantly reduced the mRNA expression of Nfe2l2, a key regulator of antioxidant response, whereas it had no notable effects on the expression of genes related to myoblast proliferation (Myod1), differentiation (Myog), hypertrophy (Igf1), atrophy (Foxo1 and Trim63), and oxidative stress (Cat, Gclc, and Nqo1). Conclusions: Our findings suggested that MRPs possess antioxidant activity and promote myotube hypertrophy via Akt signaling. This study highlighted the potential of MRPs as functional ingredients for promoting muscle health, though further in vivo studies are required to validate their physiological relevance.
Collapse
Affiliation(s)
- Marina Miyaki
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Yusuke Komiya
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Itsuki Sumiya
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Rina Yamaguchi
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Moeka Kuno
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Chika Kojima
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Ryosuke Makino
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihiro Suzuki
- Laboratory of Animal Health Science, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Issei Yokoyama
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Keizo Arihara
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| |
Collapse
|
2
|
Conde-Agudelo A, Villar J, Risso M, Papageorghiou AT, Roberts LD, Kennedy SH. Metabolomic signatures associated with fetal growth restriction and small for gestational age: a systematic review. Nat Commun 2024; 15:9752. [PMID: 39528475 PMCID: PMC11555221 DOI: 10.1038/s41467-024-53597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The pathways involved in the pathophysiology of fetal growth restriction (FGR) and small for gestational age (SGA) are incompletely understood. We conduct a systematic review to identify metabolomic signatures in maternal and newborn tissues and body fluids samples associated with FGR/SGA. Here, we report that 825 non-duplicated metabolites were significantly altered across the 48 included studies using 10 different human biological samples, of which only 56 (17 amino acids, 12 acylcarnitines, 11 glycerophosphocholines, six fatty acids, two hydroxy acids, and eight other metabolites) were significantly and consistently up- or down-regulated in more than one study. Three amino acid metabolism-related pathways and one related with lipid metabolism are significantly associated with FGR and/or SGA: biosynthesis of unsaturated fatty acids in umbilical cord blood, and phenylalanine, tyrosine and tryptophan biosynthesis, valine, leucine and isoleucine biosynthesis, and phenylalanine metabolism in newborn dried blood spot. Significantly enriched metabolic pathways were not identified in the remaining biological samples. Whether these metabolites are in the causal pathways or are biomarkers of fetal nutritional deficiency needs to be explored in large, well-phenotyped cohorts.
Collapse
Affiliation(s)
- Agustin Conde-Agudelo
- Oxford Maternal & Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK.
| | - Jose Villar
- Oxford Maternal & Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK.
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| | - Milagros Risso
- Hospital Universitario General de Villalba, Madrid, Spain
| | - Aris T Papageorghiou
- Oxford Maternal & Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stephen H Kennedy
- Oxford Maternal & Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Goes‐Santos BR, Carson BP, da Fonseca GWP, von Haehling S. Nutritional strategies for improving sarcopenia outcomes in older adults: A narrative review. Pharmacol Res Perspect 2024; 12:e70019. [PMID: 39400516 PMCID: PMC11472304 DOI: 10.1002/prp2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 10/15/2024] Open
Abstract
Sarcopenia is characterized by a decline in muscle strength, generalized loss of skeletal muscle mass, and impaired physical performance, which are common outcomes used to screen, diagnose, and determine severity of sarcopenia in older adults. These outcomes are associated with poor quality of life, increased risk of falls, hospitalization, and mortality in this population. The development of sarcopenia is underpinned by aging, but other factors can lead to sarcopenia, such as chronic diseases, physical inactivity, inadequate dietary energy intake, and reduced protein intake (nutrition-related sarcopenia), leading to an imbalance between muscle protein synthesis and muscle protein breakdown. Protein digestion and absorption are also modified with age, as well as the reduced capacity of metabolizing protein, hindering older adults from achieving ideal protein consumption (i.e., 1-1.5 g/kg/day). Nutritional supplement strategies, like animal (i.e., whey protein) and plant-based protein, leucine, and creatine have been shown to play a significant role in improving outcomes related to sarcopenia. However, the impact of other supplements (e.g., branched-chain amino acids, isolated amino acids, and omega-3) on sarcopenia and related outcomes remain unclear. This narrative review will discuss the evidence of the impact of these nutritional strategies on sarcopenia outcomes in older adults.
Collapse
Affiliation(s)
- Beatriz R. Goes‐Santos
- School of Physical EducationState University of Campinas (FEF‐UNICAMP)CampinasSão PauloBrazil
| | - Brian P. Carson
- Department of Physical Education and Sport Sciences, Faculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Health Research InstituteUniversity of LimerickLimerickIreland
| | | | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| |
Collapse
|
4
|
Sawada A, Takagi R, Takegaki J, Fukao N, Okumura K, Fujita S. Effect of Oral Skim Milk Administration on Skeletal Muscle Protein Synthesis after Total Gastrectomy in Rat. Nutrients 2024; 16:2390. [PMID: 39125271 PMCID: PMC11313795 DOI: 10.3390/nu16152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Leucine is a branched-chain amino acid that is present in protein, and it is an essential factor in activating the mechanistic target of the rapamycin complex 1 signaling pathway and increasing muscle protein synthesis. However, the loss of digestive function after total gastrectomy leads to impaired protein absorption, potentially failing to stimulate muscle protein synthesis. Therefore, this study aimed to investigate whether muscle protein synthesis is enhanced by oral skim milk administration after total gastrectomy. Male Sprague Dawley rats were divided into total gastrectomy (TG) and sham surgery (S) groups. After five weeks postoperatively, we orally administered skim milk to achieve 3.1 g protein/kg body weight and collected blood and gastrocnemius muscle. The gastrocnemius muscle weight was significantly lower in the TG group than in the S group (p < 0.05). The increase in plasma leucine concentration was significantly lower in the TG group than in the S group (p < 0.05). The skeletal muscle protein synthesis and the phosphorylation of p70S6K and 4E-BP1 showed a similar increase in both groups. Even after TG, muscle protein synthesis was stimulated by consuming skim milk, accompanied by a sufficient rise in plasma leucine concentration.
Collapse
Affiliation(s)
- Atsushi Sawada
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan;
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Ryo Takagi
- School of Nursing and Rehabilitation Sciences, Showa University, Yokohama 226-8555, Japan;
| | - Junya Takegaki
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan;
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Naoki Fukao
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Koki Okumura
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
5
|
Monteyne AJ, West S, Stephens FB, Wall BT. Reconsidering the pre-eminence of dietary leucine and plasma leucinemia for predicting the stimulation of postprandial muscle protein synthesis rates. Am J Clin Nutr 2024; 120:7-16. [PMID: 38705358 PMCID: PMC11251220 DOI: 10.1016/j.ajcnut.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The regulation of postprandial muscle protein synthesis (MPS) with or without physical activity has been an intensely studied area within nutrition and physiology. The leucine content of dietary protein and the subsequent plasma leucinemia it elicits postingestion is often considered the primary drivers of the postprandial MPS response. This concept, generally known as the leucine "trigger" hypothesis, has also been adopted within more applied aspects of nutrition. Our view is that recent evidence is driving a more nuanced picture of the regulation of postprandial MPS by revealing a compelling dissociation between ingested leucine or plasma leucinemia and the magnitude of the postprandial MPS response. Much of this lack of coherence has arisen as experimental progress has demanded relevant studies move beyond reliance on isolated amino acids and proteins to use increasingly complex protein-rich meals, whole foods, and mixed meals. Our overreliance on the centrality of leucine in this field has been reflected in 2 recent systematic reviews. In this perspective, we propose a re-evaluation of the pre-eminent role of these leucine variables in the stimulation of postprandial MPS. We view the development of a more complex intellectual framework now a priority if we are to see continued progress concerning the mechanistic regulation of postprandial muscle protein turnover, but also consequential from an applied perspective when evaluating the value of novel dietary protein sources.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sam West
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
6
|
Hawley AL, Baum JI. Nutrition as the foundation for successful aging: a focus on dietary protein and omega-3 polyunsaturated fatty acids. Nutr Rev 2024; 82:389-406. [PMID: 37319363 DOI: 10.1093/nutrit/nuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Skeletal muscle plays a critical role throughout the aging process. People living with sarcopenia, a progressive and generalized loss of skeletal muscle mass and function, often experience diminished quality of life, which can be attributed to a long period of decline and disability. Therefore, it is important to identify modifiable factors that preserve skeletal muscle and promote successful aging (SA). In this review, SA was defined as (1) low cardiometabolic risk, (2) preservation of physical function, and (3) positive state of wellbeing, with nutrition as an integral component. Several studies identify nutrition, specifically high-quality protein (eg, containing all essential amino acids), and long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), as positive regulators of SA. Recently, an additive anabolic effect of protein and n-3 PUFAs has been identified in skeletal muscle of older adults. Evidence further suggests that the additive effect of protein and n-3 PUFAs may project beyond skeletal muscle anabolism and promote SA. The key mechanism(s) behind the enhanced effects of intake of protein and n-3 PUFAs needs to be defined. The first objective of this review is to evaluate skeletal muscle as a driver of cardiometabolic health, physical function, and wellbeing to promote SA. The second objective is to examine observational and interventional evidence of protein and n-3 PUFAs on skeletal muscle to promote SA. The final objective is to propose mechanisms by which combined optimal intake of high-quality protein and n-3 PUFAs likely play a key role in SA. Current evidence suggests that increased intake of protein above the Recommended Dietary Allowance and n-3 PUFAs above the Dietary Guidelines for Americans recommendations for late middle-aged and older adults is required to maintain skeletal muscle mass and to promote SA, potentially through the mechanistical target of rapamycin complex 1 (mTORC1).
Collapse
Affiliation(s)
- Aubree L Hawley
- School of Human and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jamie I Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| |
Collapse
|
7
|
Rudar M, Suryawan A, Nguyen HV, Chacko SK, Vonderohe C, Stoll B, Burrin DG, Fiorotto ML, Davis TA. Pulsatile Leucine Administration during Continuous Enteral Feeding Enhances Skeletal Muscle Mechanistic Target of Rapamycin Complex 1 Signaling and Protein Synthesis in a Preterm Piglet Model. J Nutr 2024; 154:505-515. [PMID: 38141773 PMCID: PMC10900192 DOI: 10.1016/j.tjnut.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Continuous feeding does not elicit an optimal anabolic response in skeletal muscle but is required for some preterm infants. We reported previously that intermittent intravenous pulses of leucine (Leu; 800 μmol Leu·kg-1·h-1 every 4 h) to continuously fed pigs born at term promoted mechanistic target of rapamycin complex 1 (mTORC1) activation and protein synthesis in skeletal muscle. OBJECTIVES The aim was to determine the extent to which intravenous Leu pulses activate mTORC1 and enhance protein synthesis in the skeletal muscle of continuously fed pigs born preterm. METHODS Pigs delivered 10 d preterm was advanced to full oral feeding >4 d and then assigned to 1 of the following 4 treatments for 28 h: 1) ALA (continuous feeding; pulsed with 800 μmol alanine·kg-1·h-1 every 4 h; n = 8); 2) L1× (continuous feeding; pulsed with 800 μmol Leu·kg-1·h-1 every 4 h; n = 7); 3) L2× (continuous feeding; pulsed with 1600 μmol Leu·kg-1·h-1 every 4 h; n = 8); and 4) INT (intermittent feeding every 4 h; supplied with 800 μmol alanine·kg-1 per feeding; n = 7). Muscle protein synthesis rates were determined with L-[2H5-ring]Phenylalanine. The activation of insulin, amino acid, and translation initiation signaling pathways were assessed by Western blot. RESULTS Peak plasma Leu concentrations were 134% and 420% greater in the L2× compared to the L1× and ALA groups, respectively (P < 0.01). Protein synthesis was greater in the L2× than in the ALA and L1× groups in both the longissimus dorsi and gastrocnemius muscles (P < 0.05) but not different from the INT group (P > 0.10). Amino acid signaling upstream and translation initiation signaling downstream of mTORC1 largely corresponded to the differences in protein synthesis. CONCLUSIONS Intravenous Leu pulses potentiate mTORC1 activity and protein synthesis in the skeletal muscles of continuously fed preterm pigs, but the amount required is greater than in pigs born at term.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL, United States
| | - Agus Suryawan
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Hanh V Nguyen
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Shaji K Chacko
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Caitlin Vonderohe
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Barbara Stoll
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Douglas G Burrin
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Marta L Fiorotto
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Teresa A Davis
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States.
| |
Collapse
|
8
|
Fang J, Wang L, Zhang D, Liang Y, Li S, Tian J, He Q, Jin J, Zhu W. Integrative analysis of transcriptome and metabolome provide new insights into mechanisms of Capilliposide A against cisplatin-induced nephrotoxicity. J Pharm Biomed Anal 2024; 238:115814. [PMID: 37976990 DOI: 10.1016/j.jpba.2023.115814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Cisplatin (CDDP) has been widely used for chemotherapy against tumours. However,the nephrotoxicity has limited its clinical use. Here, we reported a novel compound, Capilliposide A (CPS-A), to exhibit therapeutic effects on CDDP-induced acute kidney injury (AKI) and explored its potential mechanisms via transcriptome and metabolome. MATERIALS AND METHODS HK-2 cells were treated with CPS-A, after which cell viability, apoptosis and inflammation were investigated. A mouse model of AKI was constructed by single injection of CDDP in vivo. The renal function and morphology and mitochondrial function were assessed by pathological section and transmission electron microscope (TEM). Transcriptomics and metabolomics are used to explore possible mechanisms which was later verified in vitro. RESULTS CPS-A administration improved the survival rates of HK-2 cells with a significant decrease in the expression of KIM-1, NGAL, IL-6, IL-8 and IL-1β. In vivo results also suggested that CPS-A attenuates CDDP-induced kidney injury by reducing serum creatinine (Cr) and blood urea nitrogen (BUN) levels. Furthermore, TEM also showed the improvement of mitochondrial ultrastructure both in vivo and vitro. Transcriptomics analysis of the mice's renal cortex indicated the expression of ATF4 and CHOP were upregulated, which was further validated by qPCR and Western blotting in vitro. Integrative analysis of transcriptome and metabolome indicated that L-Leucine enriched in Valine, leucine and isoleucine degradation might be potential targets. CONCLUSIONS CPS-A can effectively regulate endogenous metabolites associated with amino acid metabolism and ameliorate apoptosis and oxidative stress in CDDP-induced AKI by reducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jiaxi Fang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China; Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China; Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Luping Wang
- College of Biomedicial Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Di Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Yan Liang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Shouxin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China.
| |
Collapse
|
9
|
Tamura K, Kitazawa H, Sugita S, Hashizume K, Iwashita M, Ishigami T, Minegishi Y, Shimotoyodome A, Ota N. Tyrosine Is a Booster of Leucine-Induced Muscle Anabolic Response. Nutrients 2023; 16:84. [PMID: 38201913 PMCID: PMC10780460 DOI: 10.3390/nu16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Leucine (Leu), an essential amino acid, is known to stimulate protein synthesis in the skeletal muscle via mTOR complex 1 (mTORC1) activation. However, the intrinsic contribution of other amino acids to Leu-mediated activation of mTORC1 signaling remains unexplored. This study aimed to identify amino acids that can promote mTORC1 activity in combination with Leu and to assess the effectiveness of these combinations in vitro and in vivo. We found that tyrosine (Tyr) enhanced Leu-induced phosphorylation of S6 kinase (S6K), an indicator of mTORC1 activity, although it exerted no such effect individually. This booster effect was observed in C2C12 cells, isolated murine muscle, and the skeletal muscles of mice orally administered the amino acids. To explore the molecular mechanisms underlying this Tyr-mediated booster effect, the expression of the intracellular Leu sensors, Sestrin1 and 2, was suppressed, and the cells were treated with Leu and Tyr. This suppression enabled Tyr alone to induce S6K phosphorylation and enhanced the booster effect, suggesting that Tyr possibly contributes to mTORC1 activation when Sestrin-GAP activity toward Rags 2 (GATOR2) is dissociated through Sestrin knockdown or the binding of Sestrins to Leu. Collectively, these results indicate that Tyr is a key regulator of Leu-mediated protein synthesis.
Collapse
Affiliation(s)
- Kotaro Tamura
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Hidefumi Kitazawa
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Satoshi Sugita
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Kohjiro Hashizume
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Masazumi Iwashita
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Takaaki Ishigami
- Processing Development Research, Kao Corporation, Wakayama-shi, Wakayama 640-8580, Japan
| | - Yoshihiko Minegishi
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Akira Shimotoyodome
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| |
Collapse
|
10
|
Rehman SU, Ali R, Zhang H, Zafar MH, Wang M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front Physiol 2023; 14:1252089. [PMID: 38046946 PMCID: PMC10691278 DOI: 10.3389/fphys.2023.1252089] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Leucine, a branched-chain amino acid, is essential in regulating animal growth and development. Recent research has uncovered the mechanisms underlying Leucine's anabolic effects on muscle and other tissues, including its ability to stimulate protein synthesis by activating the mTORC1 signaling pathway. The co-ingestion of carbohydrates and essential amino acids enhances Leucine's anabolic effects. Moreover, Leucine has been shown to benefit lipid metabolism, and insulin sensitivity, making it a promising strategy for preventing and treating metabolic diseases, including type 2 diabetes and obesity. While emerging evidence indicates that epigenetic mechanisms may mediate Leucine's effects on growth and development, more research is needed to elucidate its mechanisms of action fully. Specific studies have demonstrated that Leucine promotes muscle growth and metabolic health in animals and humans, making it a promising therapeutic agent. However, it is essential to note that Leucine supplementation may cause digestive issues or interact with certain medications, and More study is required to determine definitively optimal dosages. Therefore, it is important to understand how Leucine interacts with other nutrients, dietary factors, and lifestyle habits to maximize its benefits. Overall, Leucine's importance in human nutrition is far-reaching, and its potential to prevent muscle loss and enhance athletic performance warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Rodrigues Junior CF, Murata GM, Gerlinger-Romero F, Nachbar RT, Marzuca-Nassr GN, Gorjão R, Vitzel KF, Hirabara SM, Pithon-Curi TC, Curi R. Changes in Skeletal Muscle Protein Metabolism Signaling Induced by Glutamine Supplementation and Exercise. Nutrients 2023; 15:4711. [PMID: 38004105 PMCID: PMC10674901 DOI: 10.3390/nu15224711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
AIM To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.
Collapse
Affiliation(s)
- Carlos Flores Rodrigues Junior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (C.F.R.J.); (T.C.P.-C.); (R.C.)
| | - Gilson Masahiro Murata
- Divisions of Nephrology and Molecular Medicine, LIM-29, Department of Medicine, University of São Paulo, São Paulo 05508-220, Brazil;
| | | | - Renato Tadeu Nachbar
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (C.F.R.J.); (T.C.P.-C.); (R.C.)
| | - Gabriel Nasri Marzuca-Nassr
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
- Interuniversity Center for Healthy Aging (Code RED21993), Talca 3460000, Chile
| | - Renata Gorjão
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Kaio Fernando Vitzel
- School of Health Sciences, Massey University (University of New Zealand), Auckland 0745, New Zealand;
| | - Sandro Massao Hirabara
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Tania Cristina Pithon-Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (C.F.R.J.); (T.C.P.-C.); (R.C.)
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (C.F.R.J.); (T.C.P.-C.); (R.C.)
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
- Butantan Institute, São Paulo 05585-000, Brazil
| |
Collapse
|
12
|
Yonke JA, Seymour KA, El-Kadi SW. Branched-chain amino acid supplementation does not enhance lean tissue accretion in low birth weight neonatal pigs, despite lower Sestrin2 expression in skeletal muscle. Amino Acids 2023; 55:1389-1404. [PMID: 37743429 DOI: 10.1007/s00726-023-03319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Postnatal muscle growth is impaired in low birth weight (L) neonatal pigs. Leucine supplementation has been established as a dietary intervention to enhance muscle growth in growing animals. The aim of this study was to investigate the efficacy of supplementing L neonatal pig formulas with branched-chain amino acids (B) to enhance the rate of protein accretion. Twenty-four 3-day old pigs were divided into two groups low (L) and normal birth weight (N) based on weight at birth. Pigs were assigned to a control (C) or 1% branched-chain amino acids (B) formulas, and fed at 250 mL·kg body weight -1·d-1 for 28 d. Body weight of pigs in the L group was less than those in the N group (P < 0.01). However, fractional body weight was greater for L pigs compared with their N siblings from day 24 to 28 of feeding regardless of formula (P < 0.01). In addition, feed efficiency (P < 0.0001) and efficiently of protein accretion (P < 0.0001) were greater for L than N pigs regardless of supplementation. Pigs fed the B formula had greater plasma leucine, isoleucine, and valine concentrations compared with those fed the C formula (P < 0.05). Longissimus dorsi Sestrin2 protein expression was less for pigs in the L group compared with those in the N group (P < 0.01), but did not result in a corresponding increase in translation initiation signaling. Longissimus dorsi mRNA expression of BCAT2 was less for LB pigs compared with those in the LC group, and was intermediate for NC and NB pigs (P < 0.05). Hepatic mRNA expression of BCKDHA was greater for pigs in the L compared with those in the N groups (P < 0.05). However, plasma branched-chain keto-acid concentration was reduced for C compared with those in the B group (P < 0.05). These data suggest that branched-chain amino acid supplementation does not improve lean tissue accretion of low and normal birth weight pigs, despite a reduction in Sestrin2 expression in skeletal muscle of low birth weight pigs. The modest improvement in fractional growth rate of low birth weight pigs compared with their normal birth weight siblings was likely due to a more efficient dietary protein utilization.
Collapse
Affiliation(s)
- Joseph A Yonke
- School of Animal Sciences, Virginia Tech, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Kacie A Seymour
- School of Animal Sciences, Virginia Tech, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Samer W El-Kadi
- School of Animal Sciences, Virginia Tech, 175 West Campus Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
13
|
Yapici H, Gülü M, Yagin FH, Ugurlu D, Comertpay E, Eroglu O, Kocoğlu M, Aldhahi MI, Karayigit R, Badri AL-Mhanna S. The effect of 8-weeks of combined resistance training and chocolate milk consumption on maximal strength, muscle thickness, peak power and lean mass, untrained, university-aged males. Front Physiol 2023; 14:1148494. [PMID: 37007992 PMCID: PMC10064218 DOI: 10.3389/fphys.2023.1148494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The overarching aim of this study was to investigate the combined effects of chocolate milk consumption (500 mL) with 8-week of resistance training on muscle hypertrophy, body composition, and maximal strength in untrained healthy men. A total of 22 Participants were randomly divided into two experimental groups: combined resistance training (3 sessions per week for 8 weeks) and chocolate milk consumptions (include 30 g protein) Resistance Training Chocolate Milk (RTCM) (Age: 20.9 ± 0.9 years old) and resistance training (RT) only (Age: 19.8 ± 0.7 years old). Muscle thickness (MT), using a portable ultrasound, body composition, body mass, maximal strength (one repetition maximum (1 RM), counter movement jump (CMJ) and peak power (PP) were determined at baseline and 8 weeks later. In the RTCM, finding showed a significant improvement in the outcomes compared to the RT group, besides the main effect of time (pre and post). The 1 RM total increased by 36.7% in RTCM group compared to 17.6% increased in the RT group (p < 0.001). Muscle thickness increased by 20.8% in the RTCM group and 9.1% in the RT group (p < 0.001). In the RTCM group, the PP increased by 37.8% compared to only 13.8% increase in the RT group (p = 0.001). The group*time interaction effect was significant for MT, 1RM, CMJ, and PP (p < 0.05), and it was observed that the RTCM and the 8-week resistance training protocol maximized performance. Body fat percentage (%) decreased more in the RTCM (18.9%) group than in the RT (6.7%) group (p = 0.002). In conclusion, chocolate milk (500 mL) with high protein content consumed in addition to resistance training provided superior gains in terms of MT, 1 RM, body composition, CMJ, and PP. The finding of the study demonstrated the positive effect of casein-based protein (chocolate milk) and resistance training on the muscle performance. Chocolate milk consumption has a more positive effect on muscle strength when combined with RT and should be considered as a suitable post-exercise nutritional supplement. Future research could be conducted with a larger number of participants of different ages and longer study durations.
Collapse
Affiliation(s)
- Hakan Yapici
- Department of Sports Management, Faculty of Sport Sciences, Kirikkale University, Kirikkale, Türkiye
| | - Mehmet Gülü
- Department of Sports Management, Faculty of Sport Sciences, Kirikkale University, Kirikkale, Türkiye
- *Correspondence: Mehmet Gülü,
| | - Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Dondu Ugurlu
- Department of Sports Management, Faculty of Sport Sciences, Kirikkale University, Kirikkale, Türkiye
| | - Ertan Comertpay
- Department of Emergency Medicine, Faculty of Medicine, Kirikkale University, Kirikkale, Türkiye
| | - Oguz Eroglu
- Department of Emergency Medicine, Faculty of Medicine, Kirikkale University, Kirikkale, Türkiye
| | - Melike Kocoğlu
- Graduate School of Health Sciences, Kirikkale University, Kirikkale, Türkiye
| | - Monira I. Aldhahi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Raci Karayigit
- Department of Coaching Education, Faculty of Sport Sciences, Ankara University, Ankara, Türkiye
| | - Sameer Badri AL-Mhanna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
14
|
Rozance PJ, Boehmer BH, Chang EI, Wesolowski SR, Brown LD. Chronic Fetal Leucine Infusion Increases Rate of Leucine Oxidation but Not of Protein Synthesis in Late Gestation Fetal Sheep. J Nutr 2023; 153:493-504. [PMID: 36894241 PMCID: PMC10196590 DOI: 10.1016/j.tjnut.2022.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Leucine increases protein synthesis rates in postnatal animals and adults. Whether supplemental leucine has similar effects in the fetus has not been determined. OBJECTIVE To determine the effect of a chronic leucine infusion on whole-body leucine oxidation and protein metabolic rates, muscle mass, and regulators of muscle protein synthesis in late gestation fetal sheep. METHODS Catheterized fetal sheep at ∼126 d of gestation (term = 147 d) received infusions of saline (CON, n = 11) or leucine (LEU; n = 9) adjusted to increase fetal plasma leucine concentrations by 50%-100% for 9 d. Umbilical substrate net uptake rates and protein metabolic rates were determined using a 1-13C leucine tracer. Myofiber myosin heavy chain (MHC) type and area, expression of amino acid transporters, and abundance of protein synthesis regulators were measured in fetal skeletal muscle. Groups were compared using unpaired t tests. RESULTS Plasma leucine concentrations were 75% higher in LEU fetuses compared with CON by the end of the infusion period (P < 0.0001). Umbilical blood flow and uptake rates of most amino acids, lactate, and oxygen were similar between groups. Fetal whole-body leucine oxidation was 90% higher in LEU (P < 0.0005) but protein synthesis and breakdown rates were similar. Fetal and muscle weights and myofiber areas were similar between groups, however, there were fewer MHC type IIa fibers (P < 0.05), greater mRNA expression levels of amino acid transporters (P < 0.01), and a higher abundance of signaling proteins that regulate protein synthesis (P < 0.05) in muscle from LEU fetuses. CONCLUSIONS A direct leucine infusion for 9 d in late gestation fetal sheep does not increase protein synthesis rates but results in higher leucine oxidation rates and fewer glycolytic myofibers. Increasing leucine concentrations in the fetus stimulates its own oxidation but also increases amino acid transporter expression and primes protein synthetic pathways in skeletal muscle.
Collapse
Affiliation(s)
- Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Brit H Boehmer
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Eileen I Chang
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA.
| |
Collapse
|
15
|
Tsuchiya Y, Yanagimoto K, Sunagawa N, Ueda H, Tsuji K, Ochi E. Omega-3 fatty acids enhance the beneficial effect of BCAA supplementation on muscle function following eccentric contractions. J Int Soc Sports Nutr 2022; 19:565-579. [PMID: 36105122 PMCID: PMC9467596 DOI: 10.1080/15502783.2022.2117994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Meiji Gakuin University, Center for Liberal Arts, Laboratory of Health and Sports Sciences, Kanagawa, Japan
| | | | | | - Hisashi Ueda
- Teikyo Heisei University, Faculty of Health and Medical Science, Chiba, Japan
| | - Katsunori Tsuji
- Hosei University, Faculty of Bioscience and Applied Chemistry, Tokyo, Japan
| | - Eisuke Ochi
- Hosei University, Faculty of Bioscience and Applied Chemistry, Tokyo, Japan
- Hosei University, Graduate School of Sports and Health Studies, Tokyo, Japan
| |
Collapse
|
16
|
Klaessens S, Stroobant V, De Plaen E, Van den Eynde BJ. Systemic tryptophan homeostasis. Front Mol Biosci 2022; 9:897929. [PMID: 36188218 PMCID: PMC9515494 DOI: 10.3389/fmolb.2022.897929] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Tryptophan is an essential amino acid, which is not only a building block for protein synthesis, but also a precursor for the biosynthesis of co-enzymes and neuromodulators, such as NAD/NADP(H), kynurenic acid, melatonin and serotonin. It also plays a role in immune homeostasis, as local tryptophan catabolism impairs T-lymphocyte mediated immunity. Therefore, tryptophan plasmatic concentration needs to be stable, in spite of large variations in dietary supply. Here, we review the main checkpoints accounting for tryptophan homeostasis, including absorption, transport, metabolism and elimination, and we discuss the physiopathology of disorders associated with their dysfunction. Tryptophan is catabolized along the kynurenine pathway through the action of two enzymes that mediate the first and rate-limiting step of the pathway: indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). While IDO1 expression is restricted to peripheral sites of immune modulation, TDO is massively expressed in the liver and accounts for 90% of tryptophan catabolism. Recent data indicated that the stability of the TDO protein is regulated by tryptophan and that this regulation allows a tight control of tryptophanemia. TDO is stabilized when tryptophan is abundant in the plasma, resulting in rapid degradation of dietary tryptophan. In contrast, when tryptophan is scarce, TDO is degraded by the proteasome to avoid excessive tryptophan catabolism. This is triggered by the unmasking of a degron in a non-catalytic tryptophan-binding site, resulting in TDO ubiquitination by E3 ligase SKP1-CUL1-F-box. Deficiency in TDO or in the hepatic aromatic transporter SLC16A10 leads to severe hypertryptophanemia, which can disturb immune and neurological homeostasis.
Collapse
Affiliation(s)
- Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| |
Collapse
|
17
|
Obeng KA, Mochizuki S, Koike S, Toyoshima Y, Sato Y, Yoshizawa F. Analysis of the Stimulative Effect of Tryptophan on Hepatic Protein Synthesis in Rats. J Nutr Sci Vitaminol (Tokyo) 2022; 68:312-319. [PMID: 36047103 DOI: 10.3177/jnsv.68.312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tryptophan is an essential amino acid important as a protein building block, but it also serves as substrate for the generation of several bioactive compounds with important physiological roles. Furthermore, tryptophan has been reported to have a unique role as a nutritional signaling molecule that regulates protein synthesis in mouse and rat liver. In the present study, the acute effects of tryptophan on protein synthesis were confirmed and compared with those of leucine in rats. Eighteen hours fasted rats were orally administered of tryptophan or leucine at a dose of 135 mg/100 g body weight by gavage and then sacrificed 1 h after administration. The effects of tryptophan and leucine on the rate of protein synthesis were evaluated by the surface sensing of translation (SUnSET) method. We also examined the ability of tryptophan to induce activation of the mTOR pathway by measuring phosphorylation of 4E-BP1 and S6K1. Oral administration of tryptophan led to a stimulation of the rate of protein synthesis concomitant with activation of mTOR pathway in the liver, but not in skeletal muscle. We also investigated the sensitivity of liver protein synthesis to tryptophan administration. The half-maximal effective doses (ED50) of tryptophan in stimulating 4E-BP1 and S6K1 phosphorylation were both about 60% of daily intake. The effect of tryptophan on hepatic protein synthesis was similar to that of leucine on muscle protein synthesis, and the sensitivity of liver protein synthesis to tryptophan administration appeared to be almost the same or slightly lower than that of muscle protein synthesis to leucine administration.
Collapse
Affiliation(s)
- Kodwo Amuzuah Obeng
- Department of Biological Production Science, The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Shinji Mochizuki
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University
| | - Shinichiro Koike
- Department of Biological Production Science, The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Yuka Toyoshima
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University
| | - Yusuke Sato
- Department of Biological Production Science, The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University
| | - Fumiaki Yoshizawa
- Department of Biological Production Science, The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University
| |
Collapse
|
18
|
Guo Y, Fu X, Hu Q, Chen L, Zuo H. The Effect of Leucine Supplementation on Sarcopenia-Related Measures in Older Adults: A Systematic Review and Meta-Analysis of 17 Randomized Controlled Trials. Front Nutr 2022; 9:929891. [PMID: 35845777 PMCID: PMC9284268 DOI: 10.3389/fnut.2022.929891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The role of leucine in sarcopenia prevention remains unclear. We aimed to summarize the published data from randomized controlled trials (RCTs) to estimate the effect of leucine supplementation on sarcopenia-related measures in older adults. METHODS A systematic literature search was performed using the electronic databases PubMed, Embase, and Web of Science with restriction to randomized controlled trials design from January 1, 2009 to March 19, 2022. Sarcopenia-related measures included handgrip strength, total lean mass, gait speed, leg press, 6-min walk test, short-physical performance battery, timed up-and-go test and 30-s chair-stand test. Fixed- and random-effects meta-analysis models were used to generate pooled weighted mean differences (WMDs) and 95% CIs. Heterogeneity was examined in subgroup and sensitivity analyses. Publication bias assessments were performed. RESULTS A total of 17 RCTs enrolling 1418 subjects were identified. Leucine-isolated supplementation showed no effect on total lean mass (WMD = 0.03 kg, 95% CI: -0.51, 0.57, P = 0.917), handgrip strength (WMD = 1.23 kg, 95% CI: -0.58, 3.03, P = 0.183) and leg press (WMD = -1.35 kg, 95% CI: -7.46, 4.77, P = 0.666). However, leucine-combined supplementation including vitamin D showed a significant improvement in handgrip strength (WMD = 2.17 kg, 95% CI: 0.24, 4.10, P = 0.027) and gait speed (WMD = 0.03 m/s, 95% CI: 0.01, 0.05, P = 0.008). CONCLUSION Leucine-isolated supplementation did not improve muscle mass and strength in elderly. However, leucine-combined supplementation including vitamin D exhibited a significant benefit for muscle strength and performance including handgrip strength and gait speed in older adults. A combination of nutritional supplements would be a viable option for improving sarcopenia.
Collapse
Affiliation(s)
- Yufei Guo
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoya Fu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Qingjing Hu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lihua Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Hui Zuo
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Horstman AMH, Huppertz T. Milk proteins: Processing, gastric coagulation, amino acid availability and muscle protein synthesis. Crit Rev Food Sci Nutr 2022; 63:10267-10282. [PMID: 35611879 DOI: 10.1080/10408398.2022.2078782] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well-known that the postprandial muscle protein synthetic response to protein ingestion is regulated on various levels, including dietary protein digestion and amino acid (AA) absorption, splanchnic AA retention, the availability of dietary protein-derived AA in the circulation, delivery of AA to the muscle, uptake of AA by the muscle, and intramuscular signaling. AA availability after consumption of dairy products is primarily determined by the rate of gastric emptying of milk proteins, which is mainly linked to coagulation of milk proteins in the stomach. Caseins form gastric coagula, which make their gastric emptying and subsequent postprandial aminoacidemia notably slower than that of whey proteins. Only recently, the role of processing, food structure, preservation and matrix on coagulation herein has been getting attention. In this review we describe various processes, that affect gastric coagulation of caseins and therewith control gastric emptying, such as the conversion to caseinate, heat treatment in the presence of whey proteins, conversion to stirred yoghurt and enzymatic hydrolysis. Modulating product characteristics by processing can be very useful to steer the gastric behavior of protein, and the subsequent digestion and AA absorption and muscle anabolic response to maintain or increase muscle mass.
Collapse
Affiliation(s)
| | - Thom Huppertz
- Research & Development, FrieslandCampina, Amersfoort, The Netherlands
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
Chang YB, Ahn Y, Suh HJ, Jo K. Yeast hydrolysate ameliorates dexamethasone-induced muscle atrophy by suppressing MuRF-1 expression in C2C12 cells and C57BL/6 mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Kido K, Koshinaka K, Iizawa H, Honda H, Hirota A, Nakamura T, Arikawa M, Ra SG, Kawanaka K. Egg White Protein Promotes Developmental Growth in Rodent Muscle Independently of Leucine Content. J Nutr 2022; 152:117-129. [PMID: 34610138 DOI: 10.1093/jn/nxab353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Leucine has unique anabolic properties, serving as a nutrient signal that stimulates muscle protein synthesis. OBJECTIVE We tested whether the leucine concentration is the only factor determining protein quality for muscle development. METHODS We selected 3 dietary proteins: casein (CAS), egg white protein (EWP), and albumin (ALB), representing the leucine concentrations of ∼8.3%, 7.7%, and 6.7% of the total protein (wt:wt), respectively. In the chronic feeding experiment, these proteins were pair-fed to growing male Wistar rats [110-135 g body weight (BW)] for 14 d as a protein source, providing 10% of total energy intake, after which soleus and extensor digitorum longus (EDL) muscles were used to estimate muscle growth. In the acute administration experiment, we injected CAS, ALB, and EWP to rats by oral gavage (0.3 g protein/100 g BW), and after 1 or 3 h EDL muscle was excised for capillary electrophoresis-MS-based metabolomics. In another chronic feeding experiment, rats were pair-fed either CAS or a CAS diet supplemented with arginine to the same level as in the EWP diet for 14 d. RESULTS At the end of the 14-d feeding, soleus and EDL muscle weight was 20% and 17% higher, respectively, when rats were fed EWP as compared with CAS (P < 0.05). In addition, the 14-d EWP diet increased the expression of p70S6K by 117% compared with CAS (P < 0.05). These results suggest the possibility that some amino acids (excluding leucine), derived from EWP, promote muscle growth. Metabolomics analysis showed that muscle arginine concentration, following acute protein administration, appeared to match muscle growth over the 14-d feeding period. In addition, 14-d arginine supplementation to a CAS diet increased EDL muscle weight by 15% when compared with the plain CAS diet (P < 0.05). CONCLUSIONS EWP promotes rat developmental muscle growth compared with CAS, which can be partly explained by the arginine-rich EWP.
Collapse
Affiliation(s)
- Kohei Kido
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Keiichi Koshinaka
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiroki Iizawa
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Hiroki Honda
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Ayumu Hirota
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Taishi Nakamura
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Miku Arikawa
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Song-Gyu Ra
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Institute of Liberal Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Kentaro Kawanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
23
|
Borack MS, Dickinson JM, Fry CS, Reidy PT, Markofski MM, Deer RR, Jennings K, Volpi E, Rasmussen BB. Effect of the lysosomotropic agent chloroquine on mTORC1 activation and protein synthesis in human skeletal muscle. Nutr Metab (Lond) 2021; 18:61. [PMID: 34118944 PMCID: PMC8199655 DOI: 10.1186/s12986-021-00585-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Previous work in HEK-293 cells demonstrated the importance of amino acid-induced mTORC1 translocation to the lysosomal surface for stimulating mTORC1 kinase activity and protein synthesis. This study tested the conservation of this amino acid sensing mechanism in human skeletal muscle by treating subjects with chloroquine—a lysosomotropic agent that induces in vitro and in vivo lysosome dysfunction. Methods mTORC1 signaling and muscle protein synthesis (MPS) were determined in vivo in a randomized controlled trial of 14 subjects (10 M, 4 F; 26 ± 4 year) that ingested 10 g of essential amino acids (EAA) after receiving 750 mg of chloroquine (CHQ, n = 7) or serving as controls (CON, n = 7; no chloroquine). Additionally, differentiated C2C12 cells were used to assess mTORC1 signaling and myotube protein synthesis (MyPS) in the presence and absence of leucine and the lysosomotropic agent chloroquine. Results mTORC1, S6K1, 4E-BP1 and rpS6 phosphorylation increased in both CON and CHQ 1 h post EAA ingestion (P < 0.05). MPS increased similarly in both groups (CON, P = 0.06; CHQ, P < 0.05). In contrast, in C2C12 cells, 1 mM leucine increased mTORC1 and S6K1 phosphorylation (P < 0.05), which was inhibited by 2 mg/ml chloroquine. Chloroquine (2 mg/ml) was sufficient to disrupt mTORC1 signaling, and MyPS. Conclusions Chloroquine did not inhibit amino acid-induced activation of mTORC1 signaling and skeletal MPS in humans as it does in C2C12 muscle cells. Therefore, different in vivo experimental approaches are required for confirming the precise role of the lysosome and amino acid sensing in human skeletal muscle. Trial registration NCT00891696. Registered 29 April 2009.
Collapse
Affiliation(s)
- Michael S Borack
- Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Department of Nutrition and Metabolism, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
| | - Jared M Dickinson
- Department of Nutrition and Metabolism, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Sealy Center On Aging, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Department of Health Sciences, Central Washington University, Ellensburg, WA, USA
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Sealy Center On Aging, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Paul T Reidy
- Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Department of Nutrition and Metabolism, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Department of Kinesiology, Nutrition and Health, Miami of Ohio University, Oxford, OH, USA
| | - Melissa M Markofski
- Sealy Center On Aging, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Rachel R Deer
- Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Sealy Center On Aging, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA
| | - Kristofer Jennings
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elena Volpi
- Department of Internal Medicine/Geriatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.,Sealy Center On Aging, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA. .,Sealy Center On Aging, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.
| |
Collapse
|
24
|
de Hart NM, Mahmassani ZS, Reidy PT, Kelley JJ, McKenzie AI, Petrocelli JJ, Bridge MJ, Baird LM, Bastian ED, Ward LS, Howard MT, Drummond MJ. Acute Effects of Cheddar Cheese Consumption on Circulating Amino Acids and Human Skeletal Muscle. Nutrients 2021; 13:614. [PMID: 33668674 PMCID: PMC7917914 DOI: 10.3390/nu13020614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cheddar cheese is a protein-dense whole food and high in leucine content. However, no information is known about the acute blood amino acid kinetics and protein anabolic effects in skeletal muscle in healthy adults. Therefore, we conducted a crossover study in which men and women (n = 24; ~27 years, ~23 kg/m2) consumed cheese (20 g protein) or an isonitrogenous amount of milk. Blood and skeletal muscle biopsies were taken before and during the post absorptive period following ingestion. We evaluated circulating essential and non-essential amino acids, insulin, and free fatty acids and examined skeletal muscle anabolism by mTORC1 cellular localization, intracellular signaling, and ribosomal profiling. We found that cheese ingestion had a slower yet more sustained branched-chain amino acid circulation appearance over the postprandial period peaking at ~120 min. Cheese also modestly stimulated mTORC1 signaling and increased membrane localization. Using ribosomal profiling we found that, though both milk and cheese stimulated a muscle anabolic program associated with mTORC1 signaling that was more evident with milk, mTORC1 signaling persisted with cheese while also inducing a lower insulinogenic response. We conclude that Cheddar cheese induced a sustained blood amino acid and moderate muscle mTORC1 response yet had a lower glycemic profile compared to milk.
Collapse
Affiliation(s)
- Naomi M.M.P. de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA;
| | - Ziad S. Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| | - Paul T. Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, 420 S Oak St., Oxford, OH 45056, USA;
| | - Joshua J. Kelley
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| | - Alec I. McKenzie
- Geoge E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, 500 Foothill Dr., Salt Lake City, UT 84148, USA;
| | - Jonathan J. Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| | - Michael J. Bridge
- Cell Imaging Facility, University of Utah, 30 N 2030 E, Salt Lake City, UT 84112, USA;
| | - Lisa M. Baird
- Department of Human Genetics, 15 N 2030 E, Salt Lake City, UT 84112, USA; (L.M.B.); (M.T.H.)
| | - Eric D. Bastian
- Dairy West Innovation Partnerships, 195 River Vista Place #306, Twin Falls, ID 83301, USA;
| | - Loren S. Ward
- Glanbia Nutritionals Research, 450 Falls Avenue #255, Twin Falls, ID 83301, USA;
| | - Michael T. Howard
- Department of Human Genetics, 15 N 2030 E, Salt Lake City, UT 84112, USA; (L.M.B.); (M.T.H.)
| | - Micah J. Drummond
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA;
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| |
Collapse
|
25
|
Chen K, Zhang Z, Li J, Xie S, Shi LJ, He YH, Liang XF, Zhu QS, He S. Different regulation of branched-chain amino acid on food intake by TOR signaling in Chinese perch (Siniperca chuatsi). AQUACULTURE 2021; 530:735792. [DOI: 10.1016/j.aquaculture.2020.735792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Szwiega S, Pencharz PB, Rafii M, Lebarron M, Chang J, Ball RO, Kong D, Xu L, Elango R, Courtney-Martin G. Dietary leucine requirement of older men and women is higher than current recommendations. Am J Clin Nutr 2020; 113:410-419. [PMID: 33330915 PMCID: PMC7851820 DOI: 10.1093/ajcn/nqaa323] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Current national (34 mg . kg-1 . d-1) and international (39 mg kg-1 . d-1) recommendations for leucine in older adults are based on data from young adults. Evidence suggests that the leucine requirements of older adults are higher than those of young adults. OBJECTIVE The objective of the current study was to directly determine the leucine requirements in healthy older adult male and female study participants aged >60 y. METHODS Leucine requirement was determined using the indicator amino acid oxidation method (IAAO) with l-[1-13C]phenylalanine as the indicator. Sixteen older adults (n = 7 male and n = 9 female participants) were randomly assigned to receive 3 to 7 leucine intakes from 20 to 120 mg . kg-1 . d-1. The rate of release of 13CO2 from l-[1-13C]phenylalanine oxidation was measured, and breakpoint analysis was used to estimate the leucine requirement. The 95% CI was calculated using the parametric bootstrap method. RESULTS The mean leucine requirement for male participants was 77.8 mg . kg-1 . d-1 (upper 95% CI: 81.0) and for female participants, it was 78.2 mg . kg-1 . d-1 (upper 95% CI: 82.0) with no sex effect based on body weight. The data were therefore combined to yield a mean of 78.5 mg . kg-1 d-1 (upper 95% CI: 81.0 mg . kg-1 . d-1 ) for both sexes. On the basis of fat-free mass, the mean ± SEM leucine requirements were 115 ± 3.2 and 127 ± 2.4 mg . kg-1 . d-1 for male and female participants, respectively (P < 0.005). CONCLUSIONS The estimated leucine requirement of older adults is more than double the amount in current recommendations. These data suggest that leucine could be a limiting amino acid in the diet of older adults consuming the current RDA for protein and those consuming a plant-based diet. In view of the functional and structural role of leucine, especially its importance in muscle protein synthesis, current leucine recommendations of older adults should be revised. This trial was registered at clinicaltrials.gov as NCT03506126.
Collapse
Affiliation(s)
- Sylwia Szwiega
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mahroukh Rafii
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mackenzie Lebarron
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jessica Chang
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ronald O Ball
- Department of Agriculture, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Libai Xu
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada,BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
27
|
Cheng X, Ge M, Zhu S, Li D, Wang R, Xu Q, Chen Z, Xie S, Liu H. mTORC1-mediated amino acid signaling is critical for cell fate determination under transplant-induced stress. FEBS Lett 2020; 595:462-475. [PMID: 33249578 DOI: 10.1002/1873-3468.14008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/17/2020] [Accepted: 11/21/2020] [Indexed: 01/05/2023]
Abstract
Transplantation of in vitro-manipulated cells is widely used in hematology. While transplantation is well recognized to impose severe stress on transplanted cells, the nature of transplant-induced stress remains elusive. Here, we propose that the lack of amino acids in serum is the major cause of transplant-induced stress. Mechanistically, amino acid deficiency decreases protein synthesis and nutrient consummation. However, in cells with overactive AKT and ERK, mTORC1 is not inhibited and protein synthesis remains relatively high. This impaired signaling causes nutrient depletion, cell cycle block, and eventually autophagy and cell death, which can be inhibited by cycloheximide or mTORC1 inhibitors. Thus, mTORC1-mediated amino acid signaling is critical in cell fate determination under transplant-induced stress, and protein synthesis inhibition can improve transplantation efficiency.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Maolin Ge
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Shouhai Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qiongyu Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
28
|
Cruz A, Ferian A, Alves PKN, Silva WJ, Bento MR, Gasch A, Labeit S, Moriscot AS. Skeletal Muscle Anti-Atrophic Effects of Leucine Involve Myostatin Inhibition. DNA Cell Biol 2020; 39:2289-2299. [PMID: 33136436 DOI: 10.1089/dna.2020.5423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lack of mechanical load leads to skeletal muscle atrophy, and one major underlying mechanism involves the myostatin pathway that negatively regulates protein synthesis and also activates Atrogin-1/MAFbx and MuRF1 genes. In hindlimb immobilization, leucine was observed to attenuate the upregulation of the referred atrogenes, thereby shortening the impact on fiber cross-sectional area, nonetheless, the possible connection with myostatin is still elusive. This study sought to verify the impact of leucine supplementation on myostatin expression. Male Wistar rats were supplemented with leucine and hindlimb immobilized for 3 and 7 days, after which soleus muscles were removed for morphometric measurements and analyzed for gene and protein expression by real-time PCR and Western blotting, respectively. Muscle wasting was prominent 7 days after immobilization, as expected, leucine feeding mitigated this effect. Atrogin-1/MAFbx gene expression was upregulated only after 3 days of immobilization, and this effect was attenuated by leucine supplementation. Atrogin-1/MAFbx protein levels were elevated after 7 days of immobilization, which leucine supplementation was not able to lessen. On the other hand, myostatin gene expression was upregulated in immobilization for 3 and 7 days, which returned to normal levels after leucine supplementation. Myostatin protein levels followed gene expression at a 3-day time point only. Follistatin gene expression was upregulated during immobilization and accentuated by leucine after 3 days of supplementation. Concerning protein expression, follistatin was not altered neither by immobilization nor in immobilized animals treated with leucine. In conclusion, leucine protects against skeletal muscle mass loss during disuse, and the underlying molecular mechanisms appear to involve myostatin inhibition and Atrogin-1 normalization independently of follistatin signaling.
Collapse
Affiliation(s)
- André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrea Ferian
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula K N Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - William Jose Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mirella Ribeiro Bento
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexander Gasch
- Institute for Integrative Pathophysiology, Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Siegfried Labeit
- Institute for Integrative Pathophysiology, Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Anselmo Sigari Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Energy metabolism profile of the effects of amino acid treatment on hepatocytes: Phenylalanine and phenylpyruvate inhibit glycolysis of hepatocytes. Nutrition 2020; 82:111042. [PMID: 33246675 DOI: 10.1016/j.nut.2020.111042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Amino acids are not only the building blocks of proteins, but also can be metabolized to energy substances or function as signaling molecules. The aim of this study was to profile whether amino acid treatment (essential amino acids and alanine) affects the energy metabolism (glycolysis, mitochondrial respiration) of cultured hepatocytes. METHODS AML12 hepatocytes were treated with 5 mM of each amino acid for 1 h and the energy metabolism was then measured by using an extracellular flux analyzer. RESULTS The results showed that phenylalanine and lysine decreased the extracellular acidification rate (ECAR), an indirect indicator of glycolysis, whereas isoleucine and histidine increased the ECAR. Amino acids did not affect the oxygen consumption rate, an indirect indicator of mitochondrial respiration. The glycolysis stress test revealed that treatment of the hepatocytes with phenylalanine inhibited glycolysis when the concentration of the substrate for glycolysis was sufficient in cultured media. We also investigated the effect of metabolites derived from conversion of phenylalanine on glycolysis in hepatocytes and found that phenylpyruvate inhibited glycolysis, whereas tyrosine and phenylethylamine did not affect glycolysis. CONCLUSIONS The findings from the present study complement basic knowledge of the effects of amino acid treatment on energy metabolism in cultured hepatocytes and indicate that phenylalanine and phenylpyruvate inhibit glycolysis.
Collapse
|
30
|
Protein metabolism and related body function: mechanistic approaches and health consequences. Proc Nutr Soc 2020; 80:243-251. [PMID: 33050961 DOI: 10.1017/s0029665120007880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development and maintenance of body composition and functions require an adequate protein intake with a continuous supply of amino acids (AA) to tissues. Body pool and AA cellular concentrations are tightly controlled and maintained through AA supply (dietary intake, recycled from proteolysis and de novo synthesis), AA disposal (protein synthesis and other AA-derived molecules) and AA losses (deamination and oxidation). Different molecular regulatory pathways are involved in the control of AA sufficiency including the mechanistic target of rapamycin complex 1, the general control non-derepressible 2/activating transcription factor 4 system or the fibroblast growth factor 21. There is a tight control of protein intake, and human subjects and animals appear capable of detecting and adapting food and protein intake and metabolism in face of foods or diets with different protein contents. A severely protein deficient diet induces lean body mass losses and ingestion of sufficient dietary energy and protein is a prerequisite for body protein synthesis and maintenance of muscle, bone and other lean tissues and functions. Maintaining adequate protein intake with age may help preserve muscle mass and strength but there is an ongoing debate as to the optimal protein intake in older adults. The protein synthesis response to protein intake can also be enhanced by prior completion of resistance exercise but this effect could be somewhat reduced in older compared to young individuals and gain in muscle mass and function due to exercise require regular training over an extended period.
Collapse
|
31
|
Energy metabolism profile of the effects of amino acid treatment on skeletal muscle cells: Leucine inhibits glycolysis of myotubes. Nutrition 2020; 77:110794. [DOI: 10.1016/j.nut.2020.110794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
|
32
|
Komorowski JR, Ojalvo SP, Sylla S, Tastan H, Orhan C, Tuzcu M, Sahin N, Sahin K. The addition of an amylopectin/chromium complex to branched-chain amino acids enhances muscle protein synthesis in rat skeletal muscle. J Int Soc Sports Nutr 2020; 17:26. [PMID: 32460884 PMCID: PMC7251890 DOI: 10.1186/s12970-020-00355-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A previous clinical study reported that the addition of an amylopectin/chromium complex (ACr; Velositol®) to 6 g of whey protein (WP) significantly enhanced muscle protein synthesis (MPS). Branched-chain amino acids (BCAAs) are also well-known to enhance MPS. The aim of this study was to determine if the addition of ACr to BCAAs can enhance MPS and activate expression of the mammalian target of the rapamycin (mTOR) pathway compared to BCAAs and exercise alone in exercise-trained rats. METHODS Twenty-four male Wistar rats were randomly divided into three groups (n = 8 per group): (I) Exercise control, (II) Exercise plus BCAAs (0.465 g/kg BW, a 6 g human equivalent dose (HED)), and (III) Exercise plus BCAAs (0.465 g/kg BW) and ACr (0.155 g/kg BW, a 2 g HED). All animals were trained with treadmill exercise for 10 days. On the day of the single-dose experiment, rats were exercised at 26 m/min for 2 h and then fed, via oral gavage, study product. One hour after the consumption of study product, rats were injected with a bolus dose (250 mg/kg BW, 25 g/L) of phenylalanine labeled with deuterium to measure the fractional rate of protein synthesis (FSR). Ten minutes later, muscle tissue samples were taken to determine MPS measured by FSR and the phosphorylation of proteins involved in the mTOR pathway including mTOR, S6K1, and 4E-BP1. RESULTS ACr combined with BCAAs increased MPS by 71% compared to the exercise control group, while BCAAs alone increased MPS by 57% over control (p < 0.05). ACr plus BCAAs significantly enhanced phosphorylation of mTOR, S6K1 and 4E-BP1 compared to exercise control rats (p < 0.05). The addition of ACr to BCAAs enhanced insulin levels, mTOR and S6K1 phosphorylation compared to BCAAs alone (p < 0.05). Serum insulin concentration was positively correlated with the levels of mTOR, (r = 0.923), S6K1 (r = 0.814) and 4E-BP1 (r = 0.953). CONCLUSIONS In conclusion, the results of this study provide evidence that the addition of ACr to BCAAs significantly enhances exercise-induced MPS, and the phosphorylation of mTOR signaling proteins, compared to BCAAs and exercise alone.
Collapse
Affiliation(s)
- James R Komorowski
- Research and Development Department, Nutrition 21 LLC, Purchase, NY, 10577, USA.
| | - Sara Perez Ojalvo
- Research and Development Department, Nutrition 21 LLC, Purchase, NY, 10577, USA
| | - Sarah Sylla
- Research and Development Department, Nutrition 21 LLC, Purchase, NY, 10577, USA
| | - Hakki Tastan
- Division of Biology, Faculty of Science, Gazi University, 06100, Ankara, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
33
|
Zeitz JO, Käding SC, Niewalda IR, Most E, Dorigam JCDP, Eder K. The influence of dietary leucine above recommendations and fixed ratios to isoleucine and valine on muscle protein synthesis and degradation pathways in broilers. Poult Sci 2020; 98:6772-6786. [PMID: 31250025 PMCID: PMC8913973 DOI: 10.3382/ps/pez396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/13/2019] [Indexed: 01/30/2023] Open
Abstract
This study investigated the hypothesis that dietary supplementation of leucine (Leu) above actual recommendations activates protein synthesis and inhibits protein degradation pathways on the molecular level and supports higher muscle growth in broilers. Day-old male Cobb-500 broilers (n = 180) were allotted to 3 groups and phase-fed 3 different corn-wheat-soybean meal-based basal diets during periods 1 to 10, 11 to 21, and 22 to 35 D. The control group (L0) received the basal diet which met the broiler's requirements of nutrients and amino acids for maintenance and growth. Groups L1 and L2 received basal diets supplemented with Leu to exceed recommendations by 35 and 60%, respectively, and isoleucine (Ile) and valine (Val) were supplemented to keep Leu: Ile and Leu: Val ratios fixed. Samples of liver and breast muscle and pancreas were collected on days 10, 21, and 35. The gene expression and abundance of total and phosphorylated proteins involved in the mammalian target of rapamycin pathway of protein synthesis, in the ubiquitin-proteasome pathway and autophagy-lysosomal pathway of protein degradation, in the general control nonderepressible 2/eukaryotic translation initiation factor 2A pathway involved in the inhibition of protein synthesis, and in the myostatin-Smad2/3 pathway involved in myogenesis were evaluated in the muscle, as well as expression of genes involved in the growth hormone axis. Growth performance, feed intake, the feed conversion ratio, and carcass weights did not differ between the 3 groups (P > 0.05). Plasma concentrations of Leu, Ile, and Val and of their keto acids, and the activity of the branched-chain α-keto acid dehydrogenase in the pancreas increased dose dependently with increasing dietary Leu concentrations. In the breast muscle, relative mRNA abundances of genes and phosphorylation of selected proteins involved in all investigated pathways were largely uninfluenced by dietary Leu supplementation (P > 0.05). In summary, these data indicate that excess dietary Leu concentrations do not influence protein synthesis or degradation pathways, and subsequently do not increase muscle growth in broilers at fixed ratios to Ile and Val.
Collapse
Affiliation(s)
- Johanna O Zeitz
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Stella-Christin Käding
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Ines R Niewalda
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | | | - Klaus Eder
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| |
Collapse
|
34
|
Sumi K, Osada K, Ashida K, Nakazato K. Lactobacillus-fermented milk enhances postprandial muscle protein synthesis in Sprague-Dawley rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
35
|
Beef extract supplementation promotes myoblast proliferation and myotube growth in C2C12 cells. Eur J Nutr 2020; 59:3735-3743. [PMID: 32100115 DOI: 10.1007/s00394-020-02205-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/12/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE We previously determined that the intake of beef extract for 4 weeks increases skeletal muscle mass in rats. Thus, this study aimed to clarify whether beef extract has a hypertrophic effect on muscle cells and to determine the signaling pathway underlying beef extract-induced myotube hypertrophy. METHODS We assessed the effects of beef extract supplement on mouse C2C12 skeletal muscle cell proliferation and differentiation and myotube growth. In addition, the phosphorylation of Akt, ERK1/2, and mTOR following beef extract supplementation was examined by western blotting. Furthermore, the bioactive constituents of beef extract were examined using amino acid analysis and dialysis. RESULTS In the proliferative stage, beef extract significantly increased myoblast proliferation. In the differentiation stage, beef extract supplementation did not promote myoblast differentiation. In mature myotubes, beef extract supplementation increased myotube diameter and promoted protein synthesis. Although Akt and ERK1/2 levels were not affected, beef extract supplementation increased mTOR phosphorylation, which indicated that the mTOR pathway mediates beef extract-induced myotube hypertrophy. The hypertrophic activity was observed in fractions of > 7000 Da. CONCLUSIONS Beef extract promoted C2C12 myoblast proliferation and C2C12 myotube hypertrophy. Myotube hypertrophy was potentially induced by mTOR activation and active components in beef extract were estimated to be > 7000 Da.
Collapse
|
36
|
Nakayama K, Tagawa R, Saito Y, Sanbongi C. Effects of whey protein hydrolysate ingestion on post-exercise muscle protein synthesis compared with intact whey protein in rats. Nutr Metab (Lond) 2020; 16:90. [PMID: 31889970 PMCID: PMC6935204 DOI: 10.1186/s12986-019-0417-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/18/2019] [Indexed: 01/14/2023] Open
Abstract
Background It is well known that ingestion of protein sources can stimulate muscle protein synthesis (MPS). The intake of whey protein is highly effective especially for accelerating MPS. Whey protein hydrolysate (WPH) can raise postprandial plasma concentration of amino acids, which impact stimulation of MPS more rapidly and highly than intact whey protein. However, it is unclear which is more effective for stimulating MPS, WPH or intact whey protein. The aim of the present study was to compare the effects of the WPH and whey protein on MPS in rats after exercise. Methods Rats were first subjected to a 2 h. swimming protocol. After this, in experiment 1, we evaluated time-dependent changes in the fractional synthetic rate (FSR) of the triceps muscle in Male Sprague-Dawley rats after ingestion of intact whey protein (30, 60, 90 or 120 min after ingestion). Then in experiment 2, at the time point that the results of Experiment 1 revealed postprandial FSR was highest (60 min after ingestion), we measured the FSR after ingestion of the WPH or whey protein at two different doses (0.5 or 2.0 g protein/kg body weight), or with deionized water (control), again after exercise. Plasma components and mammalian target of rapamycin (mTOR) signaling were also measured. Results In experiment 1, postprandial FSR was highest 60 min after whey protein was administered. In experiment 2, the FSR 60 min after ingestion of the WPH was higher than that of whey protein (significant treatment main effect). Moreover, at a lower dose, only the WPH ingestion caused greater MPS and phosphorylated 4E-binding protein 1 (4E-BP1) levels compared with the control group. Conclusion These results indicate that ingestion of the WPH was associated with greater post-exercise MPS compared with intact whey protein, especially at lower doses.
Collapse
Affiliation(s)
- Kyosuke Nakayama
- Food Microbiology and Function Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919 Japan
| | - Ryoichi Tagawa
- Food Microbiology and Function Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919 Japan
| | - Yuri Saito
- Food Microbiology and Function Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919 Japan
| | - Chiaki Sanbongi
- Food Microbiology and Function Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919 Japan
| |
Collapse
|
37
|
Haba Y, Fujimura T, Oyama K, Kinoshita J, Miyashita T, Fushida S, Harada S, Ohta T. Effect of Oral Branched-Chain Amino Acids and Glutamine Supplementation on Skeletal Muscle Atrophy After Total Gastrectomy in Rat Model. J Surg Res 2019; 243:281-288. [DOI: 10.1016/j.jss.2019.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023]
|
38
|
Consumption of a Specially-Formulated Mixture of Essential Amino Acids Promotes Gain in Whole-Body Protein to a Greater Extent than a Complete Meal Replacement in Older Women with Heart Failure. Nutrients 2019; 11:nu11061360. [PMID: 31212940 PMCID: PMC6627910 DOI: 10.3390/nu11061360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
Heart failure in older individuals is normally associated with a high body mass index and relatively low lean body mass due to, in part, a resistance to the normal anabolic effect of dietary protein. In this study we have investigated the hypothesis that consumption of a specially-formulated composition of essential amino acids (HiEAAs) can overcome anabolic resistance in individuals with heart failure and stimulate the net gain of body protein to a greater extent than a commercially popular protein-based meal replacement beverage with greater caloric but lower essential amino acid (EAA) content (LoEAA). A randomized cross-over design was used. Protein kinetics were determined using primed continuous infusions of L-(2H5)phenylalanine and L-(2H2)tyrosine in the basal state and for four hours following consumption of either beverage. Both beverages induced positive net protein balance (i.e., anabolic response). However, the anabolic response was more than two times greater with the HiEAA than the LoEAA (p < 0.001), largely through a greater suppression of protein breakdown (p < 0.001). Net protein accretion (g) was also greater in the HiEAA when data were normalized for either amino acid or caloric content (p < 0.001). We conclude that a properly formulated EAA mixture can elicit a greater anabolic response in individuals with heart failure than a protein-based meal replacement. Since heart failure is often associated with obesity, the minimal caloric value of the HiEAA formulation is advantageous.
Collapse
|
39
|
Zeitz JO, Käding SC, Niewalda IR, Machander V, de Paula Dorigam JC, Eder K. Effects of leucine supplementation on muscle protein synthesis and degradation pathways in broilers at constant dietary concentrations of isoleucine and valine. Arch Anim Nutr 2019; 73:75-87. [PMID: 30821190 DOI: 10.1080/1745039x.2019.1583519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present study investigated the hypothesis that dietary concentrations of leucine (Leu) in excess of the breeder´s recommendations activates protein synthesis and decreases protein degradation in muscle of broilers. Day-old male Ross 308 broilers (n = 450) were phase-fed corn-soybean meal-based diets during starter (d 1-10), grower (d 11-22), and finisher (d 23-34) period. The basal diets fed to the control group (L0) met the broilers' requirements for nutrients and amino acids, and contained Leu, Leu:isoleucine (Ile) and Leu:valine (Val) ratios, close to those recommended by the breeder (Leu:Ile: 100:54, 100:52, 100:51; Leu:Val 100:64, 100:61, 100:58; in starter, grower and finisher diet, resp.). Basal diets were supplemented with Leu to exceed the breeder's recommendations by 35% (group L35) and 60% (group L60). Growth performance during 34 d, and carcass weights, and breast and thigh muscle weights on d 34 were similar among groups. Hepatic and muscle mRNA levels of genes involved in the somatotropic axis [growth hormone receptor, insulin-like growth factor (IGF)-1, IGF binding protein 2, IGF receptor] on d 34 were not influenced by Leu. In the breast muscle, relative mRNA abundances of genes involved in the mammalian target of rapamycin (mTOR) pathway of protein synthesis (mTOR, ribosomal p70 S6 kinase) and the ubiquitin-proteasome pathway of protein degradation (F-box only protein 32, Forkhead box protein O1, Muscle RING-finger protein-1) on d 34 were largely similar among groups. Likewise, relative phosphorylation and thus activation of mTOR and ribosomal protein S6 involved in the mTOR pathway, and of eukaryotic translation initiation factor 2A (eIF2a) involved in the general control nonderepressible 2 (GCN2)/eIF2a pathway of protein synthesis inhibition, were not influenced. These data indicate that dietary Leu concentrations exceeding the broiler´s requirements up to 60% neither influence protein synthesis nor degradation pathways nor muscle growth in growing broilers.
Collapse
Affiliation(s)
- Johanna O Zeitz
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | - Stella-Christin Käding
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | - Ines R Niewalda
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | | | | | - Klaus Eder
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| |
Collapse
|
40
|
Takaoka M, Okumura S, Seki T, Ohtani M. Effect of amino-acid intake on physical conditions and skin state: a randomized, double-blind, placebo-controlled, crossover trial. J Clin Biochem Nutr 2019; 65:52-58. [PMID: 31379414 PMCID: PMC6667387 DOI: 10.3164/jcbn.18-108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/20/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of this study is to elucidate the effect of a supplement enriched with l-leucine, l-arginine, and l-glutamine on body compositions/skin conditions. Healthy young women (n = 29) were allocated to a group (n = 14) receiving an amino-acid supplement (600 mg l-leucine, 250 mg l-arginine, and 300 mg l-glutamine) and a placebo group (n = 15) receiving a supplement not-containing the amino acids. The amino-acid supplement and placebo were given twice/day for 6 weeks. After a wash-out (2 months) from the 1st test, the amino-acid group received the placebo and the placebo group the amino-acid supplement. The body compositions/skin conditions were measured 4 times (day 1 and weeks 2, 4, and 6) in each test. Percentage-change of muscle mass in the amino-acid group increased up to 4 weeks (p = 0.05) and was higher than that in the placebo group (p = 0.09). Skin texture estimated by the image processing of neck skin replica tended to increase in the amino-acid group at 6 weeks compared with that at 0 week, though there was no significant intergroup difference. In conclusion, the young adult women having no fitness habit showed the significant increase of the muscle amount and improvement tendency of the skin texture by the continuous intake of the amino-acid supplement.
Collapse
Affiliation(s)
- Motoko Takaoka
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-shi, Hyogo 662-8506, Japan
| | - Saki Okumura
- Groupwide Research and Development, Noevir Co., Ltd., C-333 R&D KSP, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Taizo Seki
- Groupwide Research and Development, Noevir Co., Ltd., C-333 R&D KSP, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Masaru Ohtani
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Kanagawa 214-8571, Japan.,DAC Co., Ltd., 6-12-12 Ebara, Shinagawa-ku, Tokyo 142-0063, Japan
| |
Collapse
|
41
|
Abstract
Some amino acids (AA) act through several signalling pathways and mechanisms to mediate the control of gene expression at the translation level, and the regulation occurs, specifically, on the initiation and the signalling pathways for translation. The translation of mRNA to protein synthesis proceeds through the steps of initiation and elongation, and AA act as important feed-forward activators that are involved in many pathways, such as the sensing and the transportation of AA by cells, in these steps in many tissues of mammals. For the translation, phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) is a critical molecule that controls the translation initiation and its functions can be regulated by some AA. Another control point in the mRNA binding step in the translation initiation is at the regulation by mammalian target of rapamycin, which requires a change of phosphorylation status of ribosomal protein S6. In fact, the change of phosphorylation status of ribosomal protein S6 might be involved in global protein synthesis. The present review summarises recent work on the molecular mechanisms of the regulation of protein synthesis by AA and highlights new findings.
Collapse
|
42
|
Xu D, Shimkus KL, Lacko HA, Kutzler L, Jefferson LS, Kimball SR. Evidence for a role for Sestrin1 in mediating leucine-induced activation of mTORC1 in skeletal muscle. Am J Physiol Endocrinol Metab 2019; 316:E817-E828. [PMID: 30835510 PMCID: PMC6580170 DOI: 10.1152/ajpendo.00522.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous studies established that leucine stimulates protein synthesis in skeletal muscle to the same extent as a complete mixture of amino acids, and the effect occurs through activation of the mechanistic target of rapamycin in complex 1 (mTORC1). Recent studies using cells in culture showed that the Sestrins bind leucine and are required for leucine-dependent activation of mTORC1. However, the role they play in mediating leucine-dependent activation of the kinase in vivo has been questioned because the dissociation constant of Sestrin2 for leucine is well below circulating and intramuscular levels of the amino acid. The goal of the present study was to compare expression of the Sestrins in skeletal muscle to other tissues and to assess their relative role in mediating activation of mTORC1 by leucine. The results show that the relative expression of the Sestrin proteins varies widely among tissues and that in skeletal muscle Sestrin1 expression is higher than Sestrin3, whereas Sestrin2 expression is markedly lower. Analysis of the dissociation constants of the Sestrins for leucine as assessed by leucine-induced dissociation of the Sestrin·GAP activity toward Rags 2 (GATOR2) complex revealed that Sestrin1 has the highest affinity for leucine and that Sestrin3 has the lowest affinity. In agreement with the dissociation constants calculated using cells in culture, oral leucine administration promotes disassembly of the Sestrin1·GATOR2 complex but not the Sestrin2 or Sestrin3·GATOR2 complex. Overall, the results presented herein are consistent with a model in which leucine-induced activation of mTORC1 in skeletal muscle in vivo occurs primarily through release of Sestrin1 from GATOR2.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Cellular and Molecular Physiology, Penn State College of Medicine , Hershey, Pennsylvania
- The Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China , Qingdao , P.R. China
| | - Kevin L Shimkus
- Department of Cellular and Molecular Physiology, Penn State College of Medicine , Hershey, Pennsylvania
| | - Holly A Lacko
- Department of Cellular and Molecular Physiology, Penn State College of Medicine , Hershey, Pennsylvania
| | - Lydia Kutzler
- Department of Cellular and Molecular Physiology, Penn State College of Medicine , Hershey, Pennsylvania
| | - Leonard S Jefferson
- Department of Cellular and Molecular Physiology, Penn State College of Medicine , Hershey, Pennsylvania
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
43
|
Zheng R, Huang S, Zhu J, Lin W, Xu H, Zheng X. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res 2019; 378:113-125. [PMID: 31020406 DOI: 10.1007/s00441-019-03021-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
Rotator cuff tears (RCTs), the most common tendon injury, are always accompanied by muscle atrophy, which is characterized by excessive protein degradation. Autophagy-lysosome systems are the crucial proteolytic pathways and are activated in atrophying muscle. Thus, inhibition of the autophagy-lysosome pathway might be an alternative way to minimize skeletal muscle atrophy. In this present study, combined with a tendon transection-induced rat model of massive rotator cuff tears, HE staining and transmission electron microscopy methods, we found leucine supplementation effectively prevented muscle atrophy, muscle injury and autophagosome formation. Utilizing immunoblotting, we discovered that leucine supplementation is able to inhibit the rise in autophagy-related protein expression (including LC3, Atrogin-1, MuRF1, Bnip3 and FoxO3) driven by tendon transection. The PI3K/AKT/mTOR pathway that was essential in autophagosome formation and autophagy was blocked in atrophying muscle and reactivated in the presence of leucine. Once administrated with LY294002 (PI3K inhibitor) and Rapamycin (mTOR inhibitor), leucine mediated by the anti-atrophic effects was nearly blunted. These results suggest that leucine potentially attenuates tendon transection-induced muscle atrophy through autophagy inhibition via activating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Rongzong Zheng
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Shuming Huang
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China.
| | - Junkun Zhu
- Department of Orthopaedic Rehabilitation, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Wei Lin
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Huan Xu
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Xiang Zheng
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| |
Collapse
|
44
|
Leucine promotes differentiation of porcine myoblasts through the protein kinase B (Akt)/Forkhead box O1 signalling pathway. Br J Nutr 2019; 119:727-733. [PMID: 29569540 DOI: 10.1017/s0007114518000181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leucine, one of the branched-chain amino acids, is the only amino acid to regulate protein turnover in skeletal muscle. Leucine not only increases muscle protein synthesis, but also decreases muscle protein degradation. It is well documented that leucine plays a positive role in differentiation of murine muscle cells. However, the role of leucine on porcine myoblast differentiation and its mechanism remains unclear. In this study, porcine myoblasts were induced to differentiate with differentiation medium containing different concentrations of leucine, and wortmannin was used to interdict the activity of protein kinase B (Akt). We found that leucine increased the number of myosin heavy chain-positive cells and creatine kinase activity. Moreover, leucine increased the mRNA and protein levels of myogenin and myogenic determining factor (MyoD). In addition, leucine increased the levels of phosphorylated Akt/Akt and phosphorylated Forkhead box O1 (P-FoxO1)/FoxO1, as well as decreased the protein level of FoxO1. However, wortmannin, a specific repressor of PI3K/Akt signalling pathway, attenuated the positive role of leucine on porcine myoblast differentiation. Our results suggest that leucine promotes porcine myoblast differentiation through the Akt/FoxO1 signalling pathway.
Collapse
|
45
|
She Y, Deng H, Cai H, Liu G. Regulation of the expression of key signalling molecules in mTOR pathway of skeletal muscle satellite cells in neonatal chicks: Effects of leucine and glycine–leucine peptide. J Anim Physiol Anim Nutr (Berl) 2019; 103:786-790. [DOI: 10.1111/jpn.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Yue She
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - Huiling Deng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
46
|
Lynch GS, Koopman R. Overcoming nature’s paradox in skeletal muscle to optimise animal production. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an19361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nature’s paradox in skeletal muscle describes the seemingly mutually exclusive relationship between muscle fibre size and oxidative capacity. In mammals, there is a constraint on the size at which mitochondria-rich, high O2-dependent oxidative fibres can attain before they become anoxic or adapt to a glycolytic phenotype, being less reliant on O2. This implies that a muscle fibre can hypertrophy at the expense of its endurance capacity. Adaptations to activity (exercise) generally obey this relationship, with optimal muscle endurance generally being linked to an enhanced proportion of small, slow oxidative fibres and muscle strength (force and/or power) being linked to an enhanced proportion of large, fast glycolytic fibres. This relationship generally constrains not only the physiological limits of performance (e.g. speed and endurance), but also the capacity to manipulate muscle attributes such as fibre size and composition, with important relevance to the livestock and aquaculture industries for producing specific muscle traits such as (flesh) quality, texture and taste. Highly glycolytic (white) muscles have different traits than do highly oxidative (red) muscles and so the ability to manipulate muscle attributes to produce flesh with specific traits has important implications for optimising meat production and quality. Understanding the biological regulation of muscle size, and phenotype and the capacity to manipulate signalling pathways to produce specific attributes, has important implications for promoting ethically sustainable and profitable commercial livestock and aquaculture practices and for developing alternative food sources, including ‘laboratory meat’ or ‘clean meat’. This review describes the exciting potential of manipulating muscle attributes relevant to animal production, through traditional nutritional and pharmacological approaches and through viral-mediated strategies that could theoretically push the limits of muscle fibre growth, adaptation and plasticity.
Collapse
|
47
|
Rudar M, Fiorotto ML, Davis TA. Regulation of Muscle Growth in Early Postnatal Life in a Swine Model. Annu Rev Anim Biosci 2018; 7:309-335. [PMID: 30388025 DOI: 10.1146/annurev-animal-020518-115130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle growth during the early postnatal period is rapid in the pig and dependent on the capacity of muscle to respond to anabolic and catabolic stimuli. Muscle mass is driven by the balance between protein synthesis and degradation. Among these processes, muscle protein synthesis in the piglet is exceptionally sensitive to the feeding-induced postprandial changes in insulin and amino acids, whereas muscle protein degradation is affected only during specific catabolic states. The developmental decline in the response of muscle to feeding is associated with changes in the signaling pathways located upstream and downstream of the mechanistic target of rapamycin protein complex. Additionally, muscle growth is supported by an accretion of nuclei derived from satellite cells. Activated satellite cells undergo proliferation, differentiation, and fusion with adjacent growing muscle fibers. Enhancing early muscle growth through modifying protein synthesis, degradation, and satellite cell activity is key to maximizing performance, productivity, and lifelong pig health.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| |
Collapse
|
48
|
Tomé D. 90th Anniversary Commentary: The mTORC1 Complex-A Central Player in the Control and Regulation of Amino Acid Sufficiency. J Nutr 2018; 148:1678-1682. [PMID: 30281113 DOI: 10.1093/jn/nxy172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Daniel Tomé
- UMR PNCA, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| |
Collapse
|
49
|
Dyar KA, Hubert MJ, Mir AA, Ciciliot S, Lutter D, Greulich F, Quagliarini F, Kleinert M, Fischer K, Eichmann TO, Wright LE, Peña Paz MI, Casarin A, Pertegato V, Romanello V, Albiero M, Mazzucco S, Rizzuto R, Salviati L, Biolo G, Blaauw B, Schiaffino S, Uhlenhaut NH. Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol 2018; 16:e2005886. [PMID: 30096135 PMCID: PMC6105032 DOI: 10.1371/journal.pbio.2005886] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/22/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.
Collapse
Affiliation(s)
- Kenneth Allen Dyar
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Michaël Jean Hubert
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Ashfaq Ali Mir
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | | | - Dominik Lutter
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Franziska Greulich
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Fabiana Quagliarini
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Maximilian Kleinert
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Katrin Fischer
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | | | | | | | - Alberto Casarin
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Vanessa Pertegato
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | | | - Mattia Albiero
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sara Mazzucco
- Clinica Medica, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Gianni Biolo
- Clinica Medica, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - N. Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
- Gene Center, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
| |
Collapse
|
50
|
Leucine Supplementation Does Not Attenuate Skeletal Muscle Loss during Leg Immobilization in Healthy, Young Men. Nutrients 2018; 10:nu10050635. [PMID: 29772844 PMCID: PMC5986514 DOI: 10.3390/nu10050635] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Short successive periods of physical inactivity occur throughout life and contribute considerably to the age-related loss of skeletal muscle mass. The maintenance of muscle mass during brief periods of disuse is required to prevent functional decline and maintain metabolic health. OBJECTIVE To assess whether daily leucine supplementation during a short period of disuse can attenuate subsequent muscle loss in vivo in humans. METHODS Thirty healthy (22 ± 1 y) young males were exposed to a 7-day unilateral knee immobilization intervention by means of a full leg cast with (LEU, n = 15) or without (CON, n = 15) daily leucine supplementation (2.5 g leucine, three times daily). Prior to and directly after immobilization, quadriceps muscle cross-sectional area (computed tomography (CT) scan) and leg strength (one-repetition maximum (1-RM)) were assessed. Furthermore, muscle biopsies were taken in both groups before and after immobilization to assess changes in type I and type II muscle fiber CSA. RESULTS Quadriceps muscle cross-sectional area (CSA) declined in the CON and LEU groups (p < 0.01), with no differences between the two groups (from 7712 ± 324 to 7287 ± 305 mm² and from 7643 ± 317 to 7164 ± 328 mm²; p = 0.61, respectively). Leg muscle strength decreased from 56 ± 4 to 53 ± 4 kg in the CON group and from 63 ± 3 to 55 ± 2 kg in the LEU group (main effect of time p < 0.01), with no differences between the groups (p = 0.052). Type I and II muscle fiber size did not change significantly over time, in both groups (p > 0.05). CONCLUSIONS Free leucine supplementation with each of the three main meals (7.5 g/d) does not attenuate the decline of muscle mass and strength during a 7-day limb immobilization intervention.
Collapse
|