1
|
Shanmugasundaram R, Khochamit N, Selvaraj RK, Mortada M, Siripornadulsil S, Siripornadulsil W. In Vitro Characterization of Probiotic Strains Bacillus subtilis and Enterococcus durans and Their Effect on Broiler Chicken Performance and Immune Response During Salmonella Enteritidis Infection. Microorganisms 2025; 13:217. [PMID: 40005584 PMCID: PMC11857266 DOI: 10.3390/microorganisms13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
In vitro experiments were conducted to characterize the effect of bile salt supplementation and pH on the proliferation of Bacillus subtilis CE330 and Enterococcus durans CH33 probiotics and in vivo experiments on production performance, cecal Salmonella enterica serovar Enteritidis (S. Enteritidis) load, and the immune response of broilers. A one-way ANOVA was used to examine the effect of bile and pH on probiotic species proliferation. B. subtilis. CE330 was more tolerant to high bile concentrations and pH levels compared to E. durans CH33. Bile concentrations between 3.0 and 4.0% and a pH range between 2 and 4 decreased (p < 0.05) the proliferation of E. durans CH33. In vitro, cell-free supernatants (CFSs) of B. subtilis CE330 and E. durans CH33 at a ratio of 1:1 significantly (p < 0.05) reduced S. Enteritidis proliferation, with the highest inhibition observed at a 5:1 ratio of E. durans CH33 CFS. The cultures of B. subtilis CE330 and E. durans CH33 with 4% bile salt for 72 h had a higher proline concentration of 56.95 (13.1-fold) and 20.09 (2.5-fold) µmol/g of fresh weight, respectively. A total of 144 one-day-old male Cobb broiler chicks were randomly allocated to four treatment groups-basal diet, basal diet + challenge, probiotics (B. subtilis CE330 and E. durans CH33, 0.5 g/kg feed), and probiotics + challenge in six replications. On day 14, birds in the challenge treatment were orally challenged with 1 × 108 CFU of S. Enteritidis. A two-way ANOVA was used to examine the effects of probiotic supplementation and Salmonella challenge on dependent variables after 10 d post-Salmonella infection. Probiotic supplementation did not alter the body weight gain, the feed conversion ratio, the intestinal histomorphology (p > 0.05), or IL-1β and IL-10 gene expression (p > 0.05) at 10 dpi. However, probiotic supplementation decreased the Salmonella load by 38% compared to the control group. In conclusion, B. subtilis CE330 and E. durans CH33 reduced cecal S. Enteritidis load by 38%, thereby demonstrating their potential as probiotic interventions to enhance food safety and serve as alternatives to antibiotics in poultry. Hence, when developing multi-strain probiotic formulations, it is essential to emphasize the biocompatibility of various strains within the host system.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Nalisa Khochamit
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | - Mohammad Mortada
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | |
Collapse
|
2
|
Fathima S, Al Hakeem WG, Shanmugasundaram R, Periyannan V, Varadhan R, Selvaraj RK. Effect of 125% and 135% arginine on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poult Sci 2024; 103:103826. [PMID: 38761462 PMCID: PMC11133980 DOI: 10.1016/j.psj.2024.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
The objective of this study was to evaluate the effects of 25% and 35% arginine supplementation in partially alleviating the effects of necrotic enteritis (NE) challenge on the production performance, intestinal integrity, and relative gene expression of tight junction proteins and inflammatory cytokines in broilers. Four hundred and eighty 1-day-old chicks were randomly allocated to the 4 treatments- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135%. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21 of age by oral gavage. The NE challenge significantly decreased body weight gain (BWG) (p < 0.05) and increased the feed conversion ratio (FCR) (p < 0.05). On d 21, the NE challenge also increased the jejunal lesion score (p < 0.05) and relative gene expression of IL-10 and decreased the expression of the tight junction proteins occludin (p < 0.05) and claudin-4 (p < 0.05). The 125% arginine diet significantly increased intestinal permeability (p < 0.05) and the relative gene expression of iNOS (p < 0.05) and IFN-γ (p < 0.05) on d 21 and the bile anti-C. perfringens IgA concentration by 39.74% (p < 0.05) on d 28. The 135% arginine diet significantly increased the feed intake during d 0 - 28 (p < 0.05) and 0 to 35 (p < 0.05) and increased the FCR on d 0 to 35 (p < 0.05). The 135% and 125% arginine diet increased the spleen CD8+: CD4+ T-cell ratio on d 28 (p < 0.05) and 35 (p < 0.05), respectively. The 135% arginine diet increased the CT CD8+:CD4+ T-cell ratio on d 35 (p < 0.05). In conclusion, the 125% and 135% arginine diets did not reverse the effect of the NE challenge on the growth performance. However, the 125% arginine diet significantly increased the cellular and humoral immune response to the challenge. Hence, the 125% arginine diet could be used with other feed additives to improve the immune response of the broilers during the NE challenge.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA USA
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Vasanthakumar Periyannan
- Department of Animal Nutrition, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ranganathan Varadhan
- Department of Veterinary Pharmacology, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA USA.
| |
Collapse
|
3
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Effect of arginine supplementation on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poult Sci 2024; 103:103815. [PMID: 38713988 PMCID: PMC11091696 DOI: 10.1016/j.psj.2024.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
The objective of this study was to evaluate the effect of 25% arginine supplementation as a functional amino acid in partially alleviating the detrimental effects of necrotic enteritis (NE) on the growth performance, serum biochemistry, gut integrity, and the relative gene expression of tight junction proteins and inflammatory cytokines in broilers during NE. Three hundred and sixty 1-day-old chicks were randomly allocated to 4 treatments in a 2 × 2 factorial arrangement -basal diet and 125% arginine diet, with or without NE challenge. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21. The NE challenge had a significant effect on the BWG (p < 0.05), FCR (p < 0.05), serum AST (p < 0.05), GLU (p < 0.05), and K+ (p < 0.05) levels, and intestinal permeability (p < 0.05) and jejunal lesion score (p < 0.05). A significant challenge × diet interaction effect was observed in the cecal tonsil CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 28 (p < 0.05) and spleen CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 35 (p < 0.05). Arginine supplementation significantly increased the CD8+: CD4+ T-cell ratio in uninfected birds but decreased the CD8+: CD4+ T-cell ratio in infected birds. On d 21, a significant interaction effect was observed on the relative expression of the iNOS gene (p < 0.05). Arginine supplementation significantly downregulated the expression of the iNOS gene in infected birds. A significant effect of the challenge (p < 0.05) was observed on the relative gene expression of the ZO-1 gene in the jejunum. NE challenge significantly downregulated the expression of the ZO-1 gene on d 21. In conclusion, arginine supplementation did not alleviate the depression in growth performance and disease severity during the NE challenge. However, arginine downregulated the expression of inflammatory cytokines and enzymes, preventing inflammatory injury to the tissues during NE. Hence, arginine might be supplemented with other alternatives to downregulate inflammatory response during NE in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
van der Klein SAS, Evans C, Marchal JLM, Gibbs K. Elucidating the Varying Impact of Necrotic Enteritis Using Performance and Health Indicators in Broiler Infection Models. Avian Dis 2024; 67:326-339. [PMID: 38300654 DOI: 10.1637/aviandiseases-d-23-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 02/02/2024]
Abstract
Necrotic enteritis (NE) continues to be a significant burden to the poultry industry, compounded by pressure to reduce antibiotic use. Researchers use NE-challenge models to study the infection biology of NE and as screening tools to develop potential novel interventions. Currently, data are limited comparing such models between research establishments, and few indicate which quantitative metrics provide the most accurate measure for determining the efficacy of interventions. We compared data from 10 independent NE-challenge trials incorporating six challenge models employed in four geographical regions to determine the extent of variability in bird responses and to determine, using principal component analysis (PCA), which variables discriminated most effectively between nonchallenged control (NC) and challenged control (CC) groups. Response variables related to growth performance (weight gain, feed intake, feed conversion), health (mortality, lesion scores, NE induction rate), and, in three trials only, gut integrity (tight junction protein claudin-1, claudin-2, and zonula occludens-1 expression, coccidia counts, and intestinal permeability [assessed by FITC-dextran assay]). Treatments included a CC, which varied between trials (for example, in Eimeria predisposition, Clostridium perfringens strain, and days of inoculation), and a NC. The degree of response to challenge in CC birds varied significantly among models and trials. In all trials, lesion scores 1 to 4 days postchallenge were increased in CC vs. NC birds and varied both within and among models (by 0.29-1.17 points and 0.05-2.50 points, respectively). In addition, NE-related mortality at day 28 was increased in CC vs. NC, both within and among models (by 1.79%-4.72% and 0.02%-16.70%, respectively), and final (day 35 or 42) body weight was reduced by 3.9%-14.4% and overall FCR increased by up to 27% across trials (P , 0.05). A PCA on the combined dataset including only performance indicators failed to adequately differentiate NC and CC groups. However, the combination of performance and gut integrity variables and standardization of data by trial and phase achieved greater resolution between groups. This indicated that the inclusion of both types of variables in future NE-challenge studies would enable the generation of more robust predictions about intervention efficacy from different types of infection models. A final PCA based on a subset of key indicator variables, including body weight, feed intake, feed conversion ratio, mortality, and lesion score, achieved a good level of separation between NC and CC status of birds and could, with further research, be a useful supplement to existing approaches for assessing and predicting the NE status of birds in the field.
Collapse
Affiliation(s)
- S A S van der Klein
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4, 2342 BH, Oegstgeest, the Netherlands,
| | - C Evans
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4, 2342 BH, Oegstgeest, the Netherlands
| | - J L M Marchal
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4, 2342 BH, Oegstgeest, the Netherlands
| | - K Gibbs
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4, 2342 BH, Oegstgeest, the Netherlands
| |
Collapse
|
5
|
Shah BR, Hakeem WA, Shanmugasundaram R, Selvaraj RK. Effect of synbiotic supplementation on production performance and severity of necrotic enteritis in broilers during an experimental necrotic enteritis challenge. Poult Sci 2023; 102:102959. [PMID: 37619505 PMCID: PMC10470215 DOI: 10.1016/j.psj.2023.102959] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
To evaluate the efficacy of synbiotic during a necrotic enteritis (NE) infection, a total of 360 day-old chicks were randomly assigned into 4 experimental groups in a 2 × 2 factorial setup: control, challenge, synbiotic (1 g/kg), and challenge + synbiotic, with 6 replicates. NE was induced by gavaging 1 × 104Eimeria maxima oocysts and 1 × 108 CFU/mL of Clostridium perfringens on d 14 (D14) and D19, 20, and 21, respectively. At D35, the NE challenge decreased the BW gain (P < 0.001) and increased feed conversion ratio (P = 0.03), whereas synbiotic supplementation decreased the feed intake (P = 0.04). At D21, NE challenge increased gut permeability (P < 0.001), decreased regulatory T cells (Tregs) in the cecal tonsil (CT) (P = 0.02), increased Tregs in the spleen (P = 0.02), decreased nitric oxide (NO) production in the spleen (P = 0.04) and decreased IL-10 expression in CT (P = 0.02), whereas synbiotic supplementation increased CD4+:CD8+ T cells in the spleen (P < 0.001) and decreased interferon (IFN)-γ expression in the jejunum (P = 0.07), however, synbiotic supplementation during NE challenge decreased mid-gut lesion score (P < 0.001), increased CD4+:CD8+ T cells in CT and decreased IgA production in bile (P < 0.001), compared to the control group. At D28, synbiotic supplementation decreased CD4+:CD8+ T cells in CT (P < 0.001), whereas synbiotic supplementation during NE challenge decreased Tregs in CT (P < 0.001) and increased NO production in the spleen (P = 0.04), compared to the control group. At D35, the NE challenge decreased CD4+:CD8+ T cells in the spleen (P = 0.03), decreased IgA production in bile (P = 0.02), decreased IL-10 expression in CT (P = 0.04), and decreased IL-10 (P = 0.009), IFN-γ (P = 0.03) and inducible nitric oxide synthase (P = 0.02) expression in the jejunum, whereas synbiotic supplementation increased Tregs in the spleen (P = 0.04), compared to control group. Synbiotic supplementation during the NE challenge decreased both IL-1β (P = 0.02) and IFN-γ (P = 0.001) expression in CT, compared to the control group. It can be concluded that synbiotic supplementation increases production performance by decreasing mid-gut lesions and enhancing protective immunity against NE, and efficiency of synbiotic could be improved by blending additional probiotics and prebiotics.
Collapse
Affiliation(s)
- Bikas R Shah
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Walid A Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, Agriculture Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Biernacki M, Conde T, Stasiewicz A, Surażyński A, Domingues MR, Domingues P, Skrzydlewska E. Restorative Effect of Microalgae Nannochloropsis oceanica Lipid Extract on Phospholipid Metabolism in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2023; 24:14323. [PMID: 37762626 PMCID: PMC10532178 DOI: 10.3390/ijms241814323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Ultraviolet B (UVB) radiation induces oxidative stress in skin cells, generating reactive oxygen species (ROS) and perturbing enzyme-mediated metabolism. This disruption is evidenced with elevated concentrations of metabolites that play important roles in the modulation of redox homeostasis and inflammatory responses. Thus, this research sought to determine the impacts of the lipid extract derived from the Nannochloropsis oceanica microalgae on phospholipid metabolic processes in keratinocytes subjected to UVB exposure. UVB-irradiated keratinocytes were treated with the microalgae extract. Subsequently, analyses were performed on cell lysates to ascertain the levels of phospholipid/free fatty acids (GC-FID), lipid peroxidation byproducts (GC-MS), and endocannabinoids/eicosanoids (LC-MS), as well as to measure the enzymatic activities linked with phospholipid metabolism, receptor expression, and total antioxidant status (spectrophotometric methods). The extract from N. oceanica microalgae, by diminishing the activities of enzymes involved in the synthesis of endocannabinoids and eicosanoids (PLA2/COX1/2/LOX), augmented the concentrations of anti-inflammatory and antioxidant polyunsaturated fatty acids (PUFAs), namely DHA and EPA. These concentrations are typically diminished due to UVB irradiation. As a consequence, there was a marked reduction in the levels of pro-inflammatory arachidonic acid (AA) and associated pro-inflammatory eicosanoids and endocannabinoids, as well as the expression of CB1/TRPV1 receptors. The microalgal extract also mitigated the increase in lipid peroxidation byproducts, specifically MDA in non-irradiated samples and 10-F4t-NeuroP in both control and post-UVB exposure. These findings indicate that the lipid extract derived from N. oceanica, by mitigating the deleterious impacts of UVB radiation on keratinocyte phospholipids, assumed a pivotal role in reinstating intracellular metabolic equilibrium.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| |
Collapse
|
7
|
Effects of synbiotic supplementation as an antibiotic growth promoter replacement on cecal Campylobacter jejuni load in broilers challenged with C. jejuni. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Xu Y, Ding X, Wang Y, Li D, Xie L, Liang S, Zhang Y, Li W, Fu A, Zhan X. Bacterial Metabolite Reuterin Attenuated LPS-Induced Oxidative Stress and Inflammation Response in HD11 Macrophages. Antioxidants (Basel) 2022; 11:1662. [PMID: 36139735 PMCID: PMC9495524 DOI: 10.3390/antiox11091662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Reuterin is well-known for its broad-spectrum antimicrobial ability, while the other potential bioactivity is not yet clear. The present study aims to investigate the immunomodulatory activity of reuterin on chicken macrophage HD11 cells for the first time and evaluate whether reuterin is able to regulate the lipopolysaccharide-stimulated inflammatory response. The results showed that the safe medication range of reuterin was less than 250 μM. Reuterin treatment for 6 h decreased the transcriptional of CD86, IL-1β and iNOS and increased the expression of CD206 in a dose-dependent way, but reuterin treatment for 12 h contrary increased the expression of IL-1β, IL-6 and IL-10. However, it was noticed that reuterin treatment for 12 h significantly decreased the production of reactive oxygen species (ROS) and suppressed the phagocytosis activity of HD11 macrophages against bacteria. Further, the results showed that preincubation or coincubation with reuterin significantly attenuated the promotive effects of lipopolysaccharide (LPS) on transcription of proinflammatory cytokines (including IL-1β, IL-6 and TNF-α) and obviously inhibited nitric oxide (NO) production as well as the protein expression of inducible nitric oxide synthase (iNOS). Meanwhile, Mechanism studies implied that reuterin might exert an anti-inflammatory effect on LPS-stimulated cells by downregulating the expression of TLR4/MyD88/TRAF6 and blocking the activation of NF-κB as well as MAPKs signaling pathways. Additionally, it was found that both pretreatment and cotreatment with reuterin remarkably inhibited the oxidative stress induced by LPS stimulation by activating the Nrf2/HO-1 signaling pathway and enhancing the activities of antioxidative enzymes. These findings suggested the immunoregulatory function of reuterin and indicated this bacterial metabolite was able to inhibit the inflammation and oxidative stress of HD11 macrophages once exposed to LPS stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aikun Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Xiuan Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| |
Collapse
|
9
|
Acevedo-Villanueva K, Akerele G, Al-Hakeem W, Adams D, Gourapura R, Selvaraj R. Immunization of Broiler Chickens With a Killed Chitosan Nanoparticle Salmonella Vaccine Decreases Salmonella Enterica Serovar Enteritidis Load. Front Physiol 2022; 13:920777. [PMID: 35923229 PMCID: PMC9340066 DOI: 10.3389/fphys.2022.920777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
There is a critical need for an oral-killed Salmonella vaccine for broilers. Chitosan nanoparticle (CNP) vaccines can be used to deliver Salmonella antigens orally. We investigated the efficacy of a killed Salmonella CNP vaccine on broilers. CNP vaccine was synthesized using Salmonella enterica serovar Enteritidis (S. Enteritidis) outer membrane and flagella proteins. CNP was stable at acidic conditions by releasing 14% of proteins at pH 5.5. At 17 h post-incubation, the cumulative protein release for CNP was 75% at pH 7.4. Two hundred microliters of PBS with chicken red blood cells incubated with 20 μg/ml CNP released 0% hemoglobin. Three hundred chicks were allocated into 1) Control, 2) Challenge, 3) Vaccine + Challenge. At d1 of age, chicks were spray-vaccinated with PBS or 40 mg CNP. At d7 of age, chicks were orally-vaccinated with PBS or 20 μg CNP/bird. At d14 of age, birds were orally-challenged with PBS or 1 × 107 CFU/bird of S. Enteritidis. The CNP-vaccinated birds had higher antigen-specific IgY/IgA and lymphocyte-proliferation against flagellin (p < 0.05). At 14 days post-infection, CNP-vaccinated birds reversed the loss in gut permeability by 13% (p < 0.05). At 21 days post-infection, the CNP-vaccinated birds decreased S. Enteritidis in the ceca and spleen by 2 Log10 CFU/g, and in the small intestine by 0.6 Log10 CFU/g (p < 0.05). We conclude that the CNP vaccine is a viable alternative to conventional Salmonella poultry vaccines.
Collapse
Affiliation(s)
- Keila Acevedo-Villanueva
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Gabriel Akerele
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Walid Al-Hakeem
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Daniel Adams
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Renukaradhy Gourapura
- Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Ramesh Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Ramesh Selvaraj,
| |
Collapse
|
10
|
Shanmugasundaram R, Acevedo K, Mortada M, Akerele G, Applegate TJ, Kogut MH, Selvaraj RK. Effects of Salmonella enterica ser. Enteritidis and Heidelberg on host CD4+CD25+ regulatory T cell suppressive immune responses in chickens. PLoS One 2021; 16:e0260280. [PMID: 34843525 PMCID: PMC8629318 DOI: 10.1371/journal.pone.0260280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Poultry infected with Salmonella mount an immune response initially, however the immune responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothesis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine production and suppress host T cells locally in the gut to escape the host immune responses. An experiment was conducted to comparatively analyze the effect of S. enterica ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were randomly distributed into three experimental groups of non-infected control, S. Enteritidis infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (control) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and 32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+ cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and restimulated with 1 μg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, were comparable to that in the control group at 11 and 32dpi identifying that the host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing chickens to become asymptomatic carriers of Salmonella after 18 dpi.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- USDA-ARS, Toxicology and Mycotoxins Research Unit, Athens, GA, United States of America
- * E-mail:
| | - Keila Acevedo
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Mohamad Mortada
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Gabriel Akerele
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Todd J. Applegate
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Michael H. Kogut
- U.S. Department of Agriculture-ARS, Plains Area, College Station, TX, United States of America
| | - Ramesh K. Selvaraj
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| |
Collapse
|
11
|
Acevedo-Villanueva KY, Renu S, Shanmugasundaram R, Akerele GO, Gourapura RJ, Selvaraj RK. Salmonella chitosan nanoparticle vaccine administration is protective against Salmonella Enteritidis in broiler birds. PLoS One 2021; 16:e0259334. [PMID: 34784366 PMCID: PMC8594846 DOI: 10.1371/journal.pone.0259334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Salmonella control strategies include vaccines that help reduce the spread of Salmonella in poultry flocks. In this study we evaluated the efficacy of administering a live Salmonella vaccine followed by a killed Salmonella chitosan nanoparticle (CNP) vaccine booster on the cellular and humoral immunity of broilers. The CNP vaccine was synthesized with Salmonella Enteritidis (S. Enteritidis) outer-membrane-proteins (OMPs) and flagellin-proteins. At d1-of-age, one-hundred-sixty-eight chicks were allocated into treatments: 1) No vaccine, 2) Live vaccine (Poulvac®ST), 3) CNP vaccine, 4) Live+CNP vaccine. At d1-of-age, birds were orally vaccinated with PBS, Live vaccine, or CNP. At d7-of-age, the No vaccine, Live vaccine and CNP vaccine groups were boosted with PBS and the Live+CNP vaccine group was boosted with CNP. At d14-of-age, birds were challenged with 1×109 CFU/bird S. Enteritidis. There were no significant differences in body-weight-gain (BWG) or feed-conversion-ratio (FCR). At 8h-post-challenge, CNP and Live+CNP-vaccinated birds had 17% and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d28-of-age, CNP, Live, and Live+CNP-vaccinated birds had 33%, 18%, and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d14-of-age, Live+CNP-vaccinated birds had 46% greater levels (P<0.05) of anti-Salmonella OMPs IgY in serum, compared to control. At d21-of-age, splenocytes from CNP and Live-vaccinated birds had increased (P<0.05) T-lymphocyte proliferation at 0.02 mg/mL OMPs stimulation compared to the control. At d28-of-age, CNP and Live+CNP-vaccinated birds had 0.9 Log10 CFU/g and 1 Log10 CFU/g decreased S. Enteritidis cecal loads (P<0.05), respectively, compared to control. The CNP vaccine does not have adverse effects on bird's BWG and FCR or IL-1β, IL-10, IFN-γ, or iNOS mRNA expression levels. It can be concluded that the CNP vaccine, as a first dose or as a booster vaccination, is an alternative vaccine candidate against S. Enteritidis in broilers.
Collapse
Affiliation(s)
| | - Sankar Renu
- Department of Veterinary Preventative Medicine, Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Gabriel O. Akerele
- Department of Poultry Science, The University of Georgia, Athens, Georgia, United States of America
| | - Renukaradhy J. Gourapura
- Department of Veterinary Preventative Medicine, Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
12
|
A2E-induced inflammation and angiogenesis in RPE cells in vitro are modulated by PPAR-α, -β/δ, -γ, and RXR antagonists and by norbixin. Aging (Albany NY) 2021; 13:22040-22058. [PMID: 34544906 PMCID: PMC8507260 DOI: 10.18632/aging.203558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
N-retinylidene-N-retinylethanolamine (A2E) plays a central role in age-related macular degeneration (AMD) by inducing angiogenesis and inflammation. A2E effects are mediated at least partly via the retinoic acid receptor (RAR)-α. Here we show that A2E binds and transactivates also peroxisome proliferator-activated receptors (PPAR) and retinoid X receptors (RXR). 9’-cis-norbixin, a di-apocarotenoid is also a ligand of these nuclear receptors (NR). Norbixin inhibits PPAR and RXR transactivation induced by A2E. Moreover, norbixin reduces protein kinase B (AKT) phosphorylation, NF-κB and AP-1 transactivation and mRNA expression of the inflammatory interleukins (IL) -6 and -8 and of vascular endothelial growth factor (VEGF) enhanced by A2E. By contrast, norbixin increases matrix metalloproteinase 9 (MMP9) and C-C motif chemokine ligand 2 (CCL2) mRNA expression in response to A2E. Selective PPAR-α, -β/δ and –γ antagonists inhibit the expression of IL-6 and IL-8 while only the antagonist of PPAR-γ inhibits the transactivation of NF-κB following A2E exposure. In addition, a cocktail of all three PPARs antagonists and also HX531, an antagonist of RXR reproduce norbixin effects on inflammation. Altogether, A2E’s deleterious biological effects could be inhibited through PPAR and RXR regulation. Moreover, the modulation of these NR by norbixin may open new avenues for the treatment of AMD.
Collapse
|
13
|
Emeka PM, Rasool ST, Morsy MA, Islam MIH, Chohan MS. Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferator-activated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition nuclear factor-kappaB/caspase 3. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:321-331. [PMID: 34187949 PMCID: PMC8255119 DOI: 10.4196/kjpp.2021.25.4.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 12/04/2022]
Abstract
Vancomycin, an antibiotic used occasionally as a last line of treatment for methicillin-resistant Staphylococcus aureus, is reportedly associated with nephrotoxicity. This study aimed at evaluating the protective effects of lutein against vancomycin-induced acute renal injury. Peroxisome proliferator-activated receptor gamma (PPARγ) and its associated role in renoprotection by lutein was also examined. Male BALB/c mice were divided into six treatment groups: control with normal saline, lutein (200 mg/kg), vancomycin (250 mg/kg), vancomycin (500 mg/kg), vancomycin (250 mg/kg) with lutein, and vancomycin (500 mg/kg) with lutein groups; they were euthanized after 7 days of treatment. Thereafter, samples of blood, urine, and kidney tissue of the mice were analyzed, followed by the determination of levels of N-acetyl-β-D-glucosaminidase (NAG) in the urine, renal creatine kinase; protein carbonyl, malondialdehyde, and caspase-3 in the kidney; and the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappaB (NF-κB) in renal tissue. Results showed that the levels of protein carbonyl and malondialdehyde, and the activity of NAG, creatine kinase and caspase-3, were significantly increased in the vancomycin-treatment groups. Moreover, the levels of Nrf2 significantly decreased, while NF-κB expression increased. Lutein ameliorated these effects, and significantly increased PPARγ expression. Furthermore, it attenuated vancomycin-induced histological alterations such as, tissue necrosis and hypertrophy. Therefore, we conclude that lutein protects against vancomycin-induced renal injury by potentially upregulating PPARγ/Nrf2 expression in the renal tissues, and consequently downregulating the pathways: inflammation by NF-κB and apoptosis by caspase-3.
Collapse
Affiliation(s)
- Promise M Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sahibzada T Rasool
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Mohamed I Hairul Islam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad S Chohan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
14
|
Hajizadeh-Sharafabad F, Zahabi ES, Malekahmadi M, Zarrin R, Alizadeh M. Carotenoids supplementation and inflammation: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr 2021; 62:8161-8177. [PMID: 33998846 DOI: 10.1080/10408398.2021.1925870] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aim of this study was to perform a systematic review and meta-analysis on randomized controlled trials investigating the effects of carotenoids on selected inflammatory parameters. PubMed, SCOPUS, and Web of science were searched from inception until April 2021. The random-effect model was used to analyze data and the overall effect size was computed as weighted mean difference (WMD) and corresponding 95% of confidence interval (CI). A total of 26 trials with 35 effect sizes were included in this meta-analysis. The results indicated significant effects of carotenoids on C-reactive protein (CRP) (WMD: ‒0.54 mg/L, 95% CI: ‒0.71, ‒0.37, P < 0.001), and interleukin-6 (IL-6) (WMD: ‒0.54 pg/mL, 95% CI: ‒1.01, ‒0.06, P = 0.025), however the effect on tumor necrosis factor-alpha (TNF-α) was not significant (WMD: ‒0.97 pg/ml, 95% CI: ‒1.98, 0.03, P = 0.0.059). For the individual carotenoids, astaxanthin, (WMD: ‒0.30 mg/L, 95% CI: ‒0.51, ‒0.09, P = 0.005), lutein/zeaxanthin (WMD: ‒0.30 mg/L, 95% CI: ‒0.45, ‒0.15, P < 0.001), and β-cryptoxanthin (WMD: ‒0.35 mg/L, 95% CI: ‒0.54, ‒0.15, P < 0.001) significantly decreased CRP level. Also, only lycopene (WMD: ‒1.08 pg/ml, 95%CI: ‒2.03, ‒0.12, P = 0.027) led to a significant decrease in IL-6. The overall results supported possible protective effects of carotenoids on inflammatory biomarkers.
Collapse
Affiliation(s)
- Fatemeh Hajizadeh-Sharafabad
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Sharifi Zahabi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Malekahmadi
- Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Zarrin
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Mortada M, Cosby DE, Akerele G, Ramadan N, Oxford J, Shanmugasundaram R, Ng TT, Selvaraj RK. Characterizing the immune response of chickens to Campylobacter jejuni (Strain A74C). PLoS One 2021; 16:e0247080. [PMID: 33720955 PMCID: PMC7959354 DOI: 10.1371/journal.pone.0247080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Campylobacter is one of the major foodborne pathogens causing bacterial gastroenteritis worldwide. The immune response of broiler chickens to C. jejuni is under-researched. This study aimed to characterize the immune response of chickens to Campylobacter jejuni colonization. Birds were challenged orally with 0.5 mL of 2.4 x 108 CFU/mL of Campylobacter jejuni or with 0.5 mL of 0.85% saline. Campylobacter jejuni persisted in the ceca of challenged birds with cecal colonization reaching 4.9 log10 CFU/g on 21 dpi. Campylobacter was disseminated to the spleen and liver on 7 dpi and was cleared on 21 dpi from both internal organs. Challenged birds had a significant increase in anti-Campylobacter serum IgY (14&21 dpi) and bile IgA (14 dpi). At 3 dpi, there was a significant suppression in T-lymphocytes derived from the cecal tonsils of birds in the challenge treatment when compared to the control treatment after 72 h of ex vivo stimulation with Con A or C. jejuni. The T-cell suppression on 3 dpi was accompanied by a significant decrease in LITAF, K60, CLAU-2, IL-1β, iNOS, and IL-6 mRNA levels in the ceca and an increase in nitric oxide production from adherent splenocytes of challenged birds. In addition, on 3 dpi, there was a significant increase in CD4+ and CD8+ T lymphocytes in the challenge treatment. On 14 dpi, both pro and anti-inflammatory cytokines were upregulated in the spleen, and a significant increase in CD8+ T lymphocytes in Campylobacter-challenged birds’ ceca was observed. The persistence of C. jejuni in the ceca of challenged birds on 21 dpi was accompanied by an increase in IL-10 and LITAF mRNA levels, an increase in MNC proliferation when stimulated ex-vivo with the diluted C. jejuni, an increase in serum specific IgY antibodies, an increase in both CD4+ and CD8+ cells, and a decrease in CD4+:CD8+ cell ratio. The balanced Th1 and Th2 immune responses against C. jejuni might explain the ceca’s bacterial colonization and the absence of pathology in Campylobacter-challenged birds. Future studies on T lymphocyte subpopulations should elucidate a pivotal role in the persistence of Campylobacter in the ceca.
Collapse
Affiliation(s)
- Mohamad Mortada
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Douglas E. Cosby
- USDA-ARS, Poultry Microbiological Safety and Processing Research Unit, Athens, Georgia, United States of America
| | - Gabriel Akerele
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Nour Ramadan
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Jarred Oxford
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | | | - Theros T. Ng
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Ramesh K. Selvaraj
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lutein supplementation combined with a low-calorie diet in middle-aged obese individuals: effects on anthropometric indices, body composition and metabolic parameters. Br J Nutr 2020; 126:1028-1039. [DOI: 10.1017/s0007114520004997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractLutein is considered as a major biologically active carotenoid, with potential benefits for obesity and cardiometabolic health. This double-blind, randomised controlled trial aimed to assess whether the consumption of lutein along with a low-calorie diet (LCD) can influence anthropometric indices, body composition and metabolic parameters in obese middle-aged individuals. After a 2-week run-in period with an LCD, forty-eight participants aged 45–65 years were randomly assigned to consume 20 mg/d lutein or placebo along with the LCD for 10 weeks. Dietary intake, anthropometric indices, body composition, lipid profile, glucose homoeostasis parameters, NEFA and appetite sensations were assessed at the beginning and end of the study. After 10 weeks, body weight and waist circumference significantly decreased in both groups, although between-group differences were not significant. There was more of a decrease in the percentage of body fat in the lutein group v. the placebo group. Moreover, the placebo group experienced a significant reduction in fat-free mass (FFM), whereas the lutein group preserved FFM during calorie restriction, although the between-group difference did not reach statistical significance. Visceral fat and serum levels of total cholesterol (TC) and LDL-cholesterol were significantly decreased only in the lutein group, with a statistically significant difference between the two arms only for TC. No significant changes were observed in the TAG, HDL-cholesterol, glucose homoeostasis parameters, NEFA and appetite sensations. Lutein supplementation in combination with an LCD could improve body composition and lipid profile in obese middle-aged individuals.
Collapse
|
17
|
Mortada M, Cosby D, Shanmugasundaram R, Selvaraj R. In vivo and in vitro assessment of commercial probiotic and organic acid feed additives in broilers challenged with Campylobacter coli. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
18
|
Shanmugasundaram R, Markazi A, Mortada M, Ng TT, Applegate TJ, Bielke LR, Syed B, Pender CM, Curry S, Murugesan GR, Selvaraj RK. Research Note: Effect of synbiotic supplementation on caecal Clostridium perfringens load in broiler chickens with different necrotic enteritis challenge models. Poult Sci 2020; 99:2452-2458. [PMID: 32359580 PMCID: PMC7597401 DOI: 10.1016/j.psj.2019.10.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Studies were conducted to determine the efficacy of synbiotic applications to combat the negative effects of necrotic enteritis (NE). An in vitro study was conducted to test the effect of probiotics species supernatants to decrease Clostridium perfringens (CP) proliferation. Lactobacillus reuteri, Enterococcus faecium, Bifidobacterium animalis, and Pediococcus acidilactici culture supernatants decreased the proliferation of CP at 1:1 supernatant-to-pathogen dilution in vitro. Two in vivo studies were conducted to determine the in vivo response of synbiotic supplementation containing the aforementioned probiotic strains on broiler production performance and caecal CP load in broilers induced with NE infection. In experiment 1, 75 broiler chicks were randomly allotted to 3 treatment groups, control (basal diet), ionophore (Salinomycin), and synbiotic (PoultryStar me), from day of hatch, and NE was induced in all birds. There were no significant treatment effects on BW, feed consumption, and feed gain ratio. However, at 35 D, ionophore or synbiotic supplementation increased (P < 0.05) villi height and decreased interleukin (IL)-1 mRNA abundance, while synbiotic supplementation increased (P < 0.05) IL-10 mRNA abundance compared with the control group, respectively. In experiment 2, 360 broiler chicks were randomly allotted to 3 treatments, an unchallenged negative control (control; basal diet), challenged positive control (NE; basal diet), or NE + synbiotic group (synbiotic). At both 21 and 42 D of age, NE birds had decreased (P < 0.05) BW, feed conversion, and jejunal villi height compared with control, while NE + synbiotic birds were not different from control groups. At 42 D of age, NE birds had 2.2 log/g increased CP in the ceca contents compared with control, while synbiotic birds had CP load that was not different than that of the control group. NE + synbiotic birds had significantly greater amounts of bile anti-CP IgA than the control and NE groups. It can be concluded that synbiotic supplementation decreased CP proliferation in vitro and caecal CP load in vivo while improving production parameters during an NE infection in broilers.
Collapse
Affiliation(s)
- R Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA; Department of Poultry Sciences, University of Georgia, Athens 30602, USA
| | - A Markazi
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA
| | - M Mortada
- Department of Poultry Sciences, University of Georgia, Athens 30602, USA
| | - T T Ng
- Department of Poultry Sciences, University of Georgia, Athens 30602, USA
| | - T J Applegate
- Department of Poultry Sciences, University of Georgia, Athens 30602, USA
| | - L R Bielke
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA
| | - B Syed
- BIOMIN Holding GmbH, Getzersdorf 3131, Austria
| | - C M Pender
- BIOMIN America Inc., Overland Park 66210, KS, USA
| | - S Curry
- BIOMIN America Inc., Overland Park 66210, KS, USA
| | | | - R K Selvaraj
- Department of Poultry Sciences, University of Georgia, Athens 30602, USA.
| |
Collapse
|
19
|
Oxford JH, Selvaraj RK. Effects of Glutamine Supplementation on Broiler Performance and Intestinal Immune Parameters During an Experimental Coccidiosis Infection. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
20
|
Markazi AD, Luoma A, Shanmugasundaram R, Murugesan R, Mohnl M, Selvaraj R. Effect of Acidifier Product Supplementation in Laying Hens Challenged With Salmonella. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
21
|
Shanmugasundaram R, Mortada M, Cosby DE, Singh M, Applegate TJ, Syed B, Pender CM, Curry S, Murugesan GR, Selvaraj RK. Synbiotic supplementation to decrease Salmonella colonization in the intestine and carcass contamination in broiler birds. PLoS One 2019; 14:e0223577. [PMID: 31600299 PMCID: PMC6786831 DOI: 10.1371/journal.pone.0223577] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
In vitro and in vivo experiments were conducted to study the effects of synbiotic supplementation on Salmonella enterica ser. Enteritidis (SE) proliferation, cecal content load, and broiler carcass contamination. Lactobacillus reuteri, Enterococcus faecium, Bifidobacterium animalis, and Pediococcus acidilactici culture supernatants decreased (P < 0.05) the in vitro proliferation of SE at 1:1 supernatant: pathogen dilution. A total of 240 Cobb-500 broiler chicks were randomly allotted to three treatment groups (8 replicates/group with 10 birds/replicate): control (basal diet), antibiotic (Virginiamycin at 20 mg/kg feed), synbiotic (PoultryStar® ME at 0.5 g/kg feed containing L. reuteri, E. faecium, B. animalis, P. acidilactici and a Fructooligosaccharide) from day of hatch. At 21 d of age, all birds in experimental groups were orally inoculated with 250 μl of 1 X 109 CFU SE. Antibiotic supplementation increased (P < 0.05) body weight and feed consumption, compared to the control group. Birds in the synbiotic supplementation had intermediate body weight and feed consumption that were not significantly different from both the control and antibiotic group at 42 d of age in SE infected birds. No significant effects were observed in feed efficiency at 42 d of age among the groups. Antibiotic and synbiotic supplementation decreased (P < 0.05) SE load in cecal contents by 0.90 and 0.85 log units/ g and carcass SE load by 1.4 and 1.5 log units/mL of rinsate compared to the control group at 42 d of age (21 dpi). The relative abundance of IL-10, IL-1, TLR-4, and IFNγ mRNA was decreased (P < 0.05) in the antibiotic and synbiotic supplementation groups compared to the control birds at 42 d of age (21 dpi). It can be concluded that synbiotic supplementation decreased SE proliferation in vitro and decreased SE load in the cecal contents and broiler carcass.
Collapse
Affiliation(s)
- R. Shanmugasundaram
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - M. Mortada
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - D. E. Cosby
- USDA-ARS, Athens, GA, United States of America
| | - M. Singh
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - T. J. Applegate
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - B. Syed
- BIOMIN Holding GmbH, Getzersdorf, Austria
| | - C. M. Pender
- BIOMIN America Inc., Overland Park, KS, United States of America
| | - S. Curry
- BIOMIN America Inc., Overland Park, KS, United States of America
| | - G. R. Murugesan
- BIOMIN America Inc., Overland Park, KS, United States of America
| | - R. K. Selvaraj
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
22
|
Peroxisome proliferator-activated receptor gamma (PPARγ), a key regulatory gene of lipid metabolism in chicken. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Ren L, Konger RL. Evidence that peroxisome proliferator-activated receptor γ suppresses squamous carcinogenesis through anti-inflammatory signaling and regulation of the immune response. Mol Carcinog 2019; 58:1589-1601. [PMID: 31111568 DOI: 10.1002/mc.23041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 01/13/2023]
Abstract
A variety of evidence suggests that peroxisome proliferator-activated receptor (PPAR)γ agonists may represent a potential pharmacologic target in the prevention or treatment of skin cancer. In particular, recent reports suggest that PPARγ activation may exert at least some of its anti-neoplastic effects through the suppression of tumor promoting chronic inflammation as well as by strengthening antitumor immune responses. This activity is thought to occur through a distinct mode of ligand interaction with PPARγ that causes transrepression of transcription factors that are involved in inflammatory and immunomodulatory signaling. However, current thiazolidinedione (TZD)-type PPARγ agonists have significant safety concerns that limit their usefulness as a preventive or therapeutic option. Due to the relatively large ligand binding pocket of PPARγ, a diverse group of ligands can be seen to interact with distinct modes of binding to PPARγ, leading to the phenomenon of partial agonist activity and selective PPARγ modulators (SPPARγM). This has led to the development of ligands that are tailored to deliver desired pharmacologic activity, but lack some of the negative side effects associated with full agonists, such as the currently utilized TZD-type PPARγ agonists. In addition, there is evidence that a number of phytochemicals that are currently being touted as antineoplastic nutraceuticals also possess PPARγ activity that may partially explain their pharmacologic activity. We propose that one or more of these partial agonists, SPPARγMs, or putative phytochemical PPARγ ligands could presumably be used as a starting point to design more efficacious anti-neoplastic PPARγ ligands that lack adverse pharmacological effects.
Collapse
Affiliation(s)
- Lu Ren
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pathology and Laboratory Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Raymond L Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pathology and Laboratory Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
24
|
Markazi A, Luoma A, Shanmugasundaram R, Mohnl M, Raj Murugesan G, Selvaraj R. Effects of drinking water synbiotic supplementation in laying hens challenged with Salmonella. Poult Sci 2018; 97:3510-3518. [PMID: 29982803 DOI: 10.3382/ps/pey234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/16/2018] [Indexed: 02/03/2023] Open
Abstract
This experiment was conducted to study the effects of drinking water supplementation of synbiotic product PoultryStar®sol (containing Lactobacillus reuteri, Bifidobacterium animalis, Pediococcus acidilactici, Enterococcus faecium, and fructo-oligosaccharide) in laying hens with and without a Salmonella challenge. A total of 384 one-day-old layer chicks were randomly distributed to the drinking water synbiotic supplementation or control groups. At 14 wk of age, the birds were vaccinated with a Salmonella vaccine, resulting in a 2 (control and synbiotic) X 2 (non-vaccinated and vaccinated) factorial arrangement. At 24 wk of age, half of the birds in the vaccinated groups and all the birds that were not vaccinated were challenged with Salmonella Enterica serotype Enteritidis, resulting in a 3 (vaccinated, challenged, vaccinated+challenged) X 2 (control and synbiotic) factorial arrangment. At 8 d post-Salmonella challenge, synbiotic supplementation decreased (P = 0.04) cecal S. Enteritidis in the challenge group compared to the un-supplemented challenge group. Birds that were supplemented with synbiotic in the vaccine + challenge group had significantly greater cecal B. animalis and P. acidilactici percentage at 10 d post-Salmonella challenge than the birds in the vaccine + challenge group without synbiotic supplementation. At 3 d post-Salmonella challenge, birds that were supplemented with synbiotic in the challenge group had significantly greater cecal L. reuteri percentage than the birds in the challenge group without synbiotic supplementation. At 17 d post-Salmonella challenge, synbiotic supplementation increased bile anti-Salmonella IgA in the challenge group compared to the birds in the challenge group without synbiotic supplementation by 76.0%. At 10 d (P < 0.01) and 30 d (P = 0.05) post-Salmonella challenge, synbiotic supplementation decreased LITAF mRNA expression compared to the un-supplemented groups. At 3 d post-Salmonella challenge, synbiotic supplementation in the vaccine group had longer jejunal villi compared to the vaccine group without synbiotic supplementation. This experiment demonstrated that drinking water supplementation of the synbiotic product evaluated can significantly manipulate immune response and intestinal microbiota of laying hens post-Salmonella challenge to handle the challenge effectively.
Collapse
Affiliation(s)
- Ashley Markazi
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Amanda Luoma
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Revathi Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | | | | | | |
Collapse
|
25
|
Zhang P, Ding Z, Liu X, Chen Y, Li J, Tao Z, Fei Y, Xue C, Qian J, Wang X, Li Q, Stoeger T, Chen J, Bi Y, Yin R. Enhanced Replication of Virulent Newcastle Disease Virus in Chicken Macrophages Is due to Polarized Activation of Cells by Inhibition of TLR7. Front Immunol 2018; 9:366. [PMID: 29670609 PMCID: PMC5893744 DOI: 10.3389/fimmu.2018.00366] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
Newcastle disease (ND), caused by infections with virulent strains of Newcastle disease virus (NDV), is one of the most important infectious disease affecting wild, peridomestic, and domestic birds worldwide. Vaccines constructed from live, low-virulence (lentogenic) viruses are the most accepted prevention and control strategies for combating ND in poultry across the globe. Avian macrophages are one of the first cell lines of defense against microbial infection, responding to signals in the microenvironment. Although macrophages are considered to be one of the main target cells for NDV infection in vivo, very little is known about the ability of NDV to infect chicken macrophages, and virulence mechanisms of NDV as well as the polarized activation patterns of macrophages and correlation with viral infection and replication. In the present study, a cell culture model (chicken bone marrow macrophage cell line HD11) and three different virulence and genotypes of NDV (including class II virulent NA-1, class II lentogenic LaSota, and class I lentogenic F55) were used to solve the above underlying questions. Our data indicated that all three NDV strains had similar replication rates during the early stages of infection. Virulent NDV titers were shown to increase compared to the other lentogenic strains, and this growth was associated with a strong upregulation of both pro-inflammatory M1-like markers/cytokines and anti-inflammatory M2-like markers/cytokines in chicken macrophages. Virulent NDV was found to block toll-like receptor (TLR) 7 expression, inducing higher expression of type I interferons in chicken macrophages at the late stage of viral infection. Only virulent NDV replication can be inhibited by pretreatment with TLR7 ligand. Overall, this study demonstrated that virulent NDV activates a M1-/M2-like mixed polarized activation of chicken macrophages by inhibition of TLR7, resulting in enhanced replication compared to lentogenic viruses.
Collapse
Affiliation(s)
- Pingze Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuang Ding
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinxin Liu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yanyu Chen
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junjiao Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhi Tao
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yidong Fei
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cong Xue
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Qian
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Qingmei Li
- Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
26
|
Perez V, Shanmugasundaram R, Sifri M, Parr TM, Selvaraj RK. Effects of hydroxychloride and sulfate form of zinc and manganese supplementation on superoxide dismutase activity and immune responses post lipopolysaccharide challenge in poultry fed marginally lower doses of zinc and manganese. Poult Sci 2017; 96:4200-4207. [DOI: 10.3382/ps/pex244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022] Open
|
27
|
Markazi AD, Perez V, Sifri M, Shanmugasundaram R, Selvaraj RK. Effect of whole yeast cell product supplementation (CitriStim®) on immune responses and cecal microflora species in pullet and layer chickens during an experimental coccidial challenge. Poult Sci 2017; 96:2049-2056. [DOI: 10.3382/ps/pew482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/09/2016] [Indexed: 01/25/2023] Open
|
28
|
Gao YY, Jin L, Peng H, Xu LH, Wang QX, Ji J, Wang CK, Bi YZ. Xanthophylls increased HDLC level and nuclear factor PPARγ, RXRγ and RARα expression in hens and chicks. J Anim Physiol Anim Nutr (Berl) 2017; 102:e279-e287. [PMID: 28503816 DOI: 10.1111/jpn.12739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/09/2017] [Indexed: 11/27/2022]
Abstract
This study was designed to investigate effects of xanthophylls on serum lipid profile (triglyceride, TG; cholesterol, CHO; high-density lipoprotein cholesterol, HDLC; and low-density lipoprotein cholesterol, LDLC) and nuclear factor (peroxisome proliferator-activated receptor gamma, PPARγ; PPAR gamma coactivator 1 alpha, PGC1α; retinoid X receptor gamma, RXRγ; and retinoic acid receptor alpha, RARα) gene expression of breeding hens and chicks. In experiment 1, 432 hens were divided into three groups and fed diets supplemented with 0 (as control group), 20 or 40 mg/kg xanthophylls. Blood was sampled at 7, 14, 21, 28 and 35 days of trial. Liver, duodenum, jejunum and ileum were sampled at 35 days of trial. Results showed that serum HDLC level of hens was increased after dietary 40 mg/kg xanthophyll addition for 21, 28 and 35 days, while serum TG, CHO and LDLC were not affected. Xanthophyll addition also increased PPARγ expression in jejunum, RXRγ expression in duodenum and jejunum, and RARα expression in liver and duodenum. Experiment 2 was a 2 × 2 factorial design. Male chicks hatched from 0 or 40 mg/kg xanthophyll diet of hens were fed diet containing either 0 or 40 mg/kg xanthophylls. Liver, duodenum, jejunum and ileum were sampled at 0, 7, 14 and 21 days after hatching. Blood samples were also collected at 21 days. Results showed that in ovo xanthophylls elevated PPARγ in duodenum and jejunum, and RXRγ and RARα in liver of chicks mainly within 1 week after hatching, while dietary xanthophylls increased serum HDLC level and PPARγ and RXRγ in liver from 2 weeks onwards. In conclusion, our research suggested xanthophylls can regulate serum lipid profile and nuclear factor expression in hens and chicks.
Collapse
Affiliation(s)
- Y-Y Gao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - L Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - H Peng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - L-H Xu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Q-X Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - J Ji
- China-UK-NYNU-Rres Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan, China
| | - C-K Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Y-Z Bi
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Wils-Plotz E, Klasing K. Effects of immunomodulatory nutrients on growth performance and immune-related gene expression in layer chicks challenged with lipopolysaccharide. Poult Sci 2017; 96:548-555. [DOI: 10.3382/ps/pew376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/10/2016] [Indexed: 12/14/2022] Open
|
30
|
Pistone A, Sagnella A, Chieco C, Bertazza G, Varchi G, Formaggio F, Posati T, Saracino E, Caprini M, Bonetti S, Toffanin S, Di Virgilio N, Muccini M, Rossi F, Ruani G, Zamboni R, Benfenati V. Silk fibroin film from golden-yellow Bombyx mori is a biocomposite that contains lutein and promotes axonal growth of primary neurons. Biopolymers 2016; 105:287-99. [PMID: 26756916 DOI: 10.1002/bip.22806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/21/2015] [Accepted: 01/06/2016] [Indexed: 12/28/2022]
Abstract
The use of doped silk fibroin (SF) films and substrates from Bombyx mori cocoons for green nanotechnology and biomedical applications has been recently highlighted. Cocoons from coloured strains of B. mori, such as Golden-Yellow, contain high levels of pigments that could have a huge potential for the fabrication of SF based biomaterials targeted to photonics, optoelectronics and neuroregenerative medicine. However, the features of extracted and regenerated SF from cocoons of B. mori Golden-Yellow strain have never been reported. Here we provide a chemophysical characterization of regenerated silk fibroin (RSF) fibers, solution, and films obtained from cocoons of a Golden-Yellow strain of B. mori, by SEM, (1) H-NMR, HPLC, FT-IR, Raman and UV-Vis spectroscopy. We found that the extracted solution and films from B. mori Golden-Yellow fibroin displayed typical Raman spectroscopic and optical features of carotenoids. HPLC-analyses revealed that lutein was the carotenoid contained in the fiber and RSF biopolymer from yellow cocoons. Notably, primary neurons cultured on yellow SF displayed a threefold higher neurite length than those grown of white SF films. The results we report pave the way to expand the potential use of yellow SF in the field of neuroregenerative medicine and provide green chemistry approaches in biomedicine.
Collapse
Affiliation(s)
- Assunta Pistone
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy.,Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Anna Sagnella
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy.,Laboratory MIST E-R, via P. Gobetti 101, Bologna, 40129, Italy
| | - Camilla Chieco
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), via P. Gobetti 101, Bologna, 40129, Italy
| | - Gianpaolo Bertazza
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), via P. Gobetti 101, Bologna, 40129, Italy
| | - Greta Varchi
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy
| | - Francesco Formaggio
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Tamara Posati
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy
| | - Emanuela Saracino
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Marco Caprini
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy.,Department of Pharmacy and Biotechnology, via S. Donato 19/2, University of Bologna, Bologna, 40127, Italy
| | - Simone Bonetti
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Stefano Toffanin
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Nicola Di Virgilio
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), via P. Gobetti 101, Bologna, 40129, Italy
| | - Michele Muccini
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Federica Rossi
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), via P. Gobetti 101, Bologna, 40129, Italy
| | - Giampiero Ruani
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Roberto Zamboni
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy
| | - Valentina Benfenati
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy
| |
Collapse
|
31
|
Walston M, Shanmugasundaram R, Selvaraj R. Effect of infection with mixed Eimeria species on T cells and T regulatory cell properties. J APPL POULTRY RES 2016. [DOI: 10.3382/japr/pfw026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
32
|
Moraes ML, Ribeiro AML, Santin E, Klasing KC. Effects of conjugated linoleic acid and lutein on the growth performance and immune response of broiler chickens. Poult Sci 2015; 95:237-46. [PMID: 26527712 DOI: 10.3382/ps/pev325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
The effects of lutein and conjugated linoleic acid (CLA) on growth performance and immune response of broiler chickens were evaluated in the presence and absence of Salmonella lipopolysaccharide (LPS) immune challenge. Cobb chicks (360; 1 to 22 d of age) were used in a 3 × 2 factorial arrangement of CLA (0, 1, and 2%) and lutein (0 and 50 mg/kg) dietary levels. At d 8 and 15, birds were injected with BSA to assess IgY production. At d 20, birds were injected with LPS. Samples of liver, spleen, and duodenum were collected at 3 and 16 h post-LPS challenge for RT-qPCR analysis of RXRα, RXRγ, PPARα, PPARγ, TLR-4, IL-1β, IL-2, IL-10, and IL-12 gene expression. CLA decreased BW, BW gain (BWG), and G:F from d 1 to 20, but these effects were reversed when lutein was included in the 1% CLA diet (P < 0.001). The production of IgY anti-BSA increased following a 2% CLA supplementation (P < 0.01). LPS increased the liver:BW ratio at 3 h post-injection (P < 0.001) and decreased BWG at 3, 16, and 40 h (P < 0.001). Lutein decreased plasmatic nitric oxide levels (P < 0.01). LPS downregulated PPARα mRNA in the duodenum (P = 0.02) and liver (P = 0.04), and PPARγ (P = 0.01) and RXRα (P = 0.08) in the spleen; these effects were not reversed by CLA or lutein as initially hypothesized. Although LPS upregulated IL-1β (P = 0.02) and IL-12 (P = 0.07) expression, lutein downregulated these pro-inflammatory cytokines in the liver (P = 0.03 and P = 0.07, respectively). Lutein decreased splenic (P = 0.09) but increased hepatic (P = 0.06) TLR-4 mRNA. A dietary CLA supplementation of 2% increased hepatic RXRα (P = 0.10). In conclusion, CLA decreased broiler chicken growth performance, but lutein could prevent this negative effect (depending on CLA dose). Lutein had an anti-inflammatory effect, and a 2% CLA supplementation improved the humoral immune response.
Collapse
Affiliation(s)
- M L Moraes
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, CEP 91540-000, Porto Alegre, RS, Brazil
| | - A M L Ribeiro
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, CEP 91540-000, Porto Alegre, RS, Brazil
| | - E Santin
- Departamento de Medicina Veterinária, Universidade Federal do Paraná, CEP 80035-050, Curitiba, PR, Brazil
| | - K C Klasing
- Department of Animal Science, University of California, ZIP 95616-8571, Davis, CA
| |
Collapse
|
33
|
Shanmugasundaram R, Sifri M, Jeyabalan R, Selvaraj RK. Effect of yeast cell product (CitriStim) supplementation on turkey performance and intestinal immune cell parameters during an experimental lipopolysaccharide injection. Poult Sci 2014; 93:2763-71. [DOI: 10.3382/ps.2014-04174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Warne RW. The Micro and Macro of Nutrients across Biological Scales. Integr Comp Biol 2014; 54:864-72. [DOI: 10.1093/icb/icu071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Giraudeau M, Sweazea K, Butler MW, McGraw KJ. Effects of carotenoid and vitamin E supplementation on oxidative stress and plumage coloration in house finches (Haemorhous mexicanus). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:406-13. [PMID: 23872319 DOI: 10.1016/j.cbpa.2013.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 01/24/2023]
Abstract
There has been much recent interest from both applied and basic scientists in the broad series of benefits that animals reap from acquiring high concentrations of dietary antioxidants, such as carotenoids and vitamins (e.g., vitamin E, or tocopherol). Most attention has been paid to separate effects of these compounds on, for example, coloration, health state, development, and vision, but because of possible interactions between these lipid-soluble molecules, we are in need of more studies that co-manipulate these substances and examine their possible synergistic impacts on animal physiology and phenotype. We capitalized on a model avian system (the house finch, Haemorhous mexicanus), where extensive information is available on the fitness roles of carotenoids, to test how variation in carotenoid and/or vitamin E concentrations in the diet impacts body accumulation of these compounds, factors related to oxidative damage (e.g., breast muscle and plasma oxidative-stress susceptibility, plasma nitric-oxide levels), and plumage color development. As in a previous study of ours on carotenoids and health in finches, we employed a 2×2 factorial experimental design on birds in both molting and non-molting conditions, to understand how seasonal shifts in carotenoid use (i.e., pigment incorporation into plumage) might alter the accumulation and roles of carotenoids and vitamins. As expected, lutein supplementation increased the level of circulating carotenoids in both experiments and the color of newly molted plumage. By contrast, vitamin E provisioning did not significantly affect plasma carotenoid levels or plumage coloration in either experiment. Interestingly, carotenoid provisioning decreased circulating vitamin E levels during molt, which suggests either molecular competition between carotenoids and tocopherol at the absorption/transport stages or that vitamin E serves as an antioxidant to offset harmful actions that carotenoids may have at very high concentrations. Finally, in both experiments, we found a reduction in breast-muscle oxidative damage for tocopherol-supplemented birds, which constitutes the first demonstration of a protective effect of vitamin E against oxidative stress in wild birds. Taken together, these findings provide an interesting contrast with our earlier work on season-specific physiological benefits of carotenoids in finches and point to complex associations between indicators of antioxidant and oxidative state in wild-caught animals.
Collapse
Affiliation(s)
- Mathieu Giraudeau
- Arizona State University, School of Life Sciences, Tempe, AZ 85287-4501, USA.
| | | | | | | |
Collapse
|
36
|
Shanmugasundaram R, Sifri M, Selvaraj RK. Effect of yeast cell product supplementation on broiler cecal microflora species and immune responses during an experimental coccidial infection. Poult Sci 2013; 92:1195-201. [PMID: 23571328 DOI: 10.3382/ps.2012-02991] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This experiment was conducted to study the effects of whole yeast (Pichia guilliermondii; CitriStim, ADM, Quincy, IL) cell product supplementation on cecal microflora population and intestinal immune parameters in broilers. In the first experiment, birds were fed 0, 0.1, or 0.2% yeast cell wall product for 42 d. Feeding yeast cell wall products decreased (P = 0.03) the proportion of Escherichia coli in the ceca by 31% compared with the control group. The group fed 0.2% yeast cell wall product had a 20% decrease (P = 0.23) in Salmonella population compared with the control group. In the second experiment, birds were fed yeast cell wall product for 21 d and challenged or not challenged with coccidial oocysts, thus resulting in a 2 (0 and 0.2% whole yeast product) × 2 (coccidial challenge and no coccidial challenge) factorial model. Supplementing whole yeast cell wall product prevented a coccidial infection-induced decrease in the Lactobacillus population (P = 0.09) at 12 d postchallenge. Supplementing yeast cell wall product prevented a coccidial infection-induced increase in the Salmonella population (P = 0.08) and E. coli (P = 0.12) at 12 d postchallenge. At 5 d (P < 0.01) and 12 d (P < 0.01) postcoccidial infection, yeast cell wall product supplementation or coccidial infection increased the regulatory T cell (Treg) percentage in the cecal tonsils, whereas yeast cell wall product supplementation in the coccidial-infected group decreased the increase in Treg percentage. At 5 d postcoccidial infection, coccidial infection increased (P = 0.01) the relative amounts of cecal interferon (IFN)γ mRNA. In addition, the yeast cell wall product supplementation in the coccidial-infected groups further increased (P = 0.15) the IFNγ mRNA. It could be concluded that yeast cell wall product supplementation decreased coccidial-infection-induced increase in E. coli and Salmonella colonization and improved IFNγ mRNA amounts after coccidial infection.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | | | | |
Collapse
|
37
|
Shanmugasundaram R, Sifri M, Selvaraj RK. Effect of yeast cell product (CitriStim) supplementation on broiler performance and intestinal immune cell parameters during an experimental coccidial infection. Poult Sci 2013; 92:358-63. [PMID: 23300301 DOI: 10.3382/ps.2012-02776] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This experiment studied the effects of whole yeast cell product supplementation on broiler production parameters, fecal coccidial oocyst counts, and local and systemic immune parameters following an experimental coccidial infection. Birds were fed 0, 0.1, or 0.2% whole yeast cell product (CitriStim). At 21 d of age, birds were challenged with live coccidial oocysts. Supplementation with whole yeast cell product increased BW gain between 0 and 12 d (P = 0.01) postcoccidial challenge. Birds supplemented with 0.2% Citristim had better (P = 0.01) feed efficiency between 0 and 12 d postcoccidial infection. Supplementation with whole yeast cell product decreased (P = 0.01) the fecal coccidial oocyst count at 7 d postcoccidial challenge. Citristim supplementation at 0.2% increased (P < 0.01) macrophage nitric oxide production by 93 and 193% at 5 and 12 d postcoccidial challenge. Supplementation with whole yeast cell product at 0.2% increased cecal tonsil interleukin-1 mRNA amounts approximately 4.5- and 3.7-fold at 5 and 12 d postcoccidial challenge, respectively, over the group with no whole yeast cell product supplementation. Citristim supplementation downregulated cecal tonsil interleukin-10 mRNA amounts compared with the unsupplemented groups at both 5 (P = 0.01) and 12 d (P < 0.01) postcoccidial challenge. Supplementation with whole yeast cell product did not alter (P > 0.05) serum anticoccidial IgG contents or cecal tonsil CD4(+) and CD8(+) cell percentages at 5 and 12 d postcoccidial infection. It could be concluded that supplementing whole yeast cell product (CitriStim) to broiler diets can improve production parameters, decrease fecal oocyst count, and increase inflammatory cytokine production postcoccidial infection.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster 44691, USA
| | | | | |
Collapse
|
38
|
Shanmugasundaram R, Selvaraj R. Vitamin D-1α-hydroxylase and vitamin D-24-hydroxylase mRNA studies in chickens. Poult Sci 2012; 91:1819-24. [DOI: 10.3382/ps.2011-02129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
39
|
Koutsos EA, Schmitt T, Colitz CMH, Mazzaro L. Absorption and ocular deposition of dietary lutein in marine mammals. Zoo Biol 2012; 32:316-23. [PMID: 22753123 DOI: 10.1002/zoo.21033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 04/25/2012] [Accepted: 05/31/2012] [Indexed: 11/12/2022]
Abstract
Cataracts and ocular disease are common lesions of marine mammals in zoological collections. Lutein, an oxygenated carotenoid, may have therapeutic or prophylactic effects on ocular disorder. Therefore, this study examined the ability of marine mammals to absorb dietary lutein. Two preliminary trials examined lutein in two forms (beadlet or ester) in a small sample size of marine mammals representing pinnipeds and cetaceans. Lutein was fed daily in tablets providing 0.89-3.6 mg lutein/kg body weight(0.75) per day for 15 days to 2 years. A third study was conducted using lutein beadlet fed at 3.6 mg lutein/kg body weight(0.75) per day for 15-21 days. Blood was analyzed for lutein pre- and postsupplementation. In the preliminary trials, lutein beadlet was observed to result in greater blood lutein levels than lutein esters, and cetaceans had more noticeable responses than pinnipeds. In Study 3, serum lutein and zeaxanthin increased postsupplementation in beluga whales (P < 0.05), and serum lutein tended to increase postsupplementation in dolphins (P < 0.10), but little change was seen in serum lutein in pinnipeds or manatee. Opportunistic retinal samples demonstrated some detectable lutein in the retina of a dolphin and several harp seals. The lutein levels in dolphins after supplementation are similar to those reported in free-ranging animals. Ocular lutein in harp seals demonstrates that ocular deposition occurs despite low circulating lutein levels.
Collapse
Affiliation(s)
- Elizabeth A Koutsos
- Mazuri® Exotic Animal Nutrition, PMI Nutrition International LLC, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
40
|
Agarwal M, Parameswari RP, Vasanthi HR, Das DK. Dynamic action of carotenoids in cardioprotection and maintenance of cardiac health. Molecules 2012; 17:4755-69. [PMID: 22525440 PMCID: PMC6269032 DOI: 10.3390/molecules17044755] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/28/2012] [Accepted: 04/05/2012] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress has been considered universally and undeniably implicated in the pathogenesis of all major diseases, including those of the cardiovascular system. Oxidative stress activate transcriptional messengers, such as nuclear factor-κB, tangibly contributing to endothelial dysfunction, the initiation and progression of atherosclerosis, irreversible damage after ischemic reperfusion, and even arrhythmia, such as atrial fibrillation. Evidence is rapidly accumulating to support the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as intracellular signaling molecules. Despite this connection between oxidative stress and cardiovascular disease (CVD), there are currently no recognized therapeutic interventions to address this important unmet need. Antioxidants that provide a broad, "upstream" approach via ROS/RNS quenching or free radical chain breaking seem an appropriate therapeutic option based on epidemiologic, dietary, and in vivo animal model data. Short-term dietary intervention trials suggest that diets rich in fruit and vegetable intake lead to improvements in coronary risk factors and reduce cardiovascular mortality. Carotenoids are such abundant, plant-derived, fat-soluble pigments that functions as antioxidants. They are stored in the liver or adipose tissue, and are lipid soluble by becoming incorporated into plasma lipoprotein particles during transport. For these reasons, carotenoids may represent one plausible mechanism by which fruits and vegetables reduce the risk of chronic diseases as cardiovascular disease (CVD). This review paper outlines the role of carotenoids in maintaining cardiac health and cardioprotection mediated by several mechanisms including redox signaling.
Collapse
Affiliation(s)
- Mahesh Agarwal
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry-605014, India; (M.A.); (H.R.V.)
| | - Royapuram P. Parameswari
- Herbal & Indian Medicine Research Laboratory, Sri Ramachandra University, Chennai 600 116, India;
| | - Hannah R. Vasanthi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry-605014, India; (M.A.); (H.R.V.)
| | - Dipak K. Das
- Cardiovascular Research Centre, School of Medicine, University of Connecticut, Farmington 06030-1110, CT, USA
| |
Collapse
|
41
|
Kijlstra A, Tian Y, Kelly ER, Berendschot TTJM. Lutein: more than just a filter for blue light. Prog Retin Eye Res 2012; 31:303-15. [PMID: 22465791 DOI: 10.1016/j.preteyeres.2012.03.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 12/15/2022]
Abstract
Lutein is concentrated in the primate retina, where together with zeaxanthin it forms the macular pigment. Traditionally lutein is characterized by its blue light filtering and anti-oxidant properties. Eliminating lutein from the diet of experimental animals results in early degenerative signs in the retina while patients with an acquired condition of macular pigment loss (Macular Telangiectasia) show serious visual handicap indicating the importance of macular pigment. Whether lutein intake reduces the risk of age related macular degeneration (AMD) or cataract formation is currently a strong matter of debate and abundant research is carried out to unravel the biological properties of the lutein molecule. SR-B1 has recently been identified as a lutein binding protein in the retina and this same receptor plays a role in the selective uptake in the gut. In the blood lutein is transported via high-density lipoproteins (HDL). Genes controlling SR-B1 and HDL levels predispose to AMD which supports the involvement of cholesterol/lutein transport pathways. Apart from beneficial effects of lutein intake on various visual function tests, recent findings show that lutein can affect immune responses and inflammation. Lutein diminishes the expression of various ocular inflammation models including endotoxin induced uveitis, laser induced choroidal neovascularization, streptozotocin induced diabetes and experimental retinal ischemia and reperfusion. In vitro studies show that lutein suppresses NF kappa-B activation as well as the expression of iNOS and COX-2. Since AMD has features of a chronic low-grade systemic inflammatory response, attention to the exact role of lutein in this disease has shifted from a local effect in the eye towards a possible systemic anti-inflammatory function.
Collapse
Affiliation(s)
- Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Shanmugasundaram R, Selvaraj RK. Effect of killed whole yeast cell prebiotic supplementation on broiler performance and intestinal immune cell parameters. Poult Sci 2012; 91:107-11. [PMID: 22184435 DOI: 10.3382/ps.2011-01732] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two experiments were conducted to study the effect of CitriStim, a commercial killed whole yeast cell prebiotic, on broiler performance, regulatory T cells, CD4(+) and CD8(+) percentages, and IL-10 and IL-1 mRNA contents of the spleen and cecal tonsils. No immune challenges were imposed in either of the 2 experiments. One-day-old broiler chicks were fed a corn- and soybean meal-based diet supplemented with 0, 0.1, or 0.2% CitriStim (ADM, Decatur, IL) for 35 d. At 21 (P = 0.03) and 35 d (P = 0.02) of age, CitriStim supplementation at 0.2% increased regulatory T cell percentage in the cecal tonsil compared with that of the 0% CitriStim-supplemented group. At 21 (P = 0.08) and 35 d (P = 0.01) of age, CitriStim supplementation at 0.2% increased IL-10 mRNA content of the cecal tonsil compared with that of the 0% CitriStim-supplemented group. At 21 (P = 0.13) and 35 d (P < 0.01) of age, CitriStim supplementation at 0.2% decreased IL-1 mRNA content compared with that of the 0% CitriStim supplemented group. CitriStim supplementation did not (P > 0.05) alter the IL-10 and IL-1 mRNA contents in the spleen. CitriStim supplementation did not (P > 0.05) alter the CD4(+) and CD8(+) cell percentages in the spleen and cecal tonsil at 21 and 35 d of the experiment. CitriStim supplementation increased regulatory T cell percentage and IL-10 mRNA content and decreased IL-1 mRNA content in the cecal tonsil to produce a net antiinflammatory milieu. The immunomodulatory effect of CitriStim supplementation was a local effect rather than a systemic effect.
Collapse
Affiliation(s)
- R Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | | |
Collapse
|
43
|
Shanmugasundaram R, Lilburn MS, Selvaraj RK. Effect of recycled litter on immune cells in the cecal tonsils of chickens. Poult Sci 2012; 91:95-100. [PMID: 22184433 DOI: 10.3382/ps.2011-01800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This experiment was conducted to study selected aspects of the gut immune response in broiler chicks reared on fresh or recycled litter that were fed diets with and without subtherapeutic antibiotic supplementation. All of the chicks were reared in pens that contained either fresh pine shavings (fresh litter) or litter that was recycled for 3 consecutive flocks (recycled litter). The experiment was a 2 × 2 factorial arrangement of treatments with 4 replicate pens (n = 4) per treatment. At 10 and 35 d of age, the cecal tonsils were analyzed for intestinal immune measurements. The cecal tonsils of birds reared on recycled litter had increased IL-1 mRNA (P < 0.01) and a lower percentage of CD4(+)CD25(+) cells at 10 and 35 d of age when compared with those of chicks reared on fresh litter. Birds fed diets supplemented with bacitracin had a reduction in CD4(+) cells (P = 0.01) at 10 d of age when compared with that of chicks that were not fed the antibiotic. The combination of bacitracin supplementation and fresh litter resulted in an approximate 10-fold increase in IL-10 mRNA (P = 0.01) at 10 d of age when compared with that of the unsupplemented chicks in fresh litter. Among those chicks that were not supplemented with bacitracin, the recycled-litter treatment resulted in 25-fold (P = 0.01) and 39-fold (P = 0.02) higher IL-4 mRNA levels at 10 and 35 d of age, respectively, when compared with those of the chicks reared on fresh litter. In conclusion, the intestinal immune response of birds reared on recycled litter is skewed toward an inflammatory response, whereas the fresh litter treatment was skewed toward an anti-inflammatory response. Bacitracin supplementation did not interact with the litter type to alter IL-1 mRNA levels in cecal tonsils, suggesting the low efficiency of bacitracin in alleviating the inflammatory response induced by recycled litter.
Collapse
Affiliation(s)
- R Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, 44691, USA
| | | | | |
Collapse
|
44
|
Selvaraj R. Maximum immunity effectors: Mechanisms and animal performance limitations
,. J APPL POULTRY RES 2012. [DOI: 10.3382/japr.2011-00479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
45
|
Sild E, Sepp T, Männiste M, Hõrak P. Carotenoid intake does not affect immune-stimulated oxidative burst in greenfinches. ACTA ACUST UNITED AC 2012; 214:3467-73. [PMID: 21957110 DOI: 10.1242/jeb.062182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carotenoid-based integument colouration is extremely widespread in the animal kingdom. It has been hypothesized that carotenoid colouration is used for communicating the health status of the bearers because carotenoids are efficient immunomodulators or antioxidants. However, the latter argument has been recently debated and the mechanisms by which carotenoids modulate immunity or oxidative balance are poorly known. We performed an experiment on wild-caught captive greenfinches, passerine birds with carotenoid-based plumage colouration, in order to test whether dietary carotenoid supplementation affects immune-stimulated oxidative burst of phagocytes in the whole blood and humoral immune response to a novel antigen, Brucella abortus (BA). Additionally, we tested whether immune stimulation with bacterial lipopolysaccharide (LPS) affects blood carotenoid levels. We thus tested the effects of carotenoids on the oxidative burst of phagocytes under neutral conditions and during in vivo immune challenge. LPS injection depleted plasma carotenoids, indicating involvement of these phytochemicals in the immune response. However, we did not find any evidence that manipulation of carotenoid intake had modulated anti-BA antibody production, LPS-stimulated oxidative burst of phagocytes, or basal levels of circulating reactive oxygen species. This indicates that carotenoid intake does not affect endogenous production of reactive oxygen species by immune cells. This finding is consistent with the view that carotenoids are unlikely to provide a direct link between oxidative stress and colouration. However, it remains to be tested whether the oxidative burst of phagocytes induced in our experiment actually inflicts oxidative damage and whether carotenoids play a role in the attenuation of such potential damages.
Collapse
Affiliation(s)
- Elin Sild
- Department of Zoology, Institute of Ecology and Earth Sciences, The Centre of Excellence FIBIR, Tartu University, Vanemuise 46, 51014 Tartu, Estonia
| | | | | | | |
Collapse
|
46
|
Butler MW, McGraw KJ. Developmental immune history affects adult immune function but not carotenoid-based ornamentation in mallard ducks. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01942.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Loudon A, Shanmugasundaram R, Lilburn M, Selvaraj R. Intestinal physiology and regulatory T cell response to immediate or delayed access to feed and water in Pekin ducklings,. Poult Sci 2011; 90:2041-6. [DOI: 10.3382/ps.2011-01347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Shanmugasundaram R, Selvaraj RK. Lutein supplementation alters inflammatory cytokine production and antioxidant status in F-line turkeys. Poult Sci 2011; 90:971-6. [PMID: 21489941 DOI: 10.3382/ps.2010-01150] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effect of dietary lutein supplementation on turkey production parameters, cytokine production, and oxidative status during an acute phase response following lipopolysaccharide (LPS) injection was studied. One-day-old chicks were fed a basal diet supplemented with 3 levels (0, 25, or 50 mg/kg of feed) of lutein. At 50 d of dietary lutein supplementation, turkeys were injected or not injected with LPS. Increasing dietary lutein increased the liver and plasma lutein content in both LPS injected and uninjected groups. In the groups fed 50 mg of lutein, LPS treatment decreased the lutein content of both the liver and the plasma at 48 h post-LPS injection. In the groups fed 0 mg of lutein, LPS treatment decreased the BW gain and feed consumption at 24 and 48 h post-LPS injection. The feed intake and BW gain of the group fed 50 mg of lutein in the LPS injected groups were comparable to those of the group with no LPS injection at both 24 and 48 h post-LPS injection. Treatment with LPS increased IL-1β mRNA content (P = 0.01) in the group fed 0 mg of lutein. In the LPS injected groups, increasing dietary lutein to 50 mg decreased the IL-1β mRNA amount compared with the group fed 0 mg of lutein. In the LPS injected groups, increasing dietary lutein to 50 mg increased IL-10 mRNA content compared with the group fed 0 mg of lutein. Injection of LPS increased the thiobarbituric reactive substances content of the liver in the group fed 0 mg of lutein. Increasing dietary lutein to 50 mg decreased the thiobarbituric reactive substances content of the liver in the LPS injected groups. Dietary lutein supplementation decreased oxidative damage and inflammatory responses post-LPS injection by decreasing IL-1β production and increasing IL-10 production in turkeys.
Collapse
Affiliation(s)
- R Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | | |
Collapse
|
49
|
Janssen JS, Sharma V, Pugazhenthi U, Sladek C, Wood WM, Haugen BR. A rexinoid antagonist increases the hypothalamic-pituitary-thyroid set point in mice and thyrotrope cells. Mol Cell Endocrinol 2011; 339:1-6. [PMID: 21458528 PMCID: PMC3112467 DOI: 10.1016/j.mce.2011.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 12/17/2010] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Retinoid X receptor (RXR) signaling influences thyrotrope function. Synthetic RXR agonists, rexinoids, can cause central hypothyroidism. To test the hypothesis that endogenous rexinoids contribute to the TSH 'set point', TαT1 mouse thyrotrope cells were treated with a rexinoid antagonist, LG101208. Increasing concentrations of LG101208 significantly increased TSHβ mRNA levels, indicating that the rexinoid antagonist may interfere with RXR-signaling by an endogenous rexinoid in thyrotropes. When the same experiments were repeated in the presence of charcoal-stripped serum the effect of the rexinoid antagonist was lost. Pretreatment with the transcription inhibitor DRB blocked the increase of TSHβ mRNA levels by rexinoid antagonist, indicating the primary effect is at the level of gene transcription. Mice treated with LG101208 had higher levels of serum T4, T4/TSH ratios as well as pituitary α-subunit and TSHβ mRNA compared with vehicle treated mice. Hypothalamic TRH levels were unchanged. In summary, the rexinoid antagonist, LG101208, increases TSH subunit mRNA levels in thyrotrope cells and mouse pituitaries, primarily at the level of gene transcription. These data suggest that an "endogenous rexinoid" contributes to the TSH 'set point' in thyrotropes.
Collapse
Affiliation(s)
- Jennifer S. Janssen
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Vibha Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Umarani Pugazhenthi
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Celia Sladek
- Department of Physiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - William M. Wood
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Bryan R. Haugen
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Denver, School of Medicine, Aurora, Colorado
| |
Collapse
|
50
|
Zhang X, Zhao WE, Hu L, Zhao L, Huang J. Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARγ) in K562 cancer cells. Arch Biochem Biophys 2011; 512:96-106. [PMID: 21620794 DOI: 10.1016/j.abb.2011.05.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/10/2011] [Accepted: 05/12/2011] [Indexed: 01/04/2023]
Abstract
As one of the main micronutrients in vegetables and fruit carotenoids are almost daily intaken in significant quantity. Although the pharmacological roles of carotenoids in the prevention and reduction of cancer incidence have received more and more attention, the exact molecular mechanisms underlying anticancer effects of carotenoids remain unclear yet. Activated peroxisome proliferator-activated receptor gamma (PPARγ) plays an inhibitory role in cancer cell proliferation and growth. Involvement of PPARγ in the growth inhibition of leukemia K562 cells by carotenoids was investigated in the present study. The results demonstrated that β-carotene, astaxanthin, capsanthin, and bixin inhibited the proliferation and decreased the viability of leukemia K562 cells in dose- and time-dependent manners, induced cell apoptosis, and interfered with cell cycle progression. Pretreatment with GW9662, a potent antagonist of PPARγ, partly attenuated the inhibition of K562 cell proliferation by the four carotenoids at 8μM. These carotenoids up-regulated the expression of PPARγ and p21 and down-regulated the expression of cyclin D1 in a dose-dependent manner. In addition, β-carotene, astaxanthin, capsanthin and bixin also up-regulated the expression of Nrf2, an important transcription factor in Keap1-Nrf2/EpRE/ARE signaling pathway. It appears to us that PPARγ signaling pathways and Keap1-Nrf2/EpRE/ARE signaling pathway were involved in the inhibition of K562 cell proliferation by carotenoids and the up-regulation of PPARγ expression at least partly contributed to the antiproliferative effects of β-carotene, astaxanthin, capsanthin, and bixin on K562 cells.
Collapse
Affiliation(s)
- Xia Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, No. 100 Science Road, Zhengzhou 450001, PR China
| | | | | | | | | |
Collapse
|