1
|
Luo F, Zhang M, Zhang L, Zhou P. Nutritional and health effects of bovine colostrum in neonates. Nutr Rev 2024; 82:1631-1645. [PMID: 38052234 DOI: 10.1093/nutrit/nuad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
High concentrations of immunoglobulins, bioactive peptides, and growth factors are found in bovine colostrum (BC), the milk produced by cows in the first few days after parturition. Various biological functions make it increasingly used to provide nutritional support and immune protection to the offspring of many species, including humans. These biological functions include cell growth stimulation, anti-infection, and immunomodulation. The primary components and biological functions of colostrum were reviewed in the literature, and the authors also looked at its latent effects on the growth and development of neonates as well as on conditions such as infections, necrotizing enterocolitis, short bowel syndrome, and feeding intolerance. The importance of BC in neonatal nutrition, immune support, growth and development, and gut health has been demonstrated in a number of experimental and animal studies. BC has also been shown to be safe at low doses without adverse effects in newborns. BC supplementation has been shown to be efficient in preventing several disorders, including rotavirus diarrhea, necrotizing enterocolitis, and sepsis in animal models of prematurity and some newborn studies. Therefore, BC supplementation should be considered in cases where maternal milk is insufficient or donor milk is unavailable. The optimal age, timing, dosage, and form of BC administration still require further investigation.
Collapse
Affiliation(s)
- Fangmei Luo
- Department of Neonatology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Lian Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Ping Zhou
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| |
Collapse
|
2
|
Sangild PT, Vonderohe C, Melendez Hebib V, Burrin DG. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2021; 13:nu13082551. [PMID: 34444709 PMCID: PMC8402036 DOI: 10.3390/nu13082551] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Bovine colostrum (BC), the first milk produced from cows after parturition, is increasingly used as a nutritional supplement to promote gut function and health in other species, including humans. The high levels of whey and casein proteins, immunoglobulins (Igs), and other milk bioactives in BC are adapted to meet the needs of newborn calves. However, BC supplementation may improve health outcomes across other species, especially when immune and gut functions are immature in early life. We provide a review of BC composition and its effects in infants and children in health and selected diseases (diarrhea, infection, growth-failure, preterm birth, necrotizing enterocolitis (NEC), short-bowel syndrome, and mucositis). Human trials and animal studies (mainly in piglets) are reviewed to assess the scientific evidence of whether BC is a safe and effective antimicrobial and immunomodulatory nutritional supplement that reduces clinical complications related to preterm birth, infections, and gut disorders. Studies in infants and animals suggest that BC should be supplemented at an optimal age, time, and level to be both safe and effective. Exclusive BC feeding is not recommended for infants because of nutritional imbalances relative to human milk. On the other hand, adverse effects, including allergies and intolerance, appear unlikely when BC is provided as a supplement within normal nutrition guidelines for infants and children. Larger clinical trials in infant populations are needed to provide more evidence of health benefits when patients are supplemented with BC in addition to human milk or formula. Igs and other bioactive factors in BC may work in synergy, making it critical to preserve bioactivity with gentle processing and pasteurization methods. BC has the potential to become a safe and effective nutritional supplement for several pediatric subpopulations.
Collapse
Affiliation(s)
- Per Torp Sangild
- Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark;
- Department of Neonatology, Rigshospitalet, DK-1870 Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, DK-5000 Odense, Denmark
| | - Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Valeria Melendez Hebib
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Douglas G. Burrin
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
- Correspondence: ; Tel.: +1-713-798-7049
| |
Collapse
|
3
|
Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S. The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development. Pharmaceutics 2020; 13:44. [PMID: 33396805 PMCID: PMC7823749 DOI: 10.3390/pharmaceutics13010044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored.
Collapse
Affiliation(s)
- Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Marina Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Hospital Pharmacy, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Neonatal Intensive Care Unit, University Hospitals UZ Leuven, 3000 Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
| | - Antonius Mulder
- Department of Neonatology, University Hospital Antwerp, 2650 Edegem, Belgium;
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| |
Collapse
|
4
|
Chronic treatment with fluoride affects the jejunum: insights from proteomics and enteric innervation analysis. Sci Rep 2018; 8:3180. [PMID: 29453425 PMCID: PMC5816638 DOI: 10.1038/s41598-018-21533-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/06/2018] [Indexed: 01/29/2023] Open
Abstract
Gastrointestinal symptoms are the first signs of fluoride (F) toxicity. In the present study, the jejunum of rats chronically exposed to F was evaluated by proteomics, as well as by morphological analysis. Wistar rats received water containing 0, 10 or 50 mgF/L during 30 days. HuC/D, neuronal Nitric Oxide (nNOS), Vasoactive Intestinal Peptide (VIP), Calcitonin Gene Related Peptide (CGRP), and Substance P (SP) were detected in the myenteric plexus of the jejunum by immunofluorescence. The density of nNOS-IR neurons was significantly decreased (compared to both control and 10 mgF/L groups), while the VIP-IR varicosities were significantly increased (compared to control) in the group treated with the highest F concentration. Significant morphological changes were seen observed in the density of HUC/D-IR neurons and in the area of SP-IR varicosities for F-treated groups compared to control. Changes in the abundance of various proteins correlated with relevant biological processes, such as protein synthesis, glucose homeostasis and energy metabolism were revealed by proteomics.
Collapse
|
5
|
Pelagalli A, Squillacioti C, De Luca A, Pero ME, Vassalotti G, Lombardi P, Avallone L, Mirabella N. Expression and Localization of Aquaporin 4 and Aquaporin 5 along the Large Intestine of Colostrum-Suckling Buffalo Calves. Anat Histol Embryol 2016; 45:418-427. [PMID: 26429198 DOI: 10.1111/ahe.12210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/05/2015] [Indexed: 02/06/2023]
Abstract
Aquaporins (AQPs) are membrane channel proteins that play a role in regulating water permeability in many tissues. To date, seven isoforms of AQPs have been reported in the gastrointestinal tract in different mammalian species. In contrast, both tissue distribution and expression of AQPs are unknown in the buffalo. The purpose of this study was to investigate the expression of both AQP4 and AQP5 mRNAs and their relative proteins in the large intestinal tracts of buffalo calves after colostrum suckling using reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Our results revealed a diversified tissue AQP4 and AQP5 immunolocalization accompanied by their highest expression in the tissues of colostrum-suckling buffalo calves confirmed by Western blotting. In particular, AQP4 was distributed along the endothelium and enterocytes while AQP5 in the endocrine cells. These findings provide direct evidence for AQP4 and AQP5 expression in the large intestine, suggesting that different AQPs collaborate functionally and distinctively in water handling during intestinal development, especially during the first period after delivery.
Collapse
Affiliation(s)
- A Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy.
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, Naples, 80131, Italy.
| | - C Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - A De Luca
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - M E Pero
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - G Vassalotti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - P Lombardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - L Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - N Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| |
Collapse
|
6
|
Squillacioti C, De Luca A, Pero ME, Vassalotti G, Lombardi P, Avallone L, Mirabella N, Pelagalli A. Effect of colostrum and milk on small intestine expression of AQP4 and AQP5 in newborn buffalo calves. Res Vet Sci 2015; 103:149-155. [PMID: 26679810 DOI: 10.1016/j.rvsc.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/16/2015] [Accepted: 10/17/2015] [Indexed: 01/17/2023]
Abstract
Functional studies indicate differences in newborn gastrointestinal morphology and physiology after a meal. Both water and solutes transfer across the intestinal epithelial membrane appear to occur via aquaporins (AQPs). Given that the physiological roles of AQP4 and AQP5 in the developing intestine have not been fully established, the objective of this investigation was to determine their distribution, expression and respective mRNA in the small intestine of colostrums-suckling buffalo calves by using immunohistochemistry, Western blot, and reverse transcriptase-PCR analysis. Results showed different tissue distribution between AQP4 and AQP5 with the presence of the former along the enteric neurons and the latter in the endocrine cells. Moreover, their expression levels were high in the ileum of colostrum-suckling buffalo calves. The data present a link between feeding, intestinal development and water homeostasis, suggesting the involvement of these channel proteins in intestinal permeability and fluid secretion/absorption during this stage of development after birth.
Collapse
Affiliation(s)
- C Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - A De Luca
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - M E Pero
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - G Vassalotti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - P Lombardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - L Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - N Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - A Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy; Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, Naples 80131, Italy.
| |
Collapse
|
7
|
Physical activity level is impaired and diet dependent in preterm newborn pigs. Pediatr Res 2015; 78:137-44. [PMID: 25918838 DOI: 10.1038/pr.2015.73] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/15/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Preterm infants show delayed development of motor function after birth. This may relate to functional immaturity of many organs, including the gut and brain. Using pigs as model for preterm infants, we hypothesized that early initiation of enteral feeding stimulates both gut growth and neonatal physical activity. METHODS In experiment 1, preterm and term pigs were fed parenteral nutrition (PN) or PN plus bovine colostrum (BC, 16-64 ml/kg/d enterally) for 5 d. In experiment 2, preterm pigs were fed PN+BC or PN+formula for 5 d. In experiment 3, preterm pigs were fed BC, formula, or human milk (HM) for 10 d. Incubator home cage activity (HCA) was quantified by continuous camera recordings. RESULTS Preterm birth was associated with reduced intestinal weight and HCA (experiment 1), and BC or formula supplementation increased intestinal weights and HCA (experiments 1+2). Enteral BC and HM feeding increased HCA, intestinal weights, and necrotizing enteritis resistance, relative to formula (experiment 3). CONCLUSION Preterm pigs show decreased physical activity, and the first enteral feeds diet dependently stimulate both gut growth and physical activity. The effects may arise from maturation of digestive, metabolic, and neurological functions, including gut serotonin production, by the first enteral feeds and milk bioactive factors.
Collapse
|
8
|
Jiang P, Sangild PT. Intestinal proteomics in pig models of necrotising enterocolitis, short bowel syndrome and intrauterine growth restriction. Proteomics Clin Appl 2014; 8:700-14. [PMID: 24634357 DOI: 10.1002/prca.201300097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
Necrotising enterocolitis (NEC), short bowel syndrome (SBS) and intrauterine growth restriction (IUGR) are three conditions associated with intestinal dysfunction in newborn infants, particularly those born preterm. Piglet (Sus scrofa) models have recently been developed for NEC, SBS and IUGR, and tissue proteomic analyses have identified unknown pathways and new prognostic disease markers. Intestinal HSPs, iron metabolism proteins and proteins related to amino acid (e.g. arginine) and glucose metabolism are consistently affected by NEC progression and some of these proteins are also affected by SBS and IUGR. Parallel changes in some plasma and urinary proteins (e.g. haptoglobin, globulins, complement proteins, fatty acid binding proteins) may mirror the intestinal responses and pave the way to biomarker discovery. Explorative non-targeted proteomics provides ideas about the cellular pathways involved in intestinal adaptation during the critical neonatal period. Proteomics, combined with other -omic techniques, helps to get a more holistic picture of intestinal adaptation during NEC, SBS and IUGR. Explorative -omic research methods also have limitations and cannot replace, but only supplement, classical hypothesis-driven research that investigate disease mechanisms using a single or few endpoints.
Collapse
Affiliation(s)
- Pingping Jiang
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
9
|
Sangild PT, Thymann T, Schmidt M, Stoll B, Burrin DG, Buddington RK. Invited review: the preterm pig as a model in pediatric gastroenterology. J Anim Sci 2013; 91:4713-29. [PMID: 23942716 DOI: 10.2527/jas.2013-6359] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At birth, the newborn mammal undergoes a transition from a sterile uterine environment with a constant nutrient supply, to a microbe-rich environment with intermittent oral intake of complex milk nutrients via the gastrointestinal tract (GIT). These functional challenges partly explain the relatively high morbidity and mortality of neonates. Preterm birth interrupts prenatal organ maturation, including that of the GIT, and increases disease risk. Exemplary is necrotizing enterocolitis (NEC), which is associated closely with GIT immaturity, enteral feeding, and bacterial colonization. Infants with NEC may require resection of the necrotic parts of the intestine, leading to short bowel syndrome (SBS), characterized by reduced digestive capacity, fluid loss, and dependency on parenteral nutrition. This review presents the preterm pig as a translational model in pediatric gastroenterology that has provided new insights into important pediatric diseases such as NEC and SBS. We describe protocols for delivery, care, and handling of preterm pigs, and show how the immature GIT responds to delivery method and different nutritional and therapeutic interventions. The preterm pig may also provide a sensitive model for postnatal adaptation of weak term piglets showing high mortality. Attributes of the preterm pig model include close similarities with preterm infants in body size, organ development, and many clinical features, thereby providing a translational advantage relative to rodent models of GIT immaturity. On the other hand, the need for a sow surgical facility, a piglet intensive care unit, and clinically trained personnel may limit widespread use of preterm pigs. Studies on organ adaptation in preterm pigs help to identify the physiological basis of neonatal survival for hypersensitive newborns and aid in defining the optimal diet and rearing conditions during the critical neonatal period.
Collapse
Affiliation(s)
- P T Sangild
- Department of Nutrition, Exercise, and Sports
| | | | | | | | | | | |
Collapse
|
10
|
Premature delivery reduces intestinal cytoskeleton, metabolism, and stress response proteins in newborn formula-fed pigs. J Pediatr Gastroenterol Nutr 2013; 56:615-22. [PMID: 23364244 DOI: 10.1097/mpg.0b013e318288cf71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Preterm infants often show intolerance to the first enteral feeds, and the structural and functional basis of this intolerance remains unclear. We hypothesized that preterm and term neonates show similar gut trophic responses to feeding but different expression of intestinal functional proteins, thus helping to explain why preterm neonates are more susceptible to feeding-induced disorders such as necrotizing enterocolitis (NEC). METHODS Incidence of feeding-induced NEC, intestinal mass, and brush border enzyme activities, and the intestinal proteome in preterm cesarean-delivered pigs were compared with the corresponding values in pigs delivered spontaneously at term. RESULTS For both preterm and term pigs, mucosal mass and maltase activity increased (50%-100%), whereas lactase decreased (-50%), relative to values at birth. Only preterm pigs were highly NEC sensitive (30% vs 0% in term pigs, P < 0.05). By gel-based proteomics, 36 identified proteins differed in expression, with most proteins showing downregulation in preterm pigs, including proteins related to intestinal structure and actin filaments, stress response, protein processing, and nutrient metabolism. CONCLUSIONS Despite that enteral feeding induces rapid gut tropic response in both term and preterm neonates, the expression level of cellular proteins related to mucosal integrity, metabolism, and stress response differed markedly (including complement 3, prohibitin, ornithine carbamoyltransferase, and arginosuccinate synthetase). These proteins may play a role in the development of functional gut disorders and NEC in preterm neonates.
Collapse
|
11
|
Zacharko-Siembida A, Valverde Piedra JL, Szymańczyk S, Arciszewski MB. Immunolocalization of NOS, VIP, galanin and SP in the small intestine of suckling pigs treated with red kidney bean (Phaseolus vulgaris) lectin. Acta Histochem 2013; 115:219-25. [PMID: 22819292 DOI: 10.1016/j.acthis.2012.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 01/29/2023]
Abstract
Lectins belong to a family of glycoproteins that can act both beneficially and detrimentally on the morphology of the small intestine. The aim of the study was to determine whether experimental treatment with red kidney bean (Phaseolus vulgaris) lectin influences the chemical code of the small intestine nervous system of suckling pigs. The immunolocalization sites of vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), substance P (SP) and galanin were determined in control and lectin-treated animals. In all segments of the small intestine (duodenum, jejunum, ileum), the subpopulations of VIP-, NOS-, SP- and galanin-immunoreactive (IR) myenteric neurons were unchanged. After lectin stimulation, increased proportions of NOS-IR and decreased numbers of VIP-IR submucous neurons/mucosa innervating nerve fibers were observed in the duodenum, jejunum and ileum. In lectin-treated animals down-regulation of submucous neurons expressing SP and up-regulation of galanin-IR submucous neurons were seen in the duodenum and jejunum (but not in the ileum). The distribution patterns of NOS-IR, galanin-IR and SP-IR nerve fibers supplying the duodenum, jejunum and ileum of the lectin-treated animals showed no substantial differences in relation to control piglets. We conclude that exposure to red kidney bean (P. vulgaris) lectin substantially changes the chemical content of VIP, NOS, SP and galanin in submucous neurons of the small intestine. These results are in line with previous findings outlining the key role(s) of these substances in enteric neuroplasticity processes and may constitute the basis for further functional studies on maturation of the gut.
Collapse
Affiliation(s)
- Anna Zacharko-Siembida
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | | | | | | |
Collapse
|
12
|
Buddington RK, Sangild PT, Hance B, Huang EY, Black DD. Prenatal gastrointestinal development in the pig and responses after preterm birth. J Anim Sci 2012; 90 Suppl 4:290-8. [DOI: 10.2527/jas.54604] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- R. K. Buddington
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN 38117
| | - P. T. Sangild
- Department of Human Nutrition, University of Copenhagen, Denmark, DK-1958
| | - B. Hance
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN 38117
| | - E. Y. Huang
- Department of Surgery, LeBonheur Children's Hospital and the University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN 38105
| | - D. D. Black
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
13
|
Castro M, Muñoz JM, Arruebo MP, Murillo MD, Arnal C, Bonafonte JI, Plaza MA. Involvement of neuronal nitric oxide synthase (nNOS) in the regulation of migrating motor complex (MMC) in sheep. Vet J 2011; 192:352-8. [PMID: 21995890 DOI: 10.1016/j.tvjl.2011.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/29/2011] [Accepted: 09/07/2011] [Indexed: 01/17/2023]
Abstract
The objectives of this study were to evaluate the role of nitric oxide (NO) synthase isoforms (nNOS, eNOS, and iNOS) in the regulation of the migrating motor complex (MMC) in sheep using electromyography and their expression in the gastrointestinal (GI) tract by Western blot (WB) and immunohistochemistry. Intravenous administration of L-NAME or the nNOS inhibitor 7-nitroindazole (7-NI) decreased the MMC interval. Myoelectric activity of intestinal phase II was increased, whereas antral activity was reduced. These effects were blocked by L-arginine. Inhibitors of either iNOS (aminoguanidine and S-methylisothiourea) or eNOS (L-NIO) were ineffective. The NO donor sodium nitroprusside decreased GI myoelectric activity, inhibited the MMC pattern, and prevented the effects induced by L-NAME and 7-NI in the intestine. Intracerebroventricular administration of these agents did not modify GI motility. In the rumen, abomasal antrum, duodenum, and jejunum, WB showed three bands at about 155, 145, and 135kDa corresponding to nNOS, and a 140-kDa band (eNOS); however iNOS was not detected. Positive nNOS immunostaining was observed in neurons of the myenteric and submucous plexus of all GI tissues, while eNOS was found in the endothelial cells, ruminal and intestinal epithelium, as well as in some enteric neurons and in endocrine-like cells of the duodenal Brunner's glands. In contrast, only weak iNOS immunoreactivity was found in ruminal epithelium. Taken together, our results suggest that NO, synthesized at a peripheral level by nNOS, is tonically inhibiting the MMC pattern and intestinal motility in sheep.
Collapse
Affiliation(s)
- M Castro
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Jiang P, Wan JMF, Sit WH, Lee CL, Schmidt M, Sangild PT. Enteral feeding in utero induces marked intestinal structural and functional proteome changes in pig fetuses. Pediatr Res 2011; 69:123-8. [PMID: 21045752 DOI: 10.1203/pdr.0b013e3182042874] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intestinal adaptation from parenteral to enteral nutrition is crucial for survival and growth of newborns. Rapid feeding-induced gut maturation occurs immediately after birth in both preterm and term neonates, but it remains unclear whether the responses depend on factors related to birth transition (e.g. bacterial colonization, endocrine, and metabolic changes). We hypothesized that enteral feeding matures the immature intestine, even in fetuses before birth. Hence, control pig fetuses were compared with fetuses fed with milk formula for 24 h in utero. Gel-based proteomics showed that feeding-induced changes in 38 proteins, along with marked increases in intestinal mass and changes in activities of brush border enzymes. Physiological functions of the identified proteins were related to enterocyte apoptosis (e.g. caspase 1) and nutrient metabolism (e.g. citric acid cycle proteins). Many of the differentiated proteins were similar to those identified previously in preterm pigs fed with the same formula after birth, except that effects on proteins related to inflammatory lesions (e.g. heat shock proteins) were absent. Our results show that enteral feeding, independently of the birth transition, induces marked gut maturation and proteome change in the immature intestine. Hence, immediate postnatal feeding-induced gut changes are largely independent of factors related to the birth transition.
Collapse
Affiliation(s)
- Pingping Jiang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Siggers RH, Siggers J, Thymann T, Boye M, Sangild PT. Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis. J Nutr Biochem 2010; 22:511-21. [PMID: 21193301 DOI: 10.1016/j.jnutbio.2010.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 08/23/2010] [Indexed: 02/07/2023]
Abstract
The gastrointestinal inflammatory disorder, necrotizing enterocolitis (NEC), is among the most serious diseases for preterm neonates. Nutritional, microbiological and immunological dysfunctions all play a role in disease progression but the relationship among these determinants is not understood. The preterm gut is very sensitive to enteral feeding which may either promote gut adaptation and health, or induce gut dysfunction, bacterial overgrowth and inflammation. Uncontrolled inflammatory reactions may be initiated by maldigestion and impaired mucosal protection, leading to bacterial overgrowth and excessive nutrient fermentation. Tumor necrosis factor alpha, toll-like receptors and heat-shock proteins are identified among the immunological components of the early mucosal dysfunction. It remains difficult, however, to distinguish the early initiators of NEC from the later consequences of the disease pathology. To elucidate the mechanisms and identify clinical interventions, animal models showing spontaneous NEC development after preterm birth coupled with different forms of feeding may help. In this review, we summarize the literature and some recent results from studies on preterm pigs on the nutritional, microbial and immunological interactions during the early feeding-induced mucosal dysfunction and later NEC development. We show that introduction of suboptimal enteral formula diets, coupled with parenteral nutrition, predispose to disease, while advancing amounts of mother's milk from birth (particularly colostrum) protects against disease. Hence, the transition from parenteral to enteral nutrition shortly after birth plays a pivotal role to secure gut growth, digestive maturation and an appropriate response to bacterial colonization in the sensitive gut of preterm neonates.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/microbiology
- Gastrointestinal Tract/growth & development
- Gastrointestinal Tract/immunology
- Gastrointestinal Tract/microbiology
- Heat-Shock Proteins/metabolism
- Humans
- Immune System/immunology
- Infant Nutritional Physiological Phenomena
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/immunology
- Infant, Premature, Diseases/microbiology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestine, Small/metabolism
- Metagenome/physiology
Collapse
Affiliation(s)
- Richard H Siggers
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
16
|
di Giancamillo A, Vitari F, Bosi G, Savoini G, Domeneghini C. The chemical code of porcine enteric neurons and the number of enteric glial cells are altered by dietary probiotics. Neurogastroenterol Motil 2010; 22:e271-8. [PMID: 20524986 DOI: 10.1111/j.1365-2982.2010.01529.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The enteric nervous system (ENS) contains chemically coded populations of neurons that serve specific functions for the control of the gastrointestinal tract. The ability of neurons to modify their chemical code in response to luminal changes has recently been discovered. It is possible that enteric neuronal plasticity may sustain the adaptability of the gut to changes in intestinal activity or injury, and that gut neurons may respond to an altered intestinal environment by changing their neuropeptide expression. METHODS We used immunohistochemical methods to investigate the presence and localization of several neuronal populations and enteric glia in both the small (ileum) and large (cecum) intestine of piglets. We assessed their abundance in submucosal and myenteric plexus from animals treated with the probiotic Pediococcus acidilactici compared with untreated controls. KEY RESULTS The treated piglets had a larger number of galanin- and calcitonin gene-related peptide (CGRP)-immunoreactive neurons than controls, but this was limited to the submucosal plexus ganglia of the ileum. Moreover, immunohistochemistry revealed that glial fibrillary acidic protein-positive enteric glial cells were significantly higher in the inner and outer submucosal plexuses of treated animals. CONCLUSIONS & INFERENCES The neuronal and glial changes described here illustrate plasticity of the ENS in response to an altered luminal environment in the gastrointestinal tract.
Collapse
Affiliation(s)
- A di Giancamillo
- Department of Veterinary Sciences and Technology for Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
17
|
Bovine colostrum is superior to enriched formulas in stimulating intestinal function and necrotising enterocolitis resistance in preterm pigs. Br J Nutr 2010; 105:44-53. [DOI: 10.1017/s0007114510003168] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Milk contains immunomodulatory compounds that may be important to protect the immature intestine in preterm neonates from harmful inflammatory reactions involved in disorders like necrotising enterocolitis (NEC). We hypothesised that bovine colostrum and milk formulas enriched with sialic acids (SL), gangliosides (Gang) or osteopontin (OPN) would improve gastrointestinal function and NEC resistance in preterm neonates. Forty-seven caesarean-delivered preterm pigs were given total parenteral nutrition for 2 d followed by 1·5 d of enteral feeding. In Expt 1, a control formula was compared with an OPN-enriched formula (n 13), while Expt 2 compared a control formula with bovine colostrum or formulas enriched with Gang or SL (n 4–6). OPN enrichment decreased NEC severity relative to control formula (P < 0·01), without any significant effects on NEC incidence, digestive enzyme activities and hexose absorption. Neither SL- nor Gang-enriched formulas improved NEC resistance or digestive functions, while all the intestinal functional parameters were significantly improved in pigs fed bovine colostrum, relative to formula. The effects in vivo were supported in vitro by bacteria- and dose-dependent modulation by colostrum whey of the cytokine response from bacteria-stimulated murine bone marrow-derived dendritic cells (DC). In conclusion, OPN had only moderate NEC-protective effects, while formulas enriched with Gang or SL were ineffective. The observed modulation of DC cytokine response by bovine colostrum whey in vitro may be due to a synergistic action of various milk bioactives, and it may explain its beneficial effects on NEC development and intestinal function in a piglet model of preterm infants.
Collapse
|
18
|
Schäfer KH, Van Ginneken C, Copray S. Plasticity and neural stem cells in the enteric nervous system. Anat Rec (Hoboken) 2010; 292:1940-52. [PMID: 19943347 DOI: 10.1002/ar.21033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to microenvironmental influences, be it in inflammatory bowel diseases or changing dietary habits. The presence of neural stem cells in the pre-, postnatal, and adult gut might be one of the prerequisites to adapt to changing conditions. During the last decade, the ENS has increasingly come into the focus of clinical neural stem cell research, forming a considerable pool of neural crest derived stem cells, which could be used for cell therapy of dysganglionosis, that is, diseases based on the deficient or insufficient colonization of the gut by neural crest derived stem cells; in addition, the ENS could be an easily accessible neural stem cell source for cell replacement therapies for neurodegenerative disorders or traumatic lesions of the central nervous system.
Collapse
Affiliation(s)
- Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, Zweibrücken, Germany.
| | | | | |
Collapse
|
19
|
Oste M, Van Haver E, Thymann T, Sangild P, Weyns A, Van Ginneken CJ. Formula Induces Intestinal Apoptosis in Preterm Pigs Within a Few Hours of Feeding. JPEN J Parenter Enteral Nutr 2010; 34:271-9. [DOI: 10.1177/0148607109337540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marijke Oste
- Laboratory of Veterinary Anatomy and Embryology, Department of Veterinary Medicine, University of Antwerp, Belgium
| | - Els Van Haver
- Laboratory of Veterinary Anatomy and Embryology, Department of Veterinary Medicine, University of Antwerp, Belgium
| | - Thomas Thymann
- Department of the Reproduction Faculty of Live Sciences, University of Copenhagen, Denmark
| | | | - André Weyns
- Laboratory of Veterinary Anatomy and Embryology, Department of Veterinary Medicine, University of Antwerp, Belgium
| | - Christa J. Van Ginneken
- Laboratory of Veterinary Anatomy and Embryology, Department of Veterinary Medicine, University of Antwerp, Belgium
| |
Collapse
|
20
|
Diet-dependent mucosal colonization and interleukin-1beta responses in preterm pigs susceptible to necrotizing enterocolitis. J Pediatr Gastroenterol Nutr 2009; 49:90-8. [PMID: 19516189 DOI: 10.1097/mpg.0b013e31818de393] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Intestinal colonization challenges the neonatal innate immune system, especially in newborns with an immature immune response lacking the supportive bioactive components from mother's milk. Accordingly, formula-fed preterm pigs frequently show bacterial overgrowth, mucosal atrophy, and gut lesions reflecting necrotizing enterocolitis (NEC) within the first days after birth. We hypothesized that NEC development is related to a diet-dependent bacterial adherence and a subsequent proinflammatory cytokine response in the gut mucosa immediately after introduction of enteral food. MATERIALS AND METHODS Premature piglets (92% gestation) received 2 to 3 days of total parenteral nutrition followed by 0, 8, or 17 hours of enteral formula or sow's colostrum feeding. RESULTS Following 8 hours, but not 17 hours, of colostrum feeding, a reduced number of intestinal samples with adherent bacteria (both Gram-negative and Gram-positive bacteria) was counted compared with 0 or 8 hours of formula feeding. Besides a more dense colonization, formula feeding leads to higher intestinal interleukin-1beta (IL-1beta) levels and more NEC-like lesions from 8 hours onward. The load of adherent bacteria was especially high in NEC lesions. Toll-like receptor 4 was detected in enteroendocrine, neuronal, and smooth muscle cells, potentially mediating the increase in IL-1beta levels by Gram-negative bacteria. CONCLUSIONS Formula feeding facilitates bacterial adherence and the development of a proinflammatory state of the intestine, which may be among the key factors that predispose formula-fed preterm neonates to NEC.
Collapse
|
21
|
Jiang P, Sangild PT, Sit WH, Ngai HHY, Xu R, Siggers JLA, Wan JMF. Temporal Proteomic Analysis of Intestine Developing Necrotizing Enterocolitis following Enteral Formula Feeding to Preterm Pigs. J Proteome Res 2008; 8:72-81. [DOI: 10.1021/pr800638w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pingping Jiang
- Division of Agricultural, Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P.R. China, Department of Human Nutrition, Faculty of Life Science, University of Copenhagen, 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| | - Per T. Sangild
- Division of Agricultural, Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P.R. China, Department of Human Nutrition, Faculty of Life Science, University of Copenhagen, 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| | - Wai-Hung Sit
- Division of Agricultural, Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P.R. China, Department of Human Nutrition, Faculty of Life Science, University of Copenhagen, 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| | - Heidi Hoi-Yee Ngai
- Division of Agricultural, Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P.R. China, Department of Human Nutrition, Faculty of Life Science, University of Copenhagen, 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| | - Ruojun Xu
- Division of Agricultural, Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P.R. China, Department of Human Nutrition, Faculty of Life Science, University of Copenhagen, 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| | - Jayda Lee Ann Siggers
- Division of Agricultural, Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P.R. China, Department of Human Nutrition, Faculty of Life Science, University of Copenhagen, 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| | - Jennifer Man-Fan Wan
- Division of Agricultural, Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P.R. China, Department of Human Nutrition, Faculty of Life Science, University of Copenhagen, 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
22
|
Bjornvad CR, Thymann T, Deutz NE, Burrin DG, Jensen SK, Jensen BB, Mølbak L, Boye M, Larsson LI, Schmidt M, Michaelsen KF, Sangild PT. Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1092-103. [PMID: 18818317 DOI: 10.1152/ajpgi.00414.2007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Preterm neonates have an immature gut and metabolism and may benefit from total parenteral nutrition (TPN) before enteral food is introduced. Conversely, delayed enteral feeding may inhibit gut maturation and sensitize to necrotizing enterocolitis (NEC). Intestinal mass and NEC lesions were first recorded in preterm pigs fed enterally (porcine colostrum, bovine colostrum, or formula for 20-40 h), with or without a preceding 2- to 3-day TPN period (n = 435). Mucosal mass increased during TPN and further after enteral feeding to reach an intestinal mass similar to that in enterally fed pigs without TPN (+60-80% relative to birth). NEC developed only after enteral feeding but more often after a preceding TPN period for both sow's colostrum (26 vs. 5%) and formula (62 vs. 39%, both P < 0.001, n = 43-170). Further studies in 3-day-old TPN pigs fed enterally showed that formula feeding decreased villus height and nutrient digestive capacity and increased luminal lactic acid and NEC lesions, compared with colostrum (bovine or porcine, P < 0.05). Mucosal microbial diversity increased with enteral feeding, and Clostridium perfringens density was related to NEC severity. Formula feeding decreased plasma arginine, citrulline, ornithine, and tissue antioxidants, whereas tissue nitric oxide synthetase and gut permeability increased, relative to colostrum (all P < 0.05). In conclusion, enteral feeding is associated with gut dysfunction, microbial imbalance, and NEC in preterm pigs, especially in pigs fed formula after TPN. Conversely, colostrum milk diets improve gut maturation and NEC resistance in preterm pigs subjected to a few days of TPN after birth.
Collapse
Affiliation(s)
- Charlotte R Bjornvad
- Dept. of Human Nutrition, Univ. of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C., Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
van Haver ER, de Vooght L, Oste M, Sangild PT, Thymann T, Weyns ALM, van Ginneken CJ. Postnatal and diet-dependent increases in enteric glial cells and VIP-containing neurones in preterm pigs. Neurogastroenterol Motil 2008; 20:1070-9. [PMID: 18643892 DOI: 10.1111/j.1365-2982.2008.01160.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A mature enteric nervous system (ENS) is required to ensure a normal pattern of intestinal motility in order to regulate digestion after birth. We hypothesized that neuronal and glial components of the ENS would mature during the first postnatal days in preterm pigs that are a sensitive animal model of food intolerance and necrotizing enterocolitis (NEC). Stereological volume densities of the general neuronal population [assessed by betaIII-tubulin immunoreactivity (IR)] and subsets of neuronal (VIP-IR and nitrergic IR) and glial cells (GFAP-IR and S100-IR) were determined in the small intestine of newborn preterm piglets (93% gestation), after 3 days of receiving total parenteral nutrition (TPN) and after 3 days of TPN plus 2 days of enteral feeding with sow's colostrum or milk formula. Following TPN, VIP in the myenteric and inner submucous plexus and GFAP in the inner submucous plexus increased, while the relative volume of the total neuronal population remained constant. Introduction of enteral food induced variable degrees of food intolerance and NEC, especially after formula feeding, a diet that gave rise to a higher myenteric VIP and GFAP content in the inner submucous plexus than colostrum feeding. However, the ENS seemed unaffected by the presence of NEC-like intestinal lesions. Nevertheless, this study shows that the ENS is highly plastic during the first days after premature birth and adapts in an age- and diet-dependent manner. The observed postnatal adaptation in enteric VIP and GFAP may help to maintain intestinal homeostasis during suboptimal feeding regimens in preterm neonates.
Collapse
Affiliation(s)
- E R van Haver
- Department of Veterinary Medicine, University of Antwerp, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The impact of neonatal nutrition on the health status of the newborn and incidence of disease in later life is a topic of intense interest. Animal models are an invaluable tool to identify mechanisms that mediate the effect of nutrition on neonatal development and metabolic function. This review highlights recently developed animal models that are being used to study neonatal human nutrition. RECENT FINDINGS In recent years, mice, rats, and pigs have become the most frequently used animal models to study human neonatal nutrition. Techniques for rearing newborn mice, preterm rats, and preterm pigs have been developed. Neonatal mice have great potential for mechanistic and genomic research in postnatal nutrition and related diseases. The neonatal pig model is valuable to study acute and chronic effects of parenteral and enteral nutrition on whole-body metabolism as well as specific tissues. To date, a wealth of information from studies with neonatal pigs has been applied to humans. SUMMARY Further development of neonatal animal models related to nutrition is required for the advancement of research in early postnatal nutrition. Improvement of nutritional support during this critical period of development will enhance immediate clinical outcomes and possibly prevent diseases later in life.
Collapse
Affiliation(s)
- Patrycja Puiman
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
25
|
Villanacci V, Bassotti G, Nascimbeni R, Antonelli E, Cadei M, Fisogni S, Salerni B, Geboes K. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil 2008; 20:1009-1016. [PMID: 18492026 DOI: 10.1111/j.1365-2982.2008.01146.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Various studies have described abnormalities of the enteric nervous system (ENS) in tissue samples from patients with chronic idiopathic inflammatory bowel diseases (IBD). The distribution of density of the different cell types of the ENS was however not studied in a systematic way. The aim of this study was to examine the density of neurons, enteroglial cells and interstitial cells of Cajal (ICC) in the different plexuses of the ENS in samples from patients with Crohn's disease (CD), ulcerative colitis (UC) and controls. Tissue samples from 16 patients with CD (ileum) and 16 patients with UC obtained in involved and non-involved areas were studied using immunohistochemistry with antibodies directed against neuron-specific enolase, S100, C-Kit and CD3. Sections were analysed blindly by two pathologists and the number of positive cells was counted for each type. Overall, an increase was noted for neuronal cell bodies, enteroglia and ICC in the deep muscular plexus in CD. In uninvolved areas of CD patients, the number of enteroglial cells was decreased. In UC, an increase of ICC in the muscularis propria and enteroglial cells was observed in diseased tissue. The study confirms the presence of abnormalities of the different cells of the ENS in IBD. The presence of lesions in samples from uninvolved areas, such as a reduction of enteroglia, supports a pathogenetic role of the ENS.
Collapse
Affiliation(s)
- V Villanacci
- 2nd Department of Pathology, Spedali Civili and University of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Buddington RK, Bering SB, Thymann T, Sangild PT. Aldohexose malabsorption in preterm pigs is directly related to the severity of necrotizing enterocolitis. Pediatr Res 2008; 63:382-7. [PMID: 18356743 DOI: 10.1203/pdr.0b013e318165bfed] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Necrotizing enterocolitis (NEC) causes morbidity and mortality among preterm infants and is associated with nutrient malabsorption. Therefore, a preterm pig model that spontaneously develops NEC was used to investigate the relationship between severity of NEC lesions and galactose absorption in vivo and carrier-mediated glucose absorption by intact mid small intestine. Preterm pigs collected by caesarian section at 92% of gestation received parenteral nutrition with and without minimal enteral nutrition for 48 h before conversion to enteral nutrition with colostrum or an enteral formula. Pigs were killed when symptoms of NEC were observed or after 36-40 h of enteral nutrition. NEC lesions decreased in vivo absorption of galactose and mannitol by more than 50% and abolished carrier-mediated glucose uptake by tissues with lesions. Moreover, when NEC lesions were restricted to the colon, small intestinal tissues that seemed clinically healthy had decreased in vitro glucose absorption due to reduced uptake via the sodium-dependent glucose transporter with little or no involvement of the apical facilitative glucose carrier. The present findings reveal a direct relationship between the severity of NEC lesions and the magnitude of sugar malabsorption that is detectable before clinical symptoms are evident.
Collapse
Affiliation(s)
- Randal K Buddington
- Department of Health and Sports Sciences, University of Memphis, Memphis, Tennessee 39152, USA.
| | | | | | | |
Collapse
|
27
|
Siggers RH, Thymann T, Jensen BB, Mølbak L, Heegaard PMH, Schmidt M, Buddington RK, Sangild PT. Elective cesarean delivery affects gut maturation and delays microbial colonization but does not increase necrotizing enterocolitis in preterm pigs. Am J Physiol Regul Integr Comp Physiol 2008; 294:R929-38. [DOI: 10.1152/ajpregu.00705.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although preterm birth and formula feeding increase the risk of necrotizing enterocolitis (NEC), the influences of cesarean section (CS) and vaginal delivery (VD) are unknown. Therefore, gut characteristics and NEC incidence and severity were evaluated in preterm pigs (92% gestation) delivered by CS or VD. An initial study showed that newborn CS pigs ( n = 6) had decreased gastric acid secretion, absorption of intact proteins, activity of brush-border enzymes and pancreatic hydrolases, plasma cortisol, rectal temperature, and changes in blood chemistry, indicating impaired respiratory function, compared with VD littermates ( n = 6). In a second experiment, preterm CS ( n = 16) and VD ( n = 16) pigs were given total parenteral nutrition (36 h) then fed porcine colostrum (VD-COL, n = 6; CS-COL, n = 6) or infant milk formula (VD-FORM, n = 10; CS-FORM, n = 10) for 2 days. Across delivery, FORM pigs showed significantly higher NEC incidence, tissue proinflammatory cytokines (IFN-γ and IL-6), Clostridium colonization, and impaired intestinal function, compared with COL pigs. NEC incidence was equal for CS (6/16) and VD (6/16) pigs, CS pigs had decreased bacterial diversity and density, higher villus heights, and increased brush-border enzyme activities (lactase, aminopeptidases) compared with VD pigs. In particular, VD-FORM pigs showed reduced mucosal proportions, reduced lactase and aminopeptidases, and increased proinflammatory cytokine IL-6 compared with CS-FORM ( P < 0.06). Despite the initial improvement of intestinal and metabolic functions following VD, gut function, and inflammation were similar, or more negatively affected in VD neonates than CS neonates. Both delivery modes exhibited positive and negative influences on the preterm gut, which may explain the similar NEC incidence.
Collapse
|
28
|
van Haver ER, Oste M, Thymann T, Sys SU, Lamers WH, Weyns ALM, Sangild PT, van Ginneken CJ. Enteral feeding reduces endothelial nitric oxide synthase in the caudal intestinal microvasculature of preterm piglets. Pediatr Res 2008; 63:137-42. [PMID: 18091345 DOI: 10.1203/pdr.0b013e31815f00f9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The initiation of enteral feeding represents a challenge to the neonatal intestinal microcirculation, especially in preterms where it predisposes to necrotizing enterocolitis (NEC). We hypothesized that a structural microvascular deficiency may occur when enteral feeding is initiated in preterm piglets susceptible to NEC. Stereologic volume densities of a pan-endothelial marker (vWF), and the main vasodilator endothelial nitric oxide synthase (eNOS), were determined along the small intestine of 1) unfed preterm piglets, 2) piglets receiving total parenteral nutrition (TPN) for 2-3 d, and 3) piglets fed 2 d sow's colostrum (TPN+SOW) or milk formula (TPN+FOR) following TPN. In the mucosa, vWF-density decreased in a cranio-caudal direction. A corresponding mucosal eNOS gradient appeared only after initiating enteral feeding. In TPN+SOW, eNOS induction may lag behind the mucosal growth of the caudal region. In TPN+FOR, formula-related factors (i.e. bacteria, cytokines) may suppress mucosal eNOS, indicated by increased stress-sensitive nuclear HIF1alpha staining. The low mucosal endothelial eNOS density was related to the presence of NEC lesions, maybe via increased hypoxia-sensitivity, especially in the caudal region as indicated by nuclear HIF1alpha-staining. Our results suggest an insufficient structural adaptation of the microvasculature to enteral feeding, especially of mucosal eNOS, which may lead to NEC.
Collapse
Affiliation(s)
- Els R van Haver
- Department of Veterinary Medicine, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nadalin S, Biglarnia AR, Testa G, Koppara TR, Schaffer R, Johnson C, Toetsch M, Broelsch CE, Malagó M. Role and significance of plasma citrulline in the early phase after small bowel transplantation in pigs. Transpl Int 2007; 20:425-31. [PMID: 17313447 DOI: 10.1111/j.1432-2277.2007.00460.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A reliable serological marker of acute cellular rejection (ACR) after small bowel transplantation (SBTx) is still missing. Plasma citrulline level (PCL) reflects the functional integrity of intestinal mucosa which is partially lost during ACR. The aim of our study was to investigate the role of PCL as marker of ACR after SBTx. Eighteen German landrace pigs were used and divided into three groups. Group 1 (G1), autologous SBTx (n = 4) as control; group 2 (G2), allogeneic SBTx without immunosuppression (IS) (n = 7) and group 3 (G3), allogeneic SBTx with IS (n = 7). IS consisted of tacrolimus and steroids without induction treatment. Observation period was 14 days. Mucosal biopsies were obtained intraoperatively and daily using a Thiry-Vella loop. ACR was differentiated into indeterminate, mild, moderate and severe using a standardized grading schema. PCL was measured daily. An ACR onset occurred generally from postoperative day 4 both in G2 and G3 as mild form and developed differently in the two groups: moderate to severe in G2 and indeterminate to mild in G3. A significant decline of PCL occurred only in cases of moderate and severe ACR, but not in cases of indeterminate and mild ACR. The PCL failed as a marker in the early diagnosis of ACR and became reliable only when advanced mucosal damage was present.
Collapse
Affiliation(s)
- Silvio Nadalin
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Preterm birth is associated with immature digestive function that may require the use of total parenteral nutrition and special oral feeding regimens. Little is known about the responses to oral food in the preterm neonate and how enteral nutrients affect the immature gastrointestinal tract (GIT). In vivo studies are difficult to perform in laboratory rodents because of their small body size and that of immature organs at birth, and this makes the large farm animals (e.g., pigs, cattle, sheep) more attractive models in this field. In these species, preterm delivery at 88%-95% gestation is associated clinical complications and degrees of GIT immaturity similar to those in infants born at 70%-90% gestation. Studies in both animals and infants indicate that the immature GIT responds to the first enteral food with rapid increases in gut mass and surface area, blood flow, motility, digestive capacity, and nutrient absorption. To a large extent, the enteral food responses are birth independent, and can be elicited also in utero, at least during late gestation. Nevertheless, preterm neonates show compromised GIT structure, function, and immunology, particularly when delivered by caesarean section and fed diets other than mother's milk. Formula-fed preterm infants are thus at increased risk of developing diseases such as necrotizing enterocolitis, unless special care is taken to avoid excessive nutrient fermentation and bacterial overgrowth. The extent to which results obtained in preterm animals (most notably the pig) can be used to reflect similar conditions in preterm infants is discussed.
Collapse
Affiliation(s)
- Per T Sangild
- Department of Human Nutrition, Royal Veterinary and Agricultural and Veterinary University, 30 Rolighedsvej, Frederiksberg C, Denmark.
| |
Collapse
|
31
|
Danielsen M, Thymann T, Jensen BB, Jensen ON, Sangild PT, Bendixen E. Proteome profiles of mucosal immunoglobulin uptake in inflamed porcine gut. Proteomics 2006; 6:6588-96. [PMID: 17111438 DOI: 10.1002/pmic.200600463] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acquisition of passive immunity by endocytosis of intact immunoglobulins (Ig) from colostrum is critical for prevention of intestinal and systemic diseases in neonatal mammals. We compared proteome patterns of healthy and inflamed gut tissues from pre-term piglets to investigate the effect of inflammation on acquisition of passive immunity. A clear difference in the two-dimensional gel electrophoresis protein patterns between healthy and inflamed intestinal tissues was observed, suggesting that inflamed tissues failed to absorb and transfer Ig from colostrum to epithelial cells. We have mapped and identified the Ig proteins that are taken up by healthy intestinal tissues, and found that isoforms of the IgA and IgG heavy chain and Ig kappa and lambda light chains were internalized. Our results indicate that colostrum protein uptake in the porcine gut is a selective process that is obstructed in inflamed pre-term gut.
Collapse
Affiliation(s)
- Marianne Danielsen
- Department of Animal Health, Welfare and Nutrition, Danish Institute of Agricultural Sciences, Tjele, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Havranek T, Thompson Z, Carver JD. Factors that influence mesenteric artery blood flow velocity in newborn preterm infants. J Perinatol 2006; 26:493-7. [PMID: 16826195 DOI: 10.1038/sj.jp.7211551] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To identify demographic and clinical variables that relate to the postnatal increase in intestinal blood flow velocity in preterm infants. STUDY DESIGN Fasting or preprandial peak systolic velocity (PSV) and time-averaged mean velocity (TAMV) in the superior mesenteric artery were measured once each day for the first 5 days of life. We investigated the relationship between blood flow velocity and the following variables: birth weight, gestational age, feeding volumes, number of days to reach full feeding volumes, type of feeding given, continuous positive airway pressure (CPAP) administration and hyperalimentation (HAL) administration. RESULTS Twenty-five infants with a mean birth weight of 1740 g and mean gestational age of 31.8 weeks were studied. There were significant increases in PSV (P < 0.001) and TAMV (P = 0.005) from postnatal day 1 to 5. The postnatal increase in TAMV and PSV was attenuated in infants administered CPAP or HAL for > or =3 days; the results remained significant after controlling for birth weight and gestational age. There was a significant correlation (P < 0.02) between volume of enteral feedings given on 2 of 5 days for TAMV, and on 1 of 5 days for PSV. CONCLUSIONS These data support previous findings of significant increases in intestinal blood flow in preterm infants during the first week of life, and of inconsistent effects of enteral feeding volumes on fasting or preprandial intestinal blood flow. The reasons for, and the clinical implications of, attenuated increases in postnatal intestinal blood flow in infants on CPAP or HAL require further investigation.
Collapse
Affiliation(s)
- T Havranek
- Department of Pediatrics, Division of Neonatology, University of South Florida College of Medicine, USF Pediatrics, Tampa, FL 33606, USA.
| | | | | |
Collapse
|
33
|
Sangild PT, Siggers RH, Schmidt M, Elnif J, Bjornvad CR, Thymann T, Grondahl ML, Hansen AK, Jensen SK, Boye M, Moelbak L, Buddington RK, Weström BR, Holst JJ, Burrin DG. Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology 2006; 130:1776-92. [PMID: 16697741 DOI: 10.1053/j.gastro.2006.02.026] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Accepted: 02/01/2006] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Preterm birth and formula feeding are key risk factors associated with necrotizing enterocolitis (NEC) in infants, but little is known about intestinal conditions that predispose to disease. Thus, structural, functional, and microbiologic indices were used to investigate the etiology of spontaneous NEC development in preterm pigs. METHODS Piglets were delivered by cesarean section at 92% gestation, reared in infant incubators, and fed infant formula or colostrum every 3 hours (n = 120) until tissue collection at 1-2 days of age. RESULTS Clinical and histopathologic signs of NEC were observed in 57% of pigs fed FORMULA (26/46) and in 5% of pigs fed COLOSTRUM (2/38) (P < .05). Relative to COLOSTRUM, both healthy and sick FORMULA pigs had reduced intestinal villous heights, enzyme activities, nutrient absorption, and antioxidant levels and higher inducible nitric oxide synthetase activity (P < .05). In healthy pigs, mucosal microbial diversity remained low and diet independent. NEC pigs showed bacterial overgrowth, and a high mucosal density of Clostridium perfringens was detected in some but not all pigs. Germ-free conditions and antiserum against Clostridium perfringens toxin prevented intestinal dysfunction and NEC in formula-fed pigs, whereas the gut trophic factors, epidermal growth factor, and glucagon-like peptide 2 had limited effects. CONCLUSIONS A subclinical, formula-induced mucosal atrophy and dysfunction predispose to NEC and bacterial overgrowth. The adverse feeding effects are colonization dependent and may be reduced by factors in colostrum that include antibodies against aggressive toxins such as those of Clostridium perfringens.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Biopsy, Needle
- Causality
- Colony Count, Microbial
- Colostrum
- DNA, Bacterial/analysis
- Enterocolitis, Necrotizing/epidemiology
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/prevention & control
- Female
- Gastrointestinal Tract/microbiology
- Immunohistochemistry
- Infant Formula/administration & dosage
- Intestinal Absorption/physiology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Intestine, Small/embryology
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Molecular Sequence Data
- Polymerase Chain Reaction/methods
- Pregnancy
- Pregnancy, Animal
- Premature Birth
- Probability
- Risk Factors
- Sensitivity and Specificity
- Swine
Collapse
Affiliation(s)
- Per T Sangild
- Divisions of Nutrition and Reproduction, Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|