1
|
Sidhu D, Vasundhara M, Dey P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155207. [PMID: 38000106 DOI: 10.1016/j.phymed.2023.155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The intestinal-level host-microbiota interaction has been implicated in the pathogenesis of chronic diseases. The current review is intended to provide a comprehensive insight into deciphering whether intestinal-level bioactivities mediate the overall metabolic health benefits of green tea catechins. PURPOSE We have comprehensively discussed pre-clinical and clinical evidences of intestinal-level changes in metabolism, microbiota, and metabolome due to catechin-rich green tea treatments, ultimately limiting metabolic diseases. Exclusive emphasis has been given to purified catechins and green tea, and discussions on extraintestinal mechanisms of metabolic health benefits were avoided. METHODS A literature search for relevant pre-clinical and clinical studies was performed in various online databases (e.g., PubMed) using specific keywords (e.g., catechin, intestine, microbiota). Out of all the referred literature, ∼15% belonged to 2021-2023, ∼51% were from 2011-2020, and ∼32% from 2000-2010. RESULT The metabolic health benefits of green tea catechins are indeed influenced by the intestinal-level bioactivities, including reduction of mucosal inflammation and oxidative stress, attenuation of gut barrier dysfunction, decrease in intestinal lipid absorption and metabolism, favorable modulation of mucosal nuclear receptor signaling, alterations of the luminal global metabolome, and mitigation of the gut dysbiosis. The results from the recent clinical studies support the pre-clinical evidences. The challenges and pitfalls of the currently available knowledge on catechin bioactivities have been discussed, and constructive directions to harness the translational benefits of green tea through future interventions have been provided. CONCLUSION The metabolism, metabolome, and microbiota at the intestinal epithelia play critical roles in catechin metabolism, pharmacokinetics, bioavailability, and bioactivities. Especially the reciprocal interaction between the catechins and the gut microbiota dictates the metabolic benefits of catechins.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
2
|
Lin PW, Li XY, Ma RY, Daijun S. The Effect of Supplementing Tea Polyphenols on Yolk Cholesterol and Production Performance of Laying Hens During the Egg-laying Period. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- PW Lin
- Southwest University, China; Southwest University, China
| | - XY Li
- Southwest University, China; Southwest University, China
| | - RY Ma
- Southwest University, China; Southwest University, China
| | - S Daijun
- Southwest University, China; Southwest University, China
| |
Collapse
|
3
|
Camellia sinesis leaves extract ameliorates high fat diet-induced nonalcoholic steatohepatitis in rats: analysis of potential mechanisms. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-020-00500-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
A nutraceutical formulation based on Annurca apple polyphenolic extract is effective on intestinal cholesterol absorption: A randomised, placebo-controlled, crossover study. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Kobayashi M, Ikeda I. Mechanisms of Inhibition of Cholesterol Absorption by Green Tea Catechins. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Ikuo Ikeda
- Laboratory of Food and Biomolecular Science, Department of Food Function and Health, Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
6
|
Li J, Sapper TN, Mah E, Moller MV, Kim JB, Chitchumroonchokchai C, McDonald JD, Bruno RS. Green tea extract treatment reduces NFκB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1 and TLR4 expression and ligand availability. J Nutr Biochem 2016; 41:34-41. [PMID: 28038359 DOI: 10.1016/j.jnutbio.2016.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/10/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
NFκB-mediated inflammation contributes to liver injury during nonalcoholic steatohepatitis (NASH). We hypothesized that antiinflammatory activities of green tea extract (GTE) during NASH would lower tumor necrosis factor receptor-1 (TNFR1)- and Toll-like receptor-4 (TLR4)-mediated NFκB activation. Male C57BL6/J mice (6 weeks old) were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks to induce NASH. They were then randomized to continue on these diets supplemented with 0 or 2% GTE (n=10/group) for an additional 8 weeks prior to evaluating NASH, NFκB inflammation and TNFR1 and TLR4 receptor complexes and their respective ligands, TNFα and endotoxin. HF feeding increased (P<.05) serum alanine aminotransferase (ALT) activity and histological evidence of NASH compared with LF controls. HF-mediated increases in NFκB p65 phosphorylation were also accompanied by increased serum TNFα and endotoxin concentrations, mRNA expression of hepatic TNFR1 and TLR4 and MyD88 protein levels. GTE in LF mice had no effect (P>.05) on liver histology or inflammatory responses. However, GTE in HF mice decreased biochemical and histological parameters of NASH and lowered hepatic p65 phosphorylation in association with decreased serum TNFα, mRNA expression of TNFR1 and TLR4 and MyD88 protein. GTE in HF-fed mice also lowered serum endotoxin and up-regulated mRNA expression of duodenal occludin and zonula occluden-1 and ileal occludin and claudin-1 that were otherwise lowered in expression by HF feeding. These data suggest that dietary GTE treatment reduces hepatic inflammation in NASH by decreasing proinflammatory signaling through TNFR1 and TLR4 that otherwise increases NFκB activation and liver injury.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Teryn N Sapper
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Eunice Mah
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA; Biofortis, Inc., Addison, IL 60101, USA
| | - Meredith V Moller
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Kim
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Pinoresinol of olive oil decreases vitamin D intestinal absorption. Food Chem 2016; 206:234-8. [DOI: 10.1016/j.foodchem.2016.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/02/2016] [Accepted: 03/15/2016] [Indexed: 11/20/2022]
|
8
|
Agaricus brasiliensis (sun mushroom) affects the expression of genes related to cholesterol homeostasis. Eur J Nutr 2016; 56:1707-1717. [PMID: 27151383 DOI: 10.1007/s00394-016-1217-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE The sun mushroom (Agaricus brasiliensis) is considered a major source of bioactive compounds with potential health benefits. Mushrooms typically act as lipid-lowering agents; however, little is known about the mechanisms of action of A. brasiliensis in biological systems. This study aimed to determine the underlying mechanism involved in the cholesterol-lowering effect of A. brasiliensis through the assessment of fecal and serum lipid profiles in addition to gene expression analysis of specific transcription factors, enzymes, and transporters involved in cholesterol homeostasis. METHODS Twenty-four albino Fischer rats approximately 90 days old, with an average weight of 205 g, were divided into four groups of 6 each and fed a standard AIN-93 M diet (C), hypercholesterolemic diet (H), hypercholesterolemic diet +1 % A. brasiliensis (HAb), or hypercholesterolemic diet +0.008 % simvastatin (HS) for 6 weeks. Simvastatin was used as a positive control, as it is a typical drug prescribed for lipid disorders. Subsequently, blood, liver, and feces samples were collected for lipid profile and quantitative real-time polymerase chain reaction gene expression analyses. RESULTS Diet supplementation with A. brasiliensis significantly improved serum lipid profiles, comparable to the effect observed for simvastatin. In addition, A. brasiliensis dietary supplementation markedly promoted fecal cholesterol excretion. Increased expression of 7α-hydroxylase (CYP7A1), ATP-binding cassette subfamily G-transporters (ABCG5/G8), and low-density lipoprotein receptor (LDLR) was observed following A. brasiliensis administration. CONCLUSIONS Our results suggest that consumption of A. brasiliensis improves the serum lipid profile in hypercholesterolemic rats by modulating the expression of key genes involved in hepatic cholesterol metabolism.
Collapse
|
9
|
Nikniaz Z, Mahdavi R, Nikniaz L, Ebrahimi A, Ostadrahimi A. Effects of Elaeagnus angustifolia L. on Lipid Profile and Atherogenic Indices in Obese Females: A Randomized Controlled Clinical Trial. J Diet Suppl 2016; 13:595-606. [PMID: 26930244 DOI: 10.3109/19390211.2016.1150933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present randomized double-blinded placebo-controlled study, the effect of Elaeagnus angustifolia L. (EA) whole fruit and medulla powders on anthropometric indices, serum lipid profile, and atherogenic indices in females with knee osteoarthritis (OA) was investigated. Ninety females with mild to moderate knee osteoarthritis were randomly assigned to one of three groups-medulla powder, whole fruit powder, or placebo. The subjects received 15 g/day of medulla powder of EA, whole fruit powder of EA, or placebo. Lipid profile, weight, and dietary intake were measured at baseline and at the end of the study. Body mass index and atherogenic indices were calculated. Statistical analysis was performed using SPSS version 13.0, and Paired t tests, analysis of variance (ANOVA), analysis of covariance (ANCOVA), and the Tukey post hoc test were used to compare within-group and between-group values. After 8 weeks of supplementations, compared with the baseline, significant reductions in total cholesterol (TC), low density lipoprotein/high density lipoprotein (LDL/HDL), and TC/HDL ratios were observed in the two supplemented groups; however, the reduction of these values was not statistically significant in the placebo group. There were significant differences between the patients who received medulla powder and placebo group in the case of changes in TC/HDL and LDL/HDL ratios (p < .001). However, no significant differences were found between the two supplemented groups in the case of changes in studied values (p > .05). Generally, whole fruit and medulla powders of Elaeagnus angustifolia L. had positive effects, especially in decreasing total cholesterol and atherogenic indices in females with knee OA.
Collapse
Affiliation(s)
- Zeinab Nikniaz
- a Liver and Gastrointestinal Diseases Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Reza Mahdavi
- b Nutrition Research Centre , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Leila Nikniaz
- c Tabriz Health Services Management Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Aliasghar Ebrahimi
- d Connective Tissue Diseases Research Centre , Tabriz University of Medical Sciences, Imam Reza Hospital , Tabriz , Iran
| | - Alireza Ostadrahimi
- b Nutrition Research Centre , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
10
|
Hernández-Salinas R, Decap V, Leguina A, Cáceres P, Perez D, Urquiaga I, Iturriaga R, Velarde V. Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet. Biol Res 2015; 48:53. [PMID: 26420015 PMCID: PMC4588460 DOI: 10.1186/s40659-015-0045-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
Background Metabolic syndrome is a growing worldwide health problem. We evaluated the effects of wine grape powder (WGP), rich in antioxidants and fiber, in a rat model of metabolic syndrome induced by a high fructose diet. We tested whether WGP supplementation may prevent glucose intolerance and decrease oxidative stress in rats fed with a high fructose diet. Methods Male Sprague–Dawley rats weighing 180 g were divided into four groups according to their feeding protocols. Rats were fed with control diet (C), control plus 20 % WGP (C + WGP), 50 % high fructose (HF) or 50 % fructose plus 20 % WGP (HF + WGP) for 16 weeks. Blood glucose, insulin and triglycerides, weight, and arterial blood pressure were measured. Homeostasis model assessment (HOMA) index was calculated using insulin and glucose values. A glucose tolerance test was performed 2 days before the end of the experiment. As an index of oxidative stress, thiobarbituric acid reactive substances (TBARS) level was measured in plasma and kidney, and superoxide dismutase was measured in the kidney. Results Thiobarbituric acid reactive substances in plasma and renal tissue were significantly higher when compared to the control group. In addition, the area under the curve of the glucose tolerance test was higher in HF fed animals. Furthermore, fasting blood glucose, plasma insulin levels, and the HOMA index, were also increased. WGP supplementation prevented these alterations in rats fed with the HF diet. We did not find any significant difference in body weight or systolic blood pressure in any of the groups. Conclusions Our results show that WGP supplementation prevented hyperglycemia, insulin resistance and reduced oxidative stress in rats fed with HF diet. We propose that WGP may be used as a supplement in human food as well.
Collapse
Affiliation(s)
- Romina Hernández-Salinas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Valerie Decap
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Alberto Leguina
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Patricio Cáceres
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Druso Perez
- Center for Molecular Nutrition and Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Ines Urquiaga
- Center for Molecular Nutrition and Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Iturriaga
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Molecular Nutrition and Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Victoria Velarde
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Molecular Nutrition and Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Dos Santos MDFG, Mamede RVS, Rufino MDSM, de Brito ES, Alves RE. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds. Antioxidants (Basel) 2015; 4:591-602. [PMID: 26783846 PMCID: PMC4665426 DOI: 10.3390/antiox4030591] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã) were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g−1), total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g−1), and anthocyanins in bacaba (80.76 mg·100g−1). As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC) (194.67 µM·Trolox·g−1), 2,2-diphenyl-1-picrylhydrazyl (DPPH) (47.46 g·pulp·g−1 DPPH), and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I) methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits.
Collapse
Affiliation(s)
- Mary de Fátima Guedes Dos Santos
- Institute of Scientific and Technological Research of the State of Amapá (IEPA), Rodovia JK, Km 10, Macapá, AP 68900-000, Brazil.
| | - Rosa Virginia Soares Mamede
- Embrapa Tropical Agroindustry, R. Dra. Sara Mesquita, 2270, Pici, Fortaleza, CE 60511-110, Brazil.
- Deparment of Chemistry, Universidade Estadual do Piauí, Av. Presidente Castelo Branco, 180, Piripiri, PI 64260-000, Brazil.
| | - Maria do Socorro Moura Rufino
- Institute of Rural Development, University for the International Integration of the Afro-Brazilian Lusophony, Av. da Abolição, 3, Centro, Redenção, CE 62790-000, Brazil.
| | - Edy Sousa de Brito
- Embrapa Tropical Agroindustry, R. Dra. Sara Mesquita, 2270, Pici, Fortaleza, CE 60511-110, Brazil.
| | - Ricardo Elesbão Alves
- Embrapa Tropical Agroindustry, R. Dra. Sara Mesquita, 2270, Pici, Fortaleza, CE 60511-110, Brazil.
| |
Collapse
|
12
|
Cardioprotection by Phytochemicals via Antiplatelet Effects and Metabolism Modulations. Cell Biochem Biophys 2015; 73:369-379. [DOI: 10.1007/s12013-015-0612-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Huang J, Wang Y, Xie Z, Zhou Y, Zhang Y, Wan X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur J Clin Nutr 2014; 68:1075-87. [DOI: 10.1038/ejcn.2014.143] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/30/2014] [Accepted: 06/15/2014] [Indexed: 12/14/2022]
|
14
|
A randomized, double-blind, placebo-controlled, pilot study to evaluate the effect of whole grape extract on antioxidant status and lipid profile. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
15
|
|
16
|
A review on the role of nutraceuticals as simple as se(2+) to complex organic molecules such as glycyrrhizin that prevent as well as cure diseases. Indian J Clin Biochem 2013; 29:119-32. [PMID: 24757291 DOI: 10.1007/s12291-013-0362-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
Nutraceuticals are nutritional medicines which are present in edible food items. Most of them are antioxidants with various other biological properties viz, anti inflammatory, anti atherogenic, anticancer, anti viral, anti aging properties etc. They are as simple as minerals like Se(2+) to complex organic molecules such as glycyrrhizin (Ca(2+), K(+) salts of glycyrrhizic acid). They can prevent as well as cure various diseases. Most of the medical people are not aware of the importance of the nutraceuticals as such matters are not part of their text books. Many still think that vitamins are the major nutritional medicines. Actually other dietary principles like terpenes, carotenes, phytosterols, polyphenols, flavanoids, di and poly sulphides, their sulfoxides and their precursor amino acids are necessary to scavenge free radicals in the body which are reactive oxygen species to protect and maintain the vitamin levels in the body. They down regulate the activities of those enzymes which are increased in diseases and they increase those that remove oxidants and detoxify carcinogens. They are immune boosters too. Recently glucosinolates, non toxic alkaloids, certain proteins and even fiber are included in the list of nutraceuticals.
Collapse
|
17
|
Tamaru S, Ohmachi K, Miyata Y, Tanaka T, Kubayasi T, Nagata Y, Tanaka K. Hypotriglyceridemic potential of fermented mixed tea made with third-crop green tea leaves and camellia (Camellia japonica) leaves in Sprague-Dawley rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5817-5823. [PMID: 23705670 DOI: 10.1021/jf400938h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fermented mixed tea made with third-crop green tea leaves and camellia leaves by a tea-rolling process has been developed. The objective of this study was to investigate hypotriglyceridemic potential of the mixed tea in rats. The mixed tea contained theasinensins and theaflavins. Rats fed the mixed tea extract at the level of 1% exerted significantly lower body weight and adipose tissue weight compared to animals fed third-crop green tea or camellia tea extract alone for 4 weeks. Serum and hepatic triglyceride was significantly and dose-dependently decreased by the mixed tea. This decrease was associated with lowered lipogenic enzyme activities in the liver. Furthermore, an oral administration of 4 or 8% of the mixed tea extract followed by fat emulsion suppressed the increment of serum triglyceride level. These results suggest that the mixed tea has hypotriglyceridemic action, partially via delaying triglyceride absorption in the small intestine and repressing hepatic lipogenic enzymes.
Collapse
Affiliation(s)
- Shizuka Tamaru
- Department of Nutrition, University of Nagasaki , 1-1-1 Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki 851-2195, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Maestre R, Douglass JD, Kodukula S, Medina I, Storch J. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J Nutr 2013; 143:295-301. [PMID: 23325921 PMCID: PMC3713019 DOI: 10.3945/jn.112.160101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The (n-3) PUFAs 20:5 (n-3) (EPA) and 22:6 (n-3) (DHA) are thought to benefit human health. The presence of prooxidant compounds in foods, however, renders them susceptible to oxidation during both storage and digestion. The development of oxidation products during digestion and the potential effects on intestinal PUFA uptake are incompletely understood. In the present studies, we examined: (1) the development and bioaccessibility of lipid oxidation products in the gastrointestinal lumen during active digestion of fatty fish using the in vitro digestive tract TNO Intestinal Model-1 (TIM-1); (2) the mucosal cell uptake and metabolism of oxidized compared with unoxidized PUFAs using Caco-2 intestinal cells; and 3) the potential to limit the development of oxidation products in the intestine by incorporating antioxidant polyphenols in food. We found that during digestion, the development of oxidation products occurs in the stomach compartment, and increased amounts of oxidation products became bioaccessible in the jejunal and ileal compartments. Inclusion of a polyphenol-rich grape seed extract (GSE) during the digestion decreased the amounts of oxidation products in the stomach compartment and intestinal dialysates (P < 0.05). In Caco-2 intestinal cells, the uptake of oxidized (n-3) PUFAs was ~10% of the uptake of unoxidized PUFAs (P < 0.05) and addition of GSE or epigallocatechin gallate protected against the development of oxidation products, resulting in increased uptake of PUFAs (P < 0.05). These results suggest that addition of polyphenols during active digestion can limit the development of (n-3) PUFA oxidation products in the small intestine lumen and thereby promote intestinal uptake of the beneficial, unoxidized, (n-3) PUFAs.
Collapse
Affiliation(s)
- Rodrigo Maestre
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain.
| | - John D. Douglass
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Sarala Kodukula
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Isabel Medina
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain; and
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
19
|
Fan S, Zhang Y, Hu N, Sun Q, Ding X, Li G, Zheng B, Gu M, Huang F, Sun YQ, Zhou Z, Lu X, Huang C, Ji G. Extract of Kuding tea prevents high-fat diet-induced metabolic disorders in C57BL/6 mice via liver X receptor (LXR) β antagonism. PLoS One 2012; 7:e51007. [PMID: 23226556 PMCID: PMC3514219 DOI: 10.1371/journal.pone.0051007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To investigate the effects of ilex kudingcha C. J. Tseng (kuding tea), a traditional beverage in China, on the metabolic disorders in C57BL/6 mice induced by high-fat diets. DESIGN For the preventive experiment, the female C57BL/6 mice were fed with a standard diet (Chow), high-fat diet (HF), and high-fat diet mixed with 0.05% ethanol extract of kuding tea (EK) for 5 weeks. For the therapeutic experiment, the C57BL/6 mice were fed high-fat diet for 3 months, and then mice were split and EK was given with oral gavages for 2 weeks at 50 mg/day/kg. Body weight and daily food intake amounts were measured. At the end of treatment, the adipocyte images were assayed with a scanning electron microscope, and the fasting blood glucose, glucose tolerance test, serum lipid profile and lipids in the livers were analyzed. A reporter gene assay system was used to test the whether EK could act on nuclear receptor transcription factors, and the gene expression analysis was performed with a quantitative PCR assay. RESULTS In the preventive treatment, EK blocked the body weight gain, reduced the size of the adipocytes, lowered serum triglyceride, cholesterol, LDL-cholesterol, fasting blood glucose levels and glucose tolerance in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, EK reduced the size of the white adipocytes, serum TG and fasting blood glucose levels in obese mice. With the reporter assay, EK inhibited LXRβ transactivity and mRNA expression of LXRβ target genes. CONCLUSION We observed that EK has both preventive and therapeutic roles in metabolic disorders in mice induced with high-fat diets. The effects appear to be mediated through the antagonism of LXRβ transactivity. Our data indicate that kuding tea is a useful dietary therapy and a potential source for the development of novel anti-obesity and lipid lowering drugs.
Collapse
Affiliation(s)
- Shengjie Fan
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Hu
- Scientific Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhu Sun
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Ding
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Guowen Li
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zheng
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Gu
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feisi Huang
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin-Qiang Sun
- Scientific Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Xiong Lu
- Scientific Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Ryou SH, Kang MS, Kim KI, Kang YH, Kang JS. Effects of green tea or Sasa quelpaertensis bamboo leaves on plasma and liver lipids, erythrocyte Na efflux, and platelet aggregation in ovariectomized rats. Nutr Res Pract 2012; 6:106-12. [PMID: 22586498 PMCID: PMC3349031 DOI: 10.4162/nrp.2012.6.2.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/11/2012] [Accepted: 01/28/2012] [Indexed: 11/04/2022] Open
Abstract
This study was conducted to investigate the effects of Sasa quelpaertensis bamboo and green tea on plasma and liver lipids, platelet aggregation, and erythrocyte membrane Na channels in ovariectomized (OVX) rats. Thirty female rats were OVX, and ten female rats were sham-operated at the age of 6 weeks. The rats were divided into four groups at the age of 10 weeks and fed the experiment diets: sham-control, OVX-control, OVX-bamboo leaves (10%), or OVX-green tea leaves (10%) for four weeks. Final body weight increased significantly in the OVX groups compared with that in the sham-control, whereas body weight in the OVX-green tea group decreased significantly compared with that in the OVX-control (P < 0.01). High density lipoprotein (HDL)-cholesterol level decreased in all OVX groups compared with that in the sham-control rats (P < 0.05) but without a difference in plasma total cholesterol. Plasma triglycerides in the OVX-green tea group were significantly lower than those in the sham-control or OVX-control group (P < 0.05). Liver triglycerides increased significantly in the OVX-control compared with those in the sham-control (P < 0.01) but decreased significantly in the OVX-green tea group compared with those in the OVX-control or OVX-bamboo group (P < 0.01). Platelet aggregation in both maximum and initial slope tended to be lower in all OVX rats compared with that in the sham-control rats but was not significantly different. Na-K ATPase tended to increase and Na-K cotransport tended to decrease following ovariectomy. Na-K ATPase decreased significantly in the OVX-green tea group compared with that in the OVX-control group (P < 0.01), and Na-K cotransport increased significantly in the OVX-bamboo and OVX-green tea groups compared with that in the OVX-control (P < 0.05). Femoral bone mineral density tended to be lower in OVX rats than that in the sham-control, whereas the green tea and bamboo leaves groups recovered bone density to some extent. The results show that ovariectomy caused an increase in body weight and liver triglycerides, and that green tea was effective for lowering body weight and triglycerides in OVX rats. Ovariectomy induced an increase in Na efflux via Na-K ATPase and a decrease in Na efflux via Na-K cotransport. Furthermore, consumption of green tea and bamboo leaves affected Na efflux channels, controlling electrolyte and body water balance.
Collapse
Affiliation(s)
- Sung Hee Ryou
- Department of Foods & Nutrition, Jeju National University, 1 Ara-dong, Jeju-si, Jeju 690-756, Korea
| | | | | | | | | |
Collapse
|
21
|
Chen YK, Cheung C, Reuhl KR, Liu AB, Lee MJ, Lu YP, Yang CS. Effects of green tea polyphenol (-)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11862-71. [PMID: 21932846 PMCID: PMC3243651 DOI: 10.1021/jf2029016] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of this study was to investigate the effects of (-)-epigallocatechin-3-gallate (EGCG) on newly developed high-fat/Western-style diet-induced obesity and symptoms of metabolic syndrome. Male C57BL/6J mice were fed a high fat/Western-style (HFW; 60% energy as fat and lower levels of calcium, vitamin D(3), folic acid, choline bitartrate, and fiber) or HFW with EGCG (HFWE; HFW with 0.32% EGCG) diet for 17 wks. As a comparison, two other groups of mice fed a low-fat diet (LF; 10% energy as fat) and high-fat diet (HF; 60% energy as fat) were also included. The HFW group developed more body weight gain and severe symptoms of metabolic syndrome than the HF group. The EGCG treatment significantly reduced body weight gain associated with increased fecal lipids and decreased blood glucose and alanine aminotransferase (ALT) levels compared to those of the HFW group. Fatty liver incidence, liver damage, and liver triglyceride levels were also decreased by the EGCG treatment. Moreover, the EGCG treatment attenuated insulin resistance and levels of plasma cholesterol, monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP), interlukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). Our results demonstrate that the HFW diet produces more severe symptoms of metabolic syndrome than the HF diet and that the EGCG treatment can alleviate these symptoms and body fat accumulation. The beneficial effects of EGCG are associated with decreased lipid absorption and reduced levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Yu-Kuo Chen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Connie Cheung
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Kenneth R. Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Anna Ba Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Mao-Jung Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Yao-Ping Lu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Chung S. Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
- Correspondence: Dr. Chung S. Yang, Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854-8020, , Tel: 732-445-5360, Fax: 732-445-0687
| |
Collapse
|
22
|
Green tea extract markedly lowers the lymphatic absorption and increases the biliary secretion of 14C-benzo[a]pyrene in rats. J Nutr Biochem 2011; 23:1007-11. [PMID: 22000580 DOI: 10.1016/j.jnutbio.2011.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/25/2011] [Accepted: 05/19/2011] [Indexed: 11/22/2022]
Abstract
Previously, we have shown that green tea extract (GTE) lowers the intestinal absorption of lipids and lipophilic compounds in rats. This study was conducted to investigate whether GTE inhibits the intestinal absorption and biliary secretion of benzo[a]pyrene (BaP), an extremely lipophilic potent carcinogen, present in foods as a contaminant. Male rats with lymph or bile duct cannula were infused at 3.0 ml/h for 8 h via a duodenal catheter with lipid emulsion containing (14)C-BaP with or without GTE in PBS buffer. Lymph and bile were collected hourly for 8 h. The (14)C-radioactivities in lymph, bile and intestine were determined and expressed as % dose infused. Results showed that GTE drastically lowered the lymphatic absorption of (14)C-BaP (7.6±3.2% in GTE-infused vs. 14.4±2.7% dose/8 h in control rats), with a significantly higher amount of (14)C-radioactivity present in the small intestinal lumen and cecum in rats infused with GTE. GTE also markedly increased the hourly rate (3.9±0.1% dose/h in GTE-infused vs. 3.0±0.1% dose/h in control rats) and the total biliary secretion of (14)C-BaP (31.5±0.8% dose/8 h in GTE-infused vs. 24.3±0.4% dose/8 h in control rats). The findings provide first direct evidence that GTE has a profound inhibitory effect on the intestinal absorption of BaP and promotes the excretion of absorbed BaP via the biliary route. Further studies are warranted to investigate whether green tea could be recommended as a dietary means of ameliorating the toxicity and carcinogenic effect of BaP.
Collapse
|
23
|
Hsu YW, Tsai CF, Chen WK, Huang CF, Yen CC. A subacute toxicity evaluation of green tea (Camellia sinensis) extract in mice. Food Chem Toxicol 2011; 49:2624-30. [PMID: 21771628 DOI: 10.1016/j.fct.2011.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 06/16/2011] [Accepted: 07/07/2011] [Indexed: 12/12/2022]
Abstract
Green tea is believed to be beneficial to health because it possesses antioxidant, antiviral and anticancer properties. The potential toxicity of green tea when administered at high doses via concentrated extracts, however, has not been completely investigated. The objective of the present study was to evaluate the safety of green tea extract in ICR mice using a subacute exposure paradigm. In this study, mice were orally administered (gavage) green tea extract at doses of 0 (as normal group), 625, 1250 and 2500mg/kgbody weight/day for 28days. The results showed that oral administration of green tea extract did not cause adverse effects on body weight, organ weights, hematology, serum biochemistry, urinalysis or histopathology. Additionally, administering green tea extract via gavage significantly reduced triglyceride and cholesterol levels. These observed effects could be attributed to the high levels of catechins present in green tea as these compounds have been reported to have beneficial health effects. The no-observed-adverse-effect level for green tea extract derived from the results of the present study was 2500mg/kgbody weight/day.
Collapse
Affiliation(s)
- Yu-Wen Hsu
- School of Optometry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 402, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Noh SK, Kim JY. Enteral Infusion of Green Tea Extract Selectively Enhances the Biliary Secretion of 14C-Benzo[a]pyrene in Rats without Affecting Other Biliary Lipids. Prev Nutr Food Sci 2011. [DOI: 10.3746/jfn.2011.16.2.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Abdel-Majeed S, Mohammad A, Shaima AB, Mohammad R, Mousa SA. Inhibition property of green tea extract in relation to reserpine-induced ribosomal strips of rough endoplasmic reticulum (rER) of the rat kidney proximal tubule cells. J Toxicol Sci 2010; 34:637-45. [PMID: 19952499 DOI: 10.2131/jts.34.637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The aim of this study was to evaluate the effect of green tea in inhibiting and reversing the nephrotoxicity of reserpine--a potent oxidative stress inducer--which induced cellular kidney damage. Serum biochemical parameters, antioxidant enzyme levels, thiobarbituric acid reactive substances (TBARS) and serum transaminases (glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT)) values and histopathology were systematically evaluated. Reserpine exposure led to increase the oxidative stress and organ injury was significantly observed through biochemical parameters and ultrastructural evaluation. Sprague-Dawely (S.D.) rats were intraperitonealy administered reserpine to induce oxidative kidney damage. Experimental rats were given green tea extract according to the protocol given below. Sixty rats were randomly divided into six groups, with 10 rats in each group. Reserpine was found to cause kidney proximal tubule damage, such as stripping and clustering of ribosomes from the rough endoplasmic reticulum (rER) and demolishing of mitochondrial christae with elevated level of oxidative stress markers, such as TBARS. While the ultrastructural study showed a revival of kidney proximal tubule cells as a result of the administration of green tea extract to rats. We suggest that green tea might elevate antioxidant defense system, clean up free radicals, lessen oxidative damages and protect kidney against reserpine-induced toxicity and thus had a potential protective effect.
Collapse
Affiliation(s)
- Safer Abdel-Majeed
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait.
| | | | | | | | | |
Collapse
|
26
|
Osakabe N, Yamagishi M. Procyanidins in Theobroma cacao Reduce Plasma Cholesterol Levels in High Cholesterol-Fed Rats. J Clin Biochem Nutr 2009; 45:131-6. [PMID: 19794919 PMCID: PMC2735623 DOI: 10.3164/jcbn.07-34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 11/07/2007] [Indexed: 11/24/2022] Open
Abstract
We evaluated the effect of cacao procyanidins (CP) on plasma lipid levels in high cholesterol-fed rats. Animals were divided into 4 groups, and each group was fed on either a normal diet, high cholesterol diet (HCD) containing 1% cholesterol (HCD without CP), HCD with 0.5% (HCD with 0.5% CP) or 1.0% CP (HCD with 1.0% CP) for 4 weeks. Plasma cholesterol level was significantly higher in the HCD without CP group than the normal diet group (p<0.01). Supplementation of CP significantly decreased plasma cholesterol (p<0.01) to levels similar to those of the normal diet group. The liver cholesterol and triglyceride levels in all HCD groups were significantly higher (p<0.01), but 1.0% CP feeding significantly reduced this increase. Fecal excretion of neutral sterol and triglyceride was significantly increased in all HCD groups (p<0.01), and the excreted amounts tended to be higher in the HCD with CP groups. The procyanidins dose-dependently reduced micellar solubility of cholesterol and this activity increased with increasing molecular weight. These results suggest that one of the mechanisms of CP to lower plasma cholesterol is inhibition of intestinal absorption of cholesterol.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Fukasaku 307, Minuma, Saitama-city, Saitama 337-8570, Japan
| | | |
Collapse
|
27
|
Shrestha S, Ehlers SJ, Lee JY, Fernandez ML, Koo SI. Dietary green tea extract lowers plasma and hepatic triglycerides and decreases the expression of sterol regulatory element-binding protein-1c mRNA and its responsive genes in fructose-fed, ovariectomized rats. J Nutr 2009; 139:640-5. [PMID: 19193814 PMCID: PMC2666357 DOI: 10.3945/jn.108.103341] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to determine whether green tea (GT) inhibits the expression of genes regulating hepatic lipogenesis and intestinal lipid transport in fructose-fed ovariectomized (OX) rats. OX rats were assigned to: 1) a control group (S) fed the AIN-93G diet with corn starch as the major carbohydrate source; 2) another control group (F) fed the same diet but containing fructose at 60% as the major carbohydrate source; 3) a group fed the F diet but containing 0.5% GT; and 4) a group fed the F diet containing 1% GT. At 6 wk, plasma and liver triglyceride (TG) and cholesterol and expression of liver sterol regulatory element-binding protein-1c (SREBP-1c) and selected genes involved in lipogenesis and lipid transport were measured. Fructose elevated plasma TG and cholesterol compared with the S group. GT at 0.5 and 1.0% markedly lowered plasma and liver TG. Fructose increased the expression of SREBP-1c, fatty acid synthase, and stearoyl-CoA desaturase 1 mRNA in the liver, whereas GT decreased the expression of these lipogenic genes. Similarly, fructose increased the abundance of hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase mRNA, whereas GT significantly decreased its expression. GT did not alter the expression of scavenger receptor class B, type 1, microsomal TG transfer protein, and apobec 1 in the liver and intestine. The results suggest that the lipid-lowering effect of GT is mediated partly by its inhibition of hepatic lipogenesis involving SREBP-1c and its responsive genes without affecting lipoprotein assembly.
Collapse
Affiliation(s)
- Sudeep Shrestha
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| | - Sarah J. Ehlers
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| | - Maria-Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| | - Sung I. Koo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| |
Collapse
|
28
|
Lamarão RDC, Fialho E. Aspectos funcionais das catequinas do chá verde no metabolismo celular e sua relação com a redução da gordura corporal. REV NUTR 2009. [DOI: 10.1590/s1415-52732009000200008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
O chá é uma bebida amplamente utilizada, perdendo apenas para a água como a bebida mais consumida no mundo. O chá verde é rico em polifenóis, principalmente catequinas. Entre uma variedade de efeitos benéficos à saúde atribuídos ao consumo do chá verde, grande atenção tem sido focalizada no seu efeito na redução da gordura corporal. Este estudo tem como objetivo apresentar uma descrição dos estudos com o chá verde e/ou seus compostos bioativos relacionados à biologia celular, estudos experimentais e epidemiológicos associados ao metabolismo lipídico e à redução da gordura corporal. Galato de epigalocatequina é o principal composto bioativo presente no chá verde e seus efeitos anti-obesidade estão sendo investigados. Tais efeitos estão associados a diversos mecanismos bioquímicos e fisiológicos, dentre eles podem-se destacar a estimulação do metabolismo lipídico pela combinação da ingestão de catequinas e a prática de exercícios físicos regulares. Apesar do efeito promissor do chá verde e seus compostos bioativos no tratamento da obesidade, estudos clínicos controlados devem ser conduzidos. Finalmente, um plano alimentar adequado associado à prática regular de atividade física constitui a principal ferramenta para a prevenção da obesidade e de suas comorbidades.
Collapse
|
29
|
Augustin K, Blank R, Boesch-Saadatmandi C, Frank J, Wolffram S, Rimbach G. Dietary green tea polyphenols do not affect vitamin E status, antioxidant capacity and meat quality of growing pigs. J Anim Physiol Anim Nutr (Berl) 2008; 92:705-11. [DOI: 10.1111/j.1439-0396.2007.00768.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
|
31
|
Hsu CH, Tsai TH, Kao YH, Hwang KC, Tseng TY, Chou P. Effect of green tea extract on obese women: A randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2008; 27:363-70. [DOI: 10.1016/j.clnu.2008.03.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/11/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
32
|
Nomura S, Ichinose T, Jinde M, Kawashima Y, Tachiyashiki K, Imaizumi K. Tea catechins enhance the mRNA expression of uncoupling protein 1 in rat brown adipose tissue. J Nutr Biochem 2008; 19:840-7. [PMID: 18479902 DOI: 10.1016/j.jnutbio.2007.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/05/2007] [Accepted: 11/20/2007] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to determine whether the antiobesity effects of tea catechins (TCs) are associated with the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Male Sprague-Dawley rats were fed a high-fat (HF; 35% fat) diet for 5 weeks, then divided into four groups and fed an HF, HF with 0.5% TC (HFTC), normal-fat (NF; 5% fat) or NF with 0.5% TC (NFTC) diet for 8 weeks. At the end of the experimental period, perirenal and epididymal white adipose tissues (WATs) and interscapular BAT were isolated. The NFTC group had significantly lower perirenal WAT weights than the NF group (NF: 12.7+/-0.53 g; NFTC: 10.2+/-0.43 g; P<.01), but the HF and HFTC groups did not differ significantly. TC intake had no effects on epididymal WAT weights. The NFTC and HFTC groups had significantly lower BAT weights than the NF and HF groups, respectively. The NFTC group had significantly higher UCP1 mRNA levels in BAT than the NF group (NF: 0.35+/-0.02; NFTC: 0.60+/-0.11; P<.05), but the HF and HFTC groups did not differ significantly. Thus, TC intake in the context of the NF diet reduced perirenal WAT weight and up-regulated UCP1 mRNA expression in BAT. These results suggest that the suppressive effect of TC on body fat accumulation is associated with UCP1 expression in BAT.
Collapse
Affiliation(s)
- Sachiko Nomura
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo 162-0041, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Puglisi MJ, Vaishnav U, Shrestha S, Torres-Gonzalez M, Wood RJ, Volek JS, Fernandez ML. Raisins and additional walking have distinct effects on plasma lipids and inflammatory cytokines. Lipids Health Dis 2008; 7:14. [PMID: 18416823 PMCID: PMC2329638 DOI: 10.1186/1476-511x-7-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/16/2008] [Indexed: 11/10/2022] Open
Abstract
Background Raisins are a significant source of dietary fiber and polyphenols, which may reduce cardiovascular disease (CVD) risk by affecting lipoprotein metabolism and inflammation. Walking represents a low intensity exercise intervention that may also reduce CVD risk. The purpose of this study was to determine the effects of consuming raisins, increasing steps walked, or a combination of these interventions on blood pressure, plasma lipids, glucose, insulin and inflammatory cytokines. Results Thirty-four men and postmenopausal women were matched for weight and gender and randomly assigned to consume 1 cup raisins/d (RAISIN), increase the amount of steps walked/d (WALK) or a combination of both interventions (RAISINS + WALK). The subjects completed a 2 wk run-in period, followed by a 6 wk intervention. Systolic blood pressure was reduced for all subjects (P = 0.008). Plasma total cholesterol was decreased by 9.4% for all subjects (P < 0.005), which was explained by a 13.7% reduction in plasma LDL cholesterol (LDL-C) (P < 0.001). Plasma triglycerides (TG) concentrations were decreased by 19.5% for WALK (P < 0.05 for group effect). Plasma TNF-α was decreased from 3.5 ng/L to 2.1 ng/L for RAISIN (P < 0.025 for time and group × time effect). All subjects had a reduction in plasma sICAM-1 (P < 0.01). Conclusion This research shows that simple lifestyle modifications such as adding raisins to the diet or increasing steps walked have distinct beneficial effects on CVD risk.
Collapse
Affiliation(s)
- Michael J Puglisi
- Department of Nutritional Sciences University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Bruno RS, Dugan CE, Smyth JA, DiNatale DA, Koo SI. Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury. J Nutr 2008; 138:323-31. [PMID: 18203899 DOI: 10.1093/jn/138.2.323] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) has risen along with the ongoing obesity epidemic. Green tea extract (GTE) inhibits intestinal lipid absorption and may regulate hepatic lipid accumulation. The objective of this study was to determine whether GTE protects against hepatic lipid accumulation during the development of NAFLD in an obese mouse model. Five-wk-old ob/ob (obese) mice and their lean littermates (8 mice x genotype(-1) x dietary treatment(-1)) were fed GTE at 0, 1, or 2% (wt:wt) for 6 wk. The body weights of obese mice and lean littermates fed diets containing GTE were 23-25% and 11-20% lower (P < 0.05) than their respective controls fed no GTE. Histologic evaluation showed a significant reduction in hepatic steatosis in GTE-fed obese mice only and histologic scores were correlated with hepatic lipid concentration (r = 0.84; P < 0.05), which was reduced dose dependently by GTE. GTE protected against hepatic injury as suggested by 30-41% and 22-33% lower serum alanine aminotransferase and aspartate aminotransferase activities, respectively. Hepatic alpha-tocopherol was 36% higher in obese mice than lean mice. GTE tended (P = 0.06) to lower hepatic alpha-tocopherol, which was not fully explained by the GTE-mediated reduction in hepatic lipid. Hepatic ascorbic acid was lower in obese mice than in lean mice (P < 0.05) and was unaltered by GTE. Obese mice had lower serum adiponectin than lean mice and this was not affected by GTE. The results suggest that GTE protects against NAFLD by limiting hepatic lipid accumulation and injury without affecting hepatic antioxidant status and adiponectin-mediated lipid metabolism. Further study is underway to define the events by which GTE protects against obesity-triggered NAFLD.
Collapse
Affiliation(s)
- Richard S Bruno
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA.
| | | | | | | | | |
Collapse
|
35
|
Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem 2007; 18:179-83. [PMID: 17296491 PMCID: PMC1852441 DOI: 10.1016/j.jnutbio.2006.12.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 12/13/2006] [Indexed: 12/27/2022]
Abstract
Animal and epidemiological studies suggest that green tea catechins may reduce the risk of cardiovascular diseases [e.g., coronary heart disease (CHD)]. The health benefit of green tea has been attributed to its antioxidant and anti-inflammatory properties; however, considerable evidence suggests that green tea and its catechins may reduce the risk of CHD by lowering the plasma levels of cholesterol and triglyceride. Although the mechanism underlying such effect of green tea is yet to be determined, it is evident from in vitro and in vivo studies that green tea or catechins inhibit the intestinal absorption of dietary lipids. Studies in vitro indicate that green tea catechins, particularly (-)-epigallocatechin gallate, interfere with the emulsification, digestion, and micellar solubilization of lipids, critical steps involved in the intestinal absorption of dietary fat, cholesterol, and other lipids. Based on the observations, it is likely that green tea or its catechins lower the absorption and tissue accumulation of other lipophilic organic compounds. The available information strongly suggests that green tea or its catechins may be used as safe and effective lipid-lowering therapeutic agents.
Collapse
Affiliation(s)
- Sung I Koo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA.
| | | |
Collapse
|
36
|
Hennig B, Ettinger AS, Jandacek RJ, Koo S, McClain C, Seifried H, Silverstone A, Watkins B, Suk WA. Using nutrition for intervention and prevention against environmental chemical toxicity and associated diseases. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:493-5. [PMID: 17450213 PMCID: PMC1852675 DOI: 10.1289/ehp.9549] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 01/16/2007] [Indexed: 05/02/2023]
Abstract
BACKGROUND Nutrition and lifestyle are well-defined modulators of chronic diseases. Poor dietary habits (such as high intake of processed foods rich in fat and low intake of fruits and vegetables), as well as a sedentary lifestyle clearly contribute to today's compromised quality of life in the United States. It is becoming increasingly clear that nutrition can modulate the toxicity of environmental pollutants. OBJECTIVES Our goal in this commentary is to discuss the recommendation that nutrition should be considered a necessary variable in the study of human disease associated with exposure to environmental pollutants. DISCUSSION Certain diets can contribute to compromised health by being a source of exposure to environmental toxic pollutants. Many of these pollutants are fat soluble, and thus fatty foods often contain higher levels of persistent organics than does vegetable matter. Nutrition can dictate the lipid milieu, oxidative stress, and antioxidant status within cells. The modulation of these parameters by an individual's nutritional status may have profound affects on biological processes, and in turn influence the effects of environmental pollutants to cause disease or dysfunction. For example, potential adverse health effects associated with exposure to polychlorinated biphenyls may increase as a result of ingestion of certain dietary fats, whereas ingestion of fruits and vegetables, rich in antioxidant and anti-inflammatory nutrients or bioactive compounds, may provide protection. CONCLUSIONS We recommend that future directions in environmental health research explore this nutritional paradigm that incorporates a consideration of the relationships between nutrition and lifestyle, exposure to environmental toxicants, and disease. Nutritional interventions may provide the most sensible means to develop primary prevention strategies of diseases associated with many environmental toxic insults.
Collapse
Affiliation(s)
- Bernhard Hennig
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, 900 S. Limestone, Lexington, KY 40536, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Effects of non-fermented tea extracts on in vitro digestive hydrolysis of lipids and on cholesterol precipitation. Eur Food Res Technol 2007. [DOI: 10.1007/s00217-007-0584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Reboul E, Thap S, Perrot E, Amiot MJ, Lairon D, Borel P. Effect of the main dietary antioxidants (carotenoids, gamma-tocopherol, polyphenols, and vitamin C) on alpha-tocopherol absorption. Eur J Clin Nutr 2007; 61:1167-73. [PMID: 17268411 DOI: 10.1038/sj.ejcn.1602635] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE (R,R,R)-alpha-tocopherol is a fat-soluble antioxidant vitamin generally ingested with other dietary antioxidants. The objective of this study was to assess whether the main dietary antioxidant classes, that is carotenoids, polyphenols, vitamin C and gamma-tocopherol, affect the intestinal absorption of alpha-tocopherol. METHODS, DESIGN AND SUBJECTS: We evaluated first the effect of different combinations of antioxidants on (R,R,R)-alpha-tocopherol absorption by a human intestinal cell line (Caco-2 clone TC7). Then we compared the effect of two doses of a dietary antioxidant (lutein) on the postprandial chylomicron alpha-tocopherol responses to an alpha-tocopherol-rich meal. Eight healthy men ate two similar meals in a random order at a 1 month interval. The meals contained 24 mg alpha-tocopherol in sunflower oil plus either 18 or 36 mg lutein. Blood samples were collected during the postprandial periods to compare chylomicron alpha-tocopherol responses. RESULTS A mixture of polyphenols (gallic acid, caffeic acid, (+)-catechin and naringenin) and a mixture of carotenoids (lycopene, beta-carotene and lutein) significantly impaired alpha-tocopherol absorption in Caco-2 cells (P<0.001 and P<0.0001, respectively). The inhibitory effect of gamma-tocopherol was close to significance (P=0.055). In contrast, vitamin C had no significant effect (P=0.158). Naringenin was the only polyphenol that significantly impaired alpha-tocopherol absorption. Postprandial alpha-tocopherol response was weakest at the highest dose of lutein (616+/-280 nmol/l h vs 1001+/-287 nmol/l h). The observed extent of reduction (-38%, P=0.069) supported the inhibitory effect of carotenoids observed in the Caco-2 experiments. CONCLUSION Naringenin, carotenoids and probably gamma-tocopherol can impair alpha-tocopherol absorption whereas vitamin C and phenolic acids have no effect.
Collapse
Affiliation(s)
- E Reboul
- INSERM, U476 Nutrition Humaine et Lipides, Marseille, France
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Present study was conducted to clarify whether lower or higher dietary dose of green tea is beneficial for the reduction of risk of type 2 diabetes. Five weeks old male SD rats were fed high fat diet for 2 weeks then divided into 4 groups of 8 animals as Normal Control (NC), Diabetic Control (DBC), Green Tea Low (GTL, 0.5%, Green Tea High (GTH, 2.0%) groups. Diabetes was induced by intra-peritoneal (i.p) injection of STZ (40 mg/kg BW) in all animals except NC group. After 4 weeks feeding of experimental diets, serum fasting blood glucose was not decreased but relatively increased in both green tea fed groups compared to DBC group. Serum insulin concentration was significantly (p< 0.05) increased in GTL group but not in GTH group when compared with DBC group. Serum lipids were significantly decreased in GTH group but not in GTL group compared to DBC group. Intra-peritoneal glucose tolerance test, blood HbA1c, liver weight, and liver glycogen level were not influenced by the feeding of green tea containing diets. Data of this study suggest that lower dose of green tea is insulinotropic when higher dose is hyperglycemic but hypolipidemic at least in this experimental condition.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Body Weight/drug effects
- Cholesterol/blood
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/prevention & control
- Dietary Fats/administration & dosage
- Dietary Fats/pharmacology
- Dose-Response Relationship, Drug
- Glucose Tolerance Test
- Liver/drug effects
- Liver/pathology
- Male
- Organ Size/drug effects
- Plant Extracts/administration & dosage
- Plant Extracts/pharmacology
- Rats
- Rats, Sprague-Dawley
- Tea/chemistry
- Triglycerides/blood
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Food and Nutrition, Seoul National University, Seoul 151-742, South Korea.
| | | |
Collapse
|
40
|
Frank J, Budek A, Lundh T, Parker RS, Swanson JE, Lourenço CF, Gago B, Laranjinha J, Vessby B, Kamal-Eldin A. Dietary flavonoids with a catechol structure increase α-tocopherol in rats and protect the vitamin from oxidation in vitro. J Lipid Res 2006; 47:2718-25. [PMID: 16951402 DOI: 10.1194/jlr.m600291-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To identify dietary phenolic compounds capable of improving vitamin E status, male Sprague-Dawley rats were fed for 4 weeks either a basal diet (control) with 2 g/kg cholesterol and an adequate content of vitamin E or the basal diet fortified with quercetin (Q), (-)-epicatechin (EC), or (+)-catechin (C) at concentrations of 2 g/kg. All three catechol derivatives substantially increased concentrations of alpha-tocopherol (alpha-T) in blood plasma and liver. To study potential mechanisms underlying the observed increase of alpha-T, the capacities of the flavonoids to i) protect alpha-T from oxidation in LDL exposed to peroxyl radicals, ii) reduce alpha-tocopheroxyl radicals (alpha-T (.) ) in SDS micelles, and iii) inhibit the metabolism of tocopherols in HepG2 cells were determined. All flavonoids protected alpha-T from oxidation in human LDL ex vivo and dose-dependently reduced the concentrations of alpha-T (.) . None of the test compounds affected vitamin E metabolism in the hepatocyte cultures. In conclusion, fortification of the diet of Sprague-Dawley rats with Q, EC, or C considerably improved their vitamin E status. The underlying mechanism does not appear to involve vitamin E metabolism but may involve direct quenching of free radicals or reduction of the alpha-T (.) by the flavonoids.
Collapse
Affiliation(s)
- Jan Frank
- Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang S, Noh SK, Koo SI. Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats. J Nutr 2006; 136:2791-6. [PMID: 17056802 DOI: 10.1093/jn/136.11.2791] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We conducted this study to determine whether green tea constituents, (-)-epigallocatechin gallate (EGCG) and caffeine, affect the intestinal absorption of cholesterol (CH), fat, and other fat-soluble compounds. Ovariectomized rats with lymph cannula were infused intraduodenally with a lipid emulsion containing 14C-labeled CH (14C-CH), alpha-tocopherol (alpha TOH), triolein, and sodium taurocholate, without (control) or with EGCG, caffeine, or EGCG plus caffeine, in PBS, pH 6.5. The lymphatic total 14C-CH was significantly lowered by EGCG (21.1 +/- 2.1% dose), caffeine (27.9 +/- 1.7% dose), and EGCG plus caffeine (19.3 +/- 0.9% dose), compared with the control (32.4 +/- 1.6% dose). The lymphatic output of esterified CH also was significantly lower in rats infused with EGCG (7.9 +/- 0.7 micromol), caffeine (7.6 +/- 0.2 micromol), and EGCG plus caffeine (7.5 +/- 0.6 micromol) than rats in the control group (11.6 +/- 1.7 micromol). Also, EGCG and caffeine significantly lowered the absorption of alpha TOH, another highly hydrophobic lipid. However, the lymphatic outputs of oleic acid (exogenous fatty acid marker) and other fatty acids of endogenous origin were not affected by EGCG but were markedly lowered by caffeine and EGCG plus caffeine. Caffeine significantly lowered the amount of lymph flow, regardless of whether it was infused alone (14.2 +/- 3.9 mL) or with EGCG (18.6 +/- 2.0 mL), compared with EGCG (22.2 +/- 2.2 mL) alone and the control group (23.2 +/- 3.8 mL). The caffeine-induced decline in lymph flow was associated with the lowering of lipid absorption. The results indicate that both EGCG and caffeine inhibit lipid absorption and that the inhibitory effects of the 2 tea constituents are not synergistic but mediated by distinctly different mechanisms.
Collapse
Affiliation(s)
- Shu Wang
- Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
42
|
Sutherland BA, Rahman RMA, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem 2005; 17:291-306. [PMID: 16443357 DOI: 10.1016/j.jnutbio.2005.10.005] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Accepted: 10/11/2005] [Indexed: 02/02/2023]
Abstract
Catechins are dietary polyphenolic compounds associated with a wide variety of beneficial health effects in vitro, in vivo and clinically. These therapeutic properties have long been attributed to the catechins' antioxidant and free radical scavenging effects. Emerging evidence has shown that catechins and their metabolites have many additional mechanisms of action by affecting numerous sites, potentiating endogenous antioxidants and eliciting dual actions during oxidative stress, ischemia and inflammation. Catechins have proven to modulate apoptosis at various points in the sequence, including altering expression of anti- and proapoptotic genes. Their anti-inflammatory effects are activated through a variety of different mechanisms, including modulation of nitric oxide synthase isoforms. Catechins' actions of attenuating oxidative stress and the inflammatory response may, in part, account for their confirmed neuroprotective capabilities following cerebral ischemia. The versatility of the mechanisms of action of catechins increases their therapeutic potential as interventions for numerous clinical disorders. However, more epidemiological and clinical studies need to be undertaken for their efficacy to be fully elucidated.
Collapse
Affiliation(s)
- Brad A Sutherland
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, P.O. Box 913, Dunedin, New Zealand
| | | | | |
Collapse
|
43
|
Abstract
Dietary polyphenols have been shown to possess cardioprotective effects. For example, the most noted role of grape polyphenols is in the French Paradox, in which a diet high in saturated fat accompanied by regular consumption of red wine is associated with a low risk of coronary heart disease (CHD). Initially, the paradox was thought to be driven by the postulated major action of grape polyphenols in inhibiting LDL oxidation. Although many studies have shown inhibitory effects of polyphenols on LDL oxidation, there have been an equal number of studies that showed a null effect on this variable. Although there are contrasting viewpoints on the effects of polyphenols on LDL oxidation variables, there is increasing evidence that these compounds possess additional cardioprotective functions including altering hepatic cholesterol absorption, triglyceride assembly and secretion, the processing of lipoproteins in plasma, and inflammation. It is the purpose of this review to examine recent information on the multiple functions of dietary polyphenols, with an emphasis on grape polyphenols, in decreasing the risk of CHD by improving plasma lipid profiles and reducing inflammation.
Collapse
Affiliation(s)
- Tosca L Zern
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
44
|
Zern TL, Wood RJ, Greene C, West KL, Liu Y, Aggarwal D, Shachter NS, Fernandez ML. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr 2005; 135:1911-7. [PMID: 16046716 DOI: 10.1093/jn/135.8.1911] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To evaluate the effects of grape polyphenols on plasma lipids, inflammatory cytokines, and oxidative stress, 24 pre- and 20 postmenopausal women were randomly assigned to consume 36 g of a lyophilized grape powder (LGP) or a placebo for 4 wk. The LGP consisted of 92% carbohydrate and was rich in flavans, anthocyanins, quercetin, myricetin, kaempferol, and resveratrol. After a 3-wk washout period, subjects were assigned to the alternate treatment for an additional 4 wk. The placebo consisted of an equal ratio of fructose and dextrose and was similar in appearance and energy content (554 kJ) to LGP. Plasma triglyceride concentrations were reduced by 15 and 6% in pre- and postmenopausal women, respectively (P < 0.01) after LGP supplementation. In addition, plasma LDL cholesterol and apolipoproteins B and E were lower due to LGP treatment (P < 0.05). Further, cholesterol ester transfer protein activity was decreased by approximately 15% with intake of LGP (P < 0.05). In contrast to these beneficial effects on plasma lipids, LDL oxidation was not modified by LGP treatment. However, whole-body oxidative stress as measured by urinary F(2)-isoprostanes was significantly reduced after LGP supplementation. LGP also decreased the levels of plasma tumor necrosis factor-alpha, which plays a major role in the inflammation process. Through alterations in lipoprotein metabolism, oxidative stress, and inflammatory markers, LGP intake beneficially affected key risk factors for coronary heart disease in both pre- and postmenopausal women.
Collapse
Affiliation(s)
- Tosca L Zern
- Department of Nutritional Sciences, University of Connecticut, Storrs, 06269, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Green tea (Camellia sinensis), and CoQ(9 )when given to Wistar rats produced a partial reversal on reserpine induced oxidative stress and liver damage. Green tea, with its abundant polyphenol (-)Epigallocatechin 3-gallate (ECGC) and other catechins, is known for its antioxidative characteristics influencing lipid metabolism. Ubiquinone, abundant in heart muscle, is also a potent antioxidant with known effects in numerous pathologies. However the combined effect of ECGC and ubiquninone has not been reported. In the present study we found that green tea extract, when given in combination with CoQ(9) to Wistar rats subjected to oxidative stress, showed a statistically significant antioxidative effect. Liver cholesterol level in rats receiving combination treatment was also significantly lower than control or rats receiving green tea extract alone. Reserpine induced liver damage in Wistar rats was also partially reversed by a treatment of green tea extract when combined with CoQ(9). These results may have important clinical implications and may be extrapolated for the treatment of patients suffering from liver damage due to hepatitis B/C or liver cirrhosis.
Collapse
Affiliation(s)
- M Afzal
- Biochemistry program, Kuwait University.
| | | | | |
Collapse
|
46
|
Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J Nutr 2004; 134:3431S-3440S. [PMID: 15570050 DOI: 10.1093/jn/134.12.3431s] [Citation(s) in RCA: 360] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is good evidence from in vitro studies that green tea catechins have a role in protection against degenerative diseases. However, the concentrations used in vitro are often higher than those found in animal or human plasma, and so in vivo evidence is required to demonstrate any protective effect of catechins. This article summarizes the most interesting in vivo animal studies on the protective effects of green tea catechins against biomarkers for cancer, cardiovascular disease, and other degenerative diseases. Generally, most studies using animal models show that consumption of green tea (catechins) provides some protection, although most studies have not examined dose response. Tea catechins could act as antitumorigenic agents and as immune modulators in immunodysfunction caused by transplanted tumors or by carcinogen treatment. Green tea has antiproliferative activity in hepatoma cells and hypolipidemic activity in hepatoma-treated rats, and some studies report that it prevents hepatoxicity. It could act as a preventive agent against mammary cancer postinitiation. Nevertheless, the implications of green tea catechins in preventing metastasis have not been clearly established. Long-term feeding of tea catechins could be beneficial for the suppression of high-fat diet-induced obesity by modulating lipid metabolism, could have a beneficial effect against lipid and glucose metabolism disorders implicated in type 2 diabetes, and could also reduce the risk of coronary disease. Further investigations on mechanisms, the nature of the active compounds, and appropriate dose levels are needed.
Collapse
Affiliation(s)
- Vanessa Crespy
- Nestlé Research Center, Vers Chez Les Blanc, CH-1000 Lausanne 26, Switzerland
| | | |
Collapse
|
47
|
Hua DH, Huang X, Chen Y, Battina SK, Tamura M, Noh SK, Koo SI, Namatame I, Tomoda H, Perchellet EM, Perchellet JP. Total Syntheses of (+)-Chloropuupehenone and (+)-Chloropuupehenol and Their Analogues and Evaluation of Their Bioactivities. J Org Chem 2004; 69:6065-78. [PMID: 15373492 DOI: 10.1021/jo0491399] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetracyclic pyrans (+)-chloropuupehenone (1) and (+)-chloropuupehenol (5) and its C8-R-isomer (+)-3 were synthesized via a one-pot condensation of 1-chloro-2-lithio-3,5,6-tris(tert-butyldimethylsilyloxy)benzene (8) with (4aS,8aS)-3,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethylnaphthalene-1-carboxaldehyde (7). The major condensation product, (4aS,6aR,12bS)-2H-9,10-bis(tert-butyldimethylsilyloxy)-11-chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4,6a,12b-tetramethyl-benzo[a]xanthene (4), after desilylation provided tetracyclic pyran (+)-(4aS,6aR,12bS)-2H-11-chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4,6a,12b-tetramethyl-benzo[a]xanthene-9,10-diol (3). At a dosage of 42 mg/rat over 8 h, pyran diol 3 inhibited the intestinal absorption of cholesterol by 71% in rats. Tetracyclic pyran 4 was also converted to o-quinone 28, which inhibited cholesteryl ester transfer protein (CETP) activity and L1210 leukemic cell viability with IC(50) values of 31 and 2.4 microM, respectively. Diol (+)-5 inhibited CETP activity with an IC(50) value of 16 microM. The minor condensation product, (4aS,6aS,12bS)-2H-9,10-bis(tert-butyldimethylsilyloxy)-11-chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4,6a,12b-tetramethyl-benzo[a]xanthene (6), was transformed into (+)-5 and (+)-1. A stepwise stereoselective synthesis of (+)-1 was also developed utilizing an oxyselenylation ring-closure reaction. The synthetic sequence also produced four biologically active naturally occurring drimanic sesquiterpenes, (+)-drimane-8alpha,11-diol (34), (-)-drimenol (38), (+)-albicanol (39), and (-)-albicanal (31) as intermediates.
Collapse
Affiliation(s)
- Duy H Hua
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|