1
|
Abstract
Unlike genetic changes, epigenetics modulates gene expression without stable modification of the genome. Even though all cells, including sperm and egg, have an epigenome pattern, most of these modifications occur during lifetime and interestingly, some of them, are reversible. Lifestyle and especially nutrients as well as diet regimens are presently gaining importance due to their ability to affect the epigenome. On the other hand, since the epigenome profoundly affects gene expression profile it can be speculated that the epigenome could modulate individual response to nutrients. Recent years have thus seen growing interest on nutrients, macronutrients ratio and diet regimens capable to affect the epigenetic pattern. In fact, while genetic alterations are mostly detrimental at the individual level, reshaping the epigenome may be a feasible strategy to positively counteract the detrimental effect of aging. Here, I review nutrient consumption and diet regimens as a possible strategy to counteract aging-driven epigenome derangement.
Collapse
Affiliation(s)
- Mario G Mirisola
- STeBiCeF Department, Università di Palermo, Building 16, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
2
|
Townsend J, Braz CU, Taylor T, Khatib H. Effects of paternal methionine supplementation on sperm DNA methylation and embryo transcriptome in sheep. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac029. [PMID: 36727109 PMCID: PMC9885981 DOI: 10.1093/eep/dvac029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Environmental effects on gene expression and offspring development can be mediated by epigenetic modifications. It is well established that maternal diet influences DNA methylation patterns and phenotypes in the offspring; however, the epigenetic effects of paternal diet on developing offspring warrants further investigation. Here, we examined how a prepubertal methionine-enriched paternal diet affected sperm DNA methylation and its subsequent effects on embryo gene expression. Three treatment and three control rams were bred to seven ewes, and blastocysts were flushed for RNA extraction. Semen was collected from all rams and submitted for reduced representation bisulfite sequencing analysis. In total, 166 differentially methylated cytosines were identified in the sperm from treatment versus control rams. Nine genes were found to be differentially expressed in embryos produced from treatment versus control rams, and seven differentially methylated cytosines in the sperm were found to be highly correlated with gene expression in the embryos. Our results demonstrate that sperm methylation differences induced by diet may influence fetal programming.
Collapse
Affiliation(s)
- Jessica Townsend
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Camila U Braz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| |
Collapse
|
3
|
Ansari S, Saini S, Jamwal S, Thakur A, Kumar A, Sehrawat P, Devi P, Malakar D. Stage specific gene expression of folate mediated one-carbon metabolism enzymes and transporters in buffalo oocytes and pre-implantation embryos. Gene Expr Patterns 2022; 46:119282. [PMID: 36244619 DOI: 10.1016/j.gep.2022.119282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/04/2022]
Abstract
DNA synthesis and methylations are crucial during pre-implantation embryonic development, and are mediated by one-carbon metabolism of folates. Folates, transported into the cells via folate receptors (FOLR1 and FOLR2) and carriers (SLC19A1), are metabolized by various enzymes involved in folate-methionine cycle. However, the variations in temporal expression of folate transporters and folate-methionine cycle enzymes during pre-implantation embryo development is obscure. Thus, the present study aimed to investigate the differential expression of the genes for folate transporters and folate-methionine cycle enzymes. We also examined the expression of folate transport proteins in different pre-implantation development stages. Immature buffalo oocytes were matured in maturation medium followed by in vitro fertilization and culture at standard culture conditions. The temporal pattern of gene expression in buffalo, when compared to previous studies, indicated an inter-specific variation. The transcripts of some enzymes and folate transporters were significantly upregulated after zygotic genome activation. The transcripts as well as proteins for FOLR1, FOLR2 and SLC19A1 were present in oocytes and all the pre-implantation embryo stages. FOLR1 was present in the nuclei of different stages of developing embryos but not in the metaphase (MII) oocytes. As a result, the present study advocates the existence of active folate transport in buffalo oocytes and pre-implantation embryos. The data provided by the analysis of differential gene expression of folate transporters and metabolic enzymes would likely contribute to a better understanding of the role of folates in embryo development as well as advancements in assisted reproductive technologies.
Collapse
Affiliation(s)
- Shama Ansari
- ICAR-National Dairy Research Institute, Karnal, India
| | | | | | | | - Amit Kumar
- ICAR-National Dairy Research Institute, Karnal, India
| | | | - Preeti Devi
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
4
|
High dietary methionine intake may contribute to the risk of nonalcoholic fatty liver disease by inhibiting hepatic H2S production. Food Res Int 2022; 158:111507. [DOI: 10.1016/j.foodres.2022.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/06/2022]
|
5
|
How Different Dietary Methionine Sources Could Modulate the Hepatic Metabolism in Rainbow Trout? Curr Issues Mol Biol 2022; 44:3238-3252. [PMID: 35877447 PMCID: PMC9315512 DOI: 10.3390/cimb44070223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
In aquafeeds in which plant proteins are used to replace fishmeal, exogenous methionine (Met) sources are demanded to balance the amino acid composition of diets and meet the metabolic fish requirements. Nonetheless, since different synthetic Met sources are commercially available, it is important to determine their bioavailability and efficacy. To address this issue, we conducted a two-month feeding trial with rainbow trout (Oncorhynchus mykiss), which were fed diets supplemented with five different forms of Met: Met-Met, L-Met, HMTBa, DL-Met, and Co DL-Met. No differences in growth performance were found in trout fed with different Met forms, but changes in the whole-body composition were found. In particular, Met-Met and L-Met promoted a significant body lipid reduction, whereas the protein retention was significantly increased in fish fed with HMTBa and Co DL-Met. The latter affected the hepatic Met metabolism promoting the trans-sulfuration pathway through the upregulation of CBS gene expression. Similarly, the L-Met enhanced the remethylation pathway through an increase in BHMT gene expression to maintain the cellular demand for Met. Altogether, our findings suggest an optimal dietary intake of all tested Met sources with similar promoting effects on fish growth and hepatic Met metabolism. Nevertheless, the mechanisms underlying these effects warrant further investigation.
Collapse
|
6
|
May T, de la Haye B, Nord G, Klatt K, Stephenson K, Adams S, Bollinger L, Hanchard N, Arning E, Bottiglieri T, Maleta K, Manary M, Jahoor F. One-carbon metabolism in children with marasmus and kwashiorkor. EBioMedicine 2022; 75:103791. [PMID: 35030356 PMCID: PMC8761690 DOI: 10.1016/j.ebiom.2021.103791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Kwashiorkor is a childhood syndrome of edematous malnutrition. Its precise nutritional precipitants remain uncertain despite nine decades of study. Remarkably, kwashiorkor's disturbances resemble the effects of experimental diets that are deficient in one-carbon nutrients. This similarity suggests that kwashiorkor may represent a nutritionally mediated syndrome of acute one-carbon metabolism dysfunction. Here we report findings from a cross-sectional exploration of serum one-carbon metabolites in Malawian children. METHODS Blood was collected from children aged 12-60 months before nutritional rehabilitation: kwashiorkor (N = 94), marasmic-kwashiorkor (N = 43) marasmus (N = 118), moderate acute malnutrition (N = 56) and controls (N = 46). Serum concentrations of 16 one-carbon metabolites were quantified using LC/MS techniques, and then compared across participant groups. FINDINGS Twelve of 16 measured one-carbon metabolites differed significantly between participant groups. Measured outputs of one-carbon metabolism, asymmetric dimethylarginine (ADMA) and cysteine, were lower in marasmic-kwashiorkor (median µmol/L (± SD): 0·549 (± 0·217) P = 0·00045 & 90 (± 40) P < 0·0001, respectively) and kwashiorkor (0·557 (± 0·195) P < 0·0001 & 115 (± 50) P < 0·0001), relative to marasmus (0·698 (± 0·212) & 153 (± 42)). ADMA and cysteine were well correlated with methionine in both kwashiorkor and marasmic-kwashiorkor. INTERPRETATION Kwashiorkor and marasmic-kwashiorkor were distinguished by evidence of one-carbon metabolism dysfunction. Correlative observations suggest that methionine deficiency drives this dysfunction, which is implicated in the syndrome's pathogenesis. The hypothesis that kwashiorkor can be prevented by fortifying low quality diets with methionine, along with nutrients that support efficient methionine use, such as choline, requires further investigation. FUNDING The Hickey Family Foundation, the American College of Gastroenterology, the NICHD, and the USDA/ARS.
Collapse
Affiliation(s)
- Thaddaeus May
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA.
| | | | | | - Kevin Klatt
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,Center for Precision Environmental Health, Baylor College of Medicine
| | | | | | - Lucy Bollinger
- Washington University in St. Louis School of Medicine, USA
| | - Neil Hanchard
- National Institutes of Health, USA,National Human Genome Research Institute, Nationl Institutes of Health
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | | | - Mark Manary
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,The University of Malawi College of Medicine, Malawi,Washington University in St. Louis School of Medicine, USA
| | - Farook Jahoor
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA
| |
Collapse
|
7
|
Babygirija R, Lamming DW. The regulation of healthspan and lifespan by dietary amino acids. TRANSLATIONAL MEDICINE OF AGING 2021; 5:17-30. [PMID: 34263088 PMCID: PMC8277109 DOI: 10.1016/j.tma.2021.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a key macronutrient and source of essential macromolecules, dietary protein plays a significant role in health. For many years, protein-rich diets have been recommended as healthy due to the satiety-inducing and muscle-building effects of protein, as well as the ability of protein calories to displace allegedly unhealthy calories from fats and carbohydrates. However, clinical studies find that consumption of dietary protein is associated with an increased risk of multiple diseases, especially diabetes, while studies in rodents have demonstrated that protein restriction can promote metabolic health and even lifespan. Emerging evidence suggests that the effects of dietary protein on health and longevity are not mediated simply by protein quantity but are instead mediated by protein quality - the specific amino acid composition of the diet. Here, we discuss how dietary protein and specific amino acids including methionine, the branched chain amino acids (leucine, isoleucine, and valine), tryptophan and glycine regulate metabolic health, healthspan, and aging, with attention to the specific molecular mechanisms that may participate in these effects. Finally, we discuss the potential applicability of these findings to promoting healthy aging in humans.
Collapse
Affiliation(s)
- Reji Babygirija
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Murugan M, Fedele D, Millner D, Alharfoush E, Vegunta G, Boison D. Adenosine kinase: An epigenetic modulator in development and disease. Neurochem Int 2021; 147:105054. [PMID: 33961946 DOI: 10.1016/j.neuint.2021.105054] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Adenosine kinase (ADK) is the key regulator of adenosine and catalyzes the metabolism of adenosine to 5'-adenosine monophosphate. The enzyme exists in two isoforms: a long isoform (ADK-long, ADK-L) and a short isoform (ADK-short, ADK-S). The two isoforms are developmentally regulated and are differentially expressed in distinct subcellular compartments with ADK-L localized in the nucleus and ADK-S localized in the cytoplasm. The nuclear localization of ADK-L and its biochemical link to the transmethylation pathway suggest a specific role for gene regulation via epigenetic mechanisms. Recent evidence reveals an adenosine receptor-independent role of ADK in determining the global methylation status of DNA and thereby contributing to epigenomic regulation. Here we summarize recent progress in understanding the biochemical interactions between adenosine metabolism by ADK-L and epigenetic modifications linked to transmethylation reactions. This review will provide a comprehensive overview of ADK-associated changes in DNA methylation in developmental, as well as in pathological conditions including brain injury, epilepsy, vascular diseases, cancer, and diabetes. Challenges in investigating the epigenetic role of ADK for therapeutic gains are briefly discussed.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - David Millner
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA
| | - Enmar Alharfoush
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ 08901, USA
| | - Geetasravya Vegunta
- Department of Biology, Albert Dorman Honors College, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA; Brain Health Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
10
|
Terova G, Ceccotti C, Ascione C, Gasco L, Rimoldi S. Effects of Partially Defatted Hermetia illucens Meal in Rainbow Trout Diet on Hepatic Methionine Metabolism. Animals (Basel) 2020; 10:ani10061059. [PMID: 32575530 PMCID: PMC7341315 DOI: 10.3390/ani10061059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary For sustainable aquaculture development, fish meal from the sea in aquafeed should be replaced with other sustainable materials such as insect larvae. The authors fed black soldier fly maggot meal to rainbow trout and examined the expression of three genes and two metabolites involved in turn-over of methionine that is an essential amino acid in fish. According to the increase in the maggot content in the aquafeed, gene expression was modulated to maintain an optimal level of methionine metabolites. Dietary replacement of up to 50% of fish meal with the maggot meal was acceptable, implying future development of a new aquafeed for sustainable aquaculture. Abstract This study investigated, for the first time, the effects of replacement of fishmeal (FM) with insect meal from Hermetia illucens (HI) on the transcript levels of three genes involved in methionine (Met) metabolism in rainbow trout (Oncorhynchus mykiss) liver. Two target genes—betaine-homocysteine S-methyltransferase (BHMT) and S-adenosylhomocysteine hydrolase (SAHH)—are involved in Met resynthesis and the third one—cystathionine β synthase (CBS)—is involved in net Met loss (taurine synthesis). We also investigated the levels of two Met metabolites involved in the maintenance of methyl groups and homocysteine homeostasis in the hepatic tissue: S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). Three diets were formulated, an FM-based diet (HI0) and two diets in which 25% (HI25) and 50% (HI50) of FM was replaced with HI larvae meal. A 78-day feeding trial involved 360 rainbow trout with 178.9 ± 9.81 g initial average weight. Dietary replacement of up to 50% of FM with HI larvae meal, without any Met supplementation, did not negatively affect rainbow trout growth parameters and hepatic Met metabolism. In particular, Met availability from the insect-based diets directly modulated the transcript levels of two out of three target genes (CBS, SAHH) to maintain an optimal level of one-carbon metabolic substrates, i.e., the SAM:SAH ratio in the hepatic tissue.
Collapse
Affiliation(s)
- Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy; (C.C.); (C.A.); (S.R.)
- Correspondence: ; Tel.: +39-0332421428
| | - Chiara Ceccotti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy; (C.C.); (C.A.); (S.R.)
| | - Chiara Ascione
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy; (C.C.); (C.A.); (S.R.)
| | - Laura Gasco
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, 10095 Turin, Italy;
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy; (C.C.); (C.A.); (S.R.)
| |
Collapse
|
11
|
Calderón-Larrañaga A, Saadeh M, Hooshmand B, Refsum H, Smith AD, Marengoni A, Vetrano DL. Association of Homocysteine, Methionine, and MTHFR 677C>T Polymorphism With Rate of Cardiovascular Multimorbidity Development in Older Adults in Sweden. JAMA Netw Open 2020; 3:e205316. [PMID: 32432712 PMCID: PMC7240355 DOI: 10.1001/jamanetworkopen.2020.5316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Strong evidence links high total serum homocysteine (tHcy) and low methionine (Met) levels with higher risk of ischemic disease, but other cardiovascular (CV) diseases may also be associated with their pleiotropic effects. OBJECTIVES To investigate the association of serum concentrations of tHcy and Met with the rate of CV multimorbidity development in older adults and to explore the role of methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism in this association. DESIGN, SETTING, AND PARTICIPANTS The Swedish National Study on Aging and Care in Kungsholmen is a cohort study of randomly selected individuals aged 60 years or older. The present study included data on 1969 individuals with complete information and without CV diseases at baseline, collected from the baseline examination (2001-2004) to the fourth follow-up (2013-2016). Data analysis was conducted from January to May 2019. EXPOSURES Concentrations of tHcy and Met were measured from nonfasting venous blood samples. The Met:tHcy ratio was considered a possible indicator of methylation activity. MTHFR status was dichotomized as any T carriers vs noncarriers. MAIN OUTCOME AND MEASURES The number of CV diseases at each wave was ascertained based on medical interviews and records, laboratory test results, and drug data. Linear mixed models were used to study the association of baseline tHcy and Met levels and the rate of CV multimorbidity development, adjusting for sociodemographic characteristics, CV risk factors, chronic disease burden, and drug use. RESULTS Of 1969 participants, most were women (1261 [64.0%]), with a mean (SD) age of 70.9 (9.8) years; 1703 participants (86.6%) had at least a high school level of education. Baseline measurements of serum tHcy, Met, and the Met:tHcy ratio were associated with the rate of CV disease accumulation (tHcy: β = 0.023 per year; 95% CI, 0.015 to 0.030; P < .001; Met: β = -0.007 per year; 95% CI, -0.013 to -0.001; P = .02; Met:tHcy ratio: β = -0.017 per year; 95% CI, -0.023 to -0.011; P < .001). The association between low Met concentrations and the rate of CV multimorbidity development was restricted to the group with CT/TT alleles of MTHFR (β = 0.023 per year; 95% CI, 0.006 to 0.041; P = .009). Results remained largely significant when individual CV diseases were removed from the total count 1 at a time (eg, ischemic heart disease, tHcy: β = 0.023 per year; 95% CI, 0.013 to 0.027; P < .001; Met: β = -0.006 per year; 95% CI, -0.011 to -0.0003; P = .04; Met:tHcy ratio: β = -0.015 per year; 95% CI, -0.020 to -0.009; P < .001). CONCLUSIONS AND RELEVANCE In this study, high tHcy and low Met levels were associated with faster CV multimorbidity development in older age. The interactive association of Met concentrations and MTHFR polymorphism, together with the association found for the Met:tHcy ratio, point toward the relevance of impaired methylation in the pathogenesis of CV aging.
Collapse
Affiliation(s)
- Amaia Calderón-Larrañaga
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Marguerita Saadeh
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Babak Hooshmand
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A. David Smith
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Alessandra Marengoni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Davide L. Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Department of Geriatrics, Fondazione Policlinico “A. Gemelli” IRCCS and Catholic University of Rome, Rome, Italy
| |
Collapse
|
12
|
Impact of osmoregulatory and methyl donor functions of betaine on intestinal health and performance in poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933909000300] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients 2019; 11:nu11030608. [PMID: 30871166 PMCID: PMC6471069 DOI: 10.3390/nu11030608] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that is essential for regulating gene transcription. However, aberrant DNA methylation, which is a nearly universal finding in cancer, can result in disturbed gene expression. DNA methylation is modified by environmental factors such as diet that may modify cancer risk and tumor behavior. Abnormal DNA methylation has been observed in several cancers such as colon, stomach, cervical, prostate, and breast cancers. These alterations in DNA methylation may play a critical role in cancer development and progression. Dietary nutrient intake and bioactive food components are essential environmental factors that may influence DNA methylation either by directly inhibiting enzymes that catalyze DNA methylation or by changing the availability of substrates required for those enzymatic reactions such as the availability and utilization of methyl groups. In this review, we focused on nutrients that act as methyl donors or methylation co-factors and presented intriguing evidence for the role of these bioactive food components in altering DNA methylation patterns in cancer. Such a role is likely to have a mechanistic impact on the process of carcinogenesis and offer possible therapeutic potentials.
Collapse
|
14
|
One-Carbon Metabolism Links Nutrition Intake to Embryonic Development via Epigenetic Mechanisms. Stem Cells Int 2019; 2019:3894101. [PMID: 30956668 PMCID: PMC6431457 DOI: 10.1155/2019/3894101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Beyond energy production, nutrient metabolism plays a crucial role in stem cell lineage determination. Changes in metabolism based on nutrient availability and dietary habits impact stem cell identity. Evidence suggests a strong link between metabolism and epigenetic mechanisms occurring during embryonic development and later life of offspring. Metabolism regulates epigenetic mechanisms such as modifications of DNA, histones, and microRNAs. In turn, these epigenetic mechanisms regulate metabolic pathways to modify the metabolome. One-carbon metabolism (OCM) is a crucial metabolic process involving transfer of the methyl groups leading to regulation of multiple cellular activities. OCM cycles and its related micronutrients are ubiquitously present in stem cells and feed into the epigenetic mechanisms. In this review, we briefly introduce the OCM process and involved micronutrients and discuss OCM-associated epigenetic modifications, including DNA methylation, histone modification, and microRNAs. We further consider the underlying OCM-mediated link between nutrition and epigenetic modifications in embryonic development.
Collapse
|
15
|
ZNF300 stimulates fatty acid oxidation and alleviates hepatosteatosis through regulating PPARα. Biochem J 2019; 476:385-404. [PMID: 30568000 DOI: 10.1042/bcj20180517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
ZNF300 plays an important role in the regulation of HBV-related hepatocellular carcinoma. However, little is known about the role of ZNF300 in lipid metabolism and NAFLD. In the present study, we observed that ZNF300 expression was markedly decreased in free fatty acid (FFA)-induced fatty liver. Overexpressed ZNF300 alleviated hepatic lipid accumulation, whereas knockdown of ZNF300 enhanced the FFA-induced lipid accumulation. Investigations of the underlying mechanisms revealed that ZNF300 directly binds to and regulates the PPARα expression, thus promoting fatty acid oxidation. Furthermore, bisulfite pyrosequencing PCR (BSP) analysis identified the hypermethylation status of ZNF300 gene in FFA-treated hepatocytes. Importantly, the suppression of ZNF300 could be blocked by DNA methyltransferase inhibitor (5-azadC) or DNMT3a-siRNA. These results suggested that ZNF300 plays an important role in hepatic lipid metabolism via PPARα promoting fatty acid oxidation and this effect might be blocked by DNMT3a-mediated methylation of ZNF300. Therefore, in addition to ZNF300 expression levels, the methylation status of this gene also has a potential as a prognostic biomarker.
Collapse
|
16
|
Yang Z, Yang HM, Gong DQ, Rose SP, Pirgozliev V, Chen XS, Wang ZY. Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betaine-supplemented geese (Anser cygnoides domesticus). Poult Sci 2018; 97:3463-3477. [PMID: 29931118 DOI: 10.3382/ps/pey242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Dietary methionine (Met) restriction produces a coordinated series of transcriptional responses in the liver that limits growth performance and amino acid metabolism. Methyl donor supplementation with betaine (Bet) may protect against this disturbance and affect the molecular basis of gene regulation. However, a lack of genetic information remains an obstacle to understand the mechanisms underlying the relationship between Met and Bet supplementation and its effects on genetic mechanisms. The goal of this study was to identify the effects of dietary supplementation of Met and Bet on growth performance, transcriptomic gene expression, and epigenetic mechanisms in geese on a Met-deficient diet. One hundred and fifty 21-day-old healthy male Yangzhou geese of similar body weight were randomly distributed into 3 groups with 5 replicates per treatment and 10 geese per replicate: Met-deficient diet (Control), Control+1.2 g/kg of Met (Met), and Control+0.6 g/kg of Bet (Bet). All geese had free access to the diet and water throughout rearing. Our results indicated that supplementation of 1.2 g/kg of Met in Met-deficient feed increased growth performance and plasma homocysteine (HCY) levels, indicating increased transsulfuration flux in the liver. Supplementation of 0.6 g/kg Bet had no apparent sparing effect on Met needs for growth performance in growing geese. The expression of many genes critical for Met metabolism is increased in Met supplementation group. In the Bet-supplemented group, genes involved in energy production and conversion were up-regulated. Dietary supplementation with Bet and Met also altered DNA methylation. We observed changes in the methylation of the LOC106032502 promoter and corresponding changes in mRNA expression. In conclusion, Met and Bet supplementation in geese affects the transcriptional regulatory network and alters the hepatic DNA methylation of LOC106032502.
Collapse
Affiliation(s)
- Z Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China.,The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| | - S P Rose
- The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| | - V Pirgozliev
- The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| | - X S Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| | - Z Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| |
Collapse
|
17
|
Abbasi IHR, Abbasi F, Wang L, Abd El Hack ME, Swelum AA, Hao R, Yao J, Cao Y. Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction. AMB Express 2018; 8:65. [PMID: 29687201 PMCID: PMC5913057 DOI: 10.1186/s13568-018-0592-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Folate has gained significant attention due to its vital role in biological methylation and epigenetic machinery. Folate, or vitamin (B9), is only produced through a de novo mechanism by plants and micro-organisms in the rumen of mature animals. Although limited research has been conducted on folate in ruminants, it has been noted that ruminal synthesis could not maintain folate levels in high yielding dairy animals. Folate has an essential role in one-carbon metabolism and is a strong antiproliferative agent. Folate increases DNA stability, being crucial for DNA synthesis and repair, the methylation cycle, and preventing oxidation of DNA by free radicals. Folate is also critical for cell division, metabolism of proteins, synthesis of purine and pyrimidine, and increasing the de novo delivery of methyl groups and S-adenosylmethionine. However, in ruminants, metabolism of B12 and B9 vitamins are closely connected and utilization of folate by cells is significantly affected by B12 vitamin concentration. Supplementation of folate through diet, particularly in early lactation, enhanced metabolic efficiency, lactational performance, and nutritional quality of milk. Impaired absorption, oxidative degradation, or deficient supply of folate in ruminants affects DNA stability, cell division, homocysteine remethylation to methionine, de novo synthesis of S-adenosylmethionine, and increases DNA hypomethylation, uracil misincorporation into DNA, chromosomal damage, abnormal cell growth, oxidative species, premature birth, low calf weight, placental tube defects, and decreases production and reproduction of ruminant animals. However, more studies are needed to overcome these problems and reduce enormous dietary supplement waste and impaired absorption of folate in ruminants. This review was aimed to highlight the vital role of folic acid in ruminants performance.
Collapse
|
18
|
Plasma methionine and risk of acute myocardial infarction: Effect modification by established risk factors. Atherosclerosis 2018; 272:175-181. [PMID: 29621698 DOI: 10.1016/j.atherosclerosis.2018.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/14/2018] [Accepted: 03/22/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Methionine (Met) is an essential amino acid involved in methylation reactions and lipid metabolism. A Met-deficient diet may cause hepatic lipid accumulation, which is considered an independent risk factor for atherosclerosis. However, the prospective relationship between circulating Met and incident acute myocardial infarction (AMI) is unknown. METHODS We studied the associations of plasma Met and incident AMI in 4156 patients (77% men; median age 62 years) with stable angina pectoris, among whom the majority received lipid lowering therapy with statins. Risk associations were estimated using Cox-regression analyses. RESULTS Plasma Met was negatively related to age, serum levels of total cholesterol, low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (apo) B at baseline (all p≤0.05). During a median follow-up of 7.5 years, 534 (12.8%) patients experienced an AMI. There was no overall association between plasma Met and incident AMI; however, plasma Met was inversely associated with risk among patients with high as compared to low levels of serum LDL-C or apo B 100 (multivariate adjusted HRs per SD [95% CI] 0.84 [0.73-0.96] and 0.83[0.73-0.95], respectively; p-interaction ≤0.02). Trends towards an inverse risk relationship were also observed among those younger than 62 years and patients without diabetes or hypertension. CONCLUSIONS Low plasma Met was associated with increased risk of AMI in patients with high circulating levels of atherogenic lipids, but also in subgroups with presumably lower cardiovascular risk. The determinants of Met status and their relation with residual cardiovascular risk in patients with coronary heart disease should be further investigated.
Collapse
|
19
|
Aggrey SE, González-Cerón F, Rekaya R, Mercier Y. Gene expression differences in the methionine remethylation and transsulphuration pathways under methionine restriction and recovery with D,L-methionine or D,L-HMTBA in meat-type chickens. J Anim Physiol Anim Nutr (Berl) 2017; 102:e468-e475. [DOI: 10.1111/jpn.12779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/07/2017] [Indexed: 12/16/2022]
Affiliation(s)
- S. E. Aggrey
- Poultry Science Department; NutriGenomics Laboratory; University of Georgia; Athens GA USA
- Institute of Bioinformatics; University of Georgia; Athens GA USA
| | - F. González-Cerón
- Poultry Science Department; NutriGenomics Laboratory; University of Georgia; Athens GA USA
| | - R. Rekaya
- Institute of Bioinformatics; University of Georgia; Athens GA USA
- Department of Animal and Dairy Science; University of Georgia; Athens GA USA
| | | |
Collapse
|
20
|
Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. ACTA ACUST UNITED AC 2017; 4:11-16. [PMID: 30167479 PMCID: PMC6112339 DOI: 10.1016/j.aninu.2017.08.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
Abstract
DNA methylation is one of the main epigenetic phenomena affecting gene expression. It is an important mechanism for the development of embryo, growth and health of animals. As a key nutritional factor limiting the synthesis of protein, methionine serves as the precursor of S-adenosylmethionine (SAM) in the hepatic one-carbon metabolism. The dietary fluctuation of methionine content can alter the levels of metabolic substrates in one-carbon metabolism, e.g., the SAM, S-adenosylhomocysteine (SAH), and change the expression of genes related to the growth and health of animals by DNA methylation reactions. The ratio of SAM to SAH is called ‘methylation index’ but it should be carefully explained because the complexity of methylation reaction. Alterations of methylation in a specific cytosine-guanine (CpG) site, rather than the whole promoter region, might be enough to change gene expression. Aberrant methionine cycle may provoke molecular changes of one-carbon metabolism that results in deregulation of cellular hemostasis and health problems. The importance of DNA methylation has been underscored but the mechanisms of methionine affecting DNA methylation are poorly understood. Nutritional epigenomics provides a promising insight into the targeting epigenetic changes in animals from a nutritional standpoint, which will deepen and expand our understanding of genes, molecules, tissues, and animals in which methionine alteration influences DNA methylation and gene expression.
Collapse
Affiliation(s)
- Naifeng Zhang
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, 100081 Beijing, China
| |
Collapse
|
21
|
Epigenetic regulation of pro-inflammatory cytokine genes in lipopolysaccharide -stimulated peripheral blood mononuclear cells from broilers. Immunobiology 2017; 222:308-315. [DOI: 10.1016/j.imbio.2016.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/24/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022]
|
22
|
Structural Analysis of Glycine Sarcosine N-methyltransferase from Methanohalophilus portucalensis Reveals Mechanistic Insights into the Regulation of Methyltransferase Activity. Sci Rep 2016; 6:38071. [PMID: 27934872 PMCID: PMC5146677 DOI: 10.1038/srep38071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Methyltransferases play crucial roles in many cellular processes, and various regulatory mechanisms have evolved to control their activities. For methyltransferases involved in biosynthetic pathways, regulation via feedback inhibition is a commonly employed strategy to prevent excessive accumulation of the pathways’ end products. To date, no biosynthetic methyltransferases have been characterized by X-ray crystallography in complex with their corresponding end product. Here, we report the crystal structures of the glycine sarcosine N-methyltransferase from the halophilic archaeon Methanohalophilus portucalensis (MpGSMT), which represents the first structural elucidation of the GSMT methyltransferase family. As the first enzyme in the biosynthetic pathway of the osmoprotectant betaine, MpGSMT catalyzes N-methylation of glycine and sarcosine, and its activity is feedback-inhibited by the end product betaine. A structural analysis revealed that, despite the simultaneous presence of both substrate (sarcosine) and cofactor (S-adenosyl-L-homocysteine; SAH), the enzyme was likely crystallized in an inactive conformation, as additional structural changes are required to complete the active site assembly. Consistent with this interpretation, the bound SAH can be replaced by the methyl donor S-adenosyl-L-methionine without triggering the methylation reaction. Furthermore, the observed conformational state was found to harbor a betaine-binding site, suggesting that betaine may inhibit MpGSMT activity by trapping the enzyme in an inactive form. This work implicates a structural basis by which feedback inhibition of biosynthetic methyltransferases may be achieved.
Collapse
|
23
|
Jia Y, Ling M, Zhang L, Jiang S, Sha Y, Zhao R. Downregulation of miR-150 Expression by DNA Hypermethylation Is Associated with High 2-Hydroxy-(4-methylthio)butanoic Acid-Induced Hepatic Cholesterol Accumulation in Nursery Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7530-7539. [PMID: 27648945 DOI: 10.1021/acs.jafc.6b03615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Excess 2-hydroxy-(4-methylthio)butanoic acid (HMB) supplementation induces hyperhomocysteinemia, which contributes to hepatic cholesterol accumulation. However, it is unclear whether and how high levels of HMB break hepatic cholesterol homeostasis in nursery piglets. In this study, HMB oversupplementation suppressed food intake and decreased body weight in nursery piglets. Hyperhomocysteinemia and higher hepatic cholesterol accumulation were observed in HMB groups. Accordingly, HMB significantly increased the protein content of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and glycine N-methyltransferase (GNMT) but decreased that of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1). Significant downregulation of miR-150, miR-181d-5p, and miR-296-3p targeting the 3'-untranslated regions (UTRs) of GNMT and HMGCR was detected in the liver of HMB-treated piglets, and their functional validation was confirmed by dual-luciferase reporter assay. Furthermore, hypermethylation of miR-150 promoter was detected in association with suppressed miR-150 expression in the livers of HMB-treated piglets. This study indicated a new mechanism of hepatic cholesterol unhomeostasis by dietary methyl donor supplementation.
Collapse
Affiliation(s)
- Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Mingfa Ling
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Luchu Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Shuxia Jiang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Yusheng Sha
- China Feed Industry Association, Ministry of Agriculture , Peking 100125, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| |
Collapse
|
24
|
Zhang Q, Bertics SJ, Luchini N, White HM. The effect of increasing concentrations of dl-methionine and 2-hydroxy-4-(methylthio) butanoic acid on hepatic genes controlling methionine regeneration and gluconeogenesis. J Dairy Sci 2016; 99:8451-8460. [DOI: 10.3168/jds.2016-11312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
|
25
|
Saini RK, Manoj P, Shetty NP, Srinivasan K, Giridhar P. Relative bioavailability of folate from the traditional food plant Moringa oleifera L. as evaluated in a rat model. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:511-20. [PMID: 26787970 PMCID: PMC4711403 DOI: 10.1007/s13197-015-1828-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/06/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022]
Abstract
Moringa oleifera is an affordable and rich source of dietary folate. Quantification of folate by HPLC showed that 5-formyl-5,6,7,8-tetrahydrofolic acid (502.1 μg/100 g DW) and 5,6,7,8-tetrahydrofolic acid (223.9 μg/100 g DW) as the most dominant forms of folate in M. oleifera leaves. The bioavailability of folate and the effects of folate depletion and repletion on biochemical and molecular markers of folate status were investigated in Wistar rats. Folate deficiency was induced by keeping the animals on a folate deficient diet with 1 % succinyl sulfathiazole (w/w). After the depletion period, animals were repleted with different levels of folic acid and M. oleifera leaves as a source of folate. Feeding the animals on a folate deficient diet for 7 weeks caused a significant (3.4-fold) decrease in serum folate content, compared to non-depleted control animals. Relative bioavailability of folate from dehydrated leaves of M. oleifera was 81.9 %. During folate depletion and repletion, no significant changes in liver glycine N-methyl transferase and 5-methyltetrahydrofolate-homocysteine methyltransferase expression were recorded. In RDA calculations, only 50 % of natural folate is assumed to be bioavailable. Therefore, the bioavailability of folate from Moringa is much higher, suggesting that M. oleifera based food can be used as a significant source of folate.
Collapse
Affiliation(s)
- R. K. Saini
- />Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- />Department of Molecular Biotechnology, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | - P. Manoj
- />Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - N. P. Shetty
- />Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - K. Srinivasan
- />Biochemistry & Nutrition Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - P. Giridhar
- />Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| |
Collapse
|
26
|
Jia Y, Song H, Gao G, Cai D, Yang X, Zhao R. Maternal Betaine Supplementation during Gestation Enhances Expression of mtDNA-Encoded Genes through D-Loop DNA Hypomethylation in the Skeletal Muscle of Newborn Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10152-10160. [PMID: 26527363 DOI: 10.1021/acs.jafc.5b04418] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Betaine has been widely used in animal and human nutrition to promote muscle growth and performance, yet it remains unknown whether maternal betaine supplementation during gestation affects the metabolic characteristics of neonatal skeletal muscles. In the present study, feeding sows with betaine-supplemented diets throughout gestation significantly upregulated the expression of mtDNA-encoded OXPHOS genes (p < 0.05), including COX1, COX2, and ND5, in the muscle of newborn piglets, which was associated with enhanced mitochondrial COX enzyme activity (p < 0.05). Concurrently, maternal betaine supplementation increased the plasma betaine concentration and muscle expression of methyl transfer enzymes (p < 0.05), BHMT and GNMT, in offspring piglets. Nevertheless, Dnmt3a was downregulated at the level of both mRNA and protein, which was associated with a hypomethylated mtDNA D-loop region (p < 0.05). These results suggest that maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets.
Collapse
Affiliation(s)
- Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Haogang Song
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Guichao Gao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Demin Cai
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
27
|
Abstract
Hydrogen sulfide (H₂S) has emerged as an important signaling molecule with beneficial effects on various cellular processes affecting, for example, cardiovascular and neurological functions. The physiological importance of H₂S is motivating efforts to develop strategies for modulating its levels. However, advancement in the field of H₂S-based therapeutics is hampered by fundamental gaps in our knowledge of how H₂S is regulated, its mechanism of action, and its molecular targets. This review provides an overview of sulfur metabolism; describes recent progress that has shed light on the mechanism of H₂S as a signaling molecule; and examines nutritional regulation of sulfur metabolism, which pertains to health and disease.
Collapse
Affiliation(s)
- Omer Kabil
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600;
| | | | | |
Collapse
|
28
|
Neuman JC, Albright KA, Schalinske KL. Exercise prevents hyperhomocysteinemia in a dietary folate-restricted mouse model. Nutr Res 2013; 33:487-93. [PMID: 23746565 DOI: 10.1016/j.nutres.2013.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/09/2013] [Accepted: 04/13/2013] [Indexed: 02/08/2023]
Abstract
Hyperhomocysteinemia is a condition that results from altered methyl group metabolism and is associated with numerous pathological conditions. A number of nutritional and hormonal factors have been shown to influence circulating homocysteine concentrations; however, the impact of exercise on homocysteine and methyl group balance is not well understood. Our hypothesis was that exercise represents an effective means to prevent hyperhomocysteinemia in a folate-independent manner. The purpose of this study was to determine the influence of exercise on homocysteine metabolism in a dietary folate-restricted mouse model characterized by moderate hyperhomocysteinemia. Female outbred mice (12 weeks old) were assigned to either a sedentary or free-access wheel exercise group. Following a 4-week acclimation period, half of the mice in each group were provided a folate-restricted diet for 7-weeks prior to euthanasia and tissue collection. As expected, folate-restricted sedentary mice exhibited a 2-fold increase in plasma total homocysteine concentrations; however, exercise completely prevented the increase in circulating homocysteine concentrations. Moreover, exercise reduced plasma homocysteine concentrations 36% within the group fed only the control diet. The prevention of hyperhomocysteinemia by exercise appears, at least in part, to be the result of increased folate-independent homocysteine remethylation owing to a 2-fold increase in renal betaine homocysteine S-methyltransferase. To our knowledge, this is the first report demonstrating the prevention of hyperhomocysteinemia by exercise in a dietary folate-restriction model. Future research will be directed at determining if exercise can have a positive impact on other nutritional, hormonal, and genetic models of hyperhomocysteinemia relevant to humans.
Collapse
Affiliation(s)
- Joshua C Neuman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Methyl group metabolism is a metabolically demanding process that has significant nutritional implications. Methionine is required not only for protein synthesis but also as the primary source of methyl groups. However, demethylated methionine can be remethylated by methyl groups from methylneogenesis (via folate) and betaine (synthesized from choline). This review discusses the impact of methylation precursors and products on the methionine requirement. RECENT FINDINGS Recent evidence has clearly demonstrated that transmethylation reactions can consume a significant proportion of the flux of methionine. In particular, synthesis of creatine and phosphatidylcholine consume most methyl groups and their dietary provision could spare methionine. Importantly, methionine can become limiting for protein and phosphatidylcholine synthesis when creatine synthesis is upregulated. Other research has shown that betaine and choline seem to be more effective than folate at reducing hyperhomocysteinemia and impacting cardiovascular outcomes suggesting they may be limiting. SUMMARY It appears that methyl groups can become limiting when dietary supply is inadequate or if transmethylation reactions are upregulated. These situations can impact methionine availability for protein synthesis, which can reduce growth. The methionine requirement can likely be spared by methyl donor and methylated product supplementation.
Collapse
Affiliation(s)
- Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada.
| | | |
Collapse
|
30
|
Abstract
The cost of psychiatric illness to the UK economy was recently estimated at pound77 billion annually. Despite years of research no firm aetiological explanation exists, and with no physiological or biochemical markers diagnosis is made entirely on a behavioural basis. All current pharmacological therapies are associated with serious long-term side effects. Substantial evidence supports the involvement of one-carbon cycle dysregulation in psychiatric illness, but this is not currently used as a basis for diagnosis or treatment. The present paper reviews the evidence for one-carbon cycle dysregulation in schizophrenic, bipolar, depressed and autistic patients. Also presented are novel findings from the field of epigenetics, which demonstrate how the one-carbon cycle-derived methyl donor S-adenosylmethionine influences the expression of key genes in the brain affecting memory, learning, cognition and behaviour, genes whose expression is reduced to varying degrees in these patient groups. Clinical evidence that nutritional supplements can rectify one-carbon cycle activity, and restore normal gene expression, suggests a novel approach to the development of biochemical tests and simple, non-harmful treatments for some psychiatric patients. Conversely, evidence from animal studies highlights the dangers of exposing the unborn fetus to very high dietary levels of folic acid, a one-carbon cycle cofactor. Fetal adaptations to a high-folate environment may interfere with folate metabolism postnatally, with serious consequences for the epigenetic regulation of gene expression. The public health implications of these diverse scenarios indicate an urgent need for further research in this field.
Collapse
Affiliation(s)
- C Sugden
- Centre for Nutrition and Food Safety, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
31
|
Zhao H, Kim G, Levine RL. Methionine sulfoxide reductase contributes to meeting dietary methionine requirements. Arch Biochem Biophys 2012; 522:37-43. [PMID: 22521563 DOI: 10.1016/j.abb.2012.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
Methionine sulfoxide reductases are present in all aerobic organisms. They contribute to antioxidant defenses by reducing methionine sulfoxide in proteins back to methionine. However, the actual in vivo roles of these reductases are not well defined. Since methionine is an essential amino acid in mammals, we hypothesized that methionine sulfoxide reductases may provide a portion of the dietary methionine requirement by recycling methionine sulfoxide. We used a classical bioassay, the growth of weanling mice fed diets varying in methionine, and applied it to mice genetically engineered to alter the levels of methionine sulfoxide reductase A or B1. Mice of all genotypes were growth retarded when raised on chow containing 0.10% methionine instead of the standard 0.45% methionine. Retardation was significantly greater in knockout mice lacking both reductases. We conclude that the methionine sulfoxide reductases can provide methionine for growth in mice with limited intake of methionine, such as may occur in the wild.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
32
|
Römer P, Weingärtner J, Desaga B, Kubein-Meesenburg D, Reicheneder C, Proff P. Effect of excessive methionine on the development of the cranial growth plate in newborn rats. Arch Oral Biol 2012; 57:1225-30. [PMID: 22386249 DOI: 10.1016/j.archoralbio.2012.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/27/2012] [Accepted: 02/03/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Methionine is an essential amino acid and pivotal for normal growth and development. However, previous animal studies have shown that excessive maternal intake of methionine causes growth restrictions, organ damages, and abnormal growth of the mandible in newborn animals. However, the effect of excessive methionine on the development of the cranial growth plate is unknown. This study investigated histological alterations of the cranial growth plate induced by high methionine administration in newborn rats. DESIGN Twenty pregnant dams were divided into a control and an experimental group. The controls received a diet for rats and the experimental group was fed from the 18th gestational day with a special manufactured high methionine diet for rats. The high methionine diet was maintained until the end of the lactation phase (day 20). The offspring of both groups were killed at day 10 or 20 postnatally and their spheno-occipital synchondroses were collected for histological analysis. RESULTS The weight of the high-dose methionine treated experimental group was considerably reduced in comparison to the control group at day 10 and 20 postnatally. The cartilaginous area of the growth plate and the height of the proliferative zone were markedly reduced at postnatal day 10 in the experimental group. CONCLUSIONS In summary, the diet-induced hypermethioninemia in rat dams resulted in growth retardations and histomorphological changes of the spheno-occipital synchondrosis, an important craniofacial growth centre in newborns. This finding may elucidate facial dysmorphoses reported in patients suffering from hypermethioninemia.
Collapse
Affiliation(s)
- Piero Römer
- University Medical Centre of Regensburg, Dental School, Department of Orthodontics, Franz-Josef-Strauss-Allee 11, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Correa-Fiz F, Reyes-Palomares A, Fajardo I, Melgarejo E, Gutiérrez A, García-Ranea JA, Medina MA, Sánchez-Jiménez F. Regulatory cross-talk of mouse liver polyamine and methionine metabolic pathways: a systemic approach to its physiopathological consequences. Amino Acids 2011; 42:577-95. [PMID: 21818563 DOI: 10.1007/s00726-011-1044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Both polyamines and methionine derivatives are nitrogen compounds directly related to the regulation of gene expression. In silico predictions and experimental evidence suggest a cross-talk between polyamine and methionine metabolism in mammalian tissues. Since liver is the major organ that controls nitrogen metabolism of the whole organism, it is the best tissue to further test this hypothesis in vivo. In this work, we studied the effects of the chronic administration of a methionine-supplemented diet (0.5% Met in drinking water for 5 months) on the liver of mice (designated as MET-mice). Metabolic and proteomic approaches were performed and the data obtained were subjected to biocomputational analysis. Results showed that a supplemental methionine intake can indeed regulate biogenic amine metabolism in an in vivo model by multiple mechanisms including metabolic regulation and specific gene demethylation. Furthermore, putative systemic effects were investigated by molecular and cellular biology methods. Among other results, altered expression levels of multiple inflammation and cell proliferation/death balance markers were found and macrophage activation was observed. Overall, the results presented here will be of interest across a variety of biomedical disciplines, including nutrition, orphan diseases, immunology and oncology.
Collapse
Affiliation(s)
- F Correa-Fiz
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang J, Handy DE, Wang Y, Bouchard G, Selhub J, Loscalzo J, Carey MC. Hyperhomocysteinemia from trimethylation of hepatic phosphatidylethanolamine during cholesterol cholelithogenesis in inbred mice. Hepatology 2011; 54:697-706. [PMID: 21567442 PMCID: PMC3145001 DOI: 10.1002/hep.24428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/03/2011] [Indexed: 01/11/2023]
Abstract
UNLABELLED Because hyperhomocysteinemia can occur in cholesterol gallstone disease, we hypothesized that this may result from trimethylation of phosphatidylethanolamine (PE), which partakes in biliary phosphatidylcholine (PC) hypersecretion during cholesterol cholelithogenesis. We fed murine strains C57L/J, C57BL/6J, SWR/J, AKR/J, PE N-methyltransferase (PEMT) knockout (KO), PEMT heterozygous (HET), and wildtype (WT) mice a cholesterol/cholic acid lithogenic diet (LD) for up to 56 days and documented biliary lipid phase transitions and secretion rates. We quantified plasma total homocysteine (tHcy), folate, and vitamin B12 in plasma and liver, as well as biliary tHcy and cysteine secretion rates. Rate-limiting enzyme activities of PC synthesis, PEMT and cytidine triphosphate: phosphocholine cytidylyltransferase (PCT), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured in liver homogenates. Other potential sources of plasma tHcy, glycine N-methyltransferase (GNMT) and guanidinoacetate N-methyltransferase (GAMT), were assayed by gene expression. Plasma tHcy and PEMT activities became elevated during cholelithogenesis in gallstone-susceptible C57L, C57BL/6, and SWR mice but not in the gallstone-resistant AKR mice. Persisting in C57L mice, which exhibit the greatest Lith gene burden, these increases were accompanied by elevated hepatic SAM/SAH ratios and augmented biliary tHcy secretion rates. Counter-regulation included remethylation of Hcy to methionine concurrent with decreased folate and vitamin B12 levels and Hcy transsulfuration to cysteine. Concomitantly, methylenetetrahydrofolate reductase (Mthfr), betaine-homocysteine methyltransferase (Bhmt), and cystathionine-β-synthase (Cbs) were up-regulated, but Gnmt and Gamt genes were down-regulated. PEMT KO and HET mice displayed biliary lipid secretion rates and high gallstone prevalence rates similar to WT mice without any elevation in plasma tHcy levels. CONCLUSION This work implicates up-regulation of PC synthesis by the PEMT pathway as a source of elevated plasma and bile tHcy during cholesterol cholelithogenesis.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Medicine, Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Diane E. Handy
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yufang Wang
- Molecular Pathology Unit, Center for Cancer Research, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Guylaine Bouchard
- Department of Medicine, Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob Selhub
- Vitamin Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin C. Carey
- Department of Medicine, Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Methionine and protein metabolism in non-alcoholic steatohepatitis: evidence for lower rate of transmethylation of methionine. Clin Sci (Lond) 2011; 121:179-89. [PMID: 21446920 DOI: 10.1042/cs20110060] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic metabolism of methionine is the source of cysteine, the precursor of glutathione, the major intracellular antioxidant in the body. Methionine also is the immediate precursor of SAM (S-adenosylmethionine) the key methyl donor for phosphatidylcholine synthesis required for the export of VLDL (very-low-density lipoprotein) triacylglycerols (triglycerides) from the liver. We have examined the kinetics of methionine, its transmethylation and trans-sulfuration with estimates of whole body rate of protein turnover and urea synthesis in clinically stable biopsy-confirmed subjects with NASH (non-alcoholic steatohepatitis). Subjects with NASH were more insulin-resistant and had significantly higher plasma concentrations of usCRP (ultrasensitive C-reactive protein), TNFα (tumour necrosis factor α) and other inflammatory cytokines. There was no significant effect of insulin resistance and NASH on whole body rate of protein turnover [phenylalanine Ra (rate of appearance)] and on the rate of urea synthesis. The rates of methylation of homocysteine and transmethylation of methionine were significantly lower in NASH compared with controls. There was no difference in the rate of trans-sulfuration of methionine between the two groups. Enteric mixed nutrient load resulted in a significant increase in all the measured parameters of methionine kinetics. Heterozygosity for MTHFR (5,10-methylene-tetrahydrofolate reductase) (677C→T) did not have an impact on methionine metabolism. We speculate that, as a result of oxidant stress possibly due to high fatty acid oxidation, the activity of methionine adenosyltransferase is attenuated resulting in a lower rate of transmethylation of methionine and of SAM synthesis. These results are the first evidence for perturbed metabolism of methionine in NASH in humans and provide a rationale for the development of targeted intervention strategies.
Collapse
|
36
|
Petersen LF, Brockton NT, Bakkar A, Liu S, Wen J, Weljie AM, Bismar TA. Elevated physiological levels of folic acid can increase in vitro growth and invasiveness of prostate cancer cells. BJU Int 2011; 109:788-95. [PMID: 21771248 DOI: 10.1111/j.1464-410x.2011.10437.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES • To investigate the effects of different folic acid concentrations on the growth and invasiveness of prostate cancer cell lines. • To determine if observed changes are correlated with changes in levels of the potential prostate cancer biomarker, sarcosine, a byproduct of folate metabolism. MATERIALS AND METHODS • The prostate cancer cell lines PC-3, LNCaP and DU145 were cultured in media containing 4, 20 or 100 nm of folic acid and assayed for growth over 9 days by counting viable cells at 3-day intervals, or for invasion by passage through a Matrigel-coated transwell membrane. • Cells grown in the different folic acid media were collected and subjected to metabolomic analysis by gas chromatography and mass spectrometry to measure levels of intracellular sarcosine. RESULTS • The results show that higher levels of folic acid can increase cell growth in PC-3 and LNCaP prostate cancer cell lines, and may also increase the invasive capacity of PC-3, LNCaP and DU145 cells. • We did not observe a correlation between increased invasion from higher folic acid concentrations and levels of sarcosine, but there were significant changes in other metabolites in cells grown in higher levels of folic acid. CONCLUSION • These findings suggest that folic acid has an important and potentially negative role in prostate cancer progression.
Collapse
Affiliation(s)
- Lars F Petersen
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang YC, Tang FY, Chen SY, Chen YM, Chiang EPI. Glycine-N methyltransferase expression in HepG2 cells is involved in methyl group homeostasis by regulating transmethylation kinetics and DNA methylation. J Nutr 2011; 141:777-82. [PMID: 21411609 DOI: 10.3945/jn.110.135954] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycine-N methyltransferase (GNMT) is a potential tumor suppressor that is commonly inactivated in human hepatoma. We systematically investigated how GNMT regulates methyl group kinetics and global DNA methylation. HepG2 cells (GNMT inactive, GNMT-) and cells transfected with GNMT expressed vector (GNMT+) were cultured in low (10 μmol/L), adequate (100 μmol/L), or high (500 μmol/L) l-methionine, each with 2.27 μmol/L folate. Transmethylation kinetics were studied using stable isotopic tracers and GC-MS. Methylation status was determined by S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels, SAM:SAH ratio, DNA methyltransferase (DNMT) activity, and methylated cytidine levels in DNA. Compared with GNMT- cells, GNMT+ cells had lower homocysteine and greater cysteine concentrations. GNMT expression increased methionine clearance by inducing homocysteine transsulfuration and remethylation metabolic fluxes when cells were cultured in high or adequate l-methionine. In contrast, homocysteine remethylation flux was lower in GNMT+ cells than in GNMT- cells and homocysteine transsulfuration fluxes did not differ when cells were cultured in low methionine, suggesting that normal GNMT function helps to conserve methyl groups. Furthermore, GNMT expression decreased SAM and increased SAH levels and reduced DNMT activity in high or adequate, but not low, methionine cultures. In low methionine cultures, restoring GNMT in HepG2 cells did not lead to sarcosine synthesis, which would waste methyl groups. Methylated cytidine levels were significantly lower in GNMT- cells than in GNMT+ cells. In conclusion, we have shown that GNMT affects transmethylation kinetics and SAM synthesis and facilitates the conservation of methyl groups by limiting homocysteine remethylation fluxes.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Kalhan SC, Uppal SO, Moorman JL, Bennett C, Gruca LL, Parimi PS, Dasarathy S, Serre D, Hanson RW. Metabolic and genomic response to dietary isocaloric protein restriction in the rat. J Biol Chem 2010; 286:5266-77. [PMID: 21147771 DOI: 10.1074/jbc.m110.185991] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have examined hepatic, genomic, and metabolic responses to dietary protein restriction in the non-pregnant Sprague-Dawley rat. Animals were pair-fed either a 6 or 24% casein-based diet for 7-10 days. At the end of the dietary period, a microarray analysis of the liver was performed, followed by validation of the genes of interest. The rates of appearance of phenylalanine, methionine, serine, and glucose and the contribution of pyruvate to serine and glucose were quantified using tracer methods. Plasma and tissue amino acid levels, enzyme activities, and metabolic intermediates were measured. Protein restriction resulted in significant differential expression of a number of genes involved in cell cycle, cell differentiation, transport, transcription, and metabolic processes. RT-PCR showed that the expression of genes involved in serine biosynthesis and fatty acid oxidation was higher, and those involved in fatty acid synthesis and urea synthesis were lower in the liver of protein-restricted animals. Free serine and glycine levels were higher and taurine levels lower in all tissues examined. Tracer isotope studies showed an ∼50% increase in serine de novo synthesis. Pyruvate was the primary (∼90%) source of serine in both groups. Transmethylation of methionine was significantly higher in the protein-restricted group. This was associated with a higher S-adenosylmethionine/S-adenosylhomocysteine ratio and lower cystathione β-synthase and cystathionine γ-lyase activity. Dietary isocaloric protein restriction results in profound changes in hepatic one-carbon metabolism within a short period. These may be related to high methylation demands placed on the organism and caused by possible changes in cellular osmolarity as a result of the efflux of the intracellular taurine.
Collapse
Affiliation(s)
- Satish C Kalhan
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fang X, Dong W, Thornton C, Willett KL. Benzo[a]pyrene effects on glycine N-methyltransferase mRNA expression and enzyme activity in Fundulus heteroclitus embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:130-138. [PMID: 20185185 PMCID: PMC2873104 DOI: 10.1016/j.aquatox.2010.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 05/28/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental polycyclic aromatic hydrocarbon (PAH) contaminant that is both a carcinogen and a developmental toxicant. We hypothesize that some of BaP's developmental toxicity may be mediated by effects on glycine N-methyltransferase (GNMT). GNMT is a mediator in the methionine and folate cycles, and the homotetrameric form enzymatically transfers a methyl group from S-adenosylmethionine (SAM) to glycine forming S-adenosylhomocysteine (SAH) and sarcosine. SAM homeostasis, as regulated by GNMT, is critically involved in regulation of DNA methylation, and altered GNMT expression is associated with liver pathologies. The homodimeric form of GNMT has been suggested as the 4S PAH-binding protein. To further study BaP-GNMT interactions, Fundulus heteroclitus embryos were exposed to waterborne BaP at 10 and 100mug/L and both GNMT mRNA expression and enzyme activity were determined. Whole mount in situ hybridization showed GNMT mRNA expression was increased by BaP in the liver region of 7, 10 and 14dpf F. heteroclitus embryos. In contrast to mRNA induction, in vivo BaP exposure decreased GNMT enzyme activity in 4, 10 and 14dpf embryos. However, in vitro incubations of adult F. heteroclitus liver cytosol with BaP did not cause decreased enzyme activity. In conclusion, BaP exposure altered GNMT expression, which may represent a new target pathway for BaP-mediated embryonic toxicities and DNA methylation changes.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| | - Wu Dong
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| | - Cammi Thornton
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| | - Kristine L. Willett
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| |
Collapse
|
40
|
Lever M, Slow S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem 2010; 43:732-44. [DOI: 10.1016/j.clinbiochem.2010.03.009] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 01/29/2023]
|
41
|
Preynat A, Lapierre H, Thivierge M, Palin M, Cardinault N, Matte J, Desrochers A, Girard C. Effects of supplementary folic acid and vitamin B12 on hepatic metabolism of dairy cows according to methionine supply. J Dairy Sci 2010; 93:2130-42. [DOI: 10.3168/jds.2009-2796] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/06/2010] [Indexed: 01/03/2023]
|
42
|
Espe M, Rathore RM, Du ZY, Liaset B, El-Mowafi A. Methionine limitation results in increased hepatic FAS activity, higher liver 18:1 to 18:0 fatty acid ratio and hepatic TAG accumulation in Atlantic salmon, Salmo salar. Amino Acids 2010; 39:449-60. [PMID: 20112035 DOI: 10.1007/s00726-009-0461-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 12/21/2009] [Indexed: 01/16/2023]
Abstract
The current experiment aimed to study whether interactions with lipid metabolism possibly might explain the relative increased liver weight obtained in fish fed sub-optimal methionine levels. A basal diet based on a blend of plant proteins which is low in methionine (1.6 g Met/16 g N) was compared to a methionine adequate diet (2.2 g Met/16 g N) prepared by adding DL-methionine (2.4 g/kg) to the basal diet in the expense of wheat grain. Fish oil was used as the lipid source. The diets were balanced in all nutrients except methionine. The diets were fed to Atlantic salmon (500 g BW) for a period of 3 months. Feed intake did not differ, rendering the intake of all nutrients except methionine equal. Fish fed the low methionine diet had an increased liver size relative to body weight, indicating fat deposition in the liver. Fish given the sub-optimal methionine diet showed about six times higher fatty acid synthase (FAS) activity as compared to the fish fed the adequate methionine diet, indicating a higher de novo lipogenesis. A significant rise in the liver 18:1 to 18:0 fatty acid ratios also supported storage of lipids over fatty acid oxidation. Indeed, methionine limitation resulted in significantly higher TAG concentrations in the liver. Sub-optimal dietary methionine also resulted in lower hepatic taurine concentrations and the total bile acids concentrations were reduced in faeces and tended to be reduced in plasma. Taken together, our data show that salmon fed sub-optimal methionine levels had increased relative liver weight and developed signs commonly described in the early stage of non-alcoholic fatty liver disease in rodent models (increased FAS activity, changed fatty acid ratios and TAG accumulation).
Collapse
Affiliation(s)
- Marit Espe
- National Institute of Nutrition and Seafood Research, PO Box 2029, 5817, Nordnes, Norway.
| | | | | | | | | |
Collapse
|
43
|
Effects ofdl-2-hydroxy-4-methylthiobutyrate on the first-pass intestinal metabolism of dietary methionine and its extra-intestinal availability. Br J Nutr 2010; 103:643-51. [DOI: 10.1017/s0007114509992169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was conducted in a one-factorial arrangement to determine the effects ofdl-2-hydroxy-4-methylthiobutyrate (dl-HMTB) on the first-pass intestinal metabolism of dietary methionine and its extra-intestinal availability. Barrows (n6; aged 35 d; weight 8·6 kg), implanted with arterial, portal, mesenteric and gastric catheters, were fed a diet containingdl-methionine (dl-MET) ordl-HMTB once hourly and infused intramesenterically with 1 %p-aminohippurate and intragastrically with [1-13C]methionine at 7·0 μmol/kg body weight per h. Arterial and portal blood samples were taken at hourly intervals until 6 h of tracer infusion and pigs was then killed for collection of muscle, intestine, liver and kidney samples. The net portal appearance of methionine, expressed as the fraction of ingested directly availablel-methionine, was higher (P < 0·05) in thedl-HMTB than in thedl-MET diet, and there was no difference (P = 0·26) in the fractional portal balance of [1-13C]methionine between the diets. [1-13C]methionine enrichment (tracer:tracee ratio; mol/100 mol amino acid) in the jejunum, arterial and portal plasma, liver, kidney and muscle was also not different (P>0·05) between the groups. Over the 6 h period after the start of feeding, the average concentration of citrulline both in the arterial and portal plasma was higher (P < 0·05) in thedl-HMTB than in thedl-MET group, and arterial plasma ornithine and taurine concentration was also higher (P < 0·05) in thedl-HMTB than in thedl-MET group. However, plasma urea concentration both in the arterial and portal vein was lower (P < 0·05) in thedl-HMTB than in thedl-MET group. These results suggested that the potential difference in the first-pass use of methionine by the intestine between thedl-HMTB anddl-MET diets might affect intestinal and systemic metabolism of other amino acids, which may provide new important insights into nutritional efficiency of different methionine sources.
Collapse
|
44
|
DiBello PM, Dayal S, Kaveti S, Zhang D, Kinter M, Lentz SR, Jacobsen DW. The nutrigenetics of hyperhomocysteinemia: quantitative proteomics reveals differences in the methionine cycle enzymes of gene-induced versus diet-induced hyperhomocysteinemia. Mol Cell Proteomics 2009; 9:471-85. [PMID: 20008833 DOI: 10.1074/mcp.m900406-mcp200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hyperhomocysteinemia has long been associated with atherosclerosis and thrombosis and is an independent risk factor for cardiovascular disease. Its causes include both genetic and environmental factors. Although homocysteine is produced in every cell as an intermediate of the methionine cycle, the liver contributes the major portion found in circulation, and fatty liver is a common finding in homocystinuric patients. To understand the spectrum of proteins and associated pathways affected by hyperhomocysteinemia, we analyzed the mouse liver proteome of gene-induced (cystathionine beta-synthase (CBS)) and diet-induced (high methionine) hyperhomocysteinemic mice using two-dimensional difference gel electrophoresis and Ingenuity Pathway Analysis. Nine proteins were identified whose expression was significantly changed by 2-fold (p < or = 0.05) as a result of genotype, 27 proteins were changed as a result of diet, and 14 proteins were changed in response to genotype and diet. Importantly, three enzymes of the methionine cycle were up-regulated. S-Adenosylhomocysteine hydrolase increased in response to genotype and/or diet, whereas glycine N-methyltransferase and betaine-homocysteine methyltransferase only increased in response to diet. The antioxidant proteins peroxiredoxins 1 and 2 increased in wild-type mice fed the high methionine diet but not in the CBS mutants, suggesting a dysregulation in the antioxidant capacity of those animals. Furthermore, thioredoxin 1 decreased in both wild-type and CBS mutants on the diet but not in the mutants fed a control diet. Several urea cycle proteins increased in both diet groups; however, arginase 1 decreased in the CBS(+/-) mice fed the control diet. Pathway analysis identified the retinoid X receptor signaling pathway as the top ranked network associated with the CBS(+/-) genotype, whereas xenobiotic metabolism and the NRF2-mediated oxidative stress response were associated with the high methionine diet. Our results show that hyperhomocysteinemia, whether caused by a genetic mutation or diet, alters the abundance of several liver proteins involved in homocysteine/methionine metabolism, the urea cycle, and antioxidant defense.
Collapse
Affiliation(s)
- Patricia M DiBello
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Wilson FA, van den Borne JJGC, Calder AG, O'Kennedy N, Holtrop G, Rees WD, Lobley GE. Tissue methionine cycle activity and homocysteine metabolism in female rats: impact of dietary methionine and folate plus choline. Am J Physiol Endocrinol Metab 2009; 296:E702-13. [PMID: 19141688 DOI: 10.1152/ajpendo.90670.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired transfer of methyl groups via the methionine cycle leads to plasma hyperhomocysteinemia. The tissue sources of plasma homocysteine in vivo have not been quantified nor whether hyperhomocysteinemia is due to increased entry or decreased removal. These issues were addressed in female rats offered diets with either adequate or excess methionine (additional methyl groups) with or without folate and choline (impaired methyl group transfer) for 5 wk. Whole body and tissue metabolism was measured based on isotopomer analysis following infusion with either [1-(13)C,methyl-(2)H3]methionine or [U-(13)C]methionine plus [1-(13)C]homocysteine. Although the fraction of intracellular methionine derived from methylation of homocysteine was highest in liver (0.18-0.21), most was retained. In contrast, the pancreas exported to plasma more of methionine synthesized de novo. The pancreas also exported homocysteine to plasma, and this matched the contribution from liver. Synthesis of methionine from homocysteine was reduced in most tissues with excess methionine supply and was also lowered in liver (P<0.01) with diets devoid of folate and choline. Plasma homocysteine concentration (P<0.001) and flux (P=0.001) increased with folate plus choline deficiency, although the latter still represented <12% of estimated tissue production. Hyperhomocysteinemia also increased (P<0.01) the inflow of homocysteine into most tissues, including heart. These findings indicate that a full understanding of hyperhomocysteinemia needs to include metabolism in a variety of organs, rather than an exclusive focus on the liver. Furthermore, the high influx of homocysteine into cardiac tissue may relate to the known association between homocysteinemia and hypertension.
Collapse
Affiliation(s)
- Fiona A Wilson
- Obesity and Metabolic Health Division, The Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses 2009; 72:125-8. [DOI: 10.1016/j.mehy.2008.07.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/08/2023]
|
47
|
Effects of moderate hyperhomocysteinaemia induced by 4 weeks methionine-enriched diet on metabolite profile and mesenteric artery function in rats. Br J Nutr 2008; 99:993-9. [DOI: 10.1017/s0007114508853408] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methionine is an essential amino acid and methyl donor for most transmethylation reactions in mammals. The product of transmethylation reactions is homocysteine, which is associated with enhanced risk for CVD. The aim of this study was to analyse metabolic and vascular functional consequences of a methionine-enriched diet in rats. The dose of methionine was chosen to reflect the range of over-nutrition in man. We quantified plasma levels of homocysteine, asymmetrical dimethylarginine and adenosine, determined methionine and its metabolites in tissues and blood plasma and assessed relaxation of mesenteric arteries toward acetylcholine and sodium nitroprusside. A methionine-enriched diet for 4 weeks elevated homocysteine levels in plasma 2-fold and in spleen by 70 %. The level of S-adenosylhomocysteine was increased in liver only, while methionine and S-adenosylmethionine were unchanged in all organs studied. Plasma adenosine and asymmetrical dimethylarginine levels were unchanged, as were vessel relaxations. A 2-fold elevation of plasma homocysteine, which is assigned a risk indicator for cardiovascular events, did not impair mesenteric artery vasodilatation during 4 weeks of a methionine-rich diet. Furthermore, asymmetrical dimethylarginine and adenosine, which have been shown to be changed in more severe degrees of hyperhomocysteinaemia, remained unaltered.
Collapse
|
48
|
Luka Z. Methyltetrahydrofolate in folate-binding protein glycine N-methyltransferase. VITAMINS AND HORMONES 2008; 79:325-45. [PMID: 18804700 DOI: 10.1016/s0083-6729(08)00411-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammals, folate is used as a carrier of one-carbon units (C(1)) in nucleic acids metabolism and biological methylation. Among all forms of folate the most abundant is 5-methyltetrahydrofolate (5-CH(3)-THF), which is of exceptional importance. Its distinctive role among other forms of folate is in its dual function. As a C(1) carrier it is used for synthesis of methionine by remethylation of homocysteine. In addition, 5-CH(3)-THF is bound to and inhibits glycine-N-methyltransferase (GNMT). GNMT is one of the key enzymes in methionine and S-adenosylmethionine (AdoMet) metabolism. It removes excess AdoMet by using it for methylation of glycine. The interaction of 5-CH(3)-THF and GNMT was proposed as an important regulatory mechanism in AdoMet metabolism and biological methylation. The recent discovery of human individuals with mutant GNMT and the study of a mouse model with the GNMT gene knocked out showed that inactivation of that enzyme, indeed, has a significant impact on AdoMet levels in the liver and plasma. The crystal structure of GNMT complexed with 5-CH(3)-THF revealed that there are two folate molecules bound to one tetrameric form of GNMT, which is a basis for establishing of mechanism of inhibition of GNMT. The role of GNMT as a folate-binding protein and how it affects one-carbon folate metabolism is discussed.
Collapse
Affiliation(s)
- Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
49
|
Eklund M, Bauer E, Wamatu J, Mosenthin R. Potential nutritional and physiological functions of betaine in livestock. Nutr Res Rev 2007; 18:31-48. [DOI: 10.1079/nrr200493] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractThe present review summarises the potential nutritional and physiological functions of betaine as a feed additive in relation to performance criteria in livestock production. Betaine, the trimethyl derivative of the amino acid glycine, is a metabolite of plant and animal tissues. In plants, betaine is particularly synthesised and accumulated as an osmoprotectant against salt and temperature stress. In animals, betaine is the product of choline oxidation or it originates from nutritional sources. Over the past decades, numerous studies have been carried out to investigate the potential effects of betaine supplementation on animal performance. Due to its chemical structure, betaine shows the characteristics of a dipolar zwitterion resulting in osmoprotective properties. Promoting effects on the intestinal tract against osmotic stress occurring during diarrhoea or coccidiosis have been reported following betaine supplementation in pigs and poultry. There is also some evidence that dietary betaine may improve the digestibility of specific nutrients. As a product of choline oxidation, betaine is involved in transmethylation reactions of the organism. Betaine as a methyl donor provides its labile methyl groups for the synthesis of several metabolically active substances such as creatine and carnitine. Supplementation with betaine may decrease the requirement for other methyl donors such as methionine and choline. There is also some evidence for enhanced methionine availability after dietary supplementation of betaine resulting in improved animal performance. Alterations in the distribution pattern of protein and fat in the body have been reported following betaine supplementation. A more efficient use of dietary protein may result from a methionine-sparing effect of betaine, but also direct interactions of betaine with metabolism-regulating factors have to be considered. Though the mode of action of betaine as a carcass modifier remains open, there is, however, growing evidence that betaine could have a positive impact both on animal performance and carcass quality.
Collapse
|
50
|
Maloney CA, Hay SM, Rees WD. Folate deficiency during pregnancy impacts on methyl metabolism without affecting global DNA methylation in the rat fetus. Br J Nutr 2007; 97:1090-8. [PMID: 17433124 DOI: 10.1017/s0007114507670834] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The methionine cycle and methyl group metabolism are implicated in the long-term programming of metabolism. Diets deficient in folic acid, methionine and choline have been fed to pregnant rats to examine the effects on amino acid metabolism, choline reserves and DNA methylation in dam and fetuses. Animals were fed folate-deficient, folate-deficient with low methionine, folate-deficient with low choline and folate-deficient, low-methionine, low-choline diets starting 2 weeks before mating. The dams and their fetuses were subsequently killed on day 21 of gestation for analysis. Diets low in methionine reduced fetal and maternal weight. Folate deficiency increased the concentrations of homocysteine, glycine, serine and threonine in the maternal plasma, and this was exacerbated by the low-methionine diets. The changes in the amino acid profile in the fetal serum were similar but less pronounced. This result suggests that fetal metabolism was less perturbed. Folate deficiency increased free choline in the maternal liver at the expense of phosphocholine stores. It has been suggested that a deficiency in methyl donors in the diet during pregnancy may impact on key methylation reactions, including the methylation of DNA. Despite widespread changes in the metabolism of choline and amino acids, there was no change in the global methylation of cytosine in DNA from either maternal or fetal livers. This suggests a more indirect mechanism in which gene–nutrient interactions modify the process of differential methylation during development
Collapse
|