1
|
Zhen H, Qian H, Liu X, Tan C. Fructooligosaccharides for Relieving Functional Constipation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods 2024; 13:3993. [PMID: 39766936 PMCID: PMC11675838 DOI: 10.3390/foods13243993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Fructooligosaccharides (FOS) are prebiotics with great potential to improve constipation. This study set out to investigate the usefulness of consuming FOS as a dietary supplement on bowel movement frequency, stool consistency, abundance of Bifidobacteria, gastrointestinal transit time, and gastrointestinal symptoms through a systematic review and meta-analysis of randomized controlled trials (RCTs). We searched the Cochrane Library, PubMed, EMBASE, and Web of Science databases up to 2 March 2024. Randomized controlled trials reporting the use of FOS as a supplement by participants were included. Bias risk was assessed using the Cochrane Risk of Bias assessment tool. Results were synthesized using a random-effects model or fixed-effects model, combining outcomes using odds ratios (OR), weighted mean differences (MD), or standardized mean differences (SMD) with 95% confidence intervals (CI). The meta-analysis encompassed 17 randomized controlled trials, involving a total of 713 study participants. Overall, the intake of FOS significantly increased bowel movement frequency (95% CI: 0.80, 1.50, p < 0.00001) and positively affected stool consistency, softening the stool (SMD: 0.36, 95% CI: 0.12, 0.60, p = 0.76). It also reduced the effort and pain during defecation (SMD: -0.60, 95% CI: -0.85, -0.34, p = 0.12). At the same time, mild bloating was noted as an adverse event associated with FOS ingestion (OR: 10.36, 95% CI: 3.32, 33.23, p = 0.24). No reports of serious adverse events were documented. Overall, FOS may enhance bowel movement frequency, stool consistency, and overall constipation symptoms, suggesting cautious optimism regarding their use as a dietary treatment alternative. Nevertheless, further robust and definitive randomized controlled trials are required to more accurately determine the most effective dosage and duration of use. Additional research and evidence are necessary before the efficacy of FOS as a therapeutic method for treating functional constipation can be firmly established.
Collapse
Affiliation(s)
- Hongmin Zhen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (H.Z.); (H.Q.)
| | - Hanwei Qian
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (H.Z.); (H.Q.)
| | - Xiaoyan Liu
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (H.Z.); (H.Q.)
| |
Collapse
|
2
|
Shehata AM, Seddek NH, Khamis T, Elnesr SS, Nouri HR, Albasri HM, Paswan VK. In-ovo injection of Bacillus subtilis, raffinose, and their combinations enhances hatchability, gut health, nutrient transport- and intestinal function-related genes, and early development of broiler chicks. Poult Sci 2024; 103:104134. [PMID: 39154607 PMCID: PMC11471093 DOI: 10.1016/j.psj.2024.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
An experiment was conducted to assess the response of chicks to in-ovo injection of Bacillus subtilis (probiotic), raffinose (prebiotic), and their combinations. The study used 1,500 embryonated eggs allotted to 10 groups/ 6 replicates (150 eggs/group). The experimental treatments were: 1) un-injected control (NC); 2) sham (sterile distilled water) (PC); 3) probiotic 4 × 105CFU/egg (LBS); 4) probiotic 4 × 106CFU/egg (HBS); 5) prebiotic 2 mg/egg (LR); (6 prebiotic 3 mg/egg (HR); 7) probiotic 4 × 105CFU + prebiotic 2 mg/egg (LBS+LR); 8) probiotic 4 × 105CFU + prebiotic 3 mg/egg (LBS+HR); 9) probiotic 4 × 106CFU + prebiotic 2 mg/egg (HBS+LR); and 10) probiotic 4 × 106CFU + prebiotic 3 mg/egg (HBS+HR). Results showed that in-ovo inclusion of Bacillus subtilis, prebiotic, and their combinations improved hatchability, yolk-free chick weight, and chick weight compared to the control group. Moreover, the in-ovo treatment reduced residual yolk weight on the day of hatch compared to the control group. Different levels of in-ovo B. subtilis alone or combined with raffinose significantly (P ≤ 0.001) reduced total bacterial count and total yeast and mold count compared to the negative control group. Total coliform and E. coli decreased significantly (P ≤ 0.001) in groups treated with probiotics, prebiotics, and synbiotics with different doses during incubation compared to those in the control. Clostridium spp. was not detected in the groups injected with B. subtilis alone or combined with raffinose. In-ovo probiotics and synbiotics (LBS+LR & LBS+HR) significantly (P ≤ 0.001) increased ileal villus length compared to other groups. In-ovo treatment increased mRNA expression of JAM-2 compared to the control group. The fold change significantly increased in group LBS+HR for genes MUC-2, OCLN, VEGF, SGLT-1, and EAAT-3 compared to the negative control. In conclusion, in-ovo injection of a low dose of B. subtilis plus a high or low dose of raffinose can positively affect hatching traits, cecal microbial populations, intestinal histomorphometry, nutrient transport- and intestinal function-related genes, and chick quality of newly hatched broiler chicks.
Collapse
Affiliation(s)
- Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
| | - Nermien Helmy Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hela Rached Nouri
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Hibah M Albasri
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
4
|
Duda Ł, Kłosiński KK, Budryn G, Jaśkiewicz A, Kołat D, Kałuzińska-Kołat Ż, Pasieka ZW. Medicinal Use of Chicory (Cichorium intybus L.). Sci Pharm 2024; 92:31. [DOI: 10.3390/scipharm92020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025] Open
Abstract
The aim of this review is to discuss the numerous health-promoting properties of Cichorium intybus L. and bring together a range of publications to broaden knowledge and encourage further research and consideration of the plant use as treatment for a range of conditions. A comprehensive search of articles in Polish and English from 1986–2022 years was carried out in PubMed, Google Scholar and ScienceDirect using the keywords chicory, Cichorium intybus L., sesquiterpene lactones and their synonyms. Articles were checked for titles, abstracts, and full-text reviews. The first part of the review article discusses chicory, the countries in which it is found, its life cycle or modern cultivation methods, as well as its many uses, which will be discussed in more detail later in the article. The increased interest in plants as medicines or supplements is also briefly mentioned, as well as some limits that are associated with the medical use of plants. In the Results and Discussion section, there is a discussion of the numerous health-promoting properties of Cichorium intybus L. as a whole plant, with its collection of all the components, and we then examine the structure and the individual constituents of Cichorium intybus L. Among these, this article discusses those that can be utilized for causal applications in medicine, including sesquiterpene lactones and polyphenols, mainly known for their anti-cancer properties, although, in this article, their other health-promoting properties are also discussed. The article also examines inulin, a major component of Cichorium intybus L. The Discussion and the Conclusions sections propose directions for more detailed research and the range of factors that may affect specific results, which may have safety implications when used as supplements or medications.
Collapse
Affiliation(s)
- Łukasz Duda
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Andrzej Jaśkiewicz
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Zbigniew Włodzimierz Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
5
|
Shahbazi R, Yasavoli-Sharahi H, Mallet JF, Sharifzad F, Alsadi N, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Novel Probiotic Bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53) Modulates Gut Immunity through Epigenetic Mechanisms. Microorganisms 2023; 11:2456. [PMID: 37894114 PMCID: PMC10609533 DOI: 10.3390/microorganisms11102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Gut immune system homeostasis is crucial to overall host health. Immune disturbance at the gut level may lead to systemic and distant sites' immune dysfunction. Probiotics and prebiotics consumption have been shown to improve gut microbiota composition and function and enhance gut immunity. In the current study, the immunomodulatory and anti-inflammatory effects of viable and heat-inactivated forms of the novel probiotic bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53), as well as the prebiotic protocatechuic acid (PCA) derived from the fermentation of blueberry juice by SV-53, were examined. To this end, female Balb/c mice received probiotic (viable or heat-inactivated), prebiotic, or a mixture of viable probiotic and prebiotic in drinking water for three weeks. To better decipher the immunomodulatory effects of biotics intake, gut microbiota, gut mucosal immunity, T helper-17 (Th17) cell-related cytokines, and epigenetic modulation of Th17 cells were studied. In mice receiving viable SV-53 and PCA, a significant increase was noted in serum IgA levels and the number of IgA-producing B cells in the ileum. A significant reduction was observed in the concentrations of proinflammatory cytokines, including interleukin (IL)-17A, IL-6, and IL-23, and expression of two proinflammatory miRNAs, miR-223 and miR425, in treated groups. In addition, heat-inactivated SV-53 exerted immunomodulatory properties by elevating the IgA concentration in the serum and reducing IL-6 and IL-23 levels in the ileum. DNA methylation analysis revealed the role of heat-inactivated SV-53 in the epigenetic regulation of genes related to Th17 and IL-17 production and function, including Il6, Il17rc, Il9, Il11, Akt1, Ikbkg, Sgk1, Cblb, and Smad4. Taken together, these findings may reflect the potential role of the novel probiotic bacterium SV-53 and prebiotic PCA in improving gut immunity and homeostasis. Further studies are required to ascertain the beneficial effects of this novel bacterium in the inflammatory state.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Mallet
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Salem GA, Mohamed AAR, Ghonimi WAM, Abdallah HM, Rhouma NR, Ali RI. The synbiotic mixture of Bacillus licheniformis and Saccharomyces cerevisiae extract aggravates dextran sulfate sodium induced colitis in rats. BMC Vet Res 2022; 18:405. [PMID: 36384756 PMCID: PMC9667625 DOI: 10.1186/s12917-022-03479-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Uncertain effects of probiotics and/or prebiotics have been reported in experimental and clinical colitis. This study aims to examine the effects of a synbiotic combination comprising Bacillus licheniformis DSM 17236 and Saccharomyces cerevisiae cell wall extract on dextran sulfate sodium (DSS)-induced colitis in Sprague Dawley rats. METHODS Acute colitis was induced in rats by oral administration of DSS 3.5% for 7 days. Fifty rats were divided equally into five groups; one control group and the other groups were induced with colitis and treated with or without the tested synbiotic, mixed with diet, for 28 days and sulfasalazine (100 mg/kg) via intragastric tube once daily for 14 days. RESULTS Symptomatically, the synbiotic administration raised the disease activity index (DAI) to comparable scores of the DSS group, specially from the 2nd to 7th days post DSS intoxication. It also induced a significant (p < 0.05) amplification of WBCs, myeloperoxidase (MPO), malondialdehyde (MDA), nuclear factor kappa B (NF-kB) expression and proinflammatory cytokines tumor necrosis factor alpha (TNFα), interferon gamma (INFγ), and interleukin-1 beta (IL-1β) while depressed the antioxidant enzymes glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) when compared with the DSS and control groups. The DSS intoxicated and Synbiotic+DSS groups showed desquamations of the covering epithelium, noticeable diffuse leukocytic infiltrations, sever catarrhal enteritis, ischemic colitis with diffuse coagulative necrosis of the entire colonic mucosa. Contrarily, sulfasalazine proved to be effective in the reduction of the tested inflammatory markers and the pathological degenerative changes of the DSS ulcerative colitis. CONCLUSION The examined synbiotic did not ameliorate but aggravated the DSS-induced colitis, so it should be subjected to intensive experimental and clinical testing before their use in animals and human.
Collapse
Affiliation(s)
- Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44519, Zagazig, Egypt.
| | - Amany Abdel-Rahman Mohamed
- Departments of Forensic Medicine and Toxicology and Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Wael A M Ghonimi
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - H M Abdallah
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nasreddin R Rhouma
- Department of Micobiology, Faculty of Science, Misurata University, Misurata, P.O. Box 2478, Libya
| | - Reem I Ali
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Banha University, Banha, 13518, Egypt
| |
Collapse
|
7
|
Hayhoe MAN, Archbold T, Wang Q, Yang X, Fan MZ. Prebiotics and β-Glucan as gut modifier feed additives in modulation of growth performance, protein utilization status and dry matter and lactose digestibility in weanling pigs. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.855846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There are growing interests in developing novel gut modifier feed additives and alternative therapeutics to replace antimicrobials to enhance efficiency of nutrient utilization and to address the antimicrobial resistance threat to public health facing the global pork production. Biological mechanisms of supplementing lactose for enhancing weanling pig growth and nitrogen utilization are unclear. Thus, this study was prompted to determine effects of dietary supplementation of 3 prebiotics and oat β-glucan vs. a sub-therapeutic antibiotic on growth performance, whole-body protein utilization status, the apparent total tract dry matter (DM) and lactose digestibility in weanling pigs fed corn and soybean meal (SBM)-based diets. Six experimental diets were formulated with corn (40%), SBM (28%) and supplemented with dried whey powder (20%) and fish meal (9%) with titanium oxide (0.30%) as the digestibility marker. Diet 1 (NC, negative control), as the basal diet, contained no antibiotics and no supplemental prebiotics or β-glucan. Diet 2 (PC, positive control), contained an antibiotic premix (Lincomix-44 at 0.10%) in the basal diet at the expense of cornstarch. Diets 3, 5 and 6 contained 0.75% of the three test prebiotics of retrograded cornstarch (Diet 3), Fibersol-2 (Diet 5, a modified digestion-resistant maltodextrin) and inulin (Diet 6), and the viscous soluble fiber oat β-glucan (Diet 4), respectively, at the expense of cornstarch. A total of 144 Yorkshire pigs, at the age of 21 days (d) and an average body weight (BW) of 5.5 kg, were allocated to 12 floor pens with 3 barrows and 3 gilts per pen, and fed one of the 6 diets for 21 d in 2 study blocks according to a completely randomized block design. Initial and final pig BW, average daily gain (ADG), average daily feed intake (ADFI), representative pig plasma urea concentration as well as the apparent total tract DM and lactose digestibility during d 8-15 were measured. Analyses of variances, Dunnett’s and Tukey’s tests were conducted on the endpoints by using the SAS mixed model. There were no differences (P > 0.05) in ADG, ADFI, feed to gain ratio, plasma urea concentration, the apparent total tract apparent DM and lactose digestibility and the predicted whole-gut lactase digestive capacity among the diets, as examined by the Tukey’s test. There were no differences (P > 0.05) in these endpoints between each of the four treatment diets and the NC or the PC diet as examined by the Dunnett’s test. The total tract lactose digestibility was determined to be at 100%. The predicted whole-gut lactase digestive capacity was about eight times of the daily lactose intake when dietary lactose contents were supplemented at 10 - 12% (as-fed basis). In conclusion, dietary supplementation (at 0.75%) of the prebiotics and the oat β-glucan did not significantly affect the major growth performance endpoints, whole-body protein utilization status as well as the apparent total tract DM and lactose digestibility in the weanling pigs fed the corn and SBM-based diets. The promoting effect for growth and nitrogen utilization associated with dietary supplementation of lactose is due to the fact that lactose is a completely and rapidly digestible sugar rather than acting as an effective prebiotic in weanling pig nutrition.
Collapse
|
8
|
Tawfick MM, Xie H, Zhao C, Shao P, Farag MA. Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. Int J Biol Macromol 2022; 208:948-961. [PMID: 35381290 DOI: 10.1016/j.ijbiomac.2022.03.218] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Inulin consumption in both humans and animal models is recognized for its prebiotic action with the most consistent change that lies in enhancing the growth and functionality of Bifidobacterium bacteria, as well as its effect on host gene expression and metabolism. Further, inulin-type fructans are utilized in the colon by bacterial fermentation to yield short-chain fatty acids (SCFAs), which play important role in its biological effects both locally inside the gut and in systemic actions. The gut symbiosis sustained by inulin supplementation among other dietary fibers exerts preventive and/or therapeutic options for many metabolic disorders including obesity, type 2 diabetes mellitus, cardiometabolic diseases, kidney diseases and hyperuricemia. Although, gastrointestinal negative effects due to inulin consumption were reported, such as gastrointestinal symptoms in humans and exacerbated inflammatory bowel disease (IBD) in mice. This comprehensive review aims to present the whole story of how inulin functions as a prebiotic at cellular levels and the interplay between physiological, functional and immunological responses inside the animal or human gut as influenced by inulin in diets, in context to its structural composition. Such review is of importance to identify management and feed strategies to optimize gut health, for instance, consumption of the tolerated doses to healthy adults of 10 g/day of native inulin or 5 g/day of naturally inulin-rich chicory extract. In addition, inulin-drug interactions should be further clarified particularly if used as a supplement for the treatment of degenerative diseases (e.g., diabetes) over a long period. The combined effect of probiotics and inulin appears more effective, and more research on this synergy is still needed.
Collapse
Affiliation(s)
- Mahmoud M Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Hualing Xie
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562 Cairo, Egypt.
| |
Collapse
|
9
|
Rohani MF, Islam SM, Hossain MK, Ferdous Z, Siddik MA, Nuruzzaman M, Padeniya U, Brown C, Shahjahan M. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. FISH & SHELLFISH IMMUNOLOGY 2022; 120:569-589. [PMID: 34963656 DOI: 10.1016/j.fsi.2021.12.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Aquaculture plays an increasingly significant role in improving the sustainability of global fish production. This sector has been intensified with the advent of new husbandry practices and the development of new technology. However, the increasing intensification and indiscriminate commercialized farming has enhanced the vulnerability of cultivated aquatic species to damage from pathogens. In efforts to confront these various diseases, frequent use of drugs, antibiotics, chemotherapeutics, and agents for sterilization have unintentionally added to the risk of transmission of pathogens and harmful chemical compounds to consumers. Some natural dietary supplements are believed to have the potential to offset this setback in aquaculture. Application of bio-friendly feed additives such as probiotics, prebiotics and synbiotics are becoming popular dietary supplements with the potential to not only improve growth performance, but in some cases can also enhance immune competence and the overall well-being of fish and crustaceans. The present review discusses and summarizes the effects of probiotics, prebiotics and synbiotics application on growth, stress mitigation, microbial composition of intestine, immune system and health condition of aquatic animals in association with existing constraints and future perspectives in aquaculture.
Collapse
Affiliation(s)
- Md Fazle Rohani
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sm Majharul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Kabir Hossain
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Zannatul Ferdous
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Muhammad Ab Siddik
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Mohammad Nuruzzaman
- Krishi Gobeshona Foundation, BARC Complex, Farmgate, Dhaka, 1215, Bangladesh
| | - Uthpala Padeniya
- FAO-World Fisheries University Pilot Programme, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Christopher Brown
- FAO-World Fisheries University Pilot Programme, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
10
|
Costa GT, Vasconcelos QDJS, Aragão GF. Fructooligosaccharides on inflammation, immunomodulation, oxidative stress, and gut immune response: a systematic review. Nutr Rev 2021; 80:709-722. [PMID: 34966938 DOI: 10.1093/nutrit/nuab115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CONTEXT Evidence shows that fructooligosaccharides (FOSs) can modulate inflammatory, oxidative, and immune activity in the gut, possibly leading to a systemic response, improving human health. OBJECTIVE To assess the present knowledge of the effects of FOSs on inflammation, immunomodulation, oxidative stress, and gut immune response. DATA SOURCES Studies published between December 2000 and January 2020 were systematically searched in four databases: MEDLINE, LILACS, Web of Science, and Scopus. After the screening of 1316 articles, 8 human studies and 20 animal models were included. DATA EXTRACTION Data were extracted separately by 2 reviewers. For each study, the design, population, exposures, main results, and conclusion were extracted. The research questions and the risk-of-bias information were also extracted. Additionally, the risk-of-bias were analyzed to guarantee the reliability of this review. DATA ANALYSIS A qualitative analysis revealed that FOSs can increase bifidobacteria counts and short-chain fatty acids in the gut, stimulate IgA secretion in the colon, and decrease proinflammatory cytokines, thus influencing metabolic diseases. CONCLUSION Studies suggest that FOS supplementation is positively associated with an anti-inflammatory and antioxidant effect, thus enhancing the gut immune system, which may be beneficial for the host's health. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration nos 42020209865 and 42020220369.
Collapse
Affiliation(s)
- Graciana T Costa
- G.T. Costa is with the Surgery Department, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. Q.D.J.S. Vasconcelos and G.F. Aragão are with the Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. G.F. Aragão is with the Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Quezia D J S Vasconcelos
- G.T. Costa is with the Surgery Department, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. Q.D.J.S. Vasconcelos and G.F. Aragão are with the Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. G.F. Aragão is with the Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Gislei F Aragão
- G.T. Costa is with the Surgery Department, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. Q.D.J.S. Vasconcelos and G.F. Aragão are with the Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. G.F. Aragão is with the Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
11
|
Zimmermann C, Wagner AE. Impact of Food-Derived Bioactive Compounds on Intestinal Immunity. Biomolecules 2021; 11:biom11121901. [PMID: 34944544 PMCID: PMC8699755 DOI: 10.3390/biom11121901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal system is responsible for the digestion and the absorption of nutrients. At the same time, it is essentially involved in the maintenance of immune homeostasis. The strongest antigen contact in an organism takes place in the digestive system showing the importance of a host to develop mechanisms allowing to discriminate between harmful and harmless antigens. An efficient intestinal barrier and the presence of a large and complex part of the immune system in the gut support the host to implement this task. The continuous ingestion of harmless antigens via the diet requires an efficient immune response to reliably identify them as safe. However, in some cases the immune system accidentally identifies harmless antigens as dangerous leading to various diseases such as celiac disease, inflammatory bowel diseases and allergies. It has been shown that the intestinal immune function can be affected by bioactive compounds derived from the diet. The present review provides an overview on the mucosal immune reactions in the gut and how bioactive food ingredients including secondary plant metabolites and probiotics mediate its health promoting effects with regard to the intestinal immune homeostasis.
Collapse
|
12
|
Butt UD, Lin N, Akhter N, Siddiqui T, Li S, Wu B. Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. FISH & SHELLFISH IMMUNOLOGY 2021; 114:263-281. [PMID: 33971259 DOI: 10.1016/j.fsi.2021.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
With the growing world population, the demand for food has increased, leading to excessive and intensive breeding and cultivation of fisheries, simultaneously exacerbating the risk of disease. Recently, shrimp producers have faced major losses of stocks due to the prevalence of periodical diseases and inappropriate use of antibiotics for disease prevention and treatment, leading to bacterial resistance in shrimp, along with imposing health hazards on human consumers. Strict regulations have been placed to ban or reduce the use of prophylactic antibiotics to lessen their detrimental effects on aquatic life. Dietary and water supplements have been used as substitutes, among which probiotics, prebiotics, and synbiotics have been the most beneficial for controlling or treating bacterial, viral, and parasitic diseases in shrimp. The present analysis addresses the issues and current progress in the administration of pro-, pre-, and synbiotics as disease controlling agents in the field of shrimp farming. Furthermore, the benefits of pro-, pre-, and synbiotics and their mechanism of action have been identified such as; strengthening of immune responses, growth of antibacterial agents, alteration in gut microflora, competition for nutrients and binding sites, and enzymes related activities. Overall, this study aims to depict the antagonistic action of these supplements against a variety of pathogens and their mode of action to counter diseases and benefit shrimp species.
Collapse
Affiliation(s)
| | - Na Lin
- Lishui Hospital of Traditional Chinese Medicine, Lishui, 323000, China.
| | - Najeeb Akhter
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, 75270, Pakistan.
| | - Tooba Siddiqui
- Institute of Marine Science, University of Karachi, Karachi, 75270, Pakistan.
| | - Sihui Li
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
13
|
The Effect of Probiotics on Health Outcomes in the Elderly: A Systematic Review of Randomized, Placebo-Controlled Studies. Microorganisms 2021; 9:microorganisms9061344. [PMID: 34205818 PMCID: PMC8234958 DOI: 10.3390/microorganisms9061344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence suggests that probiotic supplementation may be efficacious in counteracting age-related shifts in gut microbiota composition and diversity, thereby impacting health outcomes and promoting healthy aging. However, randomized controlled trials (RCTs) with probiotics in healthy older adults have utilized a wide variety of strains and focused on several different outcomes with conflicting results. Therefore, a systematic review was conducted to determine which outcomes have been investigated in randomized controlled trials with probiotic supplementation in healthy older adults and what has been the effect of these interventions. For inclusion, studies reporting on randomized controlled trials with probiotic and synbiotic supplements in healthy older adults (defined as minimum age of 60 years) were considered. Studies reporting clinical trials in specific patient groups or unhealthy participants were excluded. In addition to assessment of eligibility and data extraction, each study was examined for risk of bias and quality assessment was performed by two independent reviewers. Due to the heterogeneity of outcomes, strains, study design, duration, and methodology, we did not perform any meta-analyses and instead provided a narrative overview of the outcomes examined. Of 1997 potentially eligible publications, 17 studies were included in this review. The risk of bias was low, although several studies failed to adequately describe random sequence generation, allocation concealment, and blinding. The overall study quality was high; however, many studies did not include sample calculations, and the majority of studies had a small sample size. The main outcomes examined in the trials included microbiota composition, immune-related measurements, digestive health, general well-being, cognitive function, and lipid and other biomarkers. The most commonly assessed outcome with the most consistent effect was microbiota composition; all but one study with this outcome showed significant effects on gut microbiota composition in healthy older adults. Overall, probiotic supplementation had modest effects on markers of humoral immunity, immune cell population levels and activity, as well as the incidence and duration of the common cold and other infections with some conflicting results. Digestive health, general-well-being, cognitive function, and lipid and other biomarkers were investigated in a very small number of studies; therefore, the impact on these outcomes remains inconclusive. Probiotics appear to be efficacious in modifying gut microbiota composition in healthy older adults and have moderate effects on immune function. However, the effect of probiotic supplementation on other health outcomes remains inconclusive, highlighting the need for more well-designed, sufficiently-powered studies to investigate if and the mechanisms by which probiotics impact healthy aging.
Collapse
|
14
|
Verma DK, Patel AR, Thakur M, Singh S, Tripathy S, Srivastav PP, Chávez-González ML, Gupta AK, Aguilar CN. A review of the composition and toxicology of fructans, and their applications in foods and health. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Study on growth enhancement and the protective effects of dietary prebiotic inulin on immunity responses of rainbow trout (Oncorhynchus mykiss) fry infected with Aeromonas hydrophila. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
The present study evaluated the effects of dietary inulin on growth performance, body composition, serum, biochemical, and mucus immune factors; as well as innate immune responses of rainbow trout fry challenged with Aeromonas hydrophila. Four diets were prepared using a commercially available fish feed as a basal diet and different levels of prebiotic inulin incorporation; 0 (control), 1, 2, and 3%; referred to as C, T1, T2, and T3, respectively. The findings of the 60-day feeding trial showed that inulin inclusion affected final weight, food conversion rate (FCR), and specific growth rate (SGR) compared to that of the control group (P < 0.05), in which the lowest FCR was observed in T3. Body composition analysis revealed that inulin significantly increased protein content and decreased lipid levels, especially in the T1 and T2 groups. The lowest ash level was noticed in T2 (P < 0.05). Blood total protein, albumin, globulin, cholesterol, and glucose were not affected by inulin supplementation (P > 0.05). Analysis of humoral immune responses showed that the inulin supplements significantly increased lysozyme and complement activities (P < 0.05), as well as higher red blood cell count (RBC) and hemoglobin (Hb) in fish, fed 2% inulin, while no significant differences were observed among other treatments (P > 0.05). The mucosal parameters; including lysozyme, alkaline phosphatase (excluding ACH50); protease activities; and total immunoglobulin (IgM) improved significantly (P < 0.05), particularly in the T2 group. The T2 group also demonstrated the highest survival rate among all groups. The present findings indicate that dietary administration of inulin promotes growth and biochemical parameters, as well as serum immunity and mucosal immune responses of rainbow trout, in which a 2% inclusion produced the best results.
Collapse
|
16
|
Guo CE, Cui Q, Cheng J, Chen J, Zhao Z, Guo R, Dai X, Wei Z, Li W. Probiotic-fermented Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] juice modulates the intestinal mucosal barrier and increases the abundance of Akkermansia in the gut in association with polyphenols. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Jha R, Mishra P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J Anim Sci Biotechnol 2021; 12:51. [PMID: 33866972 PMCID: PMC8054369 DOI: 10.1186/s40104-021-00576-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary fiber (DF) was considered an antinutritional factor due to its adverse effects on feed intake and nutrient digestibility. However, with increasing evidence, scientists have found that DF has enormous impacts on the gastrointestinal tract (GIT) development, digestive physiology, including nutrient digestion, fermentation, and absorption processes of poultry. It may help maintain the small and large intestine's integrity by strengthening mucosal structure and functions and increasing the population and diversity of commensal bacteria in the GIT. Increasing DF content benefits digestive physiology by stimulating GIT development and enzyme production. And the inclusion of fiber at a moderate level in diets also alters poultry growth performance. It improves gut health by modulating beneficial microbiota in the large intestine and enhancing immune functions. However, determining the source, type, form, and level of DF inclusion is of utmost importance to achieve the above-noted benefits. This paper critically reviews the available information on dietary fibers used in poultry and their effects on nutrient utilization, GIT development, gut health, and poultry performance. Understanding these functions will help develop nutrition programs using proper DF at an appropriate inclusion level that will ultimately lead to enhanced DF utilization, overall health, and improved poultry growth performance. Thus, this review will help researchers and industry identify the sources, type, form, and amount of DF to be used in poultry nutrition for healthy, cost-effective, and eco-friendly poultry production.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
18
|
Andersen-Civil AIS, Arora P, Williams AR. Regulation of Enteric Infection and Immunity by Dietary Proanthocyanidins. Front Immunol 2021; 12:637603. [PMID: 33717185 PMCID: PMC7943737 DOI: 10.3389/fimmu.2021.637603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
The role of dietary components in immune function has acquired considerable attention in recent years. An important focus area is to unravel the role of bioactive dietary compounds in relation to enteric disease and their impact on gut mucosal immunity. Proanthocyanidins (PAC) are among the most common and most consumed dietary polyphenols, and are characterised by their variable molecular structures and diverse bioactivities. In particular, their anti-oxidative effects and ability to modulate gut microbiota have been widely described. However, there is limited evidence on the mechanism of action of PAC on the immune system, nor is it clearly established how PAC may influence susceptibility to enteric infections. Establishing the sites of action of PAC and their metabolites within the gut environment is fundamental to determine the applicability of PAC against enteric pathogens. Some mechanistic studies have shown that PAC have direct modulatory effects on immune cell signalling, isolated pathogens, and gut mucosal barrier integrity. Boosting the recruitment of immune cells and suppressing the amount of pro-inflammatory cytokines are modulating factors regulated by PAC, and can either be beneficial or detrimental in the course of re-establishing gut homeostasis. Herein, we review how PAC may alter distinct immune responses towards enteric bacterial, viral and parasitic infections, and how the modulation of gut microbiota may act as a mediating factor. Furthermore, we discuss how future studies could help unravel the role of PAC in preventing and/or alleviating intestinal inflammation and dysbiosis caused by enteric disease.
Collapse
Affiliation(s)
- Audrey I S Andersen-Civil
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg, Denmark
| | - Pankaj Arora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg, Denmark
| |
Collapse
|
19
|
Armstrong H, Mander I, Zhang Z, Armstrong D, Wine E. Not All Fibers Are Born Equal; Variable Response to Dietary Fiber Subtypes in IBD. Front Pediatr 2021; 8:620189. [PMID: 33520902 PMCID: PMC7844368 DOI: 10.3389/fped.2020.620189] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Diet provides a safe and attractive alternative to available treatment options in a variety of diseases; however, research has only just begun to elucidate the role of diet in chronic diseases, such as the inflammatory bowel diseases (IBD). The chronic and highly debilitating IBDs, Crohn disease and ulcerative colitis, are hallmarked by intestinal inflammation, immune dysregulation, and dysbiosis; and evidence supports a role for genetics, microbiota, and the environment, including diet, in disease pathogenesis. This is true especially in children with IBD, where diet-based treatments have shown excellent results. One interesting group of dietary factors that readily links microbiota to gut health is dietary fibers. Fibers are not digested by human cells, but rather fermented by the gut microbes within the bowel. Evidence has been mounting over the last decade in support of the importance of dietary fibers in the maintenance of gut health and in IBD; however, more recent studies highlight the complexity of this interaction and importance of understanding the role of each individual dietary fiber subtype, especially during disease. There are roughly ten subtypes of dietary fibers described to date, categorized as soluble or insoluble, with varying chemical structures, and large differences in their fermentation profiles. Many studies to date have described the benefits of the byproducts of fermentation in healthy individuals and the potential health benefits in select disease models. However, there remains a void in our understanding of how each of these individual fibers affect human health in dysbiotic settings where appropriate fermentation may not be achieved. This review highlights the possibilities for better defining the role of individual dietary fibers for use in regulating inflammation in IBD.
Collapse
Affiliation(s)
- Heather Armstrong
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Inderdeep Mander
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada
| | - Zhengxiao Zhang
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David Armstrong
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Eytan Wine
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Rivas JC, Cabral LMC, Rocha-Leão MHMD. Microencapsulation of guava pulp using prebiotic wall material. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.21320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Important functional compounds present in fruits are often lost in technological processes and during storage. Microencapsulation technique allows maintaining the compounds of interest and adding value to the product using functional encapsulating materials. This work aimed to produce microencapsulated guava pulp using the spray-drying technique and a functional encapsulant material, i.e., a mix of inulin and maltodextrin. The guava pulp was analyzed for centesimal composition, carotenoid content, and antioxidant activity. The microspheres were analyzed for retention of carotenoids, antioxidant activity over time, and morphology by Scanning Electron Microscopy (SEM) and X-ray diffraction. Two proportions of coating material could maintain the antioxidant activity of guava pulp. The microencapsulation with a higher percentage of inulin is a preferred option due to the good results of retention and stability regarding antioxidant activity over time, relevant retention of the carotenoid content, and a more stable microstructure. In addition, inulin can add value to powders owing to its inherent functional properties. The product obtained in the study is innovative and interesting, as well as may provide a capable use of these materials as encapsulated agents. In fact, it can be considered a potential functional ingredient.
Collapse
|
21
|
Nattha P, Santad W, Pritsana R, Chutha TY. Inflammatory response of raw 264.7 macrophage cells teated with dragonfruit oligosaccharide on lipopolysaccharide-induced inflammation. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Pansai Nattha
- Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University
| | - Wichienchot Santad
- Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University
| | - Raungrut Pritsana
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University
| | | |
Collapse
|
22
|
Azad MA, Gao J, Ma J, Li T, Tan B, Huang X, Yin J. Opportunities of prebiotics for the intestinal health of monogastric animals. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:379-388. [PMID: 33364453 PMCID: PMC7750794 DOI: 10.1016/j.aninu.2020.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The goal of prebiotic applications from different sources is to improve the gut ecosystem where the host and microbiota can benefit from prebiotics. It has already been recognized that prebiotics have potential roles in the gut ecosystem because gut microbiota ferment complex dietary macronutrients and carry out a broad range of functions in the host body, such as the production of nutrients and vitamins, protection against pathogens, and maintenance of immune system balance. The gut ecosystem is very crucial and can be affected by numerous factors consisting of dietary constituents and commensal bacteria. This review focuses on recent scientific evidence, confirming a beneficial effect of prebiotics on animal health, particularly in terms of protection against pathogenic bacteria and increasing the number of beneficial bacteria that may improve epithelial cell barrier functions. It has also been reviewed that modification of the gut ecosystem through the utilization of prebiotics significantly affects the intestinal health of animals. However, the identification and characterization of novel potential prebiotics remain a topical issue and elucidation of the metagenomics relationship between gut microbiota alteration and prebiotic substances is necessary for future prebiotic studies.
Collapse
Affiliation(s)
- Md A.K. Azad
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
23
|
Pujari R, Banerjee G. Impact of prebiotics on immune response: from the bench to the clinic. Immunol Cell Biol 2020; 99:255-273. [PMID: 32996638 DOI: 10.1111/imcb.12409] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Several preclinical and clinical studies have shown the immunomodulatory role exerted by prebiotics in regulating the immune response. In this review, we describe the mechanistic and clinical studies that decipher the cell signaling pathways implicated in the process. Prebiotic fibers are conventionally known to serve as substrate for probiotic commensal bacteria that release of short-chain fatty acids in the intestinal tract along with several other metabolites. Subsequently, they then act on the local as well as the systemic immune cells and the gut-associated epithelial cells, primarily through G-protein-coupled receptor-mediated pathways. However, other pathways including histone deacetylase inhibition and inflammasome pathway have also been implicated in regulating the immunomodulatory effect. The prebiotics can also induce a microbiota-independent effect by directly acting on the gut-associated epithelial and innate immune cells through the Toll-like receptors. The cumulative effect results in the maintenance of the epithelial barrier integrity and modulation of innate immunity through secretion of pro- and anti-inflammatory cytokines, switches in macrophage polarization and function, neutrophil recruitment and migration, dendritic cell and regulatory T-cell differentiation. Extending these in vitro and ex vivo observations, some prebiotics have been well investigated, with successful human and animal trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in health endpoints across populations. This review discusses scientific insights into the association between prebiotics, innate immunity and gut microbiome from in vitro to human oral intervention.
Collapse
Affiliation(s)
- Radha Pujari
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| | - Gautam Banerjee
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| |
Collapse
|
24
|
Dose-Dependent Effects of Dietary Xylooligosaccharides Supplementation on Microbiota, Fermentation and Metabolism in Healthy Adult Cats. Molecules 2020; 25:molecules25215030. [PMID: 33138291 PMCID: PMC7662210 DOI: 10.3390/molecules25215030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
In order to investigate the effect and appropriate dose of prebiotics, this study evaluated the effect of two levels of xylooligosaccharides (XOS) in cats. Twenty-four healthy adult cats were divided into three groups: no-XOS control diet with 1% cellulose; low XOS supplementation (LXOS) with 0.04% XOS and 0.96% cellulose; and high XOS supplementation (HXOS) with 0.40% XOS and 0.60% cellulose. Both XOS groups increased blood 3-hydroxybutyryl carnitine levels and decreased hexadecanedioyl carnitine levels. Both XOS treatments displayed an increased bacterial abundance of Blautia, Clostridium XI, and Collinsella and a decreased abundance of Megasphaera and Bifidobacterium. LXOS groups increased fecal pH and bacterial abundance of Streptococcus and Lactobacillus, decreased blood glutaryl carnitine concentration, and Catenibacterium abundance. HXOS group showed a more distinct microbiome profile and higher species richness, and an increased bacterial abundance of Subdoligranulum, Ruminococcaceae genus (unassigned genus), Erysipelotrichaceae genus, and Lachnospiraceae. Correlations between bacterial abundances and blood and fecal parameters were also observed. In conclusion, XOS could benefit feline gut health by altering microbiota; its effects dependant on the dose. The higher-dose XOS increased bacterial populations that possibly promoted intestinal fermentation, while the lower dose altered populations of carbohydrate-metabolic microbiota and possibly modulated host metabolism. Low-dose prebiotics may become a trend in future studies.
Collapse
|
25
|
Oladokun S, Adewole DI. In ovo delivery of bioactive substances: an alternative to the use of antibiotic growth promoters in poultry production—a review. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Isolation, characterization and immunomodulatory activity of oligosaccharides from Codonopsis pilosula. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Stroe AC, Oancea S. Immunostimulatory Potential of Natural Compounds and Extracts: A Review. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190301154200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proper functioning of human immune system is essential for organism survival
against infectious, toxic and oncogenic agents. The present study aimed to describe the scientific evidence
regarding the immunomodulatory properties of the main micronutrients and specific phytochemicals.
Plants of food interest have the ability to dynamically affect the immune system through
particular molecules. Plant species, type of compounds and biological effects were herein reviewed
mainly focusing on plants which are not commonly used in food supplements. Several efficient phytoproducts
showed significant advantages compared to synthetic immunomodulators, being good
candidates for the development of immunotherapeutic drugs.
Collapse
Affiliation(s)
- Andreea C. Stroe
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Ion Ratiu Street, Sibiu 550012, Romania
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Ion Ratiu Street, Sibiu 550012, Romania
| |
Collapse
|
28
|
Prakash Kamble P, Shivaji Suryawanshi S, Vishnu Kore M, Irani N, Prafulla Jadhav J, Chand Attar Y. Bioconversion of Weedy Waste into Sugary Wealth. Microorganisms 2020. [DOI: 10.5772/intechopen.91316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
Williams AR, Andersen-Civil AIS, Zhu L, Blanchard A. Dietary phytonutrients and animal health: regulation of immune function during gastrointestinal infections. J Anim Sci 2020; 98:5718206. [PMID: 31999321 DOI: 10.1093/jas/skaa030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022] Open
Abstract
The composition of dietary macronutrients (proteins, carbohydrates, and fibers) and micronutrients (vitamins, phytochemicals) can markedly influence the development of immune responses to enteric infection. This has important implications for livestock production, where a significant challenge exists to ensure healthy and productive animals in an era of increasing drug resistance and concerns about the sector's environmental footprint. Nutritional intervention may ultimately be a sustainable method to prevent disease and improve efficiency of livestock enterprises, and it is now well established that certain phytonutrients can significantly improve animal performance during challenge with infectious pathogens. However, many questions remain unanswered concerning the complex interplay between diet, immunity, and infection. In this review, we examine the role of phytonutrients in regulating immune and inflammatory responses during enteric bacterial and parasitic infections in livestock, with a specific focus on some increasingly well-studied phytochemical classes-polyphenols (especially proanthocyanidins), essential oil components (cinnamaldehyde, eugenol, and carvacrol), and curcumin. Despite the contrasting chemical structures of these molecules, they appear to induce a number of similar immunological responses. These include promotion of mucosal antibody and antimicrobial peptide production, coupled with a strong suppression of inflammatory cytokines and reactive oxygen species. Although there have been some recent advances in our understanding of the mechanisms underlying their bioactivity, how these phytonutrients modulate immune responses in the intestine remains mostly unknown. We discuss the complex inter-relationships between metabolism of dietary phytonutrients, the gut microbiota, and the mucosal immune system, and propose that an increased understanding of the basic immunological mechanisms involved will allow the rational development of novel dietary additives to promote intestinal health in farmed animals.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
30
|
Wang S, Pan J, Zhang Z, Yan X. Investigation of dietary fructooligosaccharides from different production methods: Interpreting the impact of compositions on probiotic metabolism and growth. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Immunomodulation of Avian Dendritic Cells under the Induction of Prebiotics. Animals (Basel) 2020; 10:ani10040698. [PMID: 32316442 PMCID: PMC7222706 DOI: 10.3390/ani10040698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Dendritic cells recognize pathogen-associated molecular patterns in chicken intestines and are part of the initial immune response. The immunoregulatory properties of prebiotics acting in several ways in poultry have been known for many years. According to their function, dendritic cells should play an indispensable role in the proven effects of prebiotics on the intestinal immune system, such as through activation of T and B cells and cytokine production. Currently, there are no studies concerning direct interactions in poultry between non-digestible feed components and dendritic cells. Whereas most in vitro experiments with chicken dendritic cells have studied their interactions with pathogens, in vitro studies are now needed to determine the impacts of prebiotics on the gastrointestinal dendritic cells themselves. The present lack of information in this area limits the development of effective feed additives for poultry production. The main purpose of this review is to explore ideas regarding potential mechanisms by which dendritic cells might harmonize the immune response after prebiotic supplementation and thereby provide a basis for future studies. Abstract Although the immunomodulatory properties of prebiotics were demonstrated many years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract, and they are the first line of defense in the immune response. Despite the crucial role of DCs in prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties. Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been demonstrated in DCs. This review summarizes current knowledge about avian DCs in the gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of prebiotics within an avian model.
Collapse
|
32
|
Impact of Prebiotics and Synbiotics Administered in ovo on the Immune Response against Experimental Antigens in Chicken Broilers. Animals (Basel) 2020; 10:ani10040643. [PMID: 32276459 PMCID: PMC7222847 DOI: 10.3390/ani10040643] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The immune system of chickens matures in the course of embryonic development. Early in ovo supplementation with bioactive substances leads to the long-term maintenance of a high level of intestine bifidobacteria, reduces the number of detrimental microorganisms in the gut, modulates the central and peripheral lymphatic organ development in broilers, and stimulates gut-associated lymphoid tissues (GALT) development after hatching. In this investigation, we studied whether the early in ovo application (at the 12th day of embryo incubation) of selected bioactives (prebiotics and synbiotics) influences the humoral immune response against experimental antigens, and the delayed-type hypersensitivity (DTH) skin reaction to experimental mitogen. This study demonstrated that the in ovo application of bioactives did not significantly influence the humoral immune response against T-dependent and T-independent model antigens. Prebiotics in chickens immunized with T-dependent antigen (SRBC) protected them from a retarded rise of the IgG concentration. Bioactives reduced the mortality of birds, markedly with inulin (−6.4%), and the DTH reaction to phytohemagglutinin on the 7th and 21st day after hatching. Abstract The effect of the in ovo application of selected prebiotics and synbiotics on the humoral immune response against T-dependent (SRBC) and T-independent (dextran) antigens and delayed-type hypersensitivity (DTH) to phytohemagglutinin was studied. On the 12th day of incubation, 800 eggs (Ross 308) were divided into five groups and injected into the egg air chamber with prebiotic inulin (Pre1), Bi2tos (Pre2), a synbiotic composed of inulin and Lactococcus lactis subsp. lactis IBB SL1 (Syn1), a synbiotic composed of Bi2tos and L. lactis subsp. cremoris IBB SC1 (Syn2), and physiological saline (control group; C). The chickens were immunized twice at the 7th and 21st day of life with SRBC and dextran. A DTH test was performed on the 7th, 21st, and 35th day. The application of prebiotics and synbiotics had no significant effect on the humoral immune response. SRBC-immunized in ovo Pre1- and Pre2-treated chickens showed significantly higher serum IgG levels than the control. A significant effect on the DTH reaction was detected on the 7th (Pre1 < C) and 21st (Pre2 > Syn2) day. However; Bi2tos may transiently stimulate the cellular immune response on the 21st day. It may be concluded that the application of inulin in an egg air chamber on the 12th day of incubation may stimulate the secondary immune response. The inulin-treated group exhibited a lower mortality rate than the control group.
Collapse
|
33
|
İspirli H, Kaya Y, Dertli E. Bifidogenic effect and in vitro immunomodulatory roles of melibiose-derived oligosaccharides produced by the acceptor reaction of glucansucrase E81. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Van Laar ADE, Grootaert C, Van Camp J. Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Crit Rev Food Sci Nutr 2020; 61:713-741. [PMID: 32212974 DOI: 10.1080/10408398.2020.1743966] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Obesity and type 2 diabetes are major health problems affecting hundreds of millions of people. Caloric overfeeding with calorie-dense food ingredients like sugars may contribute to these chronic diseases. Sugar research has also identified mechanisms via which conventional sugars like sucrose and fructose can adversely influence metabolic health. To replace these sugars, numerous sugar replacers including artificial sweeteners and sugar alcohols have been developed. Rare sugars became new candidates to replace conventional sugars and their health effects are already reported in individual studies, but overviews and critical appraisals of their health effects are missing. This is the first paper to provide a detailed review of the metabolic health effects of rare sugars as a group. Especially allulose has a wide range of health effects. Tagatose and isomaltulose have several health effects as well, while other rare sugars mainly provide health benefits in mechanistic studies. Hardly any health claims have been approved for rare sugars due to a lack of evidence from human trials. Human trials with direct measures for disease risk factors are needed to allow a final appraisal of promising rare sugars. Mechanistic cell culture studies and animal models are required to enlarge our knowledge on understudied rare sugars.
Collapse
Affiliation(s)
- Amar D E Van Laar
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - John Van Camp
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Song J, Li Q, Everaert N, Liu R, Zheng M, Zhao G, Wen J. Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection. J Anim Sci 2020; 98:skz396. [PMID: 31894241 PMCID: PMC6986778 DOI: 10.1093/jas/skz396] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
We investigated the effects of inulin on intestinal barrier function and mucosal immunity in Salmonella enterica serovar Enteritidis (SE)-infected specific pathogen-free (SPF) chickens. SPF chickens (n = 240, 1-d-old) were divided into 4 groups (6 replicates per group, 10 chickens per replicate): a control group (CON) fed a basal diet without inulin supplementation and 3 SE-infected groups fed a basal diet supplemented with inulin 0% (SE group), 0.5% (0.5% InSE group), and 1% (1% InSE group), respectively. At 28 d of age, the chickens in SE-infected groups were orally infected with SE and in CON group were administrated with phosphated-buffered saline (PBS). Intestinal morphology, mucosal immunity, and intestinal barrier function-related gene expression were analyzed at 1- and 3-d post-infection (dpi). SE challenge significantly increased the mucosal gene expression, such as interleukin-1β (IL-1β), lipopolysaccharide-induced tumor necrosis factor factor (LITAF), interferon-γ (IFN-γ), and interleukin-6 (IL-6), and increased serum IFN-γ, secretory IgA (sIgA), and IgG concentration, and significantly decreased the gene expression levels of mucin 2 (MUC2) and claudin-1 at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation improved the expression levels of these immunity- and intestinal barrier function-related genes, increased villus height (VH), and decreased crypt depth (CD) in the duodenum, jejunum, and ileum at 1 and 3 dpi within the SE-challenged groups (P < 0.05). SE challenge significantly increased ileal Toll-like receptor 4 (TLR4) mRNA at 1 and 3 dpi, suppressor of cytokine signaling 3 (SOCS3) mRNA at 1 dpi, and phospho-signal transducer and activator of transcription 3 (p-STAT3) and Janus kinase1 (JAK1) protein expression at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation suppressed p-STAT3 and JAK1 protein expression and promoted ileal TLR4 and SOCS3 mRNA expression at 3 dpi compared with SE group (P < 0.05). In conclusion, inulin alleviated SE-induced gut injury by decreasing the proinflammatory response and enhancing mucosal immunity in chickens.
Collapse
Affiliation(s)
- Jiao Song
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
36
|
Dankowiakowska A, Bogucka J, Sobolewska A, Tavaniello S, Maiorano G, Bednarczyk M. Effects of in ovo injection of prebiotics and synbiotics on the productive performance and microstructural features of the superficial pectoral muscle in broiler chickens. Poult Sci 2019; 98:5157-5165. [PMID: 31329998 DOI: 10.3382/ps/pez202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/21/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was to compare the effects of 2 prebiotics and 2 synbiotics injected in ovo on productivity parameters, quality, and microstructure of the superficial pectoral muscle in 35-day-old broiler chickens. On day 12 of incubation, 9,000 eggs Ross 308 were randomly divided into 5 experimental groups treated with different bioactives in ovo injected: C, control with physiological saline; PI, with 1.760 mg inulin; PB, with 0.528 mg of commercial prebiotic Bi2tos; SI, with 1.760 mg inulin and 1,000 CFU Lactococcus lactis spp. lactis IBB SL1; SB, with 0.528 mg Bi2tos and 1,000 CFU Lactococcus lactis spp. cremoris IBB SC1. The synbiotic solution contained 20 μl bacterial suspension and 180 μl prebiotic solution. For productive parameters and further tests ten male birds for each experimental group were used. The birds were slaughtered on day 35 of age. At slaughter, samples of the left pectoral muscles were taken and preserved by freezing in liquid nitrogen. The pH and color of the meat were evaluated at 45 min and 24 h post-mortem. Water holding capacity (WHC) was measured and expressed as the percentage of free water in meat. Microscopic specimens were analysed using MultiScan software for the measurement of the percentage of oxidative and glycolytic fibres and mean diameter of the muscle fibres. In ovo injection of prebiotics Bi2tos had a positive effect on body weight. In prebiotic group (PI) a negative impact on hatchability was observed. Prebiotics and synbiotics had no influence on the yield of the carcass and pectoral muscle. Bioactive compounds had a significant effect on the quality of meat parameters such as: pH 24 h (PI and PB group), L* 45' (SI and SB group), and WHC (groups PB, SI, and SB). The analysis of the enzymatic profile showed a significant increase in the percentage of glycolytic fibres in the pectoral muscle from chicken treated with a synbiotic with the addition of inulin (group SI).
Collapse
Affiliation(s)
- A Dankowiakowska
- Department of Animal Physiology, Physiotherapy and Nutrition, Poland
| | - J Bogucka
- Department of Animal Physiology, Physiotherapy and Nutrition, Poland
| | - A Sobolewska
- Department of Animal Physiology, Physiotherapy and Nutrition, Poland
| | - S Tavaniello
- Department of Agricultural, Environmental and Food Sciences, University of Molise; 86100 Campobasso, Italy
| | - G Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise; 86100 Campobasso, Italy
| | - M Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology in Bydgoszcz, 85-084 Bydgoszcz, Poland
| |
Collapse
|
37
|
Barszcz M, Taciak M, Tuśnio A, Święch E, Skomiał J. Dose-dependent effects of two inulin types differing in chain length on the small intestinal morphology, contractility and proinflammatory cytokine gene expression in piglets. Arch Anim Nutr 2019; 74:107-120. [PMID: 31852279 DOI: 10.1080/1745039x.2019.1697140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Inulin is a linear fructose polymer which may affect small intestinal physiology. The effects of dietary level of two inulin types on morphology, contractility and proinflammatory cytokine gene expression in the small intestine of piglets were investigated. Fifty six piglets were divided into seven groups fed diets without inulin addition or with 1%, 2% or 3% of inulin with an average degree of polymerisation of 10 (IN10) or 23 (IN23). All diets were offered from day 10 of life for 40 d. Feeding IN10 diets did not affect villous height to crypt depth ratio in the duodenum, while in the jejunum the 2% IN10 diet increased it as compared to other groups. Jejunal muscle contractions induced by electrical field stimulation were impaired by the 2% and 3% IN10 diets. The ileal expression of interleukin-12p40 was decreased by the 2% IN10 diet. There was no effect of IN23 level on villous height to crypt depth ratio in any segment of the small intestine as well as on jejunal motility. The 2% and 3% IN23 diets decreased the jejunal expression of tumour necrosis factor-α. In conclusion, IN10 is more active in the small intestine than IN23. At the 2% dietary level, it increases absorptive area in the jejunum, but may slightly impair smooth muscle contractions.
Collapse
Affiliation(s)
- Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Marcin Taciak
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Anna Tuśnio
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Ewa Święch
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Jacek Skomiał
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
38
|
İspirli H, Colquhoun IJ, Şahin E, Sagdic O, Dertli E. Preparation of gentiobiose-derived oligosaccharides by glucansucrase E81 and determination of prebiotic and immune-modulatory functions. Carbohydr Res 2019; 486:107837. [PMID: 31655418 DOI: 10.1016/j.carres.2019.107837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Gentiobiose-derived oligosaccharides were synthesized by the acceptor reaction of glucansucrase E81 obtained from Lactobacillus reuteri E81 with sucrose and gentiobiose as donor-acceptor sugars, respectively. The reaction products were monitored by TLC analysis and gentiobiose-derived oligosaccharides up to DP 8 were formed during the acceptor reaction as determined by ESI-MS/MS analysis. The glycosylation of the gentiobiose with α-(1 → 6) linkages and α-(1 → 3) linkages was shown by 1H and 13C NMR analysis confirming the structure of these gentiobiose-derived oligosaccharides. The in vitro prebiotic function of the oligosaccharides was determined in which probiotic strains were stimulated whereas no growth was observed in pathogen strains. Gentiobiose-derived oligosaccharides showed immune-modulatory functions in vitro and triggered the production of IL-4, IL12 and TNF-α cytokines in HT29 cells in a dose dependent manner. This study showed the production and functional characterisation of gentiobiose-derived oligosaccharides establishing a promising avenue for future applications.
Collapse
Affiliation(s)
- Hümeyra İspirli
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Istanbul, 34000, Turkey
| | - Ian J Colquhoun
- Analytical Sciences Unit, Quadram Institute Bioscience, Norwich, UK
| | - Engin Şahin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Turkey
| | - Osman Sagdic
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Istanbul, 34000, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Turkey.
| |
Collapse
|
39
|
İspirli H, Dertli E. Production of mannose-containing oligosaccharides by glucansucrase E81 and determination of their functional characteristics. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1661384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hümeyra İspirli
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
| |
Collapse
|
40
|
The Effect of Inulin on Lifespan, Related Gene Expression and Gut Microbiota in InRp5545/TM3 Mutant Drosophila melanogaster: A Preliminary Study. Nutrients 2019; 11:nu11030636. [PMID: 30875994 PMCID: PMC6470987 DOI: 10.3390/nu11030636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Inulin is considered an efficient prebiotic and is beneficial for metabolic diseases via promoting intestinal probiotic enrichment and the metabolites of short-chain fatty acids (SCFAs). However, the effect of inulin on patients with InR deficiencies has seldom been reported. In this study, the lifespan, related gene expression, and gut microbiota of InRp5545/TM3 (insulin receptor mutant) Drosophila melanogaster under inulin treatment were investigated. The results showed that the lifespan was extended in only males and not in females. Furthermore, distinctly different patterns of gene expression were found between males and females, especially in the insulin/insulin-like growth factor (IGF)-like signalling (IIS) and target of rapamycin (TOR) pathways. Additionally, as a link between inulin and lifespan responses, the gut microbiota was distinctly separated by gender in both the standard diet group and the inulin treatment group, and the relationship between lifespan and the gut microbiota community was stronger in male flies than in females. This study provides preliminary evidence for the gender-dependent lifespan responses to inulin in insulin signalling-deficient Drosophila. However, controls such as wild-type and TM3 flies, and more InR mutant strains with different genetic backgrounds need to be further investigated to elucidate the mechanisms underlying the phenomenon.
Collapse
|
41
|
Fu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr 2018; 59:S130-S152. [PMID: 30580556 DOI: 10.1080/10408398.2018.1542587] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nondigestible carbohydrates (NDCs) are fermentation substrates in the colon after escaping digestion in the upper gastrointestinal tract. Among NDCs, resistant starch is not hydrolyzed by pancreatic amylases but can be degraded by enzymes produced by large intestinal bacteria, including clostridia, bacteroides, and bifidobacteria. Nonstarch polysaccharides, such as pectin, guar gum, alginate, arabinoxylan, and inulin fructans, and nondigestible oligosaccharides and their derivatives, can also be fermented by beneficial bacteria in the large intestine. Butyrate is one of the most important metabolites produced through gastrointestinal microbial fermentation and functions as a major energy source for colonocytes by directly affecting the growth and differentiation of colonocytes. Moreover, butyrate has various physiological effects, including enhancement of intestinal barrier function and mucosal immunity. In this review, several representative NDCs are introduced, and their chemical components, structures, and physiological functions, including promotion of the proliferation of butyrate-producing bacteria and enhancement of butyrate production, are discussed. We also describe the strategies for achieving directional accumulation of colonic butyrate based on endogenous generation mechanisms.
Collapse
Affiliation(s)
- Xiaodan Fu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - Zhemin Liu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - Changliang Zhu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - Haijin Mou
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - Qing Kong
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| |
Collapse
|
42
|
Mohanty D, Misra S, Mohapatra S, Sahu PS. Prebiotics and synbiotics: Recent concepts in nutrition. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Song J, Li Q, Li P, Liu R, Cui H, Zheng M, Everaert N, Zhao G, Wen J. The effects of inulin on the mucosal morphology and immune status of specific pathogen-free chickens. Poult Sci 2018; 97:3938-3946. [PMID: 29992311 DOI: 10.3382/ps/pey260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
This study investigated the effects of inulin on mucosal morphology and immune function of specific pathogen-free (SPF) chickens. A total of 200 one-day-old White Leghorns SPF chickens were divided into 5 groups of 4 replicates of 10 chickens each. All SPF chickens were fed a basal diet supplemented with 0, 0.25, 0.5, 1.0, or 2.0% inulin. The mucosal morphology and immune indexes were analyzed on days 7, 14, and 21, respectively. Our results showed that the concentrations of acetate and propionate in the cecum and serum had increased with dietary inulin supplementation on day 21 (P < 0.05). Butyrate could not be detected in the cecal digesta, but was increased in the serum of 1 and 2% groups, as compared with the control group (P < 0.05). The villi height was increased (P < 0.05) and the crypt depth was decreased (P < 0.05) in the duodenum and ileum of SPF chickens fed inulin, as compared with the control group. Also, inulin at a low concentration (0.25 or 0.5%) significantly decreased (P < 0.05) the gene expression of nuclear factor-κB (NF-κB), lipopolysaccharide-induced tumor necrosis factor (LITAF) at 7, 14, and 21 d, and of interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) at 7 and 14 d, and increased that of mucin 2 (MUC2) and claudin-1 in the ileum of SPF chickens at 7, 14, and 21 d. High inulin supplementation (2%) significantly increased the gene expression of NF-κB, LITAF, IL-6, iNOS, and Claudin-1 at 14 and 21 d compared to low inulin concentration (0.25 or 0.5%). The results indicated that the effects of inulin on mucosal immune function occurred in a dose-dependent manner. A low concentration (0.25 or 0.5%) of inulin may be beneficial in promoting intestinal immune function.
Collapse
Affiliation(s)
- Jiao Song
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Peng Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - RanRan Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| |
Collapse
|
44
|
Teng PY, Kim WK. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front Vet Sci 2018; 5:245. [PMID: 30425993 PMCID: PMC6218609 DOI: 10.3389/fvets.2018.00245] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
In recent years, prebiotics have been considered as potential alternatives to antibiotics. Mechanisms by which prebiotics modulate the ecosystem of the gut include alternation of the intestinal microbiota, improvement of the epithelium, and stimulation of the immune system. It is suggested that the administration of prebiotics not only influences these aspects but also regulates the interaction between the host and the intestinal microbiota comprehensively. In this review, we will discuss how each prebiotic ameliorates the ecosystem by direct or indirect mechanisms. Emphasis will be placed on the effects of prebiotics, including mannan oligosaccharides, β-glucans, and fructans, on the interaction between the intestinal microbiota, gut integrity, and the immunity of broilers. We will highlight how the prebiotics modulate microbial community and regulate production of cytokines and antibodies, improving gut development and the overall broiler health. Understanding the cross talk between prebiotics and the intestinal ecosystem may provide us with novel insights and strategies for preventing pathogen invasion and improving health and productivity of broilers. However, further studies need to be conducted to identify the appropriate dosages and better resources of prebiotics for refinement of administration, as well as to elucidate the unknown mechanisms of action.
Collapse
Affiliation(s)
- Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
45
|
Liu N, Wang J, Liu Z, Wang Y, Wang J. Effect of supplemental yeast cell walls on growth performance, gut mucosal glutathione pathway, proteolytic enzymes and transporters in growing broiler chickens. J Anim Sci 2018; 96:1330-1337. [PMID: 29669073 DOI: 10.1093/jas/sky046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the effect of supplemental yeast cell walls (YCW) on growth performance, gut mucosal glutathione pathway, proteolytic enzymes, and transporters in broiler chickens from 1 to 21 d of age. One-day-old broiler chickens (n = 480) were randomly allocated to 4 treatments with 6 replicates of 20 chicks each for diets containing YCW at 0, 0.5, 1.0, and 1.5 g/kg. The results showed that YCW supplementation increased (P < 0.05) ADFI and ADG by 15.3% and 16.0%, respectively, and the 2 higher doses of YCW had greater effects (P < 0.05) than the lower dose. For the glutathione pathway in the duodenal mucosa, the levels of reduced glutathione and glutathione reductase in the YCW treatments were increased (P < 0.05) by 15.6% and 17.4%, respectively, but glutathione S-transferases was not affected. Similarly, the YCW increased (P < 0.05) the mucosal activities of trypsin, dipeptidyl, and leucine aminopeptidase by 12.4%, 5.5%, and 17.3%, respectively, and the mRNA profiles of neutral, cationic, and oligopeptide transporters by 62.5%, 69.1%, and 11.5%, respectively. The YCW also increased (P < 0.05) the concentrations of Thr, Met, Ile, Leu, Lys, Arg, and Tyr in the blood by 8.8% to 39.2%. Additionally, the ADFI, ADG, reduced glutathione, trypsin, dipeptidyl aminopeptidase, leucine aminopeptidase, and cationic amino acid transporter increased linearly and quadratically (P < 0.05) with YCW supplementation. The results suggest that YCW supplementation can beneficially modulate intestinal glutathione pathway, proteolytic enzyme activity, and nutrient transport in growing animals.
Collapse
Affiliation(s)
- Ning Liu
- Department of Animal Production, Hssenan University of Science and Technology, Luoyang, China
| | - Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA
| | - Zhaoyang Liu
- Department of Animal Production, Hssenan University of Science and Technology, Luoyang, China
| | - Yongchao Wang
- Department of Animal Production, Hssenan University of Science and Technology, Luoyang, China
| | - Jianping Wang
- Department of Animal Production, Hssenan University of Science and Technology, Luoyang, China
| |
Collapse
|
46
|
Altamirano-Barrera A, Uribe M, Chávez-Tapia NC, Nuño-Lámbarri N. The role of the gut microbiota in the pathology and prevention of liver disease. J Nutr Biochem 2018; 60:1-8. [PMID: 29653359 DOI: 10.1016/j.jnutbio.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
|
47
|
Romano N, Mobili P, Zuñiga-Hansen ME, Gómez-Zavaglia A. Physico-chemical and structural properties of crystalline inulin explain the stability of Lactobacillus plantarum during spray-drying and storage. Food Res Int 2018; 113:167-174. [PMID: 30195509 DOI: 10.1016/j.foodres.2018.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/21/2023]
Abstract
The stabilizing capacity of crystalline inulin during spray-drying and storage of Lactobacillus plantarum CIDCA 83114 was assessed. In a first step, the physical properties of the matrices were investigated, using amorphous inulin as control. Melting and glass transition temperatures, water sorption isotherms, water activity, and infrared spectra were determined. Microorganisms were spray-dried at a pilot scale in both amorphous and crystalline matrices. After that, scanning electronic and confocal microsopies provided a full landscape about the interactions between microorganisms and crystals, and also the bacterial location within the amorphous matrices. The technological properties of the dehydrated microorganisms (culturability and acidification capacity) during storage at different water activities were also evaluated. Both amorphous and crystalline inulins were adequate matrices to stabilize microorganisms. However, crystalline inulin was more stable than amorphous one, especially when the storage temperature was close to the glass transition temperature, resulting in a better matrix to protect microorganisms during pilot spray-drying and storage. Furthermore, no accumulation of insoluble inulin was observed after resuspending the dehydrated microorganisms in crystalline inulin matrices, which appears as a clear technological advantage with regard to the amorphous one. Considering the prebiotic character of inulin and the probiotic properties of L. plantarum CIDCA 83114, this work developed an integrated approach, both from a fundamental and from an applied viewpoint, supporting the incorporation of such ingredients in the formulation of food products.
Collapse
Affiliation(s)
- Nelson Romano
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Pablo Mobili
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Maria Elvira Zuñiga-Hansen
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables (CREAS), Conicyt-Regional, Gore Región de Valparaíso, R06i1004, Blanco 1623, Valparaíso, Chile
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina.
| |
Collapse
|
48
|
Effects of early feeding and dietary interventions on development of lymphoid organs and immune competence in neonatal chickens: A review. Vet Immunol Immunopathol 2018; 201:1-11. [DOI: 10.1016/j.vetimm.2018.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
|
49
|
Nawaz A, Bakhsh Javaid A, Irshad S, Hoseinifar SH, Xiong H. The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. FISH & SHELLFISH IMMUNOLOGY 2018; 76:272-278. [PMID: 29510254 DOI: 10.1016/j.fsi.2018.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/21/2018] [Accepted: 03/02/2018] [Indexed: 05/24/2023]
Abstract
The gut immune system is, the main option for maintaining host's health, affected by numerous factors comprising dietary constituents and commensal bacteria. These dietary components that affect the intestinal immunity and considered as an alternative of antibiotics are called immunosaccharides. Fructooligosaccharide (FOS), Galactooligosaccharide (GOS), inulin, dietary carbohydrates, and xylooligosaccharide (XOS) are among the most studied prebiotics in human as well as in aquaculture. Although prebiotics and probiotics have revealed potential as treatment for numerous illnesses in both human and fish, a comprehensive understanding of the molecular mechanism behind direct and indirect effect on the intestinal immune response will help more and perhaps extra effective therapy intended for ailments. This review covers the most newly deep-rooted scientific outcomes about the direct and indirect mechanism through which these dietetic strategies can affect intestinal immunity of terrestrial and aquatic animals. Prebiotics exert an influence on gut immune system via the increase in lysozyme and phagocytic activity, macrophage activation and stimulation of monocyte-derived dendritic cells. Furthermore, these functional molecules also enhance epithelial barrier function, beneficial gut microbial population, and production of intermediate metabolites for example short chain fatty acids (SCFAs) that assist in balancing the immune system. Moreover, emphasis will be sited on the relationship among food/feed, the microbiota, and the gut immune system. In conclusion, further studies are nonetheless essential to confirm the direct effect of prebiotics on immune response.
Collapse
Affiliation(s)
- Asad Nawaz
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Allah Bakhsh Javaid
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sana Irshad
- School of Environmental Studies, China University of Geosciences, Wuhan 430070, China
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hanguo Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
50
|
Yahfoufi N, Mallet JF, Graham E, Matar C. Role of probiotics and prebiotics in immunomodulation. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|